Laplace-Transformation

Größe: px
Ab Seite anzeigen:

Download "Laplace-Transformation"

Transkript

1 Laplace-Transformation Gegeben: Funktion mit beschränktem Wachstum: x(t) Ke ct t [, ) Definition: Laplace-Transformation: X(s) = e st x(t) dt = L{x(t)} s C Re(s) >c Definition: Inverse Laplace-Transformation: x(t) = 1 2πj d+j d j e st X(s) ds = L 1 {X(s)} t [, ) d>c

2 Für die Praxis wichtigste Eigenschaften: 1 Linearität: L{a 1 x 1 (t) +a 2 x 2 (t)} = a 1 L{x 1 (t)} + a 2 L{x 2 (t)} Zur Ermittlung von Laplace-Tranformierten: 2 Integrationssatz: { t } L x(τ ) dτ = 1 s X(s) 3 Dämpfungssatz: L{e at x(t)} = X(s + a)

3 Zum Lösen von Differentialgleichungen: 4 Faltungssatz: { t L } g(t τ )u(τ ) dτ = L{g(t)}L{u(t)} = G(s)U(s) 5 Differentiationssatz: L{ẋ(t)} = sx(s) x()

4 Tabelle 1: Wichtigste Laplace-Transformierte x(t) (t ) X(s) δ(t) 1 h(t), 1(t) t 1 s 1 s 2 t k (k =1, 2,) k! s k+1 e at 1 s a 1 e at a s (s + a) cos ωt s s 2 + ω 2 sin ωt ω s 2 + ω 2 cos(ωt + ϕ) sin(ωt + ϕ) cosh at sinh at s cos ϕ ω sin ϕ s 2 + ω 2 ω cos ϕ + s sin ϕ s 2 + ω 2 s s 2 a 2 a s 2 a 2

5 Tabelle 2: Eigenschaften der Laplace-Transformation Originalfunktion Transformierte Bemerkungen a 1 x 1 (t) +a 2 x 2 (t) a 1 X 1 (s) +a 2 X 2 (s) Superpositionsprinzip ẋ(t) sx(s) x() Differentiationsregel ẍ(t) s 2 X(s) sx() ẋ() t x(τ )dτ x(t T ) x(at) t } für { t T t<t 1 s X(s) e st X(s) 1 a X ( ) s a Integrationsregel Verschiebungssatz Ähnlichkeitssatz x 1 (t τ )x 2 (τ )dτ = x 1 x 2 X 1 (s)x 2 (s) Faltungssatz e bt x(t) X(s b) Dämpfungssatz tx(t) d X(s) Multiplikationssatz ds x(t) t s X(s) ds Divisionssatz x(t) periodisch mit Periode T T e st x(t) dt 1 e st Periodische Funktion x(+) = lim t x(t) = lim s sx(s) Anfangswertsatz ) lim x(t) =lim t s Endwertsatz ) x(t) 2 dt = 1 X(jω) 2 dω 2π Parseval-Theorem ) sofern die zeitlichen Grenzwerte existieren

6 Laplace-Transformierte (Beispiele): 1 Einheits-Impuls, Dirac-Stoss δ(t): δ 1 ε Fläche =1 ε t L{δ(t)} = e st δ(t) dt =1

7 Anwendungen der Integrationsregel: 2 Einheits-Sprung h(t): h 1 t h(t) = t δ(σ) dσ L{h(t)} = 1 s L{δ(t)} = 1 s

8 3 Einheits-Funktion 1(t): 1 1 t L{ 1(t)} = L{h(t)} = 1 s

9 4 Einheits-Rampe x(t) = t: x t t = t 1(σ) dσ L{t} = 1 s L{ 1(t)} = 1 s 2

10 5 Potenzen von t: { t 2 } L = 1 2 s L{t} = 1 s 3 { t 3 } L = 1s { t 2 } 3! L = 1 2 s 4 L { t k k! } = 1 s L { t k 1 (k 1)! } = 1 s k+1

11 6a Harmonische Funktion cos ωt: t t ω 2 cos ωt dt = ω sin ωt ω sin ωt dt = cos ωt t t = ω sin ωt =1 cos ωt Somit: Resultat: 1 s 2 L{ω2 cos ωt} = L{1 cos ωt} ( ω 2 ) s +1 L{cos ωt} = 1 2 s s L{cos ωt} = s 2 + ω 2

12 6b Harmonische Funktion sin ωt: t t ω 2 sin ωt dt = ω cos ωt (ω ω cos ωt) dt =(ωt sin ωt) t = ω ω cos ωt t = ωt sin ωt Somit: Resultat: 1 s 2 L{ω2 sin ωt} = L{ωt sin ωt} ( ω 2 ) s +1 L{sin ωt} = ω 2 s 2 ω L{sin ωt} = s 2 + ω 2

13 6c Phasenverschobene harmonische Funktionen cos(ωt+ϕ) und sin(ωt+ϕ): Hilfsmittel: Additionstheoreme der Trigonometrie: cos(ωt+ϕ) = cos ωt cos ϕ sin ωt sin ϕ L{cos(ωt+ϕ)} = s cos ϕ ω sin ϕ s 2 + ω 2 sin(ωt+ϕ) = sin ωt cos ϕ + cos ωt sin ϕ L{sin(ωt+ϕ)} = ω cos ϕ + s sin ϕ s 2 + ω 2

14 Anwendungen des Dämpfungssatzes: 7 Exponential-Funktion e at : L{e at } = L{e at 1(t)} = L{ 1(t)} s+a = 1 s + a

15 Lösen von Differentialgleichungen: 1 Laplace-Transformieren der Differentialgleichung 2 Auflösen nach Y (s) 3 U(s) =L{u(t)} einsetzen 4 y(t) =L 1 {Y (s)} (Partialbruch-Zerlegung, Tabelle)

16 Beispiel: System 1 Ordnung: Differentialgleichung: ẏ(t) +ay(t) =bu(t) Anfangsbedingung: y() = y Eingangssignal (von uns frei wählbar): u(t) für t Gesucht: Ausgangssignal: y(t) für t

17 1 Laplace-Transformieren der Differentialgleichung: L{ẏ(t) +ay(t)} = L{bu(t)} sy (s) y + ay (s) =bu(s) 2 Auflösen nach Y (s): Y (s) = y s + a + b s + a }{{} G(s) U(s) 3 U(s) =L{u(t)} einsetzen 4 y(t) =L 1 {Y (s)}

18 Eigenantwort: u(t) U(s) = Y (s) = y s + a y(t) =y e at

19 Eigenantwort des Systems 1 Ordnung: y(t) =y e at y y τ = 1 a 2τ 3τ 4τ t

20 Einheits-Impulsantwort: y = u(t) =δ(t) U(s) =1 Y (s) =G(s) = b s + a y(t) =g(t) =be at für t> Die Übertragungsfunktion G(s) ist die Laplace-Transformierte der Einheits-Impulsantwort g(t)

21 Einheits-Impulsantwort des Systems 1 Ordnung: y(t) = { für t = be at für t> y b τ = 1 a 2τ 3τ 4τ t

22 Einheits-Sprungantwort: y = u(t) =h(t) U(s) = 1 s Y (s) = b (s + a)s = A s + B b s + a = a s b a s + a y(t) = b a (1 e at)

23 Einheits-Sprungantwort des Systems 1 Ordnung: y(t) = b ( 1 e at ) a y b a τ = 1 a 2τ 3τ 4τ t

24 Einheits-Rampenantwort: y = u(t) =t U(s) = 1 s 2 Y (s) = b (s + a)s = A 2 s + a + B s + C s = 2 A s + a + Bs + C s 2 A = b a 2 B = b a 2 C = b a y(t) = bt a b a 2 + b a 2 e at

25 Einheits-Rampenantwort des Systems 1 Ordnung: y(t) = bt a b a + b 2 a 2 e at y b a 2 bt y(t) a τ = 1 a 2τ 3τ 4τ t

26 Antwort auf eine harmonische Anregung mit der Kreisfrequenz ω: y = u(t) =û cos ωt U(s) = ûs s 2 + ω 2 Y (s) = bûs (s+a)(s 2 +ω 2 ) = Aû s + a + (Bs+Cω)û s 2 + ω 2

27 y(t) = ab û a 2 +ω 2 e at + ŷ { }} { b a2 +ω 2 }{{} G(jω) ( ( ω )) û cos ωt arctan a }{{} arg{g(jω)} G(jω) : Amplitudengang (Verhältnis der Scheitelwerte) arg{g(jω)} : Phasengang (Phasenverschiebung)

28 Antwort des Systems 1 Ordnung auf das harmonische Eingangssignal u(t) =û cos(ωt): û u û bû a 2 +ω 2 bû a 2 +ω 2 2π ω arctan( ω a ) y 2π ω 4π ω 4π ω t t

29 Stationärer Antwortanteil: Scheitelwert des Eingangssignals: û Scheitelwert des Ausgangssignals: ŷ = b a2 +ω 2 û Verhältnis der Scheitelwerte: ŷ û = G(jω) = b jω+a = b a2 +ω 2 Phasenverschiebung: ( ω ) y u = arg{g(jω)} = arctan a < (nacheilendes Ausgangssignal)

30 Bode-Diagramm: Amplitudengang: log - db G(jω) db =2 log 1 G(jω) Phasengang: log - lin

31 Tiefpass 1 Ordnung: G(s) = 1 s+a rad s ω G(jω) db a b a db 3dB rad s ω arg{g(jω)} π 4 π 2 a

3. Beschreibung dynamischer Systeme im Frequenzbereich

3. Beschreibung dynamischer Systeme im Frequenzbereich 3. Laplace-Transformation 3. Frequenzgang 3.3 Übertragungsfunktion Quelle: K.-D. Tieste, O.Romberg: Keine Panik vor Regelungstechnik!.Auflage, Vieweg&Teubner, Campus Friedrichshafen --- Regelungstechnik

Mehr

LAPLACE Transformation

LAPLACE Transformation LAPLACE Transformation Bei der LAPLACE-Transformation wird einer (geeigneten) Funktion f(t) eine Funktion F (s) zugeordnet. Diese Art von Transformation hat u.a. Anwendungen bei gewissen Fragestellungen

Mehr

Laplacetransformation

Laplacetransformation Laplacetransformation Fakultät Grundlagen Februar 206 Fakultät Grundlagen Laplacetransformation Übersicht Transformationen Transformationen Bezugssysteme Definition der Laplacetransformation Beispiele

Mehr

A. Die Laplace-Transformation

A. Die Laplace-Transformation A. Die Laplace-Transformation Die Laplace-Transformation ist eine im Wesentlichen eineindeutige Zuordnung von Funktionen der Zeit t zu Funktionen einer komplexen Variablen s. Im Rahmen der einseitigen)

Mehr

Kapitel 3. Lineare Differentialgleichungen

Kapitel 3. Lineare Differentialgleichungen Kapitel 3. Lineare Differentialgleichungen 3.4 Die Laplace Transformation Sei F : R C eine reell oder komplexwertige Funktion auf R. Die Laplace Transformierten von F ist gegeben durch die Integraltransformation

Mehr

,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge

,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge Heavisidefunktion σ (t), Diracimpuls δ (t),faltung Definition Heavisidefunktion, t > 0 σ ( t) = 0, t < 0 Anwendungen ) Rechteckimpuls, t < T r( t) = = σ ( t + T ) σ ( t T ) 0, t > T 2) Sprungfunktionen,

Mehr

9. Die Laplace Transformation

9. Die Laplace Transformation H.J. Oberle Differentialgleichungen I WiSe 212/13 9. Die Laplace Transformation Die Laplace Transformation gehört zur Klasse der so genannten Integraltransformationen. Diese ordnen einer vorgegebenen Funktion

Mehr

Spezieller Ansatz bei spezieller Inhomogenität.

Spezieller Ansatz bei spezieller Inhomogenität. Spezieller Ansatz bei spezieller Inhomogenität. Bei Inhomogenitäten der Form h(t) = e µt kann man spezielle Ansätze zur Bestimmung von y p (t) verwenden: Ist µ keine Nullstelle der charakteristischen Gleichung

Mehr

Übungen zu Signal- und Systemtheorie

Übungen zu Signal- und Systemtheorie Fachhochschule Dortmund University of Applied Sciences and Arts Übungen zu Signal- und Systemtheorie (Anteil: Prof. Felderhoff) Version 1.3 für das Wintersemester 016/017 Stand: 05.1.016 von: Prof. Dr.-Ing.

Mehr

5. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main

5. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main 5. Vorlesung Systemtheorie für Informatiker Dr. Christoph Grimm Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main Letzte Woche: e jωt -Funktionen sind sinusförmige, komplexe Funktionen. Sie sind

Mehr

L [u(at)] (s) = 1 ( s a. u(at)e st dt r=at = u(r)e s a r dr = 1 ( s a. u(t) = ah(t) sin(kω 0 t)

L [u(at)] (s) = 1 ( s a. u(at)e st dt r=at = u(r)e s a r dr = 1 ( s a. u(t) = ah(t) sin(kω 0 t) Übung 9 /Grundgebiete der Elektrotechnik 3 WS7/8 Laplace-Transformation Dr. Alexander Schaum, Lehrstuhl für vernetzte elektronische Systeme Christian-Albrechts-Universität zu Kiel Im Folgenden wird die

Mehr

2. Fourier-Transformation

2. Fourier-Transformation 2. Fourier-Transformation Die Fourier-Transformation ist ein wichtiges Hilfsmittel für die dynamische Analyse linearer Systeme: Die Fourier-Transformierte der Antwort ist gleich dem Produkt der Fourier-Transformierten

Mehr

5. Fourier-Transformation

5. Fourier-Transformation Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf

Mehr

) ein lokales Minimum, oder ein lokales Maximum, oder kein Extremum? Begründen Sie das mit den ersten und zweiten Ableitungen.

) ein lokales Minimum, oder ein lokales Maximum, oder kein Extremum? Begründen Sie das mit den ersten und zweiten Ableitungen. Mathematik 2 Klausur vom 22. November 23 Zoltán Zomotor Versionsstand: 2. Dezember 23, 9:2 This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3. Germany License. To view

Mehr

4. Standardübertragungsglieder

4. Standardübertragungsglieder 4. PT-Glied : Verzögerungsglied. Ordnung 4. P-Glied : Proportionalglied 4.3 I-Glied: Integrator 4.4 D-Glied: Differenzierer (ideal/real) 4.5 PT-Glied: Verzögerungsglied. Ordnung 4.6 Totzeitglied Campus

Mehr

Formelsammlung. Formelsammlung Systemtheorie I (Blatt 1) Rechenregeln der Schaltalgebra: 2. x y = y x x y = y x

Formelsammlung. Formelsammlung Systemtheorie I (Blatt 1) Rechenregeln der Schaltalgebra: 2. x y = y x x y = y x F Formelsammlung Formelsammlung Systemtheorie I (Blatt ) Rechenregeln der Schaltalgebra: x (y ) =(x y) x (y ) =(x y) 2 x y = y x x y = y x 3 x (x y) =x x (x y) =x 4 x (y ) =(x y) (x ) x (y ) =(x y) (x

Mehr

Formelsammlung zum Skriptum

Formelsammlung zum Skriptum Systemtheorie und Regelungstechnik I - WS08/09 Formelsammlung zum Skriptum Kapitel 2 Satz 23 (Lokale Existenz und Eindeutigkeit) Es sei f (x, t) stückweise stetig in t und genüge der Abschätzung (Lipschitz-Bedingung)

Mehr

Übungen zu Transformationen. im Bachelor ET oder EW. Version 2.0 für das Wintersemester 2014/2015 Stand:

Übungen zu Transformationen. im Bachelor ET oder EW. Version 2.0 für das Wintersemester 2014/2015 Stand: Fachhochschule Dortmund University of Applied Sciences and Arts Institut für Informationstechnik Software-Engineering Signalverarbeitung Regelungstechnik IfIT Übungen zu Transformationen im Bachelor ET

Mehr

Fourier- und Laplace- Transformation

Fourier- und Laplace- Transformation Übungsaufgaben zur Vorlesung Mathematik für Ingenieure Fourier- und Lalace- Transformation Teil : Lalace-Transformation Prof. Dr.-Ing. Norbert Hötner (nach einer Vorlage von Prof. Dr.-Ing. Torsten Benkner)

Mehr

Zusammenfassung der 2. Vorlesung

Zusammenfassung der 2. Vorlesung Zusammenfassung der 2. Vorlesung Fourier-Transformation versus Laplace-Transformation Spektrum kontinuierlicher Signale Das Spektrum gibt an, welche Frequenzen in einem Signal vorkommen und welches Gewicht

Mehr

Regelungs- und Systemtechnik 1 Sommer 10

Regelungs- und Systemtechnik 1 Sommer 10 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Regelungs- und Systemtechnik 1 Sommer 1 Wiederholung zur Laplacetransformation 1 1 Definitionen Definition 1 (Integraltransformation)

Mehr

LTI-Systeme in Frequenzbereich und Zeitbereich

LTI-Systeme in Frequenzbereich und Zeitbereich LTI-Systeme in Frequenzbereich und Zeitbereich LTI-Systeme Frequenzgang, Filter Impulsfunktion und Impulsantwort, Faltung, Fourier-Transformation Spektrum, Zeitdauer-Bandbreite-Produkt Übungen Literatur

Mehr

4 Die Laplace-Transformation

4 Die Laplace-Transformation 4 Die Laplace-ransformation 4. Definitionen, Beispiele und Regeln In der Wirklichkeit hat man es meist mit Signalen zu tun, die erst zu einem bestimmten Zeitpunkt ausgelöst werden. Um solche Einschaltvorgänge

Mehr

Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung

Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung 28. September 2016 Elektrizitätslehre 3 Martin Weisenhorn Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung Aufgabe 1. Die nachfolgende Grafik stellt das Oszillogramm zweier sinusförmiger Spannungen

Mehr

Fourierreihen periodischer Funktionen

Fourierreihen periodischer Funktionen Fourierreihen periodischer Funktionen periodische Funktion: (3.1) Fourierkoeffizienten und (3.2) (3.3) Fourier-Reihenentwicklungen Cosinus-Reihe: (3.4) (3.5) Exponentialreihe: (3.6) (3.7-3.8) Bestimmung

Mehr

5. Fourier-Transformation

5. Fourier-Transformation 5. Fourier-Transformation 5.1 Definition 5.2 Eigenschaften 5.3 Transformation reeller Funktionen 5.4 Frequenzbereich und Zeitbereich 2.5-1 5.1 Definition Definition: Die Fourier-Transformation einer Funktion

Mehr

Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 2 Zeitkontinuierliche

Mehr

TET - Formelsammlung

TET - Formelsammlung TET - Formelsammlung Matthias Jung 30. August 2008 1 Dierentialgleichungen Characterisierung von DGLn: Linear: y(t) sowie ẏ(t), ÿ(t)... kommen nur in der 1. Potenz vor Gewöhnlich: y(t) hängt nur von einer

Mehr

Signale und Systeme I

Signale und Systeme I FACULTY OF ENGNEERING CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITAL SIGNAL PROCESSING AND SYSTEM THEORY DSS Signale und Systeme I Musterlösung zur Modulklausur WS 010/011 Prüfer: Prof. Dr.-Ing. Gerhard

Mehr

Zu Beginn der Vorlesung Signale und Systeme ausgegebene Übungsaufgaben V 1.2

Zu Beginn der Vorlesung Signale und Systeme ausgegebene Übungsaufgaben V 1.2 Leibniz Universität Hannover Institut für Kommunikationstechnik Prof. Dr. J. Peissig Zu Beginn der Vorlesung Signale und Systeme ausgegebene Übungsaufgaben V 1.2 Universität Hannover, Institut für Kommunikationstechnik,

Mehr

Zusammenfassung der 6. Vorlesung

Zusammenfassung der 6. Vorlesung Zusammenfassung der 6. Vorlesung Dynamische Systeme 2-ter Ordnung (PT 2 -System) Schwingungsfähige Systeme 2-ter Ordnung. - Systeme mit Speicher für potentielle und kinetische Energie - Beispiel: Feder-Masse-Dämpfer

Mehr

DIFFERENTIALGLEICHUNGEN (DGL)

DIFFERENTIALGLEICHUNGEN (DGL) DIFFERENTIALGLEICHUNGEN (DGL) Definition und Klassifikation und Beispiele Definition und Klassifikation Definition Gleichung, deren Unbekannte eine Funktion ist und die Ableitungen der gesuchten Funktion

Mehr

Grundlagen der Signalverarbeitung

Grundlagen der Signalverarbeitung Grundlagen der Signalverarbeitung Digitale und analoge Filter Wintersemester 6/7 Wiederholung Übertragung eines sinusförmigen Signals u t = U sin(ω t) y t = Y sin ω t + φ ω G(ω) Amplitude: Y = G ω U Phase:

Mehr

(t - t ) (t - t ) bzw. δ ε. θ ε. (t - t ) Theorie A (WS2005/06) Musterlösung Übungsblatt ε= 0.1 ε= t ) = lim.

(t - t ) (t - t ) bzw. δ ε. θ ε. (t - t ) Theorie A (WS2005/06) Musterlösung Übungsblatt ε= 0.1 ε= t ) = lim. Theorie A (WS5/6) Musterlösung Übungsblatt 7 6..5 Θ(t t [ t t ) = lim arctan( ) + π ] ε π ε ( ) d dt Θ(t t ) = lim ε π vergleiche Blatt 6, Aufg. b). + (t t ) ε ε = lim ε π ε ε + (t t ) = δ(t t ) Plot von

Mehr

Nachrichtentechnik [NAT] Kapitel 3: Zeitkontinuierliche Systeme. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 3: Zeitkontinuierliche Systeme. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 3: Zeitkontinuierliche Systeme Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 2005 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 3 Zeitkontinuierliche

Mehr

Fourier- und Laplace-Transformation. Material zur Vorlesung Grundgebiete der Elektrotechnik 3

Fourier- und Laplace-Transformation. Material zur Vorlesung Grundgebiete der Elektrotechnik 3 Fourier- und Laplace-Transformation Material zur Vorlesung Grundgebiete der Elektrotechnik 3 Dr. Alexander Schaum Vertretungsprofessur für vernetzte elektronische Systeme Christian-Albrechts-Universität

Mehr

Digitale Signalverarbeitung Übungsaufgaben

Digitale Signalverarbeitung Übungsaufgaben Kapitel : Einleitung -: Analoger Tiefpass Dieser Tiefpass mit den Werten R = Ω, L =.5mH R L und C =.5µF ist wie folgt zu analysieren: U e C R. Es springe U e bei t =.5ms auf 5V und bei t = ms wieder auf.

Mehr

15.5 Beschreibung von linearen Systemen

15.5 Beschreibung von linearen Systemen 5.5 Beschreibung von linearen Systemen 965 5.5 Beschreibung von linearen Systemen Um das Übertragungsverhalten von Systemen zu bestimmen, untersucht man in der Regelungs- und Systemtechnik den Zusammenhang

Mehr

Zusammenfassung der 1. Vorlesung

Zusammenfassung der 1. Vorlesung Zusammenfassung der. Vorlesung Einordnung und Motivation Grundlegende Definitionen Kontinuierliches Signal Quantisiertes Signal Zeitdiskretes Signal Digitales Signal Auflösung der A/D- Umsetzer der MicroAutoBox

Mehr

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 4 Fourier-Transformation 3

Mehr

Lösung zur 5. Übung Steuer- und Regelungstechnik

Lösung zur 5. Übung Steuer- und Regelungstechnik Lösung zur 5. Übung Aufgabe 5.1: Anwendung der Laplace-Transformation Gegeben ist die folgende Differentialgleichung y (t) + y (t) + 5 y (t) + 4 y(t) = u(t) mit den Anfangswerten y(t = 0) = y 0, y (t =

Mehr

HTW. Probe-Klausur (und klausurvorbereitende Übungsaufgaben) Angewandte Mathematik MST

HTW. Probe-Klausur (und klausurvorbereitende Übungsaufgaben) Angewandte Mathematik MST HTW Probe-Klausur (und klausurvorbereitende Übungsaufgaben) Angewandte Mathematik MST Dauer : 100 Minuten Prof. Dr. B. Grabowski Name: Matr.Nr.: Erreichte Punktzahl: Hinweise zur Bearbeitung der Aufgaben:

Mehr

BSc PRÜFUNGSBLOCK 2 / D-MAVT VORDIPLOMPRÜFUNG / D-MAVT. Musterlösung

BSc PRÜFUNGSBLOCK 2 / D-MAVT VORDIPLOMPRÜFUNG / D-MAVT. Musterlösung Institut für Mess- und Regeltechnik BSc PRÜFUNGSBLOCK / D-MAVT.. 005. VORDIPLOMPRÜFUNG / D-MAVT REGELUNGSTECHNIK I Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: Zur Beachtung: Erlaubte

Mehr

Übung 3: Fouriertransformation

Übung 3: Fouriertransformation ZHAW, SiSy HS202, Rumc, Übung 3: Fouriertransformation Aufgabe Fouriertransformation Dirac-Impuls. a) Bestimmen Sie die Fouriertransformierte S(f) des Dirac-Impulses s(t) = δ(t) und interpretieren Sie

Mehr

Transformationen Übungen 1. 1 Signale und Systeme. 1.1 Gegeben ist die Funktion f(t). Skizzieren Sie folgende Funktionen: a) f(t - 3) b) f(2 t) f(t)

Transformationen Übungen 1. 1 Signale und Systeme. 1.1 Gegeben ist die Funktion f(t). Skizzieren Sie folgende Funktionen: a) f(t - 3) b) f(2 t) f(t) Transformationen Übungen 1 1 Signale und Systeme 1.1 Gegeben ist die Funktion f(t). Skizzieren Sie folgende Funktionen: a) f(t - 3) b) f(2 t) f(t) 1 c) f(-t) d) f(t + 3) 1 t e) f(t / 4) f) f(t) + 2 g)

Mehr

Schwingwagen ******

Schwingwagen ****** 5.3.0 ****** Motivation Ein kleiner Wagen und zwei Stahlfedern bilden ein schwingungsfähiges System. Ein Elektromotor mit Exzenter lenkt diesen Wagen periodisch aus seiner Ruhestellung aus. Die Antriebsfrequenz

Mehr

Kleine Formelsammlung für IuK

Kleine Formelsammlung für IuK Kleine Formelsammlung für IuK Florian Franzmann 17. März 4 Inhaltsverzeichnis 1 Dezimale Vielfache und Teile von Einheiten Konstanten 3 Shannon 3.1 Informationsgehalt...................................

Mehr

8 Laplace-Transformation

8 Laplace-Transformation 8 Laplace-Transformation Ausgangspunkt: Die Heaviside-Funktion für t < u(t) = 1 für t besitzt keine Fourier-Transformation. Denn: Formal bekommt man das unbestimmte Integral ^u(ω) = e iωτ dτ = 1 iω das

Mehr

Regelungs- und Systemtechnik 1 - Übungsklausur 16

Regelungs- und Systemtechnik 1 - Übungsklausur 16 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Bearbeitungszeit: Min Modalitäten Es sind keine Hilfsmittel zugelassen. Bitte schreiben Sie mit dokumentenechtem Schreibgerät (Tinte

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre (c) Ulm University p. 1/ Grundlagen der Physik Schwingungen und Wärmelehre 3. 04. 006 Othmar Marti othmar.marti@uni-ulm.de Experimentelle Physik Universität Ulm (c) Ulm University p. / Physikalisches Pendel

Mehr

Analoge Signale und Systeme im Zeit- und Frequenzbereich

Analoge Signale und Systeme im Zeit- und Frequenzbereich . Zeitbereich Analoge Signale und Systeme im Zeit- und Frequenzbereich. Zeitbereich. Die Sprungfuntion h(t) Eine um die Zeit τ zeitverschobene Sprungfuntion schreibt sich also h(t-τ).. Der Dirac-Impuls

Mehr

Übungen zu Mathematik für ET

Übungen zu Mathematik für ET Sommersemester 8 Prof. Dr. Henning Kempka Übungen zu Mathematik für ET Übungsblatt zum Thema Aufgaben zu Analysis. Uneigentliche Integrale Aufgabe Berechnen Sie die uneigentlichen Integrale der Form L[f](s)

Mehr

Anhang I. I.1 Die Laplace-Transformation

Anhang I. I.1 Die Laplace-Transformation Anhang I I.1 Die Laplace-Transformation Die Laplace-Transformation ist eine Operatorenmethode und hat sich gerade im Hinblick auf regelungstechnische Anwendungen u.a. zur Lösung linearer Differenzialgleichungen

Mehr

Regelung. Roddeck, W.: Einführung in die Mechatronik; Teubner Verlag, 2. Auflage, 2003, Kapitel 7

Regelung. Roddeck, W.: Einführung in die Mechatronik; Teubner Verlag, 2. Auflage, 2003, Kapitel 7 Regelung Die Regelung ist ein Vorgang, bei dem der vorgegebene Wert einer Größe fortlaufend durch Eingriff aufgrund von Messungen dieser Größe hergestellt und aufrechterhalten wird. Hierdurch entsteht

Mehr

Übungen zur Vorlesung: Grundlagen der Messtechnik: Signalverarbeitung mit linearen Systemen W. Lauth WS 2011/12 1.Serie 7.11.

Übungen zur Vorlesung: Grundlagen der Messtechnik: Signalverarbeitung mit linearen Systemen W. Lauth WS 2011/12 1.Serie 7.11. Übungen zur Vorlesung: Grundlagen der Messtechnik: WS 20/2.Serie 7..20 45KW. Aufgabe (in der Übungsstunde zu lösen) Welche der folgenden Systeme kennzeichnen lineare, zeitinvariante, speicherfreie oder

Mehr

MusterModulprüfung. Anteil Transformationen

MusterModulprüfung. Anteil Transformationen MusterModulprüfung Anteil Transformationen Studiengang: Elektrotechnik oder Energiewirtschaft Datum: Prüfer: heute Prof. Dr. Felderhoff Version:.0 (vom 30.1.014) Name: Vorname: Matr.-Nr.: 1 Aufgabe 1 Fourier-Transformation

Mehr

Zusammenfassung der 4. Vorlesung

Zusammenfassung der 4. Vorlesung Zusammenfassung der 4. Vorlesung Lösung von Regelungsaufgaben Modellbildung dynamischer Systeme Experimentell und analytisch Modellierung im Zeit- und Bildbereich Lineare Systeme Lineare Systeme Superpositionsprinzip

Mehr

Fahrzeugmechatronik Masterstudiengang M 3.2 Sensoren und Aktoren Labor für Automatisierung und Dynamik AuD FB 03MB

Fahrzeugmechatronik Masterstudiengang M 3.2 Sensoren und Aktoren Labor für Automatisierung und Dynamik AuD FB 03MB Abb. 6 Dreidimensionale Darstellung des Frequenzgangs G ATP () s, Achsteilungen s 2 π in Hz Prof. Dr. Höcht 1/29 18.06.2006 11:13 Z_ Abb. 7 Einfluß des Pols bei s imaginären Achse, Achsteilungen in Hz

Mehr

Lineare Systeme mit einem Freiheitsgrad

Lineare Systeme mit einem Freiheitsgrad Höhere Technische Mechanik Lineare Systeme mit einem Freiheitsgrad Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/200 Übersicht. Grundlagen der Analytischen

Mehr

Harmonische Schwingung

Harmonische Schwingung Harmonische Schwingung Eine harmonische Schwingung mit Amplitude c 0, Phasenverschiebung δ und Frequenz ω bzw. Periode T = 2π/ω hat die Form x x(t) = c cos(ωt δ). δ/ω c t T=2π/ω Harmonische Schwingung

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d 0 d c d c uk d 0 yk d c d c Systemtheorie Teil B - Zeitdiskrete Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt 9 Musterlösungen Zeitdiskrete pproximation zeitkontinuierlicher

Mehr

10. Periodische Funktionen, Fourier Reihen

10. Periodische Funktionen, Fourier Reihen H.J. Oberle Analysis II SoSe 212 1. Periodische Funktionen, Fourier Reihen Jean Baptiste Joseph Fourier: Joseph Fourier wurde am 21.3.1768 bei Auxerre (Burgund) geboren und starb am 16.5.183 in Paris.

Mehr

3. Übertragungsfunktionen

3. Übertragungsfunktionen Definitionen: Die Fourier-Transformierte der Impulsantwortfunktion heißt Übertragungsfunktion: H ( f )= h(t )e 2 π i f t dt Mithilfe der Übertragungsfunktion kann die Fourier-Transformierte der Antwort

Mehr

Musterlösung Übung 4

Musterlösung Übung 4 Musterlösung Übung 4 Aufgabe : Laplace-Transformation und Schaltkreise: Bandpass a) Verwenden von Gl. 5.4, 5.5 und 5.8 aus dem Skript liefern: u in t) u L t) + u C t) + u R t).) C it ) dt + u) + L dit)

Mehr

Anfangswertprobleme bei differential-algebraischen Gleichungen (DAEs)

Anfangswertprobleme bei differential-algebraischen Gleichungen (DAEs) Anfangswertprobleme bei differential-algebraischen Gleichungen (DAEs) Elgersburg, 13. Februar 2006 Gliederung 1 Differential-algebraische Gleichungen 2 Distributionen 3 Anfangswertprobleme 4 Zusammenfassung

Mehr

Laplace Transformation

Laplace Transformation Laplace Transformation A Die Laplace Transformation ist eine im Wesentlichen eineindeutige Zuordnung von Funktionen der Zeit t zu Funktionen einer komplexen Variablen s. Formal kann die Laplace Transformation

Mehr

3. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main

3. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main 3. Vorlesung Systemtheorie für Informatiker Dr. Christoph Grimm Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main Letzte Woche: Systemeigenschaften, Superpositionsprinzip Systemklassen: DESS, DEVS,

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme Übungsaufgaben. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme Übungsaufgaben. Manfred Strohrmann Urban Brunner Systemtheorie Teil A - Zeitkontinuierliche Signale und Systeme Übungsaufgaben Manfred Strohrmann Urban Brunner Inhalt Inhalt... Übungsaufgaben - Zeitkontinuierliche Signale... 4. Geschlossene Darstellung

Mehr

12.6 Aufgaben zur Laplace-Transformation

12.6 Aufgaben zur Laplace-Transformation 292 12. Aufgaben zu linearen Gleichungen 12.6 Aufgaben zur Laplace-Tranformation A B C D Man löe die folgenden Anfangwertprobleme durch Laplace-Tranformation: 1) ẍ ẋ x = ; x() = ẋ() = 1 2) x (3) 6ẍ + 12ẋ

Mehr

Lösungen. Lösungen Teil I. Lösungen zum Kapitel 3. u(t) 2mV. t/s. u(t) 2mV 1mV. t/ms. u(t) t/ms -2V. x(t) 1. a) u(t) = 2mV3 (t 2ms)

Lösungen. Lösungen Teil I. Lösungen zum Kapitel 3. u(t) 2mV. t/s. u(t) 2mV 1mV. t/ms. u(t) t/ms -2V. x(t) 1. a) u(t) = 2mV3 (t 2ms) Lösungen Lösungen eil I Lösungen zum Kapitel 3. a ut = mv3 t ms ut mv t/ms b ut = mv3t mv3 t ms mv3 t ms mv mv ut t/ms p c ut = V3 t ms sin ms t V ut -V 3 4 5 6 t/ms d xt = 4 s r t s 4 s r t s 4 s r t

Mehr

Flüsse, Fixpunkte, Stabilität

Flüsse, Fixpunkte, Stabilität 1 Flüsse, Fixpunkte, Stabilität Proseminar: Theoretische Physik Yannic Borchard 7. Mai 2014 2 Motivation Die hier entwickelten Formalismen erlauben es, Aussagen über das Verhalten von Lösungen gewöhnlicher

Mehr

Stellen Sie für das im folgenden Signalflussbild dargestellte dynamische System ein Zustandsraummodell K

Stellen Sie für das im folgenden Signalflussbild dargestellte dynamische System ein Zustandsraummodell K Aufgaben Aufgabe : Stellen Sie für das im folgenden Signalflussbild dargestellte dnamische Sstem ein Zustandsraummodell auf. u 2 7 5 Aufgabe 2: Wir betrachten das folgende Regelsstem vierter Ordnung: r

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Systemtheorie Teil A - Zeitkontinuierliche Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt 6 Musterlösungen Spektrum von Signalen 6. Approximation eines periodischen Signals

Mehr

Aufgaben zu Kapitel 33

Aufgaben zu Kapitel 33 Aufgaben zu Kapitel 33 1 Aufgaben zu Kapitel 33 Verständnisfragen Aufgabe 33.1 Berechnen Sie das uneigentliche Integral sin(t sinc (t dt dt, t indem Sie die Laplacetransformierte Lsinc und den Grenzwert

Mehr

2. Elementare Lösungsmethoden

2. Elementare Lösungsmethoden H.J. Oberle Differentialgleichungen I WiSe 2012/13 2. Elementare Lösungsmethoden A. Separierbare Differentialgleichungen. Eine DGL der Form y (t) = f(t) g(y(t)) (2.1) mit stetigen Funktionen f : R D f

Mehr

MATHEMATIK 3 SKRIPT ZUR VORLESUNG WOLFGANG LANGGUTH 1. MÄRZ 2013

MATHEMATIK 3 SKRIPT ZUR VORLESUNG WOLFGANG LANGGUTH 1. MÄRZ 2013 Hochschule für Technik und Wirtschaft des Saarlandes University of Applied Sciences MATHEMATIK 3 SKRIPT ZUR VORLESUNG VON WOLFGANG LANGGUTH VERSION 1.1 BEARBEITUNG UNTER MITWIRKUNG VON DIPL.-ING. ROLF

Mehr

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder 6. Schwingungen Schwingungen Schwingung: räumlich und zeitlich wiederkehrender (=periodischer) Vorgang Zu besprechen: ungedämpfte freie Schwingung gedämpfte freie Schwingung erzwungene gedämpfte Schwingung

Mehr

5. Vorlesung Wintersemester

5. Vorlesung Wintersemester 5. Vorlesung Wintersemester 1 Bewegung mit Stokes scher Reibung Ein dritter Weg, die Bewegungsgleichung bei Stokes scher Reibung zu lösen, ist die 1.1 Separation der Variablen m v = αv (1) Diese Methode

Mehr

Formelsammlung Elektrotechnik von Sascha Spors V1.3 /

Formelsammlung Elektrotechnik von Sascha Spors V1.3 / Formelsammlung Elektrotechnik von Sascha Spors V.3 /..96 Mathematische Formeln : arctan( b a Z a + jb Y arg(z ; arctan( b a arctan( b < a für a >, b +π für a π für a

Mehr

Kapitel 6: Grundlagen der Wechselstromtechnik

Kapitel 6: Grundlagen der Wechselstromtechnik Inhalt Kapitel 6: Grundlagen der technik Sinusförmige Signale Zeigerdarstellung Darstellung mit komplexen Zahlen komplexe Widerstände Grundschaltungen Leistung im kreis Ortskurven Übertragungsfunktion

Mehr

5 Gewöhnliche Differentialgleichungen

5 Gewöhnliche Differentialgleichungen 5 Gewöhnliche Differentialgleichungen 5.1 Einleitung & Begriffsbildung Slide 223 Natürliches Wachstum Eine Population bestehe zur Zeit t aus N(t) Individuen. Die Population habe konstante Geburts- und

Mehr

x 1 + u y 2 = 2 0 x 2 + 4u 2.

x 1 + u y 2 = 2 0 x 2 + 4u 2. 3. Übung: gelkreis Aufgabe 3.. Gegeben sind die beiden linearen zeitkontinuierlichen Systeme 3 ẋ = 6 x + u 6 3 [ ] y = x (3.a) (3.b) und [ ] [ ] 8 ẋ = x + 6 4 [ ] y = x + 4u. u (3.a) (3.b) Berechnen Sie

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 8. Übung SS 17: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 8. Übung SS 17: Woche vom Übungsaufgaben 8. Übung SS 17: Woche vom 22.5. - 26. 5. 2017 Heft Ü 2: 24.15.f; 25.11.b, f; 26.1.a, b, c; + 1 Zusatzaufgabe zur Reduktion bei DGLn Krümmungsvektor, Krümmung im R 3 (R n ) Def. 5.17: Der

Mehr

Gegeben sei folgender Regelkreis mit der Führungsgröße r, dem Regelfehler e und der Ausgangsgröße y: r e R(s) P (s)

Gegeben sei folgender Regelkreis mit der Führungsgröße r, dem Regelfehler e und der Ausgangsgröße y: r e R(s) P (s) 1. Teilklausur SS 16 Gruppe A Name: Matr.-Nr.: Für beide Aufgaben gilt: Gegeben sei folgender Regelkreis mit der Führungsgröße r, dem Regelfehler e und der Ausgangsgröße y: r e R(s) P (s) y Aufgabe 1 (6

Mehr

Kleine Formelsammlung zu Signale und Systeme 2

Kleine Formelsammlung zu Signale und Systeme 2 Kleine Formelsammlung zu Signale und Systeme 2 Florian Franzmann 6. März 2006 Inhaltsverzeichnis Elementare Grundlagen 3. Lösungsformel für quadratische Gleichungen................. 3.2 Definition einiger

Mehr

Fourier- und Laplace- Transformation

Fourier- und Laplace- Transformation Skriptum zur Vorlesung Mathematik für Ingenieure Fourier- und Laplace- Transformation Teil : Fourier-Transformation Prof. Dr.-Ing. Norbert Höptner (nach einer Vorlage von Prof. Dr.-Ing. Torsten Benkner)

Mehr

3.2 Die Fouriertransformierte

3.2 Die Fouriertransformierte 5 3.2 Die Fouriertransformierte Eine Funktion f : R C heißt absolut integrabel, falls sie stückweise stetig und fx dx < ist. Definition: Sei f : R C absolut integrabel. Dann bezeichnen wir die durch fω

Mehr

Hauptseminar SOI Regelalgorithmen für Totzeitsysteme

Hauptseminar SOI Regelalgorithmen für Totzeitsysteme Hauptseminar SOI 6. Juli 2006 Gliederung des Vortrags Motivation Grundlagen Totzeitsysteme und deren Schwierigkeiten Lösungsansätze für Totzeitsysteme Zusammenfassung Gliederung des Vortrags Motivation

Mehr

Aufgabe 69 Wir wenden die Laplacetransformation auf das System von Differentialgleichungen an. Schreibe. Y 1, y 2. (1 s 2 )Y 2 (s) = 1.

Aufgabe 69 Wir wenden die Laplacetransformation auf das System von Differentialgleichungen an. Schreibe. Y 1, y 2. (1 s 2 )Y 2 (s) = 1. Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang Sommersemester 3 7.7.3 Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik

Mehr

f(t) = a 2 + darstellen lasst Periodische Funktionen.

f(t) = a 2 + darstellen lasst Periodische Funktionen. 7. Fourier-Reihen Viele Prozesse der Ingenieur- und Naturwissenschaften verlaufen periodisch oder annahernd periodisch, wie die Schwingungen einer Saite, Spannungs- und Stromverlaufe in Wechselstromkreisen

Mehr

Probeklausur Signale + Systeme Kurs TIT09ITA

Probeklausur Signale + Systeme Kurs TIT09ITA Probeklausur Signale + Systeme Kurs TIT09ITA Dipl.-Ing. Andreas Ströder 13. Oktober 2010 Zugelassene Hilfsmittel: Alle außer Laptop/PC Die besten 4 Aufgaben werden gewertet. Dauer: 120 min 1 Aufgabe 1

Mehr

System- und Signaltheorie

System- und Signaltheorie Otto Mildenberger System- und Signaltheorie Grundlagen für das informationstechnische Studium 3., überarbeitete und erweiterte Auflage Mit 166 Bildern vieweg 1 Einleitung 1 1.1 Aufgaben der Systemtheorie

Mehr

Grundlagen der Nachrichtentechnik. 5. Digitale Modulationsverfahren komplett auf Folien teilweise mit Folienunterstützung

Grundlagen der Nachrichtentechnik. 5. Digitale Modulationsverfahren komplett auf Folien teilweise mit Folienunterstützung Grundlagen der Nachrichtentechnik I. Kontinuierliche Signale u. Systeme. Fouriertransformation. Tiefpass-Darstellung v. Bandpass-Signalen 3. Eigenschaften v. Übertragungskanälen III. Diskretisierung v.

Mehr

Regelungs- und Systemtechnik 1 - Übungsklausur 2

Regelungs- und Systemtechnik 1 - Übungsklausur 2 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Bearbeitungszeit: 12 Min Modalitäten Es sind keine Hilfsmittel zugelassen. Bitte schreiben Sie mit dokumentenechtem Schreibgerät (Tinte

Mehr

1 Gegenkopplung und Stabilität S107

1 Gegenkopplung und Stabilität S107 Regelungstechnik - Formelsammlung (Revision : 044 - powered by LATEX) Seite von 6 Gegenkopplung und Stabilität S07. LTI-Grundglieder Typ Symbol Gleichung, Dgl Sprungantwort Frequenzgang, Betrag und Argument

Mehr

3. LTI-Systeme im Zeitbereich

3. LTI-Systeme im Zeitbereich SigSys I Zusammenfassung Andreas Biri, D-IE 12.01.14 1. Einteilung der Signale Zeit kontinuierlich diskret Amplitude Kontinuier lich diskret Zeit- & amplitudendiskret -> digital 2. Systemeigenschaften

Mehr

Periodische Funktionen, Fourier Reihen

Periodische Funktionen, Fourier Reihen Kapitel 1: Periodische Funktionen, Fourier Reihen 1.1 Grundlegende Begriffe Periodische Funktionen Definition: Eine Funktion f : R R oder f : R C) heißt periodisch mit der Periode T, falls für alle t R

Mehr

D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler. Lösungen Serie 11

D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler. Lösungen Serie 11 D-MAVT Lineare Algebra II FS 28 Prof. Dr. N. Hungerbühler Lösungen Serie. Die allgemeine Lösung von y = ay ist y(x) = e ax. (a) richtig (b) falsch y(x) = e ax ist eine spezielle Lösung von y = ay. Für

Mehr