Vorlesung 13. Die Frequenzkennlinien / Frequenzgang

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Vorlesung 13. Die Frequenzkennlinien / Frequenzgang"

Transkript

1 Vorlesung 3 Die Frequenzkennlinien / Frequenzgang Frequenzkennlinien geben das Antwortverhalten eines linearen Systems auf eine harmonische (sinusförmige) Anregung in Verstärkung (Amplitude) und Phasenverschiebung (Phase) an. Beispiel in Winfact: PT-System Sprungantwort

2 Vorlesung 3 Eingangssignal und Ausgangssignal unterscheiden sich voneinander abhängig von der Schwingungsfrequenz. /sec 5 /sec 20 /sec 2

3 Eingangssignal und Ausgangssignal e Vorlesung 3 ( t) = sin( ωt) e a ( t) = ( ω ) sin( ωt + α( ω)) unterscheiden sich voneinander durch Amplitude und Phasenverschiebung. a π/2 π 3π/2 2π Einschwingphase Messphase 3

4 Messung von Amplitudenverhältnis und Phasenverschiebung. Vorlesung 3 A (ω ) α(ω) = a e e a α 4

5 Amplitudenverhältnis Vorlesung 3 Phasenverschiebung A = a e ω= /sec α = =-3 5

6 Amplitudenverhältnis Vorlesung 3 Phasenverschiebung A = a e ω= 5 /sec α =0.9 =-25 6

7 Amplitudenverhältnis Vorlesung 3 Phasenverschiebung A = a e ω= 20 /sec α =0.4 =-66 7

8 Ergebnis aus der Frequenzgangmessung: Vorlesung 3 e ( t) = sin( ωt) e System a ( t) = ( ω ) sin( ωt + α( ω)) a Tabelle Kreisfrequenz Amplitudenverhältnis A Phasenverschiebung α /s -3 5 /s /s

9 Vorlesung 3 Die grafische Darstellung der Frequenzgangmessung erfolgt im Bode-Diagramm über der Kreisfrequenz ω: der Amplitudenwert A = a e die Phasenverschiebung α wird logarithmisch in Dezibel aufgetragen, wird in Grad aufgetragen. d.h. G / db = 20log0 A G / o = α 9

10 Vorlesung 3 Messwerte werden über der Kreisfrequenz aufgetragen Messwerte des Amplitudenverlauf Messwerte des Phasenverlauf 0

11 Und zu einer Linie interpoliert Vorlesung 3 Messwerte des Amplitudenverlauf Messwerte des Phasenverlauf

12 Zusammenhang zwischen Übertragungsfunktion und Frequenzgang Wird in der Übertragungsfunktion G(s) die komplexe Variable S durch die Harmonische Variable iω ersetzt, so ergibt sich der Frequenzgang F(iω) rein rechnerisch, d.h. das Bode-Diagramm des Systems kann auch rechnerisch aus der Übertragungsfunktion bestimmt werden! Der Frequenzgang F(iω) läßt sich zerlegen in Realteil und Imaginärteil F(iω)= Re (F(iω) + i * Im (F(iω)) und mit den Beziehungen für Amplitude und Phase für das Bodediagramm errechnen. Vorlesung 3 2 A = F( iω) = Re ( F( iω)) + Im Im( F( iω)) α( ω) = F ( iω) = arctan Re( F( iω)) 2 ( F( iω)) 2

13 3 Beispiel für PT-Übertragungsfunktion Vorlesung )) ( ( Im )) ( ( Re ) ( T i F i F i F A ω ω ω ω + = + = = ) arctan( )) ( Re( )) ( Im( arctan ) ( ) ( T i F i F i F ω ω ω ω ω α = = = () S T s G * + = ( ) ( ) ( ) ( ) ω ω ω ω ω i T i T i T i T i F * * * * * + = + = ( ) * * * * ω ω ω ω T T i T i F + + = ( ) ( ) 2 2 * Re ω ω T i F + = ( ) ( ) 2 2 * * Im ω ω ω T T i F + =

14 Vorlesung 3 Der Amplitudengang der Frequenzkennlinien kann dann asymptotisch konstruiert werden, indem die Verstärkung in Dezibel und die Eckfrequenz mit ω E =/T eingetragen wird und die Steigungen ein Vielfaches von +-20dB/ ω-dekade konstruiert wird. Beispiel: 0.5 PT G s = () + 0.sec* S Steigung - 20dB/Dek ω E =/T=0 /s 4

15 Vorlesung 3 Der Phasengang der Frequenzkennlinien kann asymptotisch konstruiert werden, indem eine Dekade vor/hinter der Eckfrequenz mit ω E =/T ein Knick mit der Steigungen ein Vielfaches von +-45 / ω-dekade konstruiert wird. Beispiel: PT G () s 0.5 = + 0.sec* S Steigung /Dek ω E =/T=0 /s 5

16 Vorlesung 3 Vergleich angenähert, berechnet und gemessen PT-Frequenzgang Messwerte des Amplitudenverlauf Messwerte des Phasenverlauf ω E =/T=0 /s 6

17 Übersicht Regelkreisglieder Vorlesung 3 PT Kp G( S) = Kp( ) + TS ω E =/T Steigung - 20dB/Dek ω E =/T Steigung /Dek 7

18 Übersicht Regelkreisglieder Vorlesung 3 PT2 Kp Steigung - 40dB/Dek G ( S) = + 2 Kp DT S + T 2 S 2 ω E =/T ω E =/T Steigung /Dek 8

19 Übersicht Regelkreisglieder Vorlesung 3 I Steigung - 20dB/Dek G ( S) = K S I ω E =K i Steigung 0 /Dek Constant

20 Übersicht Regelkreisglieder Vorlesung 3 D GStrecke ( S) = T D S Steigung + 20dB/Dek ω E =/T D Steigung 0 /Dek Constant

21 Übersicht Regelkreisglieder Vorlesung 3 PD Kp G Strecke ( S) = Kp( + TS) ω E =/T Steigung + 20dB/Dek Steigung 45 /Dek 2

22 Anmerkungen: Vorlesung 3 Amplituden- und Phasenverläufe können wegen des logarithmischen Massstab im Bodediagramm addiert werden, so dass eine Konstruktion von Hand möglich ist. Für Glieder. Ordnung zeigt der tatsächliche Amplitudengang an der Stelle /T (Eckfrequenz) eine Abweichung von 3 db. Für Glieder 2. Ordnung zeigt der tatsächliche Amplitudengang an der Stelle /T (Eckfrequenz) eine von der Dämpfung D abhängige Abweichung (s. Literatur). Bei kleiner Dämpfung (D<) kommt es beim PT2-Glied dort zur sog. Resonanzüberhöhung, d.h. bei Anregung mít der Eckfrequenz tritt Resonanz auf. 22

23 Vorlesung 3 Stabilität nach dem Nyquist-Kriterium im Bode-Diagramm Wenn ein nicht rückgekoppeltes Regelsystem bei einer bestimmten Anregungsfrequenz die Verstärkung.0, aber eine Phasenverschiebung von -80 Grad aufweist, so könnte sich im Falle der Rückkopplung eine ebensolche Sinusfrequenz selbständig aufrechterhalten, es wäre instabil. Der Punkt mit der Amplitude und Phasenverschiebung -80 lässt sich im Bodediagramm gut ermitteln. Er stellt den Grenzwert des stabilen Betriebs eines Regelkreises dar. Im Fall kleinerer Amplitudenwerte bei einer Phasenverschiebung von -80 ist Stabilität gegeben. Bei größeren Amplitudenwerten herrscht Instabilität. Der Frequenzwert gibt lediglich die Frequenz der instabilen Schwingung ω kritisch an. 23

24 Vorlesung 3 Zustand der stabilen Dauerschwingung im Regelkreis d U Startauslenkung WINFACT 24

25 Vorlesung 3 Wieso schwingt das? Blick auf A(ω) und α (ω) der Strecke: bei ω krit ist A=0.2 =-2.7dB und α= -80 Dummerweise hat der Regler eine Verstärkung von 5.0, so dass die Gesamtverstärkung.0 ist. Und die -80 verschobene Sinuswelle wird in der Rückführung wieder umgedreht! =>selbstaufrechterhaltene Dauerschwingung WINFACT 25

26 Vorlesung 3 Frequenzgang der Strecke: -2,6dB -80-2,6dB => K ps =0-0,63 =

27 Vorlesung 3 Man definiert die Durchtrittskreisfrequenz ω D als die Frequenz, bei der der offene Kreis genau die Verstärkung.0 hat; nach Nyquist muss hier die Phasennacheilung kleiner als 80 Grad sein für Stabilität. A(ω) Durchtrittskreisfrequenz ϖ D 0 Verstärkung.0 α (ω) stabil, wenn α< -80Grad

28 Vorlesung 3 Den Abstand der Phasennacheilung bei ω D von -80 nennt man Phasenreserve A(ω) Verstärkung.0 Phasenreserve α R α R Phasenreserve α (ω) 28

29 Vorlesung 3 Reglerentwurfskriterien im Frequenzgang: Meist wird eine Phasenreserve von α R =60 gefordert, was einem geringen Überschwingen in der Zeitantwort entspricht. Die Dämpfung zwischen D= entspricht einem Überschwingen von 5% - 25% und zeigt im Frequenzgang eine Phasenreserve von Im Bereich um die Durchtrittskreisfrequenz sollte der Amplitudengang wie ein Integralglied um -20db/Dek fallen. Die Durchtrittskreisfrequenz ϖ D kann durch Anheben und Absenken des Amplitudengang beeinflußt werden und bestimmt die Eigenschwingungsfrequenz des späteren Regelkreises. Die Übergangszeit Tg der Regelkreissprungantwort hängt näherungsweise reziprok mit der Durchtrittskreisfrequenz zusammen: Tg ~.4/ϖ D 29

30 Vorlesung 3 Reglerentwurf im Frequenzgang, Beispiel: Aufgabenstellung: Gegeben ist eine Regelstrecke aus drei PT-Gliedern mit der Zeitkonstante 0.2 sec und der Verstärkung.3. 30

31 Vorlesung 3 Reglerentwurf im Frequenzgang, Beispiel: Aufgabenstellung: Gegeben ist eine Regelstrecke aus drei PT-Gliedern mit der Zeitkonstante 0.2 sec und der Verstärkung.3. Sie soll mit einem PID-Regler geregelt werden, wobei eine Phasenreserve von α R =60 bei einer Durchtrittskreisfrequenz von ϖ D =5 /s gefordert wird. α R ω D 3

32 Reglerentwurf im Frequenzgang, Beispiel: Aufgabenstellung: Vorlesung 3 Suchen Sie die passende Einstellung für die Reglerparameter Kpr, Tn und Tv, wobei die Verzögerung des D-Anteil bei 0. Tv liegen soll! Einstellung? 32

33 Vorlesung 3 Beispiel: Vorgehensweise Struktur zur Messung des Frequenzgang aufbauen Rückkopplung rauslassen Regler auf P-Stellen mit K PR =, im FRQ-Messblock die Streckenordnung einstellen, Frequenzgang plotten 2 bei ϖ D =5 /s die Phasenreserve α R messen 3 im PID-Regler I-Anteil einschalten, T N so einstellen, dass Beule aus dem Amplitudenverlauf und im Bereich ω D der Verlauf -20dB fällt (FRQ) 4 im PID Regler T V einstellen, Faustregel: T V ~/ω D und T verz ~0.*T V Werte variieren, bis α R annähernd passt (immer wieder FRQ messen) 5 Abschliessend K p so einstellen, dass bei ω D der Amplitudenwert = 0dB 33

34 Vorlesung 3 Beispiel: Struktur zur Messung des Frequenzgang aufbauen, Rückkopplung rauslassen, Regler auf P-Stellen mit K PR =, im FRQ-Messblock die Streckenordnung einstellen, Frequenzgang plotten WINFACT 34

35 Vorlesung 3 Beispiel: 2 bei ϖ D =5 /s die Phasenreserve α R messen 35

36 Vorlesung 3 Beispiel: 3 im PID-Regler I-Anteil einschalten, T N so einstellen, dass Beule aus dem Amplitudenverlauf und im Bereich ω D der Verlauf -20dB fällt (FRQ) 36

37 Vorlesung 3 Beispiel: 4 im PID Regler T V einstellen, Faustregel: T V ~/ω D und T verz ~0.*T V Werte variieren, bis α R annähernd passt (immer wieder FRQ messen) 37

38 Vorlesung 3 Beispiel: 5 Abschliessend K p so einstellen, dass bei ω D der Amplitudenwert = 0dB 38

39 Vorlesung 3 Beispiel: Ergebnis Regelkreis schliessen 39

40 Vorlesung 3 Beispiel: Ergebnis FRQ-Block auf STEP RESPONSE und simulieren 40

41 Vorlesung 3 Konstruktion von Frequenzkennlinien im Bode-Diagramm Ausgangspunkt ist die Übertragungsfunktion Es gibt nur wenige Konstruktionsmodule (P,PT, PT2, PD, PD2, I, D) Die Übertragungsfunktion wird in die Konstruktionsmodule zerlegt; die Gesamtverstärkung wird in das P-Glied gelegt, die anderen Elemente haben die Verstärkung Im logarithmischen Massstab können die Amplitudenverläufe ebenso wie die Phasenverläufe addiert werden 4

42 Vorlesung 3 Kombination von Übertragungsfunktionselementen zum Frequenzgang. P-System PT P G( S) = 0.5 ( + 2S)( + S + S = S = P PT + 2*0.5*S + S PT 2 2 ) 2 ω E =/2 ω E =/ PT2 PT PT2 P bis

43 Vorlesung 3 Kombination von Übertragungsfunktionselementen zum Frequenzgang 2. I-System G( S) = 0.2 ( + 5S) S = S S = P PT I ω E =/5 PT I P PT P -40 I

44 Vorlesung 3 Kombination von Übertragungsfunktionselementen zum Frequenzgang 3. PI-Regler 40 G( S) = 2 = 4 = P 2 ( + 4S) PD + 4S 4S S I ω E =/4 I PD P 80 PD 40 P 0-40 I

45 Vorlesung 3 D Übung: Reglerentwurf im Frequenzgang Der gegebene Frequenzgang des offenen Regelkreises soll die Phasenreserve α R =50 haben.. Ermitteln Sie die Durchtrittsfrequenz ϖ D und die dafür notwendige Amplitudenanhebung A? 2. Rechnen Sie die Anhebung A in die Reglerverstärkung Kpr umr! 3. Wie groß ist dann die Anregelzeit des Regelkreis? 45

46 Vorlesung 3 Übung: Frequenzgang PI/PT-System 40 D + 2S G( S) = 2S = ( PI Re gler) 0.5 * + 0.3S ( PT Strecke)

47 47 Ergebnis: Vorlesung 3 S S S S S S Strecke PT gler PI S S S S G 0.3 ) 2 ( ) 2 ( ) ( ) Re ( * 2 2 ) ( + + = + + = = + + =

G S. p = = 1 T. =5 K R,db K R

G S. p = = 1 T. =5 K R,db K R TFH Berlin Regelungstechnik Seite von 0 Aufgabe 2: Gegeben: G R p =5 p 32ms p 32 ms G S p = p 250 ms p 8 ms. Gesucht ist das Bodediagramm von G S, G R und des offenen Regelkreises. 2. Bestimmen Sie Durchtrittsfrequenz

Mehr

Labor RT Versuch RT1-1. Versuchsvorbereitung. Prof. Dr.-Ing. Gernot Freitag. FB: EuI, FH Darmstadt. Darmstadt, den

Labor RT Versuch RT1-1. Versuchsvorbereitung. Prof. Dr.-Ing. Gernot Freitag. FB: EuI, FH Darmstadt. Darmstadt, den Labor RT Versuch RT- Versuchsvorbereitung FB: EuI, Darmstadt, den 4.4.5 Elektrotechnik und Informationstechnik Rev., 4.4.5 Zu 4.Versuchvorbereitung 4. a.) Zeichnen des Bode-Diagramms und der Ortskurve

Mehr

Optimierung von Regelkreisen. mit P-, PI und PID Reglern

Optimierung von Regelkreisen. mit P-, PI und PID Reglern mit P-, PI und PID Reglern Sollwert + - Regler System Istwert Infos: Skript Regelungstechnisches Praktikum (Versuch 2) + Literatur Seite 1 Ziegler und Nichols Strecke: Annäherung durch Totzeit- und PT1-Glied

Mehr

G R G S. Vorlesung 11. Xd(s) W(s) Y(s) Reglerentwurfsverfahren. Zur Auswahl von Reglertyp und Reglerparameter. Typ? Parameter?

G R G S. Vorlesung 11. Xd(s) W(s) Y(s) Reglerentwurfsverfahren. Zur Auswahl von Reglertyp und Reglerparameter. Typ? Parameter? Zur Auswahl von Reglertyp und Reglerparameter W(s) - Xd(s) Regler G R trecke G Y(s) Typ? Parameter? 1 1. Typauswahl (P, PI, PD, PID???? ) A) nach Tabellen (Faustformel mit welcher Reglertyp zu welcher

Mehr

Bestimmung der Reglerparameter aus den Frequenzkennlinien

Bestimmung der Reglerparameter aus den Frequenzkennlinien 1 Kapitel Bestimmung der Reglerparameter aus den Frequenzkennlinien Mit PSPICE lassen sich die Frequenzgänge der Amplitude und der Phase von Regelkreisen simulieren, graphisch darstellen und mit zwei Cursors

Mehr

Lösungen zur 7. Übung

Lösungen zur 7. Übung Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Vladislav Nenchev M.Sc. Arne Passon Dipl.-Ing. Thomas Seel Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte

Mehr

Seminarübungen: Dozent: PD Dr. Gunther Reißig Ort: 33/1201 Zeit: Mo Uhr (Beginn )

Seminarübungen: Dozent: PD Dr. Gunther Reißig Ort: 33/1201 Zeit: Mo Uhr (Beginn ) Vorlesung : Dozent: Professor Ferdinand Svaricek Ort: 33/040 Zeit: Do 5.00 6.30Uhr Seminarübungen: Dozent: PD Dr. Gunther Reißig Ort: 33/20 Zeit: Mo 5.00 6.30 Uhr (Beginn 8.0.206 Vorlesungsskript: https://www.unibw.de/lrt5/institut/lehre/vorlesung/rt_skript.pdf

Mehr

Reglerentwurf mit dem Frequenzkennlinienverfahren

Reglerentwurf mit dem Frequenzkennlinienverfahren Kapitel 5 Reglerentwurf mit dem Frequenzkennlinienverfahren 5. Synthese von Regelkreisen Für viele Anwendungen genügt es, Standard Regler einzusetzen und deren Parameter nach Einstellregeln zu bestimmen.

Mehr

Regelsysteme Übung: Reglerentwurf nach Spezifikation im Zeitbereich. Damian Frick. Herbstsemester Institut für Automatik ETH Zürich

Regelsysteme Übung: Reglerentwurf nach Spezifikation im Zeitbereich. Damian Frick. Herbstsemester Institut für Automatik ETH Zürich Regelsysteme 6. Übung: Reglerentwurf nach Spezifikation im Zeitbereich Damian Frick Institut für Automatik ETH Zürich Herbstsemester 205 Damian Frick Regelsysteme Herbstsemester 205 6. Übung: Reglerentwurf

Mehr

Grundlagen der Regelungstechnik

Grundlagen der Regelungstechnik Grundlagen der Regelungstechnik Dr.-Ing. Georg von Wichert Siemens AG, Corporate Technology, München Termine Dies ist der letzte Termin in diesem Jahr 17.12.2004 fällt aus Nächste Termine: 14.1., 28.1.,

Mehr

() 2. K I Aufgabe 5: x(t) W(s) - X(s) G 1 (s) Z 1 (s) Z 2 (s) G 3 (s) G 2 (s) G 4 (s) X(s)

() 2. K I Aufgabe 5: x(t) W(s) - X(s) G 1 (s) Z 1 (s) Z 2 (s) G 3 (s) G 2 (s) G 4 (s) X(s) Seite 1 von 2 Name: Matr. Nr.: Note: Punkte: Aufgabe 1: Ermitteln Sie durch grafische Umwandlung des dargestellten Systems die Übertragungsfunktion X () G s =. Z s 2 () W(s) G 1 (s) G 2 (s) Z 1 (s) G 3

Mehr

Prüfung im Modul Grundlagen der Regelungstechnik Studiengänge Medizintechnik / Elektrotechnik

Prüfung im Modul Grundlagen der Regelungstechnik Studiengänge Medizintechnik / Elektrotechnik Brandenburgische Technische Universität Cottbus-Senftenberg Fakultät 1 Professur Systemtheorie Prof. Dr.-Ing. D. Döring Prüfung im Modul Grundlagen der Regelungstechnik Studiengänge Medizintechnik / Elektrotechnik

Mehr

Skriptum zur 2. Laborübung. Transiente Vorgänge und Frequenzverhalten

Skriptum zur 2. Laborübung. Transiente Vorgänge und Frequenzverhalten Elektrotechnische Grundlagen (LU 182.692) Skriptum zur 2. Laborübung Transiente Vorgänge und Frequenzverhalten Martin Delvai Wolfgang Huber Andreas Steininger Thomas Handl Bernhard Huber Christof Pitter

Mehr

BSc PRÜFUNGSBLOCK 2 / D-MAVT VORDIPLOMPRÜFUNG / D-MAVT. Musterlösung

BSc PRÜFUNGSBLOCK 2 / D-MAVT VORDIPLOMPRÜFUNG / D-MAVT. Musterlösung Institut für Mess- und Regeltechnik BSc PRÜFUNGSBLOCK / D-MAVT.. 005. VORDIPLOMPRÜFUNG / D-MAVT REGELUNGSTECHNIK I Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: Zur Beachtung: Erlaubte

Mehr

Regelungstechnik für Ingenieure

Regelungstechnik für Ingenieure Manfred Reuter Regelungstechnik für Ingenieure 7., überarbeitete und erweiterte Auflage Mit 322 Bildern Friedr. Vieweg & Sohn Braunschweig/Wiesbaden Inhaltsverzeichnis Formelzeichen 1 Einführung 1 1.1

Mehr

Gegeben sei folgender Regelkreis mit der Führungsgröße r, dem Regelfehler e und der Ausgangsgröße y: r e R(s) P (s)

Gegeben sei folgender Regelkreis mit der Führungsgröße r, dem Regelfehler e und der Ausgangsgröße y: r e R(s) P (s) 1. Teilklausur SS 16 Gruppe A Name: Matr.-Nr.: Für beide Aufgaben gilt: Gegeben sei folgender Regelkreis mit der Führungsgröße r, dem Regelfehler e und der Ausgangsgröße y: r e R(s) P (s) y Aufgabe 1 (6

Mehr

Ergänzung zur Regelungstechnik

Ergänzung zur Regelungstechnik Ergänzung zur Regelungstechnik mathematische Erfassung Weil die einzelnen Regelkreisglieder beim Signaldurchlauf ein Zeitverhalten haben, muss der Regler den Wert der Regelabweichung verstärken und gleichzeitig

Mehr

INSTITUT FÜR REGELUNGSTECHNIK

INSTITUT FÜR REGELUNGSTECHNIK Aufgabe 9: Regler mit schaltendem Stellglied führen auf besonders einfache technische Lösungen. Durch pulsbreitenmoduliertes Schalten mit genügend hoher Frequenz ist auch hier eine angenähert lineare Betriebsweise

Mehr

Lösungen zur 5. Übung

Lösungen zur 5. Übung Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Anne-Kathrin Hess Dipl.-Ing. Thomas Seel Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte Lehrveranstaltung

Mehr

von der Straßenkoordinate r zur Fahrzeugkoordinate x. Straßenoberfläche Initiale Referenz

von der Straßenkoordinate r zur Fahrzeugkoordinate x. Straßenoberfläche Initiale Referenz Regelungstechnik Klausur vom 9.2.23 Zoltán Zomotor Versionsstand: 3. Januar 24, 2:59 This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3. Germany License. To view a

Mehr

Regelungstechnik. Zustandsgleichungcen / Übertragungsfunktionen normaler Übertragungsglieder. i c =C du dt. Zustands.- und Ausgangsgleichungen:

Regelungstechnik. Zustandsgleichungcen / Übertragungsfunktionen normaler Übertragungsglieder. i c =C du dt. Zustands.- und Ausgangsgleichungen: Regelungstechnik Zustandsgleichungcen / Übertragungsfunktionen normaler Übertragungsglieder Energiespeicher: Zustandsgröße: Kondensator Spannung i c C du Zustands.- und Ausgangsgleichungen: Aus den Knoten:

Mehr

Frequenzganganalyse, Teil 2: P-, I- und D - Glieder

Frequenzganganalyse, Teil 2: P-, I- und D - Glieder FELJC Frequenzganganalyse_neu_2.odt 1 Frequenzganganalyse, Teil 2: P-, I- und D - Glieder 2.1 P0-Glieder P0: P-Glied ohne Verzögerung P-Glied nullter Ordnung Aufgabe 2.1: Bestimme den Proportionalbeiwert

Mehr

Regelungs- und Systemtechnik 1 - Übung 6 Sommer 2016

Regelungs- und Systemtechnik 1 - Übung 6 Sommer 2016 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Regelungs- und Systemtechnik - Übung 6 Sommer 26 Vorbereitung Wiederholen Sie Vorlesungs- und Übungsinhalte zu folgenden Themen: Zeitkonstantenform

Mehr

Grundlagen der Regelungstechnik I (Prof. Dr.-Ing. habil. Jörg Grabow Fachgebiet Mechatronik FH Jena

Grundlagen der Regelungstechnik I (Prof. Dr.-Ing. habil. Jörg Grabow Fachgebiet Mechatronik FH Jena Grundlagen der Regelungstechnik I (Prof. Dr.-Ing. habil. Jörg Grabow Fachgebiet Mechatronik 1. Einführung in die Regelungstechnik 1.1 Zielsetzung der Regelungstechnik und Begriffsdefinitionen 1.2 Beispiele

Mehr

Regelungstechnik für Ingenieure

Regelungstechnik für Ingenieure Manfred Reuter Regelungstechnik für Ingenieure 9., überarbeitete und erweiterte Auflage Mit 291 Bildern, 43 Beispiele und 27 Aufgaben vieweg VII Inhaltsverzeichnis Formelzeichen XI 1 Einleitung 1 1.1 Das

Mehr

Praktikum EE2 Grundlagen der Elektrotechnik. Name: Testat : Einführung

Praktikum EE2 Grundlagen der Elektrotechnik. Name: Testat : Einführung Fachbereich Elektrotechnik Ortskurven Seite 1 Name: Testat : Einführung 1. Definitionen und Begriffe 1.1 Ortskurven für den Strom I und für den Scheinleistung S Aus den Ortskurven für die Impedanz Z(f)

Mehr

Frequenzgang und Übergangsfunktion

Frequenzgang und Übergangsfunktion Labor Regelungstechnik Frequenzgang und Übergangsfunktion. Einführung In diesem Versuch geht es um: Theoretische und experimentelle Ermittlung der Frequenzgänge verschiedener Übertragungsglieder (Regelstrecke,

Mehr

Elementare Regelungstechnik

Elementare Regelungstechnik Peter Busch Elementare Regelungstechnik Allgemeingültige Darstellung ohne höhere Mathematik *v Vogel Buchverlag Inhaltsverzeichnis 1 Einführung 13 1.1 Steuern - Regeln 13 1.1.1 Steuern 13 1.1.2 Regeln

Mehr

Regelungstechnik I (WS 13/14) Klausur ( )

Regelungstechnik I (WS 13/14) Klausur ( ) Regelungstechnik I (WS 13/14) Klausur (13.03.2014) Prof. Dr. Ing. habil. Thomas Meurer Lehrstuhl für Regelungstechnik Name: Matrikelnummer: Bitte beachten Sie: a) Diese Klausur enthält 4 Aufgaben auf den

Mehr

Elementare Regelungstechnik

Elementare Regelungstechnik Peter Busch Elementare Regelungstechnik Allgemeingültige Darstellung ohne höhere Mathematik 2., korrigierte Auflage Vogel Buchverlag Inhaltsverzeichnis 1 Einführung 13 1.1 Steuern - Regeln 13 1.1.1 Steuern

Mehr

Vorlesung 6. Übertragungsfunktion der linearen Regelkreisglieder Textuell: FederPendel. DGL: als Sprungantwort

Vorlesung 6. Übertragungsfunktion der linearen Regelkreisglieder Textuell: FederPendel. DGL: als Sprungantwort Textuell: FederPendel yste FederPendel Dreh- Magnet Feder c Masse l Däpfer d lf ld ollwertgeber Regler Winkelsensor Regelungstechnische Begriffe: PT-Glied it Verstärkung Kp, Däpfung D, Zeitkonstante T

Mehr

Praktikum Grundlagen Regelungstechnik

Praktikum Grundlagen Regelungstechnik Praktikum Grundlagen Regelungstechnik Versuch P-GRT 05 Versuchsziel Versuch 5 - Reglerentwurf im Frequenzbereich COM3LAB Veränderung des Streckenfrequenzganges durch einen vorgeschalteten Regler Datum

Mehr

1 Reglerentwurf nach dem Betragsoptimum

1 Reglerentwurf nach dem Betragsoptimum Reglerentwurf nach dem Betragsoptimum Für einfache d.h. einschleifige, lineare Regelungen mit ausgesprägtem Tiefpassverhalten ist der Entwurf nach dem Betragsoptimum relativ leicht anwendbar. w G K (s)

Mehr

ET-Praktikumsbericht 3. Semester I (Versuch 4, Zeit-/Frequenzverhalten von Vierpolen) Inhaltsverzeichnis 1 Der RC-Tiefpass Messung bei konstante

ET-Praktikumsbericht 3. Semester I (Versuch 4, Zeit-/Frequenzverhalten von Vierpolen) Inhaltsverzeichnis 1 Der RC-Tiefpass Messung bei konstante Praktikumsbericht Elektrotechnik 3.Semester Versuch 4, Vierpole 7. November Niels-Peter de Witt Matrikelnr. 8391 Helge Janicke Matrikelnr. 83973 1 ET-Praktikumsbericht 3. Semester I (Versuch 4, Zeit-/Frequenzverhalten

Mehr

Frequenzganganalyse, Teil 3: PT1- und DT1- Glieder

Frequenzganganalyse, Teil 3: PT1- und DT1- Glieder FELJC Frequenzganganalyse_neu_3.odt 1 Frequenzganganalyse, Teil 3: PT1- und DT1- Glieder 3.1 PT1-Glieder a) Wiederholung: Sprungantwort Beispiel: Ein Regelkreisglied hat bei einem Eingangssprung von 5V

Mehr

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Regelungstechnik B. Prof. Dr. techn. F. Gausch Dipl.-Ing. C.

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Regelungstechnik B. Prof. Dr. techn. F. Gausch Dipl.-Ing. C. Institut für Elektrotechnik und Informationstechnik Aufgabensammlung zur Regelungstechnik B Prof. Dr. techn. F. Gausch Dipl.-Ing. C. Balewski 10.03.2011 Übungsaufgaben zur Regelungstechnik B Aufgabe 0

Mehr

4. Der geschlossene Regelkreis mit P-Strecke und P-Regler

4. Der geschlossene Regelkreis mit P-Strecke und P-Regler FELJC 4a_Geschlossener_ Regelkreis_Störverhalten.odt 1 4. Der geschlossene Regelkreis mit P-Strecke und P-Regler 4.1. Störverhalten (disturbance behaviour, comportement au perturbations) 4.1.1 Angriffspunkt

Mehr

Elementare Regelungstechnik

Elementare Regelungstechnik Peter Busch Elementare Regelungstechnik Allgemeingültige Darstellung ohne höhere Mathematik 7., überarbeitete Auflage Vogel Buchverlag Inhaltsverzeichnis Vorwort 5 1 Einführung 13 1.1 Steuern - Regeln

Mehr

G R. Vorlesung 9. Identifiziert durch Sprungantwort. Sinnvoll selbst gestalten. Regler. Einschleifiger Regelkreis: Xd(s) W(s) Y(s) U(s) GFeder S

G R. Vorlesung 9. Identifiziert durch Sprungantwort. Sinnvoll selbst gestalten. Regler. Einschleifiger Regelkreis: Xd(s) W(s) Y(s) U(s) GFeder S Einschleifiger Regelkreis: Identifiziert durch prungantwort W(s) - Xd(s) G R? U(s) trecke GFeder Dreh- Magnet c Masse m lm Dämpfer d lf ld ollwertgeber Winkelsensor Y(s) innvoll selbst gestalten 1 typen:

Mehr

Die regelungstechnischen Grundfunktionen P, I, D, Totzeit und PT1. 1. Methoden zur Untersuchung von Regelstrecken

Die regelungstechnischen Grundfunktionen P, I, D, Totzeit und PT1. 1. Methoden zur Untersuchung von Regelstrecken FELJC P_I_D_Tt.odt 1 Die regelungstechnischen Grundfunktionen P, I, D, Totzeit und PT1 (Zum Teil Wiederholung, siehe Kurs T2EE) 1. Methoden zur Untersuchung von Regelstrecken Bei der Untersuchung einer

Mehr

Übungsaufgaben zur Vorlesung Regelungssysteme (Grundlagen)

Übungsaufgaben zur Vorlesung Regelungssysteme (Grundlagen) Übungsaufgaben zur Vorlesung Regelungssysteme (Grundlagen) TU Bergakademie Freiberg Institut für Automatisierungstechnik Prof. Dr.-Ing. Andreas Rehkopf 27. Januar 2014 Übung 1 - Vorbereitung zum Praktikum

Mehr

Lösungen zur 8. Übung

Lösungen zur 8. Übung Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Vladislav Nenchev M.Sc. Arne Passon Dipl.-Ing. Thomas Seel Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte

Mehr

Grundlagen der Regelungstechnik

Grundlagen der Regelungstechnik Grundlagen der Regelungstechnik Dr.-Ing. Georg von Wichert Siemens AG, Corporate Technology, München Termine Nächste Termine: 28.., 4.2. Wiederholung vom letzten Mal Regelkreis Geschlossener Regelkreis

Mehr

90 Minuten Seite 1. Einlesezeit

90 Minuten Seite 1. Einlesezeit 90 Minuten Seite 1 Einlesezeit Für die Durchsicht der Klausur wird eine Einlesezeit von 10 Minuten gewährt. Während dieser Zeitdauer ist es Ihnen nicht gestattet, mit der Bearbeitung der Aufgaben zu beginnen.

Mehr

Bearbeitungszeit: 120 Min

Bearbeitungszeit: 120 Min 4 6 Fachgebiet gelungstechnik Leiter: Prof. Dr.-Ing. Johann ger gelungs- und Systemtechnik - Übungsklausur 9 Bearbeitungszeit: Min Modalitäten Es sind keine Hilfsmittel zugelassen. Bitte schreiben Sie

Mehr

1. Differentialgleichung der Filter zweiter Ordnung

1. Differentialgleichung der Filter zweiter Ordnung Prof. Dr.-Ing. F. Keller abor Elektronik 3 Filter zweiter Ordnung Info v.doc Hochschule Karlsruhe Info-Blatt: Filter zweiter Ordnung Seite /6. Differentialgleichung der Filter zweiter Ordnung Ein- und

Mehr

SSYLB2 SS06 Daniel Schrenk, Andreas Unterweger Übung 5. Laborprotokoll SSY. Reglerentwurf nach dem Frequenz- Kennlinien-Verfahren

SSYLB2 SS06 Daniel Schrenk, Andreas Unterweger Übung 5. Laborprotokoll SSY. Reglerentwurf nach dem Frequenz- Kennlinien-Verfahren Laborprotokoll SSY Reglerentwurf nah dem Frequenz- Kennlinien-Verfahren Daniel Shrenk, Andreas Unterweger, ITS 24 SSYLB2 SS6 Daniel Shrenk, Andreas Unterweger Seite 1 von 13 1. Einleitung Ziel der Übung

Mehr

Protokoll Elektronikpraktikum Versuch 2 am

Protokoll Elektronikpraktikum Versuch 2 am Protokoll Elektronikpraktikum Versuch 2 am 30.04.2013 Intsar Bangwi & Sven Köppel Passive Bauelemente Elektronische Bauelemente stellen Einzeleinheiten von elektrischen Schaltungen da. Sie werden mit versch.

Mehr

Regelungstechnik I. Heinz JUnbehauen. Klassische Verfahren zur Analyse und Synthese linearer kontinuierlicher Regelsysteme. 3., durchgesehene Auflage

Regelungstechnik I. Heinz JUnbehauen. Klassische Verfahren zur Analyse und Synthese linearer kontinuierlicher Regelsysteme. 3., durchgesehene Auflage Heinz JUnbehauen Regelungstechnik I Klassische Verfahren zur Analyse und Synthese linearer kontinuierlicher Regelsysteme 3., durchgesehene Auflage Mit 192 Bildern V] Friedr. Vieweg & Sohn Braunschweig/Wiesbaden

Mehr

Formelsammlung. Regelungstechnik I. Basierend auf Arbeit von Florian Beermann Letzte Änderung am : Frank Bättermann

Formelsammlung. Regelungstechnik I. Basierend auf Arbeit von Florian Beermann Letzte Änderung am : Frank Bättermann Formelsammlung Regelungstechnik I Basierend auf Arbeit von Florian Beermann Letzte Änderung am 29.04.2008: Frank Bättermann 1 Inhaltsverzeichnis 1. Steuerung und Regelung...3 1.3 Vorteile der Regelung...3

Mehr

Klausur im Fach: Regelungs- und Systemtechnik 1

Klausur im Fach: Regelungs- und Systemtechnik 1 (in Druckschrift ausfüllen!) Univ.-Prof. Dr.-Ing. habil. Ch. Ament Name: Vorname: Matr.-Nr.: Sem.-Gr.: Anzahl der abgegebenen Blätter: 3 Klausur im Fach: Prüfungstermin: 26.03.2013 Prüfungszeit: 11:30

Mehr

Lösungen zur 8. Übung

Lösungen zur 8. Übung Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Vladislav Nenchev M.Sc. Arne Passon Dipl.-Ing. Thomas Seel Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte

Mehr

(s + 3) 1.5. w(t) = σ(t) W (s) = 1 s. G 1 (s)g 2 (s) 1 + G 1 (s)g 2 (s)g 3 (s)g 4 (s) = Y (s) Y (s) W (s)g 1 (s) Y (s)g 1 (s)g 3 (s)g 4 (s)

(s + 3) 1.5. w(t) = σ(t) W (s) = 1 s. G 1 (s)g 2 (s) 1 + G 1 (s)g 2 (s)g 3 (s)g 4 (s) = Y (s) Y (s) W (s)g 1 (s) Y (s)g 1 (s)g 3 (s)g 4 (s) Aufgabe : LAPLACE-Transformation Die Laplace-Transformierte der Sprungantwort ist: Y (s) = 0.5 s + (s + 3).5 (s + 4) Die Sprungantwort ist die Reaktion auf den Einheitssprung: w(t) = σ(t) W (s) = s Die

Mehr

Lösungen zur 3. Übung

Lösungen zur 3. Übung Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Vladislav Nenchev M.Sc. Arne Passon Dipl.-Ing. Thomas Seel Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte

Mehr

Regelungstechnik Aufgaben

Regelungstechnik Aufgaben Serge Zacher Regelungstechnik Aufgaben Lineare, Zweipunkt- und digitale Regelung 2., überarbeitete und erweiterte Auflage Mit 126 Aufgaben und MATLAB-Simulationen ZACHE VII Inhalt 1. Formelsammlung 1 1.1

Mehr

Hauptseminar SOI Regelalgorithmen für Totzeitsysteme

Hauptseminar SOI Regelalgorithmen für Totzeitsysteme Hauptseminar SOI 6. Juli 2006 Gliederung des Vortrags Motivation Grundlagen Totzeitsysteme und deren Schwierigkeiten Lösungsansätze für Totzeitsysteme Zusammenfassung Gliederung des Vortrags Motivation

Mehr

MR Mechanische Resonanz

MR Mechanische Resonanz MR Mechanische Resonanz Blockpraktikum Herbst 2007 (Gruppe 2b) 24. Oktober 2007 Inhaltsverzeichnis Grundlagen 2. Freie, ungedämpfte Schwingung....................... 2.2 Freie, gedämpfte Schwingung........................

Mehr

INSTITUT FÜR REGELUNGSTECHNIK

INSTITUT FÜR REGELUNGSTECHNIK Lösung Übung 3 Aufgabe: Kaskadenregelung a Berechnung der Teilübertragungsfunktion G 3 s: V4 G 3 s Y 3s Xs T 4 s + + V 5 V 3 T 5 s + T 3 s + V4 T 5 s + T 4 s + V 5 V 3 T 4 s +T 5 s + T 3 s + V 3 [V 4 T

Mehr

UNIVERSITÄT DUISBURG - ESSEN Fakultät für Ingenieurwissenschaften, Abt. Maschinenbau, Professur für Steuerung, Regelung und Systemdynamik

UNIVERSITÄT DUISBURG - ESSEN Fakultät für Ingenieurwissenschaften, Abt. Maschinenbau, Professur für Steuerung, Regelung und Systemdynamik Regelungstechnik I (PO95), Regelungstechnik (PO02 Schiffstechnik), Regelungstechnik (Bachelor Wi.-Ing.) (180 Minuten) Seite 1 NAME VORNAME MATRIKEL-NR. Aufgabe 1 (je 2 Punkte) a) Erläutern Sie anhand eines

Mehr

ka (s + c 0 )(s + c 1 )s 1 c 0 (c 0 c 1 ) e c 0t + lim = k R k max = π 4T t b2) und aus der Hauptlösung der Phasenbedingung die Reglerverstärkung

ka (s + c 0 )(s + c 1 )s 1 c 0 (c 0 c 1 ) e c 0t + lim = k R k max = π 4T t b2) und aus der Hauptlösung der Phasenbedingung die Reglerverstärkung Aufgabe 1: Systemanalyse a) Sprungantwort des Übertragungssystems: X(s) = ka (s + c 0 )(s + c 1 )s a1) Zeitlicher Verlauf der Sprungantwort: [ 1 x(t) = ka + c 0 c 1 a2) Man erhält dazu den Endwert: 1 c

Mehr

Übung 5: Routh-Hurwitz und Nyquist Stabilitätskriterien

Übung 5: Routh-Hurwitz und Nyquist Stabilitätskriterien Übungsaufgaben zur Vorlesung Regelsysteme Herbstsemester 25 Übung 5: Routh-Hurwitz und Nyquist Stabilitätskriterien Prof. Dr. Manfred Morari, Prof. Dr. Florian Dörfler Institut für Automatik, ETH Zürich

Mehr

Praktikum Mikro- und Nanosysteme (Mikrosystemtechnik) Versuch MST7 Dämpfung

Praktikum Mikro- und Nanosysteme (Mikrosystemtechnik) Versuch MST7 Dämpfung Praktikum Mikro- und Nanosysteme (Mikrosystemtechnik) I. Versuchsvorbereitung Aufgabe 1 Geg.: 2,5, sinusförmige Anregung Versuch MST7 Dämpfung a) Amplituden- und Phasenkennlinien - Schwingfall ( ): Der

Mehr

Regelung. Max Meiswinkel. 8. Dezember Max Meiswinkel () Regelung 8. Dezember / 12

Regelung. Max Meiswinkel. 8. Dezember Max Meiswinkel () Regelung 8. Dezember / 12 Regelung Max Meiswinkel 8. Dezember 2008 Max Meiswinkel () Regelung 8. Dezember 2008 1 / 12 Übersicht 1 Einführung Der Regelkreis Regelschleife 2 stetige Regelung P-Regler I-Regler PI-Regler PD-Regler

Mehr

Dokumentation und Auswertung. Labor. Kaiblinger, Poppenberger, Sulzer, Zöhrer. Impulsformung-Frequenzverhalten

Dokumentation und Auswertung. Labor. Kaiblinger, Poppenberger, Sulzer, Zöhrer. Impulsformung-Frequenzverhalten TGM Abteilung Elektronik und Technische Informatik Übungsbetreuer Dokumentation und Auswertung Prof. Zorn Labor Jahrgang 3BHEL Übung am 10.01.2017 Erstellt am 11.01.2017 von Poppenberger Übungsteilnehmer

Mehr

a) Beschreiben Sie den Unterschied zwischen einer Regelung und einer Steuerung an Hand eines Blockschaltbildes.

a) Beschreiben Sie den Unterschied zwischen einer Regelung und einer Steuerung an Hand eines Blockschaltbildes. 144 Minuten Seite 1 NAME VORNAME MATRIKEL-NR. Aufgabe 1 (je 2 Punkte) a) Beschreiben Sie den Unterschied zwischen einer Regelung und einer Steuerung an Hand eines Blockschaltbildes. b) Was ist ein Mehrgrößensystem?

Mehr

FACHHOCHSCHULE KÖLN FAKULTÄT IME NT BEREICH REGELUNGSTECHNIK PROF. DR. H.M. SCHAEDEL / PROF. DR. R. BARTZ. RT - Praktikum. Thema des Versuchs :

FACHHOCHSCHULE KÖLN FAKULTÄT IME NT BEREICH REGELUNGSTECHNIK PROF. DR. H.M. SCHAEDEL / PROF. DR. R. BARTZ. RT - Praktikum. Thema des Versuchs : FACHHOCHSCHULE KÖLN FAKULTÄT IME NT BEREICH REGELUNGSTECHNIK PROF. DR. H.M. SCHAEDEL / PROF. DR. R. BARTZ Gruppe: RT - Praktikum Thema des Versuchs : Analyse von Ausgleichsstrecken höherer Ordnung im Zeit-

Mehr

Regelungstechnik 1. Oldenbourg Verlag München Wien

Regelungstechnik 1. Oldenbourg Verlag München Wien Regelungstechnik 1 Lineare und Nichtlineare Regelung, Rechnergestützter Reglerentwurf von Prof. Dr. Gerd Schulz 3., überarbeitete und erweiterte Auflage Oldenbourg Verlag München Wien Inhaltsverzeichnis

Mehr

Berechnung, Simulation und Messungen an einem Regelkreises aus I-Strecke und P-Regler.

Berechnung, Simulation und Messungen an einem Regelkreises aus I-Strecke und P-Regler. Ziel des vierten Versuchs: Berechnung, Simulation und Messungen an einem Regelkreises aus I-Strecke und P-Regler. 4. Berechnung, Simulation und Messung des Frequenzgangs einer I-Strecke F R (s) F S (s)

Mehr

19. Frequenzgangkorrektur am Operationsverstärker

19. Frequenzgangkorrektur am Operationsverstärker 9. Frequenzgangkorrektur am Operationsverstärker Aufgabe: Die Wirkung komplexer Koppelfaktoren auf den Frequenzgang eines Verstärkers ist zu untersuchen. Gegeben: Eine Schaltung für einen nichtinvertierenden

Mehr

Regelungs- und Systemtechnik 1 - Übung 5 Sommer 2016

Regelungs- und Systemtechnik 1 - Übung 5 Sommer 2016 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Regelungs- und Systemtechnik 1 - Übung 5 Sommer 216 Vorbereitung Wiederholen Sie Vorlesungs- und Übungsinhalte zu folgenden Themen: Skizzieren

Mehr

Autonome Mobile Systeme

Autonome Mobile Systeme Autonome Mobile Systeme Teil II: Systemtheorie für Informatiker Dr. Mohamed Oubbati Institut für Neuroinformatik Universität Ulm SS 2007 Wiederholung vom letzten Mal! Die Übertragungsfunktion Die Übertragungsfunktion

Mehr

Phasenkompensation an Verstärkern Teil 1 Theoretische Grundlagen

Phasenkompensation an Verstärkern Teil 1 Theoretische Grundlagen Dr.-Ing. Gottlieb Strassacker Dr.-Ing. Peter Strassacker Strassacker lautsprechershop.de Phasenkompensation an Verstärkern Teil Theoretische Grundlagen. Einleitung Bei allen Verstärkern nimmt die Spannungsverstärkung

Mehr

Der Mensch als Regler

Der Mensch als Regler Institut für Mess- und Regeltechnik H. P. Geering, L. Guzzella, C. H. Onder Studiengang Maschinenbau und Verfahrenstechnik Praktikum Mess- und Regelungstechnik Anleitung zum Versuch Der Mensch als Regler

Mehr

Versuchsprotokoll zum Versuch Nr. 9 Hoch- und Tiefpass

Versuchsprotokoll zum Versuch Nr. 9 Hoch- und Tiefpass In diesem Versuch geht es darum, die Kennlinien von Hoch- und Tiefpässen aufzunehmen. Die Übertragungsfunktion aller Blindwiderstände in Vierpolen hängt von der Frequenz ab, so daß bestimmte Frequenzen

Mehr

Vorlesung 3. Struktur Ofensystem

Vorlesung 3. Struktur Ofensystem Regelkreisglieder Struktur Ofensystem Das Ofensystem besteht aus einzelnen Übertragungsgliedern, allgemein als Regelkreisglieder bezeichnet Es gibt für Regelkreisglieder die Unterscheidung linear/nichtlinear

Mehr

Regelungstechnik 1 Praktikum Versuch 2.1

Regelungstechnik 1 Praktikum Versuch 2.1 Regelungstechnik 1 Praktikum Versuch 2.1 1 Prozeßidentifikation Besteht die Aufgabe, einen Prozeß (Regelstrecke, Übertragungssystem,... zu regeln oder zu steuern, wird man versuchen, so viele Informationen

Mehr

PRAKTIKUM REGELUNGSTECHNIK 2

PRAKTIKUM REGELUNGSTECHNIK 2 FACHHOCHSCHULE LANDSHUT Fachbereich Elektrotechnik Prof. Dr. G. Dorn PRAKTIKUM REGELUNGSTECHNIK 2 1 Versuch 4: Lageregelung eines Satelitten 1.1 Einleitung Betrachtet werde ein Satellit, dessen Lage im

Mehr

Einführung in die Physik I. Schwingungen und Wellen 1

Einführung in die Physik I. Schwingungen und Wellen 1 Einführung in die Physik I Schwingungen und Wellen O. von der Lühe und U. Landgraf Schwingungen Periodische Vorgänge spielen in eine große Rolle in vielen Gebieten der Physik E pot Schwingungen treten

Mehr

Regelungstechnik für Ingenieure

Regelungstechnik für Ingenieure Manfred Reuter Serge Zacher Regelungstechnik für Ingenieure Analyse, Simulation und Entwurf von Regelkreisen 12., korrigierte und erweiterte Auflage Mit 388 Abbildungen, 11 Beispielen und 34 Aufgaben STUDIUM

Mehr

Steuer- und und Regelungstechnik II

Steuer- und und Regelungstechnik II Steuer- und und Regelungstechnik II II Vorlesung: Dozent: Professor Ferdinand Svaricek Ort: Ort: 33/03 Zeit: Zeit: Mi Mi 8.5 8.5 9.45 9.45 Uhr Uhr Seminarübungen: Dozent: Dr. Dr. Klaus-Dieter Otto Otto

Mehr

Bestimmung des Frequenz- und Phasenganges eines Hochpaßfilters 1. und 2. Ordnung sowie Messen der Grenzfrequenz. Verhalten als Differenzierglied.

Bestimmung des Frequenz- und Phasenganges eines Hochpaßfilters 1. und 2. Ordnung sowie Messen der Grenzfrequenz. Verhalten als Differenzierglied. 5. Versuch Aktive HochpaßiIter. und. Ordnung (Durchührung Seite I-7 ) ) Filter. Ordnung Bestimmung des Frequenz- und Phasenganges eines Hochpaßilters. und. Ordnung sowie Messen der Grenzrequenz. Verhalten

Mehr

Frequenzgang - Darstellungen

Frequenzgang - Darstellungen Frequenzgang - Darstellungen Ein Puzzle von Martin Darms und Roman Lässker Inhalt und Lernziel: Die Übertragungseigenschaften einer Schaltung sind abhängig von der Frequenz. Die Studenten und Studentinnen

Mehr

Musterlösung. 8 (unterschiedlich gewichtet, total 69 Punkte)

Musterlösung. 8 (unterschiedlich gewichtet, total 69 Punkte) BSc - Sessionsprüfung 29.8.2 Regelungstechnik I (5-59-) Prof. L. Guzzella Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: 2 Minuten 8 (unterschiedlich gewichtet, total 69 Punkte) Um die

Mehr

Regelungstechnik für Ingenieure

Regelungstechnik für Ingenieure Serge Zacher Manfred Reuter Regelungstechnik für Ingenieure Analyse, Simulation und Entwurf von Regelkreisen 13., überarbeitete und erweiterte Auflage Mit 397 Abbildungen, 96 Beispielen und 32 Aufgaben

Mehr

Übung 8 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN

Übung 8 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN Fakultät Informatik, Institut für Angewandte Informatik, Professur Technische Informationssysteme Übung 8 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN Übungsleiter: Dr.-Ing. H.-D. Ribbecke

Mehr

Versuchsanleitung. Labor Mechatronik. Versuch DV_5 Regelkreis mit analogen Reglern. Labor Mechatronik Versuch BV-5 analoge Regelung

Versuchsanleitung. Labor Mechatronik. Versuch DV_5 Regelkreis mit analogen Reglern. Labor Mechatronik Versuch BV-5 analoge Regelung Fachbereich 2 Ingenieurwissenschaften II Labor Mechatronik Steuerungund Regelung Lehrgebiet: Mechatronik Versuchsanleitung Versuch DV_5 Regelkreis mit analogen Reglern FB2 Stand April 2009 Seite1von 9

Mehr

SSYLB2 SS06 Daniel Schrenk, Andreas Unterweger Übung 8. Laborprotokoll SSY. Diskrete Systeme II: Stabilitätsbetrachtungen und Systemantwort

SSYLB2 SS06 Daniel Schrenk, Andreas Unterweger Übung 8. Laborprotokoll SSY. Diskrete Systeme II: Stabilitätsbetrachtungen und Systemantwort SSYLB SS6 Daniel Schrenk, Andreas Unterweger Übung 8 Laborprotokoll SSY Diskrete Systeme II: Stabilitätsbetrachtungen und Systemantwort Daniel Schrenk, Andreas Unterweger, ITS 4 SSYLB SS6 Daniel Schrenk,

Mehr

Musterlösung. 120 Minuten + 15 Minuten Lesezeit am Anfang! 44 (unterschiedlich gewichtet, total 60 Punkte)

Musterlösung. 120 Minuten + 15 Minuten Lesezeit am Anfang! 44 (unterschiedlich gewichtet, total 60 Punkte) BSc - Sessionsprüfung 9..25 Regelungstechnik I (5-59-) Guzzella, Nüesch, Ochsner Musterlösung Dauer der Prüfung: Anzahl der Fragen: Bewertung: 2 Minuten + 5 Minuten Lesezeit am Anfang! 44 (unterschiedlich

Mehr

Regelungstechnik 1 - Grundglieder: Analyse im Zeit und Frequenzbereich

Regelungstechnik 1 - Grundglieder: Analyse im Zeit und Frequenzbereich Regelungsechnik - Grundglieder: Analyse im Zei und Frequenzbereich Vorberachungen: Das Überragungsverhalen von linearen Regelkreiselemenen wird vorwiegend durch Sprunganworen bzw. Übergangsfunkionen sowie

Mehr

Operationsverstärker. Sascha Reinhardt. 17. Juli 2001

Operationsverstärker. Sascha Reinhardt. 17. Juli 2001 Operationsverstärker Sascha Reinhardt 17. Juli 2001 1 1 Einführung Es gibt zwei gundlegende Operationsverstärkerschaltungen. Einmal den invertierenden Verstärker und einmal den nichtinvertierenden Verstärker.

Mehr

PW11 Wechselstrom II. Oszilloskop Einführende Messungen, Wechselstromwiderstände, Tiefpasse (Hochpass) 17. Januar 2007

PW11 Wechselstrom II. Oszilloskop Einführende Messungen, Wechselstromwiderstände, Tiefpasse (Hochpass) 17. Januar 2007 PW11 Wechselstrom II Oszilloskop Einführende Messungen, Wechselstromwiderstände, Tiefpasse (Hochpass) 17. Januar 2007 Andreas Allacher 0501793 Tobias Krieger 0447809 Mittwoch Gruppe 3 13:00 18:15 Uhr Dr.

Mehr

Im Frequenzbereich beschreiben wir das Verhalten von Systemen mit dem Komplexen Frequenzgang: G (jω)

Im Frequenzbereich beschreiben wir das Verhalten von Systemen mit dem Komplexen Frequenzgang: G (jω) 4 Systeme im Frequenzbereich (jω) 4.1 Allgemeines Im Frequenzbereich beschreiben wir das Verhalten von Systemen mit dem Komplexen Frequenzgang: G (jω) 1 4.2 Berechnung des Frequenzgangs Beispiel: RL-Filter

Mehr

A= A 1 A 2. A i. A= i

A= A 1 A 2. A i. A= i 2. Versuch Durchführung siehe Seite F - 3 Aufbau eines zweistufigen Verstärkers Prof. Dr. R Schulz Für die Verstärkung 'A' eines zwei stufigen Verstärkers gilt: oder allgemein: A= A 1 A 2 A= i A i A i

Mehr

Frequenzgang der Verstäkung von OPV-Schaltungen

Frequenzgang der Verstäkung von OPV-Schaltungen Frequenzgang der Verstäkung von OPV-Schaltungen Frequenzgang der Spannungsverstärkung eines OPV Eigenschaten des OPV (ohne Gegenkopplung: NF-Verstärkung V u 4 Transitrequenz T 2. 6. Hz T Knickrequenz =

Mehr

Regelung einer Luft-Temperatur-Regelstrecke

Regelung einer Luft-Temperatur-Regelstrecke Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Fachgebiet Regelungssysteme Leitung: Prof. Dr.-Ing. Jörg Raisch Praktikum Grundlagen der Regelungstechnik Regelung einer Luft-Temperatur-Regelstrecke

Mehr

Eingangssignale von Verstärkern sind häufig mit hochfrequenten Störsignalen behaftet, die mit Tiefpaßfiltern unterdrückt werden können.

Eingangssignale von Verstärkern sind häufig mit hochfrequenten Störsignalen behaftet, die mit Tiefpaßfiltern unterdrückt werden können. 4. Versuch Aktives Tiefpaßfilter. und. Ordnung Durchführung Seite H - 9 ) Filter. Ordnung Eingangssignale von Verstärkern sind häufig mit hochfrequenten Störsignalen behaftet, die mit Tiefpaßfiltern unterdrückt

Mehr

Elektronik-Praktikum für Studierende der Physik (Analogteil) Versuch 2. Untersuchung passiver Netzwerke. Aufgaben

Elektronik-Praktikum für Studierende der Physik (Analogteil) Versuch 2. Untersuchung passiver Netzwerke. Aufgaben Versuch 2 Untersuchung passiver Netzwerke Aufgaben Bode-Diagramm Aufnahme eines BODE-Diagramms (Amplituden- und Phasenfrequenzgang) für ein RC- und für ein CR-Glied. Bestimmung der Eckfrequenz für ein

Mehr

Optimierung. 1. Grundlegendes Beim PID-Regler müssen 3 Parameter optimal eingestellt werden: Proportionalbeiwert, Nachstellzeit und Vorhaltezeit.

Optimierung. 1. Grundlegendes Beim PID-Regler müssen 3 Parameter optimal eingestellt werden: Proportionalbeiwert, Nachstellzeit und Vorhaltezeit. FELJC Optimierung_Theorie.odt Optimierung. Grundlegendes Beim PID-Regler müssen 3 Parameter optimal eingestellt werden: Proportionalbeiwert, Nachstellzeit und Vorhaltezeit. Hierzu gibt es unterschiedliche

Mehr

Laplace-Transformation

Laplace-Transformation Laplace-Transformation Gegeben: Funktion mit beschränktem Wachstum: x(t) Ke ct t [, ) Definition: Laplace-Transformation: X(s) = e st x(t) dt = L{x(t)} s C Re(s) >c Definition: Inverse Laplace-Transformation:

Mehr

1 Allgemein. Formelzettel Automatisierungstechnik

1 Allgemein. Formelzettel Automatisierungstechnik Diese Zusammenstellung von wichtigen Formeln und Regeln habe ich im Zuge des Lernens für Automatisierungstechnik geschrieben. Zum Lernen kann ich folgende Literatur empfehlen: Signale-&-Systeme, PROF.

Mehr