Dreiecke erkunden Rechter Winkel gesucht!

Größe: px
Ab Seite anzeigen:

Download "Dreiecke erkunden Rechter Winkel gesucht!"

Transkript

1 Dreiecke erkunden Rechter Winkel gesucht! Jahrgangsstufe: 8-9 Zeitbedarf: Beschreibung: In einem Leserbrief wird ein rechter Winkel gesucht und die Schüler sollen sich mit dieser Realsituation auseinandersetzen. Dabei wird erkannt, dass das Leben voller Mathematik ist, vor allem aber, dass man über das pythagoreische Dreieck solche Winkel herstellen kann. Neben der eigentlichen mathematischen Arbeit ist in dieser Unterrichtseinheit auch die Verbindung zum Deutschunterricht zu finden, da ein Leserbrief geschrieben und auch beantwortet werden soll. Mit einer Knotenschnur sollen Schüler herausfinden, dass einzig die Aufteilung 3, 4, 5 zum rechtwinkligen Dreieck führt, und schließlich erkennen, dass das auch für ganzzahlige Vielfache davon gilt, den sogenannten pythagoreischen Tripeln. Länge und Breite des Carports müssen geschätzt und die Fläche berechnet werden. Schließlich soll darüber nachgedacht werden, wo sich im Alltag rechte Winkel ergeben, und eigene Problemstellungen daraus entwickelt werden. Da der eigentliche "Satz des Pythagoras" nicht vorkommt, kann die Einheit als forschender Einstieg oder aber in der 8. Klasse als Problemlöseaufgabe eingesetzt werden. Wer möchte, kann auch das dritte Blatt, die Zeichnung des Pythagoreischen Baums, einsetzen, damit die Schüler zeichnerisch die typische pythagoreische Figur (Dreieck mit Quadraten) verinnerlichen. Material: Folie 1 Leserbrief und Antwort Folie 2 Aufgaben Folie 3 Pythagoreischer Baum Quellenangaben: Leserbrief und Antwort aus: selber machen 8/2009, S Autorin: Kempinger Andrea 229

2 Name: Klasse: Datum: In einem Heimwerkermagazin war folgender Leserbrief zu finden: Rechter Winkel gesucht! Hast du eine Idee, was man Herrn Karlsen antworten könnte? Schreibe eine Antwort und präsentiere diese deinen Mitschülern! 230

3 Name: Klasse: Datum: Lies die Antwort des Redakteurs. Kannst du erklären, warum man ein Dreieck mit genau diesen Maßen braucht? Nimm ein Stück Schnur und mache 11 Knoten im gleichen Abstand oder markiere mit Filzstift 12 gleich große Abschnitte. Versuche nun möglichst viele verschiedene Dreiecke zu legen, so dass jeder Eckpunkt des Dreiecks genau auf einem Knoten liegt. Wie viele verschiedene Möglichkeiten findest du? Welches ist das Dreieck mit dem rechten Winkel? Die Zahlen 3, 4, 5 nennt man pythagoreisches Tripel, benannt nach dem berühmten Mathematiker Pythagoras von Samos (6. Jhdt. v. Chr.). Es gibt noch weitere ganze Zahlen, die ein solches rechtwinkliges Dreieck bilden. Finde heraus, welche das sind. Zurück zum Carport. Wie breit und wie lang muss ein solcher Carport mindestens sein? Was schätzt du? Begründe deine Schätzung. Wie viel Fläche muss auf dem Grundstück für den Carport zur Verfügung stehen? Überlege dir mit deinem Partner eine Situation, wo ebenfalls ein rechter Winkel notwendig ist (z. B. wenn du die Pfosten eines Badmintonnetzes mit Seilen gerade aufstellen willst) und schreibe einen Leserbrief an eine Zeitschrift. Tauscht eure Leserbriefe in der Klasse aus und schreibt die passende Antwort. 231

4 Vernetzte Aufgaben Name: Klasse: Datum: Ein besonderes rechtwinkliges Dreieck ist das gleichschenklig-rechtwinklige Dreieck. Es lässt sich fortsetzen zu dem sogenannten Pythagoras-Baum. Nimm ein unliniertes Blatt und versuche diesen Baum nachzuzeichnen! 232

5 Lösung Die Antwort mit dem Dreieck wird natürlich nur von den Schülern kommen, die den Satz des Pythagoras bereits kennen. Dennoch ist es sinnvoll, diese Frage zu stellen, weil die Schüler sich aktiv mit einem realen Problem auseinandersetzen müssen und vielleicht kreative und unerwartete Lösungen finden. Im nächsten Schritt muss man sich mit der Antwort des Redakteurs auseinandersetzen und kann dies mit Hilfe der Knotenschnur tun. Durch Ausprobieren wird es zumindest intuitiv klar, warum man diese Zahlen braucht. Schüler, die den "Satz des Pythagoras" bereits kennen, können hier eine mathematische Begründung über a² + b² = c² liefern und die Umkehrung des Satzes einsehen (wenn rechtwinklig, dann gilt <> wenn gilt, dann rechtwinklig) Hier begegnen den Schülern die pythagoreischen Tripel, im Grunde alle ganzzahligen Vielfachen von 3, 4, 5. Man könnte die Schüler noch diskutieren lassen, warum die ganzzahligen Seitenlängen wichtig sein könnten (z. B. für die Herstellung von Knotenschüren, aber auch anderes ist denkbar). Für die Schätzungen ist die Größe eines Autos zu schätzen, aber man muss auch bedenken, dass man eine Tür aufmachen können muss usw. Ein einfacher Carport hat in etwa die Breite von 3 m und eine Länge von mindestens 5 m, ein doppelter Carport, so wie man ihn hier im Bild sieht, hat eine Breite von mindestens 6 m. Die Flächen berechnen sich dann entsprechend. (15 m², 30 m²) Hier könnte man anregen nachzudenken, ob es etwas im Garten, im Schulhof usw. gibt, wo rechte Winkel erzeugt werden müssen. Besonders schön wäre es, wenn man mit den Schülern gemeinsam ein Beispiel real mit Knotenschnüren löst. Die dritte Folie zeigt den pythagoreischen Baum. Hier wird das genaue und saubere Zeichnen geübt, weil die Schülerinnen und Schüler sehr schnell merken werden, dass die Zeichnung sonst nicht funktioniert. Außerdem führt dieser Spezialfall auch zur Verinnerlichung des typischen Pythagoras-Bildes mit Dreieck und Quadraten, denn nach Vollendung des Baumes, hat man das Bild sehr oft gezeichnet. 233

Berechnungen am Dreieck

Berechnungen am Dreieck Berechnungen am Dreieck 1 ImDreieck OBAmitO(0 0),B(b 0)undA(0 a) ist H(x y) der Fußpunkt der Höhe von O auf AB Weitere Bezeichnungen: y a A h = OH, p = AH, q = HB und c = AB y p H(x y) Drücke c, h, p,

Mehr

Zeichnet man nun über die Seiten des Dreiecks die Quadrate der jeweiligen Seiten, dann ergibt sich folgendes Bild:

Zeichnet man nun über die Seiten des Dreiecks die Quadrate der jeweiligen Seiten, dann ergibt sich folgendes Bild: 9. Lehrsatz von Pythagoras Pythagoras von Samos war ein griechischer Philosoph und Mathematiker, der von ca. 570 v.chr. bis 510 n.chr lebte. Obwohl es über seine gesallschaftliche Stellung verschiedene

Mehr

Geschichte von Pythagoras

Geschichte von Pythagoras Satz von Pythagoras Inhalt Geschichte von Pythagoras Entdeckung des Satzes von Pythagoras Plimpton 322 Lehrsatz Beweise Kathetensatz und Höhensatz Pythagoreische Tripel Kosinussatz Anwendungen des Satzes

Mehr

Der Satz von Pythagoras

Der Satz von Pythagoras Der Satz von Pythagoras Diplom Mathematiker Wolfgang Kinzner Technische Universität München 17. Oktober 2013 W. Kinzner (TUM) Der Satz von Pythagoras 17. Oktober 2013 1 / 9 Inhaltsverzeichnis 1 Einleitung

Mehr

Figuren. Figuren. Kompetenztest. Name: Klasse: Datum:

Figuren. Figuren. Kompetenztest. Name: Klasse: Datum: Testen und Fördern Name: Klasse: Datum: 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60. Es gibt drei Symmetrieachsen. Gleichseitiges

Mehr

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung Herzlich willkommen zur der Um sich schnell innerhalb der ca. 350.000 Mathematikaufgaben zu orientieren, benutzen Sie unbedingt das Lesezeichen Ihres Acrobat Readers: Das Icon finden Sie in der links stehenden

Mehr

Kompetenztest. 1 Im rechtwinkligen Dreieck. Satz des Pythagoras. Kompetenztest. Testen und Fördern. Satz des Pythagoras. Name: Klasse: Datum:

Kompetenztest. 1 Im rechtwinkligen Dreieck. Satz des Pythagoras. Kompetenztest. Testen und Fördern. Satz des Pythagoras. Name: Klasse: Datum: Testen und Fördern Name: Klasse: Datum: 1) Bringe die Satzteile in die richtige Reihenfolge. (Es sind zwei Sätze.) den rechten Winkel einschließen heißen die Seiten, die Katheten, 1 Im rechtwinkligen Dreieck

Mehr

Satz des Pythagoras Aufgabe Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA

Satz des Pythagoras Aufgabe Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA Satz des Pythagoras Aufgabe 1.1.1 Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA a ) Die Katheten in einem rechtwinkligen Dreieck sind 8 cm bzw. 15 cm lang. Berechne die Länge der Hypotenuse.

Mehr

Trage die Ergebnisse in die nachfolgende Tabelle ein. A 3. Größe der Fläche A 1

Trage die Ergebnisse in die nachfolgende Tabelle ein. A 3. Größe der Fläche A 1 Aufgabe: Bestimme die Flächeninhalte A 1, A 2 und A 3. Trage die Ergebnisse in die nachfolgende Tabelle ein. A 1 A 2 A 3 des Winkels Fläche A 1 Fläche A 2 Fläche A 3 1. Dreieck (Ausgangsdreieck) Vergleiche

Mehr

Schulinterner Lehrplan Mathematik Klasse 6

Schulinterner Lehrplan Mathematik Klasse 6 Gesamtschule Gescher Schulinterner Lehrplan Mathematik Klasse 6 Als Lehrwerk wird das Buch Mathematik real 6, Differenzierende Ausgabe Nordrhein-Westfalen benutzt. Auf den Seiten Noch fit? können die Schülerinnen

Mehr

Dreiecke, Quadrate, Rechtecke, Kreise beschreiben S. 92 Würfel, Quader, Kugeln beschreiben S. 94

Dreiecke, Quadrate, Rechtecke, Kreise beschreiben S. 92 Würfel, Quader, Kugeln beschreiben S. 94 Geometrie Ich kann... 91 Figuren und Körper erkennen und beschreiben Dreiecke, Quadrate, Rechtecke, Kreise beschreiben S. 92 Würfel, Quader, Kugeln beschreiben S. 94 die Lage von Gegenständen im Raum erkennen

Mehr

Flächenberechnung Flächenberechnung. Mögliche Schritte zur Einführung. Einleitung

Flächenberechnung Flächenberechnung. Mögliche Schritte zur Einführung. Einleitung Flächenberechnung Flächenberechnung Einleitung Mögliche Schritte zur Einführung Wie groß ist diese Form? Mit diesem Material kannst du erfahren, wie man bei geometrischen Formen die Fläche berechnen kann.

Mehr

Station A * * 1-4 ca. 16 min

Station A * * 1-4 ca. 16 min Station A * * 1-4 ca. 16 min Mit einem 80 m langen Zaun soll an einer Hauswand ein Rechteck eingezäunt werden. Wie lang müssen die Seiten des Rechtecks gewählt werden, damit es einen möglichst großen Flächeninhalt

Mehr

Übungsaufgaben Klassenarbeit

Übungsaufgaben Klassenarbeit Übungsaufgaben Klassenarbeit Aufgabe 1 (mdb633193): Berechne die Länge an der Flussmündung. (Maße in m) Aufgabe 2 (mdb633583): Die Höhe eines Kirchturms wird ermittelt. Dazu werden, wie in der Skizze dargestellt,

Mehr

Figuren Lösungen. 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60.

Figuren Lösungen. 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60. 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60. Es gibt drei Symmetrieachsen. Gleichseitiges Dreieck Zwei Seiten stehen normal.

Mehr

Mathematik - Jahrgangsstufe 5

Mathematik - Jahrgangsstufe 5 Mathematik - Jahrgangsstufe 5 1. Natürliche Zahlen und Größen (Stochastik, Arithmetik/Algebra) Strichlisten, Tabellen und Diagramme Die Stellenwerttafel im Dezimalsystem & Runden Grundrechenarten: Summe,

Mehr

mathbu.ch 7 Aufgabensammlung 8 Parallelogramme untersuchen

mathbu.ch 7 Aufgabensammlung 8 Parallelogramme untersuchen 1. Für die gezeichneten Parallelogramme gelten die Masse: I s = 7.5 cm II a = 3 cm b = 5 cm h = 2 cm III c = 8.6 cm d = 47 mm IV s = 28 mm t = 6.5 cm Beantworte zu jeder Figur die folgenden Fragen. A Wie

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................

Mehr

Schulinterner Lehrplan Mathematik Klasse 5

Schulinterner Lehrplan Mathematik Klasse 5 Gesamtschule Gescher Schulinterner Lehrplan Mathematik Klasse 5 Als Lehrwerk wird das Buch Mathematik real 5, Differenzierende Ausgabe Nordrhein-Westfalen benutzt. Auf den Seiten Noch fit? können die Schülerinnen

Mehr

Cartoon-Mathematikkurs für Schüler und Studenten. ein Imprint von Pearson Education

Cartoon-Mathematikkurs für Schüler und Studenten. ein Imprint von Pearson Education Werner Tiki Küstenmacher Heinz Partoll Irmgard Wagner Mathe macchiato Cartoon-Mathematikkurs für Schüler und Studenten ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don

Mehr

Unterrichtsreihe zur Parabel

Unterrichtsreihe zur Parabel Unterrichtsreihe zur Parabel Übersicht: 1. Einstieg: Satellitenschüssel. Konstruktion einer Parabel mit Leitgerade und Brennpunkt 3. Beschreibung dieser Punktmenge 4. Konstruktion von Tangenten 5. Beweis

Mehr

Parallelogramme und Dreiecke A512-03

Parallelogramme und Dreiecke A512-03 12 Parallelogramme und Dreiecke A512-0 1 10 Dreiecke 01 Berechne den Flächeninhalt der vier Dreiecke. Die Dreiecke und sind gleichschenklig. 2 M 12,8 cm 7,2 cm 1 9,6 cm 12 cm A 1 = A 2 = A = A = 61, cm2,56

Mehr

Illustrierende Aufgaben zum LehrplanPLUS

Illustrierende Aufgaben zum LehrplanPLUS Vergrößern ebener Figuren Jahrgangsstufen 3/4 Fächer Benötigtes Material Mathematik Geobretter, Gummis, Karopapier, Einheitsquadrate, Karten mit gezeichneten Vorlagen Kompetenzerwartungen M 3/4 2 M 3/4

Mehr

JAHRESPRÜFUNG MATHEMATIK 2. KLASSEN KANTONSSCHULE REUSSBÜHL. 26. Mai 2014 Zeit: Uhr

JAHRESPRÜFUNG MATHEMATIK 2. KLASSEN KANTONSSCHULE REUSSBÜHL. 26. Mai 2014 Zeit: Uhr KLASSE: NAME: VORNAME: Mögliche Punktzahl: 5 50 Punkte = Note 6 Erreichte Punktzahl: Note: JAHRESPRÜFUNG MATHEMATIK. KLASSEN KANTONSSCHULE REUSSBÜHL 6. Mai 014 Zeit: 1.10 14.40 Uhr Allgemeines: unbedingt

Mehr

Stoffverteilungsplan Mathematik im Jahrgang 5 Lambacher Schweizer 5

Stoffverteilungsplan Mathematik im Jahrgang 5 Lambacher Schweizer 5 Stoffverteilungsplan Mathematik im Jahrgang 5 Lambacher Schweizer 5 Kernlehrplan G8 Verbalisieren mathematische Sachverhalte, Begriffe, Regeln und Begründen verschiedene Arten des Begründens intuitiv nutzen:

Mehr

Symmetrien und Winkel

Symmetrien und Winkel Symmetrien und Winkel 20 1 13 Symmetrien Zeichnungen und Konstruktionen zur Symmetrie 401 A Wähle das erste oder das zweite Bild von Vasarely im mathbuch 1 auf Seite 65. Beschreibe es. B Zeichne das Bild

Mehr

WER WIRD MATHESTAR? Raum und Form. Mathematisch argumentieren. Gruppenspiel oder Einzelarbeit. 45 Minuten

WER WIRD MATHESTAR? Raum und Form. Mathematisch argumentieren. Gruppenspiel oder Einzelarbeit. 45 Minuten WER WIRD MATHESTAR? Lehrplaneinheit Berufsrelevantes Rechnen - Leitidee Kompetenzen Sozialform, Methode Ziel, Erwartungshorizont Zeitlicher Umfang Didaktische Hinweise Raum und Form Mathematisch argumentieren

Mehr

Karolinen Gymnasium 9 A P4 Daniela Reinecke eigenverantwortlich 4. Std. (10.40 Uhr),

Karolinen Gymnasium 9 A P4 Daniela Reinecke eigenverantwortlich 4. Std. (10.40 Uhr), Karolinen Gymnasium 9 A P4 Daniela Reinecke eigenverantwortlich 4. Std. (10.40 Uhr), 12.01.11 Thema: Der Satz des Pythagoras (Einführung) Lernziele Groblernziel Die Schülerinnen und Schüler entdecken anhand

Mehr

10 Mathematische Darstellungen verwenden. Diagramme lesen und auswerten

10 Mathematische Darstellungen verwenden. Diagramme lesen und auswerten 0 Mathematische Darstellungen verwenden Diagramme lesen und auswerten Um Daten besser vergleichen und auswerten zu können, werden sie häufig in Diagrammen dargestellt. Im Figurendiagramm (auch Piktogramm

Mehr

2. Berechnungen mit Pythagoras

2. Berechnungen mit Pythagoras 2. Berechnungen mit 2.1. Grundaufgaben 1) Berechnungen an rechtwinkligen Dreiecken a) Wie lang ist die Hypotenuse, wenn die beiden Katheten eines rechtwinkligen Dreiecks 3.6 cm und 4.8 cm lang sind? b)

Mehr

Der Höhenschnittpunkt im Dreieck

Der Höhenschnittpunkt im Dreieck Der Höhenschnittpunkt im Dreieck 1. Beobachte die Lage des Höhenschnittpunktes H. Wo befindet sich H? a) bei einem spitzwinkligen Dreieck, b) bei einem rechtwinkligen Dreieck, c) bei einem stumpfwinkligen

Mehr

Mitten-Dreiund Vier-Ecke

Mitten-Dreiund Vier-Ecke Alle Ergebnisse - dazu gehören auch Kopiene der Zeichnungen - sind im Heft zu notieren Du wirst im Folgenden einiges selbst herausfinden müssen. Nutze dazu auch die Hilfen, dei dir kig liefert. 1 Mittendreieck

Mehr

Der Satz des Pythagoras: a 2 + b 2 = c 2

Der Satz des Pythagoras: a 2 + b 2 = c 2 Der Satz des Pythagoras: a 2 + b 2 = c 2 Beweise: Mathematiker versuchen ihre Behauptungen durch Beweise zu untermauern. Die Suche nach absolut wasserdichten Argumenten ist eine der treibenden Kräfte der

Mehr

Konstruktionen am Dreieck

Konstruktionen am Dreieck Winkelhalbierende Die Winkelhalbierende halbiert den jeweiligen Innenwinkel des Dreiecks. Sie agieren als Symmetrieachse. Dadurch ist jeder Punkt der Winkelhalbierenden gleich weit von den beiden Schenkeln

Mehr

Geometrie Jahrgangsstufe 5

Geometrie Jahrgangsstufe 5 Geometrie Jahrgangsstufe 5 Im Rahmen der Kooperation der Kollegen, die im Schuljahr 1997/98 in der fünften Jahrgangstufe Mathematik unterrichteten, wurde in Gemeinschaftsarbeit unter Federführung von Frau

Mehr

Kernlehrplan für das FSG Fachbereich Mathematik Jahrgangsstufe 6, 2016

Kernlehrplan für das FSG Fachbereich Mathematik Jahrgangsstufe 6, 2016 Kernlehrplan für das FSG Fachbereich Mathematik Jahrgangsstufe 6, 2016 Zeitraum 10 Unterrichtsvorhaben 1 Brüche und Dezimalzahlen 1.1 Natürliche Zahlen und Teilbarkeitsregeln 1.2 Brüche 1.3 Anteile 1.4

Mehr

Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium

Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium Klasse 5 5 Kapitel I Natürliche Zahlen 1 Zählen und darstellen 2 Große Zahlen 3 Rechnen mit natürlichen Zahlen 4 Größen messen und

Mehr

Schriftliche Abschlussprüfung Mathematik

Schriftliche Abschlussprüfung Mathematik Sächsisches Staatsministerium für Kultus Schuljahr 1999/ Geltungsbereich: für Klassen 10 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlussprüfung Mathematik Realschulabschluss

Mehr

Erzbischöfliche Liebfrauenschule Köln. Schulinternes Curriculum Fach: Mathematik Jg. 9

Erzbischöfliche Liebfrauenschule Köln. Schulinternes Curriculum Fach: Mathematik Jg. 9 Erzbischöfliche Liebfrauenschule Köln Schulinternes Curriculum Fach: Mathematik Jg. 9 Reihe n-folge Buchabschnit t 1 1.1; 1.3; 1.4 1.5 Themen Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Die

Mehr

inhaltsbezogene Kompetenzen Die SuS... Kapitel I: Natürliche Zahlen

inhaltsbezogene Kompetenzen Die SuS... Kapitel I: Natürliche Zahlen prozessbezogene Kompetenzen Die SuS... Kapitel I: Natürliche Zahlen inhaltsbezogene Kompetenzen Die SuS... Kapitel I: Natürliche Zahlen konkrete Umsetzung zur Zielerreichung Die SuS können... Kapitel I:

Mehr

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie Abitur Mathematik: Prüfungsteil, Aufgabe 4 Analytische Geometrie Nordrhein-Westfalen 0 GK Aufgabe a (). SCHRITT: MITTELPUNKT DER GRUNDFLÄCHE BERECHNEN Die Spitze befindet sich einen Meter senkrecht über

Mehr

Falten regelmäßiger Vielecke

Falten regelmäßiger Vielecke Blatt 1 Gleichseitige Dreiecke Ausgehend von einem quadratischen Stück Papier kann man ohne weiteres Werkzeug viele interessante geometrische Figuren nur mit den Mitteln des Papierfaltens (Origami) erzeugen.

Mehr

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 28195 Bremen Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe

Mehr

Geometrie. in 15 Minuten. Geometrie. Klasse

Geometrie. in 15 Minuten. Geometrie. Klasse Klasse Geometrie Geometrie 6. Klasse in 5 Minuten Winkel und Kreis Zeichne und überprüfe in deinem Übungsheft: a) Wo liegen alle Punkte, die von einem Punkt A den Abstand cm haben? b) Färbe den Bereich,

Mehr

Schulinterner Lehrplan

Schulinterner Lehrplan Fach Mathematik Jahrgangsstufe 5 Themen Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Natürliche Zahlen und Größen - große Zahlen - Stellentafel - Zahlenstrahl - Runden - Geld, Länge, Gewicht,Zeit

Mehr

Vorbereitungsaufgaben SA1: Symmetrie und Winkelbetrachtungen

Vorbereitungsaufgaben SA1: Symmetrie und Winkelbetrachtungen Aufgabe 1 a) Welche Eigenschaft besitzen alle Punkte auf der Mittelsenkrechten zu zwei gegebenen Punkten A und B? b) In einem Dreieck sind zwei Winkel gleich groß und der dritte Winkel doppelt so groß.

Mehr

Erzbischöfliche Liebfrauenschule Köln. Schulinternes Curriculum Fach: Mathematik Jg. 5

Erzbischöfliche Liebfrauenschule Köln. Schulinternes Curriculum Fach: Mathematik Jg. 5 Erzbischöfliche Liebfrauenschule Köln Schulinternes Curriculum Fach: Mathematik Jg. 5 Reihen- Buchabschnitt Themen Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen folge Die Schülerinnen und Schüler

Mehr

Aufgabe 3: In einem gleichschenkligen Dreieck ist die Basis 8,7 cm lang und die Schenkel jeweils 4,8 cm. Wie lang ist die Höhe auf die Basis?

Aufgabe 3: In einem gleichschenkligen Dreieck ist die Basis 8,7 cm lang und die Schenkel jeweils 4,8 cm. Wie lang ist die Höhe auf die Basis? Aufgabe 1: Berechne die Länge der fehlenden Seite. Aufgabe : Peter hat sich eine Leiter gekauft, die er beim Anstreichen seiner Hauswand benötigt. Diese Leiter ist 5,60 m lang. Damit sie nicht umkippt,

Mehr

Mathematik I Prüfung für den Übertritt aus der 8. Klasse

Mathematik I Prüfung für den Übertritt aus der 8. Klasse Aufnahmeprüfung 016 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 8. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle

Mehr

Form und Raum Beitrag 20 Europareise im Koordinatensystem 1 von 20

Form und Raum Beitrag 20 Europareise im Koordinatensystem 1 von 20 Form und Raum Beitrag 20 Europareise im Koordinatensystem 1 von 20 Auf Europareise im Koordinatensystem das sichere und exakte Zeichnen auf zwei Niveaus üben Von Wolfgang Göbels, Bergisch Gladbach Illustriert

Mehr

Drei-, Vier- und Vielecke

Drei-, Vier- und Vielecke Drei-, Vier- und Vielecke ein einführendes und begleitendes Skriptum 2014 Klasse 3A NB: Ich behalte mir immer das Recht, dieses Skriptum zu aktualisieren, sei es anläßlich Schreibfehler, Formulierungsfehler,

Mehr

Winkel zeichnen. Hilfe. ACHTUNG! Achte immer genau darauf

Winkel zeichnen. Hilfe. ACHTUNG! Achte immer genau darauf Hilfe Winkel zeichnen 1. Zeichne einen Schenkel (die rote Linie) S 2. Lege das Geodreieck mit der Null am Scheitelpunkt an. (Dort wo der Winkel hinkommen soll) S 3. Möchtest du zum Beispiel einen Winkel

Mehr

Mathematik I Prüfung für den Übertritt aus der 8. Klasse

Mathematik I Prüfung für den Übertritt aus der 8. Klasse Aufnahmeprüfung 015 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 8. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle

Mehr

x x x x x x 1) 1 Umfang und Fläche begrifflich verstehen Kreuze an, ob der Umfang oder der Flächeninhalt gesucht ist.

x x x x x x 1) 1 Umfang und Fläche begrifflich verstehen Kreuze an, ob der Umfang oder der Flächeninhalt gesucht ist. 1) 1 Umfang und Fläche begrifflich verstehen Kreuze an, ob der Umfang oder der Flächeninhalt gesucht ist. Ein Bild soll eingerahmt werden. Um eine Baugrube wird ein Sicherheitszaun errichtet. Ein Zimmer

Mehr

1.4 Steigung und Steigungsdreieck einer linearen Funktion

1.4 Steigung und Steigungsdreieck einer linearen Funktion Werner Zeyen 1. Auflage, 2013 ISBN: 978-3-86249-250-3 Mathe mit GeoGebra 7/8 Dreiecke, Vierecke, Lineare Funktionen und Statistik Arbeitsheft mit CD RS-MA-GEGE2 1.4 Steigung und Steigungsdreieck einer

Mehr

Basis Dreieck 2. x = = y. 14 = y. x = = y. x = x = 28. x = 45. x = x = = 2.1+x y = 2.

Basis Dreieck 2. x = = y. 14 = y. x = = y. x = x = 28. x = 45. x = x = = 2.1+x y = 2. 3.6 m 1.69 m 6 m 1.69 m Seiten 9 / 10 / 11 1 Vorbemerkung: Alle abgebildeten Dreiecke sind ähnlich (weil sie lauter gleiche Winkel haben). Also gilt jeweils: 2 kurze Seite Dreieck 1 kurze Seite Dreieck

Mehr

VORSCHAU. zur Vollversion. Schätzen, messen, zeichnen und berechnen eine Lerntheke zu den Winkeln. Didaktisch-methodische Hinweise

VORSCHAU. zur Vollversion. Schätzen, messen, zeichnen und berechnen eine Lerntheke zu den Winkeln. Didaktisch-methodische Hinweise Lerntheke Winkel 1 von 12 Schätzen, messen, zeichnen und berechnen eine Lerntheke zu den Winkeln Matthias Nowak, Schorndorf Geometrie Winkel schätzen, messen und zeichnen, Winkelarten kennen, Winkelsumme

Mehr

Math-Champ M7 Klasse: Datum: Name:

Math-Champ M7 Klasse: Datum: Name: Math-Champ M7 Klasse: Datum: Name: 1) Die Abbildung zeigt den unvollständigen Schrägriss eines Würfels. Vervollständige die Figur richtig. Verwende dein Geo-Dreieck. 2) In der Grafik ist der Grundriss

Mehr

Schulinterne Lehrpläne der Städtischen Realschule Waltrop. im Fach: MATHEMATIK Klasse 5

Schulinterne Lehrpläne der Städtischen Realschule Waltrop. im Fach: MATHEMATIK Klasse 5 Funktionen 1 Natürliche Zahlen Lesen Informationen aus Text, Bild, Tabelle mit eigenen Worten wiedergeben Problemlösen Lösen Näherungswerte für erwartete Ergebnisse durch Schätzen und Überschlagen ermitteln

Mehr

Bearbeite die folgenden Aufgaben mit Hilfe der Lerneinheit im Internet. Notiere Deine Lösungen auf dem Arbeitsblatt.

Bearbeite die folgenden Aufgaben mit Hilfe der Lerneinheit im Internet. Notiere Deine Lösungen auf dem Arbeitsblatt. Name: Arbeitsblatt zur Aufgabe "Dreiecksfläche" Datum: Bearbeite die folgenden Aufgaben mit Hilfe der Lerneinheit im Internet. Notiere Deine Lösungen auf dem Arbeitsblatt. Die Lerneinheit findest Du unter

Mehr

Übungsaufgaben Repetitionen

Übungsaufgaben Repetitionen TG TECHNOLOGISCHE GRUNDLAGEN Kapitel 3 Mathematik Kapitel 3.6 Geometrie Satz des Pythagoras Übungsaufgaben Repetitionen Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 877 Nidfurn

Mehr

2 14,8 13,8 10,7. Werte einsetzen

2 14,8 13,8 10,7. Werte einsetzen Hinweis zu den Lösungen In den Graphiken stellen grüne Linien, Werte und Flächen vorgegebene Werte, rote Linien, Werte und Flächen gesuchte Werte und blaue Linien, Werte und Flächen zu ermittelnde Zwischenwerte

Mehr

Band 5. Lösen elementare mathematische Regeln und Verfahren (Messen, Rechnen, Schließen) zum Lösen von anschaulichen Alltagsproblemen nutzen

Band 5. Lösen elementare mathematische Regeln und Verfahren (Messen, Rechnen, Schließen) zum Lösen von anschaulichen Alltagsproblemen nutzen Mathematik Neue Wege 5/6 Vergleich mit dem Kernlehrplan Mathematik für das Gymnasium (G8) in Nordrhein-Westfalen / Kompetenzerwartungen am Ende der Jahrgangsstufe 6 Viele der im Kernlehrplan aufgeführten

Mehr

Modulare Förderung Mathematik

Modulare Förderung Mathematik 1) 1 Umfang und Fläche begrifflich verstehen Welche Aussagen stimmen? Kreuze an. Der Umfang einer Figur ist immer größer als sein Flächeninhalt. Der Flächeninhalt wird kleiner, wenn ich eine Fläche zerschneide

Mehr

UNTERRICHTSVORHABEN 1

UNTERRICHTSVORHABEN 1 UNTERRICHTSVORHABEN 1 Thema: Arithmetik/Algebra mit Zahlen und Symbolen umgehen ggf. fächerverbindende Kooperation mit Umfang: 6 Wochen Jahrgangsstufe 7 Rechnen mit rationalen Zahlen Ordnen ordnen und

Mehr

Der Satz des Pythagoras

Der Satz des Pythagoras Der Satz des Pythagoras Das rechtwinklige Dreieck Jedes rechtwinklige Dreieck besitzt eine Hypotenuse (c), das ist die längste Seite des Dreiecks (bzw. diejenige gegenüber dem rechten Winkel). Die anderen

Mehr

SCHULINTERNES CURRICULUM MATHEMATIK JUNI 2016 ( G 8 ) Seite 1 von 7

SCHULINTERNES CURRICULUM MATHEMATIK JUNI 2016 ( G 8 ) Seite 1 von 7 Seite 1 von 7 Kapitel I: Rationale Zahlen - Einfache Bruchteile auf verschiedene Weise darstellen: handelnd, zeichnerisch an verschiedene Objekten, durch Zahlensymbole und als Punkt auf der Zahlengerade;

Mehr

Mathematik - Jahrgangsstufe 6

Mathematik - Jahrgangsstufe 6 Mathematik - Jahrgangsstufe 6 1. Rationale Zahlen und ihre Darstellung A+K: Präsentieren/ WZ: Konstruieren und Darstellen (LS 6 Auflage 2009 Prozessbezogenen Methoden/ Sozialform Teilbarkeitsregeln und

Mehr

Gruppenarbeit Satzgruppe des Pythagoras

Gruppenarbeit Satzgruppe des Pythagoras Arbeitsauftrag 1 Glaspyramide des Louvre Lest zunächst die folgenden Ausführungen eines Touristenführers aufmerksam durch. Auch Freunde der Moderne kommen in Paris auf ihre Kosten. Es gibt hier viele moderne

Mehr

Übungsaufgaben Repetitionen

Übungsaufgaben Repetitionen TG TECHNOLOGISCHE GRUNDLAGEN LÖSUNGSSATZ Kapitel 3 Mathematik Kapitel 3.6 Geometrie Satz des Pythagoras Übungsaufgaben Repetitionen Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut

Mehr

Schulinterner Lehrplan Mathematik G8 Klasse 5

Schulinterner Lehrplan Mathematik G8 Klasse 5 Schulinterner Lehrplan Heinrich-Böll-Gymnasium 1/7 Jg 5, Stand: 07.12.2008 Schulinterner Lehrplan Mathematik G8 Klasse 5 Verbindliche Inhalte zu Kapitel I Natürliche Zahlen 1 Zählen und 2 Große Zahlen

Mehr

Dreiecke, Quadrate, Rechtecke, Kreise erkennen und benennen Würfel, Quader, Kugeln erkennen und benennen

Dreiecke, Quadrate, Rechtecke, Kreise erkennen und benennen Würfel, Quader, Kugeln erkennen und benennen Geometrie Ich kann... Formen und Körper erkennen und beschreiben Dreiecke, Quadrate, Rechtecke, Kreise erkennen und benennen Würfel, Quader, Kugeln erkennen und benennen Symmetrien in Figuren erkennen

Mehr

Buch Medien / Zuordnung zu den Kompetenzbereichen Seite Methoden inhaltsbezogen prozessbezogen

Buch Medien / Zuordnung zu den Kompetenzbereichen Seite Methoden inhaltsbezogen prozessbezogen Quadratwurzel Reelle Zahlen Quadratwurzeln Reelle Zahlen Zusammenhang zwischen Wurzelziehen und Quadrieren Rechenregeln Umformungen (Bd. Kl. 9) 7 46 8 18 19 20 21 24 25 29 30 34 + 2 mit Excel Beschreiben

Mehr

Klasse Schulaufgabe Mathematik (Thema: Raumgeometrie)

Klasse Schulaufgabe Mathematik (Thema: Raumgeometrie) Klasse 11 2. Schulaufgabe Mathematik (Thema: Raumgeometrie) Aufgabe 1 Gegeben sind die Punkte A ( 2 12 4 ); B ( 4 22 6 ); C ( 6 20 8 ); S ( 0 14 14 ) a) Zeigen Sie, dass das Dreieck ABC gleichschenklig

Mehr

5. 7. Brüche und Dezimalzahlen. Mathematik. Das 3-fache Training für bessere Noten: Klasse. Klasse

5. 7. Brüche und Dezimalzahlen. Mathematik. Das 3-fache Training für bessere Noten: Klasse. Klasse Das 3-fache Training für bessere Noten: WISSEN ÜBEN TESTEN Die wichtigsten Regeln zum Thema Brüche und Dezimalzahlen mit passenden Beispielen verständlich erklärt Zahlreiche Übungsaufgaben in drei Schwierigkeitsstufen

Mehr

Erste Unterrichtsstunde: Wievielmal so groß? mit Tangram Flächen vergleichen

Erste Unterrichtsstunde: Wievielmal so groß? mit Tangram Flächen vergleichen Erste Unterrichtsstunde: Wievielmal so groß? mit Tangram Flächen vergleichen Groblernziel: Die Schüler und Schülerinnen können die Größenverhältnisse der geometrischen Figuren des C-Tangrams durch Flächeninhaltsvergleiche

Mehr

Modul «Vom Binärsystem zum Papierflieger»

Modul «Vom Binärsystem zum Papierflieger» Lösung: Binärsystem Zahlensysteme Du kannst den Zahlentrick erklären, wenn du verstehst, wie Zahlensysteme funktionieren. Im Zehnersystem ordnest du einer Zahl automatisch den richtigen Wert zu: Die Zahl

Mehr

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie Abitur Mathematik: Prüfungsteil, Aufgabe 4 Analytische Geometrie Nordrhein-Westfalen 0 LK Aufgabe a (). SCHRITT: MITTELPUNKT DER GRUNDFLÄCHE BERECHNEN Die Spitze befindet sich einen Meter senkrecht über

Mehr

Stoffverteilungsplan Mathematik im Jahrgang 8 Lambacher Schweizer 8

Stoffverteilungsplan Mathematik im Jahrgang 8 Lambacher Schweizer 8 Mathematik Jahrgangsstufe 8 (Lambacher Schweitzer 8) Zeitraum prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen Informationen aus authentischen Texten Überprüfen von Ergebnissen und Ordnen Rationale

Mehr

Kernlernplan Jahrgangsstufe 5 5 NATÜRLICHE ZAHLEN. Algebra 1.) Darstellen natürlicher Zahlen: Vor- und Nachteile der Darstellungsformen erarbeiten.

Kernlernplan Jahrgangsstufe 5 5 NATÜRLICHE ZAHLEN. Algebra 1.) Darstellen natürlicher Zahlen: Vor- und Nachteile der Darstellungsformen erarbeiten. Kernlernplan Jahrgangsstufe 5 5 NATÜRLICHE ZAHLEN 1.) Darstellen natürlicher Zahlen: Stochastik Funktionen Zahl als Ziffern- und Wortform Große Zahlen Darstellung am Zahlenstrahl; Darstellung im Zehnersystem

Mehr

Tutorial zum Umgang mit Scratch

Tutorial zum Umgang mit Scratch Tutorial zum Umgang mit Scratch In diesem Tutorial sollst du die grundlegenden Funktionen von Scratch ausprobieren und kennen lernen Danach solltest du gut mit dem Programm umgehen können und eigene Programme

Mehr

Grundaufgaben der Differenzialrechnung

Grundaufgaben der Differenzialrechnung Grundaufgaben der Liebe Schülerin, lieber Schüler Ein Leitprogramm Oliver Riesen, Kantonsschule Zug Die Blätter, die du jetzt gerade zu lesen begonnen hast, sind ein sogenanntes Leitprogramm. In einem

Mehr

Lehrwerk: Lambacher Schweizer, Klett Verlag

Lehrwerk: Lambacher Schweizer, Klett Verlag Lerninhalte 9 Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Thema 1: Quadratische Funktionen und quadratische Gleichungen 1 Wiederholen Aufstellen von Funktionsgleichungen 2 Scheitelpunktsbestimmung

Mehr

Mit symbolischen, formalen und technischen Elementen der Mathematik umgehen Wertetabellen zur Bearbeitung linearer Zusammenhänge nutzen.

Mit symbolischen, formalen und technischen Elementen der Mathematik umgehen Wertetabellen zur Bearbeitung linearer Zusammenhänge nutzen. MAT 07-01 Zuordnungen 14 DS Leitidee: Funktionaler Zusammenhang Thema im Buch: Unterwegs Werte aus Schaubildern ablesen und ihre Bedeutung erklären. entscheiden und begründen, ob es sich um eine nicht

Mehr

Neue Wege Klasse 5 Schulcurriculum EGW Inhalt Neue Wege 5

Neue Wege Klasse 5 Schulcurriculum EGW Inhalt Neue Wege 5 Neue Wege Klasse 5 Schulcurriculum EGW Inhalt Neue Wege 5 1.1 Runden und Schätzen - Große Zahlen 1.2 Zahlen in Bildern Kapitel 2 Größen 2.1 Längen - Was sind 2.2 Zeit Größen? 2.3 Gewichte Kreuz und quer

Mehr

Argumentieren/Kommunizieren

Argumentieren/Kommunizieren Im Fach Mathematik führen unsere SuS ein Merkheft. In diesem Heft werden alle grundlegenden Rechenregeln und Rechengesetze mit kleinen Beispielen aufgelistet. Die SuS verwenden das Heft zum Wiederholen

Mehr

Schulinterner Lehrplan Mathematik Klasse 7

Schulinterner Lehrplan Mathematik Klasse 7 Gesamtschule Gescher Schulinterner Lehrplan Mathematik Klasse 7 Als Lehrwerk wird das Buch Mathematik real 7, Differenzierende Ausgabe Nordrhein-Westfalen benutzt. Auf den Seiten Noch fit? können die Schülerinnen

Mehr

Schulinterner Lehrplan Mathematik Jahrgangsstufe 6

Schulinterner Lehrplan Mathematik Jahrgangsstufe 6 Themenbereich: (1) Kreise Winkel - Symmetrie Buch: Mathe heute 6 (neu) Seiten: 6-43 Zeitrahmen:8 Wochen - Winkel, Punktsymmetrie, Kreis - Kreise Erfassen - Winkel - Messen und Zeichnen -Winkel, Kreise

Mehr

Serie 1 Klasse 9 RS. 3. 4% von ,5 h = min. 1 und Stelle die Formel nach der Größe in der Klammer um. V = A G h (h)

Serie 1 Klasse 9 RS. 3. 4% von ,5 h = min. 1 und Stelle die Formel nach der Größe in der Klammer um. V = A G h (h) Serie 1 Klasse 9 RS 1. 1 1 2. -15 (- + 5) 4. 4% von 600 4.,5 h = min 5. 5³ 6. Runde auf Tausender. 56608 7. Vergleiche (). 1 und 1 4 8. Stelle die Formel nach der Größe in der Klammer um. V = A

Mehr

ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter

ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter Berufsmaturitätsschule GIB Bern Aufnahmeprüfung 2005 Mathematik Teil A Zeit: 45 Minuten Name / Vorname:... ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese

Mehr

J Quadratwurzeln Reelle Zahlen

J Quadratwurzeln Reelle Zahlen J Quadratwurzeln Reelle Zahlen J Quadratwurzeln Reelle Zahlen 1 Quadratwurzeln Ein Quadrat habe einen Flächeninhalt von 64 cm. Will man wissen, wie lang die Seiten des Quadrates sind, so muss man herausfinden,

Mehr

ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke: x 2. Strecke: 4x x 4x 85 x 17

ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke: x 2. Strecke: 4x x 4x 85 x 17 Textgleichungen Aus der Geometrie Lösungen 1. Von zwei Strecken ist die eine viermal so lang wie die andere. Zusammen ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke:

Mehr

Basteln und Zeichnen

Basteln und Zeichnen Titel des Arbeitsblatts Seite Inhalt 1 Falte eine Hexentreppe 2 Falte eine Ziehharmonika 3 Die Schatzinsel 4 Das Quadrat und seine Winkel 5 Senkrechte und parallele Linien 6 Ein Scherenschnitt 7 Bastle

Mehr

1. Das Koordinatensystem

1. Das Koordinatensystem Liebe Schülerin! Lieber Schüler! In den folgenden Unterrichtseinheiten wirst du die Unterrichtssoftware GeoGebra kennen lernen. Mit ihrer Hilfe kannst du verschiedenste mathematische Objekte zeichnen und

Mehr

Geometrie im Gelände Verwendung des Pendelquadranten. Unterrichtseinheit in Mathematik Klasse 6c Schuljahr 2013/2014

Geometrie im Gelände Verwendung des Pendelquadranten. Unterrichtseinheit in Mathematik Klasse 6c Schuljahr 2013/2014 Geometrie im Gelände Verwendung des Pendelquadranten Unterrichtseinheit in Mathematik Klasse 6c Schuljahr 2013/2014 Geschichtlicher Hintergrund: Geometrie - geos = die Erde metrein = messen Wissenschaft

Mehr

Sicheres Wissen und Können zum Kreis 1

Sicheres Wissen und Können zum Kreis 1 Sicheres Wissen und Können zum Kreis 1 Die Schüler können Figuren als Kreise erkennen und Kreise nach gegebenen Maßen mit dem Zirkel zeichnen. Die Schüler beherrschen folgende Bezeichnungen: Mittelpunkt

Mehr

Fraktale. Mathe Fans an die Uni. Sommersemester 2009

Fraktale. Mathe Fans an die Uni. Sommersemester 2009 Fraktale Mathe Fans an die Uni Ein Fraktal ist ein Muster, das einen hohen Grad Selbstähnlichkeit aufweist. Das ist beispielsweise der Fall, wenn ein Objekt aus mehreren verkleinerten Kopien seiner selbst

Mehr

3. Stegreifaufgabe aus der Mathematik Lösungshinweise

3. Stegreifaufgabe aus der Mathematik Lösungshinweise (v0.1 16.1.09) Schuljahr 008/009. Stegreifaufgabe aus der Mathematik Lösungshinweise Gruppe A Aufgabe 1 (a) Der Satz des Pythagoras lässt sich zum Beispiel so formulieren: In einem rechtwinkligen Dreieck

Mehr

Inhaltsbezogene Kompetenzen. Die Schülerinnen und Schüler...

Inhaltsbezogene Kompetenzen. Die Schülerinnen und Schüler... I Quadratische Funktionen und quadratische Gleichungen 1. Aufstellen von Funktionsgleichungen stellen quadratische Funktionen mit eigenen Worten, in Wertetabellen, Graphen und in Termen dar, wechseln zwischen

Mehr

Schulinterner Lehrplan Version 2014 Lambacher Schweizer Kl. 5

Schulinterner Lehrplan Version 2014 Lambacher Schweizer Kl. 5 Schulinterner Lehrplan Version 2014 Lambacher Schweizer Kl. 5 1 Verbalisieren mathematische Sachverhalte, Begriffe, Regeln und Kommunizieren bei der Lösung von Problemen im Team arbeiten; über Begründen

Mehr