Kapitel 13. Grundbegriffe statistischer Tests

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Kapitel 13. Grundbegriffe statistischer Tests"

Transkript

1 Kapitel 13 Grundbegriffe statistischer Tests Oft hat man eine Vermutung über die Verteilung einer Zufallsvariablen X. Diese Vermutung formuliert man als Hypothese H 0.Sokönnte man daran interessiert sein zu überprüfen, ob ein Parameter θ einen speziellen Wert θ 0 annimmt. Diese Hypothese lautet: H 0 : θ = θ 0 (13.1) Zu jeder Hypothese H 0 formuliert man eine sogenannte Gegenhypothese H 1. Eine Gegenhypothese zur Hypothese in Gleichung (13.1) ist H 1 : θ θ 0 (13.2) Beispiel 111 Es soll überprüft werden, ob eine Münze fair ist. Ist die Münze fair, so beträgt die Wahrscheinlichkeit 0.5, dass KOPF fällt. Wir bezeichnen die Wahrscheinlichkeit für KOPF mit p und erhalten folgendes Hypothesenpaar. H 0 : p =0.5 gegen H 1 : p 0.5. Um mit statistischen Verfahren zu überprüfen, ob die Hypothese oder Gegenhypothese zutrifft, beobachtet man den Zufallsvorgang mehrmals. Dies kann auch bedeuten, dass man eine Stichprobe zieht. Die Münze wird 5-mal geworfen. Wir bezeichnen KOPF mit K und ZAHL mit Z. Es ergibt sich folgende Stichprobe: K K K Z K 311

2 312 KAPITEL 13. GRUNDBEGRIFFE STATISTISCHER TESTS Spricht diese Stichprobe für H 0 oder für H 1? Es gibt Stichproben, die für die Hypothese H 0 und Stichproben, die für die Gegenhypothese H 1 sprechen. Um entscheiden zu können, ob die Hypothese oder die Gegenhypothese zutrifft, verdichten wir die Information in der Stichprobe. Wir bestimmen eine Stichprobenfunktion S = g(x 1,...,X n ). Diese Stichprobenfinktion S = g(x 1,...,X n ) nennen wir Teststatistik oder Prüfgröße. Die Stichproben KKKKK und ZZZZZ sprechen dafür, dass die Münze nicht fair ist, während eine Stichprobe wie ZKKZK eher für die Hypothese spricht. Als Teststatistik S wählen wir die Anzahl K bei den 5 Würfen. Für die Stichprobe KKKKK gilt S =5,für die Stichprobe ZZZZZ gilt S = 0 und für die Stichprobe ZKKZK gilt S =3. Wir formulieren auf Basis der Teststatistik eine Entscheidungsregel. Diese gibt an, bei welchen Werten von S wir uns für H 0 und bei welchen Werten von S wir uns für H 1 entscheiden. Man nennt die Menge der Werte von S, für die man sich für H 1 entscheidet, auch den kritischen Bereich oder Ablehnbereich C. Wir sind nicht bereit zu akzeptieren, dass die Münze fair ist, wenn bei allen 5 Würfen immer K oder immer Z auftritt. Wir erhalten also folgende Entscheidungsregel: Entscheidung für H 1,wennS =0oderS = 5 gilt. Entscheidung für H 0,wenn1 S 4 gilt. Der kritische Bereich ist also C = {0, 5}. Wir werden im Folgenden bei der Formulierung der Entscheidungsregeln immer nur den kritischen Bereich eines Tests angeben. Auch wenn die Münze fair ist, kann es passieren, dass bei 5 Würfen 5-mal oder 0-mal K beobachtet wird. Auf Grund der Entscheidungsregel entscheiden wir uns in diesen Fällen für die Gegenhypothese. Wir entscheiden uns also dafür, dass die Münze nicht fair ist, obwohl sie fair ist. Wie das Beispiel zeigt, ist die Entscheidung bei einem Test fehlerbehaftet. Den im Beispiel begangenen Fehler bezeichnen wir als Fehler 1. Art. Ein Fehler 1. Art wird begangen, wenn man sich für H 1 entscheidet, obwohl H 0 zutrifft. Man kann noch einen weiteren Fehler begehen. Der Fehler 2.

3 313 Art wird begangen, wenn man sich für H 0 entscheidet, obwohl H 1 zutrifft. Tabelle 13.1 stellt die Situation dar. Tabelle 13.1: Die Fehler beim statistischen Test Realität H 0 trifft zu H 1 trifft zu Entscheidung für H 0 richtige Entscheidung Fehler 2.Art für H 1 Fehler 1.Art richtige Entscheidung Beispiel 112 Ein Statistiker muss sich an Tagen, an denen morgens die Sonne scheint, entscheiden, ob er einen Schirm mitnimmt. Er formuliert also folgende Hypothesen: H 0 : H 1 : Es wird am Nachmittag regnen Es wird am Nachmittag nicht regnen Bei seiner Entscheidungsregel orientiert er sich am Wetterbericht. Wird gutes Wetter vorhergesagt, so nimmt er keinen Schirm mit. Wird Regen prognostiziert, so nimmt er einen Schirm mit. Wenn er am Morgen keinen Schirm mitgenommen hat, es aber am Nachmittag aber regnet, so begeht er einen Fehler 1. Art. Wenn er am Morgen einen Schirm mitgenommen hat, es am Nachmittag aber nicht regnet, so begeht er einen Fehler 2. Art. Die Wahrscheinlichkeit des Fehlers 1. Art ist α = P (Entscheidung für H 1 H 0 trifft zu) Die Wahrscheinlichkeit des Fehlers 2. Art ist β = P (Entscheidung für H 0 H 1 trifft zu) Um die Wahrscheinlichkeiten der beiden Fehler bestimmen zu können, benötigt man die Verteilung der Teststatistik, wenn H 0 zutrifft und wenn H 1 zutrifft. Beim fünfmaligen Münzwurf handelt es sich um einen Bernoulliprozess der Länge n = 5. Es gilt p = P (K). Die Teststatistik S ist die Anzahl K. Sie ist

4 314 KAPITEL 13. GRUNDBEGRIFFE STATISTISCHER TESTS binomialverteilt mit den Parametern n = 5 und p. Es gilt P (S = s) = ( ) 5 p s (1 p) 5 s s Trifft H 0 zu, so ist die Münze fair und es gilt p =0.5. Tabelle 13.2 enthält die Verteilung von S für diesen Fall. Tabelle 13.2: Wahrscheinlichkeitsfunktion der Binomialverteilung mit den Parametern n = 5 und p =0.5 s P (S = s) Es gilt α = P (S =0)+P (S =5)= Die Wahrscheinlichkeit des Fehlers 2. Art können wir nicht so einfach angeben, da p unendlich viele Werte annehmen kann, wenn H 1 zutrifft. Und wir wissen natürlich nicht, welcher der wahre Wert ist. Nehmen wir aber einmal an, dass die Münze mit Wahrscheinlichkeit 0.8 KOPF zeigt. Tabelle 13.3 enthält die Verteilung von S für diesen Fall. Tabelle 13.3: Wahrscheinlichkeitsfunktion der Binomialverteilung mit den Parametern n = 5 und p =0.8 s P (S = s) Es gilt β = P (S =1)+P (S =2)+P (S =3)+P (S =4)= Man will natürlich beide Fehler vermeiden. Dies ist aber nicht möglich, da die Wahrscheinlichkeiten der beiden Fehler voneinander abhängen.

5 315 Wir ändern die Entscheidungsregel und entscheiden uns für H 1,wennS 1 oder S 4 gilt. Der kritische Bereich ist also C = {0, 1, 4, 5}. Mit den Zahlen aus Tabelle 13.2 auf Seite 314 erhalten wir α = P (S =0)+P (S =1)+P (S =4)+P (S =5)=0.375 Die Wahrscheinlichkeit für den Fehler 1. Art ist größer, während die Wahrscheinlichkeit des Fehlers 2. Art sinkt. Mit den Zahlen aus Tabelle 13.3 auf Seite 314 erhalten wir nämlich β = P (S =2)+P (S =3)= In Tabelle 13.4 sind die Wahrscheinlichkeiten der Fehler und die kritischen Bereiche zusammengstellt. Tabelle 13.4: Zusammenhang zwischen den Fehlern beim statistischen Test C {0, 5} {0, 1, 4, 5} α β Vergrößern wir also die Wahrscheinlichkeit α für den Fehler 1. Art, so werden wir uns häufiger für H 1 und damit seltener für H 0 entscheiden. Also werden wir auch seltener einen Fehler 2. Art begehen. Vergrößern wir hingegen die Wahrscheinlichkeit β für den Fehler 2. Art, so werden wir die uns häufiger für H 0 und damit seltener für H 1 entscheiden. Also werden wir auch seltener einen Fehler 1. Art begehen. Wie soll man nun den kritischen Bereich wählen? Man will die Wahrscheinlichkeit eines Fehlers kontrollieren. Dies ist beim statistischen Test die Wahrscheinlichkeit des Fehlers 1. Art. Man gibt diese vor. Man nennt sie auch das Signifikanzniveau α. InderRegelwählt man α =0.05 oder α =0.01. Man wählt den größtmöglichen kritischen Bereich, für den α 0.05 bzw. α 0.01 gilt. Um den kritischen Bereich in Abhängigkeit vom Signifikanzniveau festlegen zu können, benötigt man die Verteilung der Teststatistik, wenn die Hypothese H 0 zutrifft. Man spricht auch von der Verteilung der Teststatistik unter H 0. Dadurch, dass man für die Wahrscheinlichkeit des Fehler 1. Art einen kleinen Wert wählt, kann man sich ziemlich sicher sein, eine richtige Entscheidung

6 316 KAPITEL 13. GRUNDBEGRIFFE STATISTISCHER TESTS zu treffen, wenn man sich für H 1 entscheidet. Die Wahrscheinlichkeit, einen Fehler begangen zu haben, beträgt ja nur α. Entscheidet man sich hingegen für H 0, so kann man in der Regel nichts über die Fehlerwahrscheinlichkeit sagen. Es ist deshalb üblich davon zu sprechen, dass man H 0 ablehnt, wenn mansichfür H 1 entscheidet, und dass man H 0 nicht ablehnt, wenn man sich für H 0 entscheidet. Deshalb sollte man das, was man zeigen will als Alternativhypothese formulieren. Entscheidet man sich beim Test dann für die Alternativhypothese, so kann man sich ziemlich sicher sein, dass die Entscheidung richtig ist. Die Wahrscheinlichkeit einer Fehlentscheidung beträgt nur α. In vielen Programmpaketen wird bei einem statistischen Test die sogenannte Überschreitungswahrscheinlichkeit ausgegeben. Man spricht auch vom p-wert. Diese ist das kleinste Signifikanzniveau, zu dem die Hypothese H 0 für den Datensatz abgelehnt wird. Wir haben den Wert S = 4 beobachtet. Wie groß ist die Überschreitungswahrscheinlichkeit? Wir suchen unter allen kritischen Bereichen, in denen der Wert 4 liegt, den mit dem kleinsten Signifikanzniveau. Wir lehnen H 0 ab, wenn S zu groß oder zu klein ist. Der kleinste kritische Bereich ist also C = {0, 5}. Bei diesem ist das Signifikanzniveau gleich = , wie wir Tabelle 13.2 auf Seite 314 entnehmen können. Da 4 aber nicht im kritischen Bereich liegt, lehnen wir zu diesem Signifikanzniveau nicht ab. Wir vergrößern den kritischen Bereich, indem wir 1 und 4 in den kritischen Bereich nehmen. Es gilt also C = {0, 1, 4, 5}. Bei diesem ist das Signifikanzniveau gleich = Da 4 in diesem kritischen Bereich liegt, ist die Überschreitungswahrscheinlichkeit gleich Vergrößern wir nämlich den kritischen Bereich, so lehnen wir H 0 zwar für S = 4 ab, das Signifikanzniveau wird aber auch größer. In der Regel gibt es mehrere Tests für dasselbe Testproblem. Diese kann man an Hand der Gütefunktion vergleichen. Die Gütefunktion G(θ 1 ) an der Stelle θ 1 ist gleich der Wahrscheinlichkeit, die Hypothese H 0 abzulehnen, wenn θ 1 der Wert von θ ist. Die Gütefunktion G(θ) sollte mit wachsendem Abstand von θ 0 immer größer werden. Wir betrachten den Test mit kritischem Bereich {0, 5}. Wir bestimmen G(0.8) und G(0.9). Mit den Wahrscheinlichkeiten in Tabelle 13.3 auf Seite 314 gilt: G(0.8) = P (S =0)+P (S =5)= =

7 317 In Tabelle 13.5 ist die Verteilung von S für p =0.9 zu finden. Tabelle 13.5: Wahrscheinlichkeitsfunktion der Binomialverteilung mit den Parametern n = 5 und p =0.9 s P (S = s) Also gilt G(0.9) = P (S =0)+P (S =5)= = Wir sehen, dass die Wahrscheinlichkeit, uns für H 1 zu entscheiden, für p =0.9 größer ist als für p =0.8. Wir haben bisher Hypothesen der Form H 0 : θ = θ 0 gegen H 1 : θ θ 0. betrachtet. Bei diesen kann der Parameter θ Werte annehmen, die kleiner oder größer als θ 0 sind, wenn H 1 zutrifft. Man spricht von einem zweiseitigen Testproblem. Einseitige Testprobleme sind von der Form H 0 : θ = θ 0 gegen H 1 : θ>θ 0 oder H 0 : θ = θ 0 gegen H 1 : θ<θ 0. Beispiel 112 Eine Partei will überprüfen, ob ihr Wähleranteil mehr als 40 Prozent beträgt. Hierzu befragt sie 10 Personen, von denen 8 die Partei wählen würden. H 0 : p =0.4 gegen H 1 : p>0.4. Wir wählen als Teststatistik S die Anzahl der Wähler der Partei in der Stichprobe. Diese ist binomialverteilt mit den Parametern n = 10 und p = 0.4, wenn H 0 zutrifft. In Tabelle 13.6 ist die Verteilung von S unter H 0 zu finden.

8 318 KAPITEL 13. GRUNDBEGRIFFE STATISTISCHER TESTS Tabelle 13.6: Verteilung von S unter H 0 s P(S = s) Wir lehnen H 0 ab, wenn S zu groß ist. Schauen wir uns an, wie die Wahrscheinlichkeit α des Fehlers 1. Art vom kritischen Bereich C abhängt. Tabelle 13.7 zeigt dies. Tabelle 13.7: α in Abhängigkeit von C C α C = {10} C = {9, 10} C = {8, 9, 10} C = {7, 8, 9, 10} Wollen wir zum Signifikanzniveau α =0.05 testen, so ist der kritische Bereich C = {8, 9, 10}. Dies ist nämlich der größte kritische Bereich, bei dem die Wahrscheinlichkeit des Fehlers 1. Art kleiner gleich 0.05 ist. Der kritische Bereich C = {7, 8, 9, 10} enthält zwar auch den Wert 8. Aber bei diesem ist die Wahrscheinlichkeit des Fehlers 1. Art größer als Aus Tabelle 13.7 können wir auch die Überschreitungswahrscheinlichkeit bestimmen. Sie beträgt Dies ist nämlich das kleinste Signifikanzniveau, bei dem wir H 0 für den Wert S = 8 ablehnen. Der kritische Bereich C = {7, 8, 9, 10} enthält zwar auch den Wert 8, aber das Signifikanzniveau

9 ist hier größer. Den im Beispiel betrachteten Test nennt man Test auf p. Schauen wir uns an Hand des zweiseitigen Tests auf p noch einmal die Bestandteile eines Tests an. 1. Die Annahmen. Beim Test auf p gehen wir davon aus, dass wir n Realisationen eines Bernoulliprozesses beobachten, bei dem an einem Ereignis A mit p = P (A) interessiert sind. 2. Die Hypothesen H 0 und H 1. Beim zweiseitigen Test auf p testen wir H 0 : p = p 0 gegen H 1 : p p Das Signifikanzniveau α, das vom Anwender vorgegeben wird. 4. Die Teststatistik. Beim Test auf p bestimmen wir die absolute Häufigkeit S von A bei den n Realisationen des Bernoulliprozesses. 5. Die Entscheidungsregel. Beim Test auf p lehnen wir H 0 ab, wenn gilt S s α/2 oder S s 1 α/2. Dabei wählen wir s α/2,sodassgiltp(s s α/2 ) α/2 und P (S 1+s α/2 ) >α/2. Für s 1 α/2 gilt P (S s 1 α/2 ) α/2 und P (S s 1 α/2 1) >α/2. Dabei ist S eine mit den Parametern nund p 0 binomialverteilte Zufallsvariable.

Statistik II. Statistische Tests. Statistik II

Statistik II. Statistische Tests. Statistik II Statistik II Statistische Tests Statistik II - 12.5.2006 1 Test auf Anteilswert: Binomialtest Sei eine Stichprobe unabhängig, identisch verteilter ZV (i.i.d.). Teile diese Stichprobe in zwei Teilmengen

Mehr

7. Hypothesentests. Ausgangssituation erneut: ZV X repräsentiere einen Zufallsvorgang. X habe die unbekannte VF F X (x)

7. Hypothesentests. Ausgangssituation erneut: ZV X repräsentiere einen Zufallsvorgang. X habe die unbekannte VF F X (x) 7. Hypothesentests Ausgangssituation erneut: ZV X repräsentiere einen Zufallsvorgang X habe die unbekannte VF F X (x) Interessieren uns für einen unbekannten Parameter θ der Verteilung von X 350 Bisher:

Mehr

Einführung in die Induktive Statistik: Testen von Hypothesen

Einführung in die Induktive Statistik: Testen von Hypothesen Einführung in die Induktive Statistik: Testen von Hypothesen Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Testen: Einführung und Konzepte

Mehr

6. Statistische Hypothesentests

6. Statistische Hypothesentests 6. Statistische Hypothesentests Ausgangssituation erneut: ZV X repräsentiere einen Zufallsvorgang X habe die unbekannte VF F X (x) Interessieren uns für einen unbekannten Parameter θ der Verteilung von

Mehr

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe Kapitel 4 Statistische Tests 4.1 Grundbegriffe Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe X 1,..., X n. Wir wollen nun die Beobachtung der X 1,...,

Mehr

Allgemeines zu Tests. Statistische Hypothesentests

Allgemeines zu Tests. Statistische Hypothesentests Statistische Hypothesentests Allgemeines zu Tests Allgemeines Tests in normalverteilten Grundgesamtheiten Asymptotische Tests Statistischer Test: Verfahren Entscheidungsregel), mit dem auf Basis einer

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2

Mehr

Statistische Tests (Signifikanztests)

Statistische Tests (Signifikanztests) Statistische Tests (Signifikanztests) [testing statistical hypothesis] Prüfen und Bewerten von Hypothesen (Annahmen, Vermutungen) über die Verteilungen von Merkmalen in einer Grundgesamtheit (Population)

Mehr

Kapitel 3 Schließende Statistik

Kapitel 3 Schließende Statistik Beispiel 3.4: (Fortsetzung Bsp. 3.) bekannt: 65 i=1 X i = 6, also ˆp = X = 6 65 = 0, 4 Überprüfen der Voraussetzungen: (1) n = 65 30 () n ˆp = 6 10 (3) n (1 ˆp) = 39 10 Dr. Karsten Webel 194 Beispiel 3.4:

Mehr

2 Wiederholung statistischer Grundlagen Schließende Statistik empirischen Information aus Stichprobenrealisation x von X

2 Wiederholung statistischer Grundlagen Schließende Statistik empirischen Information aus Stichprobenrealisation x von X Hypothesentests Bisher betrachtet: Punkt- bzw. Intervallschätzung des unbekannten Mittelwerts Hierzu: Verwendung der 1 theoretischen Information über Verteilung von X empirischen Information aus Stichprobenrealisation

Mehr

Beurteilende Statistik

Beurteilende Statistik Beurteilende Statistik Wahrscheinlichkeitsrechnung und Beurteilende Statistik was ist der Unterschied zwischen den beiden Bereichen? In der Wahrscheinlichkeitstheorie werden aus gegebenen Wahrscheinlichkeiten

Mehr

4.1. Nullhypothese, Gegenhypothese und Entscheidung

4.1. Nullhypothese, Gegenhypothese und Entscheidung rof. Dr. Roland Füss Statistik II SS 8 4. Testtheorie 4.. Nullhypothese, Gegenhypothese und Entscheidung ypothesen Annahmen über die Verteilung oder über einzelne arameter der Verteilung eines Merkmals

Mehr

3 Grundlagen statistischer Tests (Kap. 8 IS)

3 Grundlagen statistischer Tests (Kap. 8 IS) 3 Grundlagen statistischer Tests (Kap. 8 IS) 3.1 Beispiel zum Hypothesentest Beispiel: Betrachtet wird eine Abfüllanlage für Mineralwasser mit dem Sollgewicht µ 0 = 1000g und bekannter Standardabweichung

Mehr

2.4 Hypothesentests Grundprinzipien statistischer Hypothesentests. Hypothese:

2.4 Hypothesentests Grundprinzipien statistischer Hypothesentests. Hypothese: 2.4.1 Grundprinzipien statistischer Hypothesentests Hypothese: Behauptung einer Tatsache, deren Überprüfung noch aussteht (Leutner in: Endruweit, Trommsdorff: Wörterbuch der Soziologie, 1989). Statistischer

Mehr

73 Hypothesentests Motivation Parametertest am Beispiel eines Münzexperiments

73 Hypothesentests Motivation Parametertest am Beispiel eines Münzexperiments 73 Hypothesentests 73.1 Motivation Bei Hypothesentests will man eine gewisse Annahme über eine Zufallsvariable darauf hin überprüfen, ob sie korrekt ist. Beispiele: ( Ist eine Münze fair p = 1 )? 2 Sind

Mehr

Kapitel 3 Schließende Statistik

Kapitel 3 Schließende Statistik Bemerkung 3.34: Die hier betrachteten Konfidenzintervalle für unbekannte Erwartungswerte sind umso schmaler, je größer der Stichprobenumfang n ist, je kleiner die (geschätzte) Standardabweichung σ (bzw.

Mehr

Statistik II für Betriebswirte Vorlesung 1

Statistik II für Betriebswirte Vorlesung 1 Statistik II für Betriebswirte Vorlesung 1 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 16. Oktober 2017 Dr. Andreas Wünsche Statistik II für Betriebswirte Vorlesung 1 Version:

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http://brinkmann-du.de Seite 1 17.3.21 Grundlagen zum Hypothesentest Einführung: Wer Entscheidungen zu treffen hat, weiß oft erst im nachhinein ob seine Entscheidung richtig war. Die Unsicherheit

Mehr

Statistik Einführung // Tests auf einen Parameter 8 p.2/74

Statistik Einführung // Tests auf einen Parameter 8 p.2/74 Statistik Einführung Tests auf einen Parameter Kapitel 8 Statistik WU Wien Gerhard Derflinger Michael Hauser Jörg Lenneis Josef Leydold Günter Tirler Rosmarie Wakolbinger Statistik Einführung // Tests

Mehr

Statistische Tests Übersicht

Statistische Tests Übersicht Statistische Tests Übersicht Diskrete Stetige 1. Einführung und Übersicht 2. Das Einstichprobenproblem 3. Vergleich zweier unabhängiger Gruppen (unverbundene Stichproben) 4. Vergleich zweier abhängiger

Mehr

THEMA: "STATISTIK IN DER PRAXIS TESTEN IST BESSER ALS VERMUTEN" TORSTEN SCHOLZ

THEMA: STATISTIK IN DER PRAXIS TESTEN IST BESSER ALS VERMUTEN TORSTEN SCHOLZ WEBINAR@LUNCHTIME THEMA: "STATISTIK IN DER PRAXIS TESTEN IST BESSER ALS VERMUTEN" TORSTEN SCHOLZ EINLEITENDES BEISPIEL SAT: Standardisierter Test, der von Studienplatzbewerbern an amerikanischen Unis gefordert

Mehr

Testen von Hypothesen, Beurteilende Statistik

Testen von Hypothesen, Beurteilende Statistik Testen von Hypothesen, Beurteilende Statistik Was ist ein Test? Ein Test ist ein Verfahren, mit dem man anhand von Beobachtungen eine begründete Entscheidung über die Gültigkeit oder Ungültigkeit einer

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http://brinkmann-du.de Seite 1 24.2.214 Grundlagen zum Hypothesentest Einführung: Wer Entscheidungen zu treffen hat, weiß oft erst im nachhinein ob seine Entscheidung richtig war. Die Unsicherheit

Mehr

9 Prinzipien der statistischen Hypothesenprüfung

9 Prinzipien der statistischen Hypothesenprüfung 9 Prinzipien der statistischen Hypothesenprüfung Prinzipien der statistischen Hypothesenprüfung Bei der Schätzung eines Populationsparamters soll dessen Wert aus Stichprobendaten erschlossen werden. Wenn

Mehr

Statistisches Testen

Statistisches Testen Statistisches Testen Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Differenzen Anteilswert Chi-Quadrat Tests Gleichheit von Varianzen Prinzip des Statistischen Tests Konfidenzintervall

Mehr

Hypothesen über die Grundgesamtheit. Aufgabenstellung der Testtheorie Hypothesen (Annahmen, Vermutungen oder

Hypothesen über die Grundgesamtheit. Aufgabenstellung der Testtheorie Hypothesen (Annahmen, Vermutungen oder Hypothesen über die Grundgesamtheit Aufgabenstellung der Testtheorie Hypothesen (Annahmen, Vermutungen oder Behauptungen) über die unbekannte Grundgesamtheit anhand einer Stichprobe als richtig oder falsch

Mehr

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 Empirische Softwaretechnik Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 Hypothesentesten, Fehlerarten und Güte 2 Literatur Kreyszig: Statistische Methoden und ihre Anwendungen, 7.

Mehr

Online-Aufgaben Statistik (BIOL, CHAB) Auswertung und Lösung

Online-Aufgaben Statistik (BIOL, CHAB) Auswertung und Lösung Online-Aufgaben Statistik (BIOL, CHAB) Auswertung und Lösung Abgaben: 92 / 234 Maximal erreichte Punktzahl: 7 Minimal erreichte Punktzahl: 1 Durchschnitt: 4 Frage 1 (Diese Frage haben ca. 0% nicht beantwortet.)

Mehr

P-Test Motivation: Einsatz des Tests auf p im Krankenhausmanagement Theorie zum Test auf p

P-Test Motivation: Einsatz des Tests auf p im Krankenhausmanagement Theorie zum Test auf p P-Test Motivation: Einsatz des Tests auf p im Krankenhausmanagement Theorie zum Test auf p Test A: Beispiel zur Erfolgsmessung von Therapien Test B: Beispiel zur Überwachung des Patientenanteils mit zu

Mehr

KATA LOGO Mathematik Statistik Roadmap: Von der Hypothese zum p-wert

KATA LOGO Mathematik Statistik Roadmap: Von der Hypothese zum p-wert KATA LOGO Mathematik Statistik Roadmap: Von der Hypothese zum p-wert 0. Das eigentliche Forschungsziel ist: Beweis der eigenen Hypothese H 1 Dafür muss Nullhypothese H 0 falsifiziert werden können Achtung!

Mehr

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97.

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97. Aufgabenblock 4 Aufgabe ) Da s = 8. cm nur eine Schätzung für die Streuung der Population ist, müssen wir den geschätzten Standardfehler verwenden. Dieser berechnet sich als n s s 8. ˆ = = =.88. ( n )

Mehr

Kapitel 17. Unabhängigkeit und Homogenität Unabhängigkeit

Kapitel 17. Unabhängigkeit und Homogenität Unabhängigkeit Kapitel 17 Unabhängigkeit und Homogenität 17.1 Unabhängigkeit Im Rahmen der Wahrscheinlichkeitsrechnung ist das Konzept der Unabhängigkeit von zentraler Bedeutung. Die Ereignisse A und B sind genau dann

Mehr

Grundlagen der Statistik

Grundlagen der Statistik Grundlagen der Statistik Übung 15 009 FernUniversität in Hagen Alle Rechte vorbehalten Fachbereich Wirtschaftswissenschaft Übersicht über die mit den Übungsaufgaben geprüften Lehrzielgruppen Lehrzielgruppe

Mehr

Kapitel VIII - Tests zum Niveau α

Kapitel VIII - Tests zum Niveau α Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel VIII - Tests zum Niveau α Induktive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh Testsituationen

Mehr

k np g(n, p) = Pr p [T K] = Pr p [T k] Φ. np(1 p) DWT 4.1 Einführung 359/467 Ernst W. Mayr

k np g(n, p) = Pr p [T K] = Pr p [T k] Φ. np(1 p) DWT 4.1 Einführung 359/467 Ernst W. Mayr Die so genannte Gütefunktion g gibt allgemein die Wahrscheinlichkeit an, mit der ein Test die Nullhypothese verwirft. Für unser hier entworfenes Testverfahren gilt ( ) k np g(n, p) = Pr p [T K] = Pr p

Mehr

Grundlagen der Statistik

Grundlagen der Statistik Grundlagen der Statistik Übung 13 2010 FernUniversität in Hagen Alle Rechte vorbehalten Fakultät für Wirtschaftswissenschaft Übersicht über die mit den Übungsaufgaben geprüften Lehrzielgruppen Lehrzielgruppe

Mehr

Lösungen zum Aufgabenblatt 14

Lösungen zum Aufgabenblatt 14 Lösungen zum Aufgabenblatt 14 61. Das Gewicht von Brötchen (gemessen in g) sei zufallsabhängig und werde durch eine normalverteilte Zufallsgröße X N(µ, 2 ) beschrieben, deren Varianz 2 = 49 g 2 bekannt

Mehr

Um zu entscheiden, welchen Inhalt die Urne hat, werden der Urne nacheinander 5 Kugeln mit Zurücklegen entnommen und ihre Farben notiert.

Um zu entscheiden, welchen Inhalt die Urne hat, werden der Urne nacheinander 5 Kugeln mit Zurücklegen entnommen und ihre Farben notiert. XV. Testen von Hypothesen ================================================================== 15.1 Alternativtest ------------------------------------------------------------------------------------------------------------------

Mehr

10 Der statistische Test

10 Der statistische Test 10 Der statistische Test 10.1 Was soll ein statistischer Test? 10.2 Nullhypothese und Alternativen 10.3 Fehler 1. und 2. Art 10.4 Parametrische und nichtparametrische Tests 10.1 Was soll ein statistischer

Mehr

2. Formulieren von Hypothesen. Nullhypothese: H 0 : µ = 0 Gerät exakt geeicht

2. Formulieren von Hypothesen. Nullhypothese: H 0 : µ = 0 Gerät exakt geeicht 43 Signifikanztests Beispiel zum Gauß-Test Bei einer Serienfertigung eines bestimmten Typs von Messgeräten werden vor der Auslieferung eines jeden Gerätes 10 Kontrollmessungen durchgeführt um festzustellen,

Mehr

Kapitel XI - Operationscharakteristik und Gütefunktion

Kapitel XI - Operationscharakteristik und Gütefunktion Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XI - Operationscharakteristik und Gütefunktion Induktive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo

Mehr

8. Konfidenzintervalle und Hypothesentests

8. Konfidenzintervalle und Hypothesentests 8. Konfidenzintervalle und Hypothesentests Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Beispiel. Sie wollen den durchschnittlichen Fruchtsaftgehalt eines bestimmten Orangennektars

Mehr

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Intervallschätzung.

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Intervallschätzung. 0 Einführung 1 Wahrscheinlichkeitsrechnung 2 Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Intervallschätzung 5 Hypothesentests Grundprinzipien statistischer Hypothesentests Aufbau eines

Mehr

DWT 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen 330/467 Ernst W. Mayr

DWT 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen 330/467 Ernst W. Mayr 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen Wir betrachten nun ein Verfahren zur Konstruktion von Schätzvariablen für Parameter von Verteilungen. Sei X = (X 1,..., X n ). Bei X

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Pantelis Christodoulides & Karin Waldherr 4. Juni 2014 Christodoulides / Waldherr Einführung in Quantitative Methoden 1/35 Ein- und Zweiseitige Hypothesen H 0 : p =

Mehr

Kapitel III: Einführung in die schließende Statistik

Kapitel III: Einführung in die schließende Statistik Kapitel III: Einführung in die schließende Statistik Das zweite Kapitel beschäftigte sich mit den Methoden der beschreibenden Statistik. Im Mittelpunkt der kommenden Kapitel stehen Verfahren der schließenden

Mehr

9 Prinzipien der statistischen Hypothesenprüfung

9 Prinzipien der statistischen Hypothesenprüfung 9 Prinzipien der statistischen Hypothesenprüfung Prinzipien der statistischen Hypothesenprüfung Bei der Schätzung eines Populationsparamters soll dessen Wert aus Stichprobendaten erschlossen werden. Wenn

Mehr

Einführung in die statistische Testtheorie

Einführung in die statistische Testtheorie 1 Seminar Simulation und Bildanalyse mit Java von Benjamin Burr und Philipp Orth 2 Inhalt 1. Ein erstes Beispiel 2. 3. Die Gütefunktion 4. Gleichmäßig beste Tests (UMP-Tests) 1 Einführendes Beispiel 3

Mehr

Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1

Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Aufgabe 1 (10 Punkte). 10 Schüler der zehnten Klasse unterziehen sich zur Vorbereitung auf die Abschlussprüfung einem Mathematiktrainingsprogramm.

Mehr

Testen von Hypothesen

Testen von Hypothesen Elke Warmuth Humboldt-Universität zu Berlin Sommersemster 2010 1 / 46 2 / 46 1 Testen von Hypothesen 3 / 46 Signifikant, signifikant, signifikant,... 4 / 46 Signifikant, signifikant, signifikant,... 5

Mehr

Überblick Hypothesentests bei Binomialverteilungen (Ac)

Überblick Hypothesentests bei Binomialverteilungen (Ac) Überblick Hypothesentests bei Binomialverteilungen (Ac) Beim Testen will man mit einer Stichprobe vom Umfang n eine Hypothese H o (z.b.p o =70%) widerlegen! Man geht dabei aus von einer Binomialverteilung

Mehr

: p= 1 6 ; allgemein schreibt man hierfür H : p = p. wird Gegenhypothese genannt und mit H 1 bezeichnet.

: p= 1 6 ; allgemein schreibt man hierfür H : p = p. wird Gegenhypothese genannt und mit H 1 bezeichnet. Einseitiger Signifikanztest Allgemein heißt die Hypothese, dass eine vorgelegte unbekannte Wahrscheinlichkeitsverteilung mit einer angenommenen Verteilung übereinstimmt, Nullhypothese und wird mit H 0

Mehr

Grundlagen der Stochastik

Grundlagen der Stochastik Grundlagen der Stochastik Johannes Recker / Sep. 2015, überarbeitet Nov. 2015 Fehlermeldungen oder Kommentare an recker@sbshh.de Inhalt 1. Grundlegende Begriffe der Wahrscheinlichkeitsrechnung... 2 1.1.

Mehr

Schließende Statistik: Hypothesentests (Forts.)

Schließende Statistik: Hypothesentests (Forts.) Mathematik II für Biologen 15. Mai 2015 Testablauf (Wdh.) Definition Äquivalente Definition Interpretation verschiedener e Fehler 2. Art und Macht des Tests Allgemein im Beispiel 1 Nullhypothese H 0 k

Mehr

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion

Mehr

Statistik II. IV. Hypothesentests. Martin Huber

Statistik II. IV. Hypothesentests. Martin Huber Statistik II IV. Hypothesentests Martin Huber 1 / 41 Übersicht Struktur eines Hypothesentests Stichprobenverteilung t-test: Einzelner-Parameter-Test F-Test: Multiple lineare Restriktionen 2 / 41 Struktur

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests Nach Verteilungsannahmen: verteilungsabhängig: parametrischer [parametric] Test verteilungsunabhängig: nichtparametrischer [non-parametric] Test Bei parametrischen Tests

Mehr

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik Kapitel 15 Statistische Testverfahren 15.1. Arten statistischer Test Klassifikation von Stichproben-Tests Einstichproben-Test Zweistichproben-Test - nach der Anzahl der Stichproben - in Abhängigkeit von

Mehr

5. Seminar Statistik

5. Seminar Statistik Sandra Schlick Seite 1 5. Seminar 5. Seminar Statistik 30 Kurztest 4 45 Testen von Hypothesen inkl. Übungen 45 Test- und Prüfverfahren inkl. Übungen 45 Repetitorium und Prüfungsvorbereitung 15 Kursevaluation

Mehr

Die Abfüllmenge ist gleich dem Sollwert 3 [Deziliter].

Die Abfüllmenge ist gleich dem Sollwert 3 [Deziliter]. Eine Methode, um anhand von Stichproben Informationen über die Grundgesamtheit u gewinnen, ist der Hypothesentest (Signifikantest). Hier wird erst eine Behauptung oder Vermutung (Hypothese) über die Parameter

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Klausur zu Statistik II

Klausur zu Statistik II GOETHE-UNIVERSITÄT FRANKFURT FB Wirtschaftswissenschaften Statistik und Methoden der Ökonometrie Prof. Dr. Uwe Hassler Wintersemester 03/04 Klausur zu Statistik II Matrikelnummer: Hinweise Hilfsmittel

Mehr

Stochastik: Hypothesentest Stochastik Testen von Hypothesen (einseitiger Test) allgemein bildende Gymnasien J1/J2

Stochastik: Hypothesentest Stochastik Testen von Hypothesen (einseitiger Test) allgemein bildende Gymnasien J1/J2 Stochastik Testen von Hypothesen (einseitiger Test) allgemein bildende Gymnasien J/J2 Alexander Schwarz www.mathe-aufgaben.com Oktober 25 Hinweis: Für die Aufgaben darf der GTR benutzt werden. Aufgabe

Mehr

Testentscheidungen. Worum geht es in diesem Modul? Kritische Werte p-wert

Testentscheidungen. Worum geht es in diesem Modul? Kritische Werte p-wert Testentscheidungen Worum geht es in diesem Modul? Kritische Werte p-wert Worum geht es in diesem Modul? Testentscheidungen: Annahme- und Ablehnbereich Bei der Durchführung eines statistischen Tests kommen

Mehr

Einführung in die statistische Testtheorie. Einführung in die statistische Testtheorie STATISTIK IST IRR-SINN! Ziel: Methoden:

Einführung in die statistische Testtheorie. Einführung in die statistische Testtheorie STATISTIK IST IRR-SINN! Ziel: Methoden: Nullhypothese H 0 Alternativhypothese H 1 H 0 : A B Fehler 1.Art p-wert H ( -Fehler) 0 : A B, H 0 : A zweiseitige Hypothesen B Signifikanzniveau. Niveau- -Test H 0 H 1 signifikant Fehler 2.Art Fehler 1.Art

Mehr

Um zu entscheiden, welchen Inhalt die Urne hat, werden der Urne nacheinander 5 Kugeln mit Zurücklegen entnommen und ihre Farben notiert.

Um zu entscheiden, welchen Inhalt die Urne hat, werden der Urne nacheinander 5 Kugeln mit Zurücklegen entnommen und ihre Farben notiert. 7. Testen von Hypothesen ================================================================== 15.1 Alternativtest -----------------------------------------------------------------------------------------------------------------

Mehr

Testen von Hypothesen:

Testen von Hypothesen: Testen von Hypothesen: Ein Beispiel: Eine Firma produziert Reifen. In der Entwicklungsabteilung wurde ein neues Modell entwickelt, das wesentlich ruhiger läuft. Vor der Markteinführung muss aber auch noch

Mehr

Übungsaufgaben, Statistik 1

Übungsaufgaben, Statistik 1 Übungsaufgaben, Statistik 1 Kapitel 3: Wahrscheinlichkeiten [ 4 ] 3. Übungswoche Der Spiegel berichtet in Heft 29/2007 von folgender Umfrage vom 3. und 4. Juli 2007:,, Immer wieder werden der Dalai Lama

Mehr

Exakter Binomialtest als Beispiel

Exakter Binomialtest als Beispiel Prinzipien des statistischen Testens Entscheidungsfindung Exakter Binomialtest als Beispiel Statistische Tests Nullhypothese Alternativhypothese Fehlentscheidungen Ausgangspunkt: Forschungshypothese Beispiele:.

Mehr

Macht des statistischen Tests (power)

Macht des statistischen Tests (power) Macht des statistischen Tests (power) Realer Treatment ja Ergebnis der Studie H 0 verworfen statistisch signifikant O.K. Macht H 0 beibehalten statistisch nicht signifikant -Fehler Effekt nein -Fehler

Mehr

Unterschiedshypothesen Vergleiche von Häufigkeiten bzw. Mittelwerten zwischen (mindestens) zwei Gruppen Zusammenhangshypothesen Korrelationsanalysen

Unterschiedshypothesen Vergleiche von Häufigkeiten bzw. Mittelwerten zwischen (mindestens) zwei Gruppen Zusammenhangshypothesen Korrelationsanalysen Statistische Überprüfung von Hypothesen Hypothesen sind allgemeine Aussagen über Zusammenhänge zwischen empirischen und logischen Sachverhalten.Allgemein bezeichnet man diejenigen Aussagen als Hypothesen,

Mehr

Hypothesen: Fehler 1. und 2. Art, Power eines statistischen Tests

Hypothesen: Fehler 1. und 2. Art, Power eines statistischen Tests ue biostatistik: hypothesen, fehler 1. und. art, power 1/8 h. lettner / physik Hypothesen: Fehler 1. und. Art, Power eines statistischen Tests Die äußerst wichtige Tabelle über die Zusammenhänge zwischen

Mehr

WB 11 Aufgabe: Hypothesentest 1

WB 11 Aufgabe: Hypothesentest 1 WB 11 Aufgabe: Hypothesentest 1 Ein Medikament, das das Überleben eines Patienten sichern soll, wird getestet. Stelle Null- und Alternativhypothese auf und beschreibe die Fehler 1. Art und 2. Art. Welcher

Mehr

Testen von Hypothesen

Testen von Hypothesen Statistik 2 für SoziologInnen Testen von Hypothesen Univ.Prof. Dr. Marcus Hudec Statistik für SoziologInnen 1 Testtheorie Inhalte Themen dieses Kapitels sind: Erklären der Grundbegriffe der statistischen

Mehr

Lösungen zu den Übungsaufgaben in Kapitel 10

Lösungen zu den Übungsaufgaben in Kapitel 10 Lösungen zu den Übungsaufgaben in Kapitel 10 (1) In einer Stichprobe mit n = 10 Personen werden für X folgende Werte beobachtet: {9; 96; 96; 106; 11; 114; 114; 118; 13; 14}. Sie gehen davon aus, dass Mittelwert

Mehr

Bereiche der Statistik

Bereiche der Statistik Bereiche der Statistik Deskriptive / Exploratorische Statistik Schließende Statistik Schließende Statistik Inferenz-Statistik (analytische, schließende oder konfirmatorische Statistik) baut auf der beschreibenden

Mehr

Multivariate Zufallsvariablen

Multivariate Zufallsvariablen Kapitel 7 Multivariate Zufallsvariablen 7.1 Diskrete Zufallsvariablen Bisher haben wir immer nur eine Zufallsvariable betrachtet. Bei vielen Anwendungen sind aber mehrere Zufallsvariablen von Interesse.

Mehr

Güteanalyse. Nochmal zur Erinnerung: Hypothesentest. Binominalverteilung für n=20 und p=0,5. Münzwurf-Beispiel genauer

Güteanalyse. Nochmal zur Erinnerung: Hypothesentest. Binominalverteilung für n=20 und p=0,5. Münzwurf-Beispiel genauer Universität Karlsruhe (TH) Forschungsuniversität gegründet 1825 Güteanalyse Prof. Walter F. Tichy Fakultät für Informatik 1 Fakultät für Informatik 2 Nochmal zur Erinnerung: Hypothesentest Am Beispiel

Mehr

Schließende Statistik

Schließende Statistik Schließende Statistik Die schließende Statistik befasst sich mit dem Rückschluss von einer Stichprobe auf die Grundgesamtheit (Population). Die Stichprobe muss repräsentativ für die Grundgesamtheit sein.

Mehr

Die Familie der χ 2 (n)-verteilungen

Die Familie der χ 2 (n)-verteilungen Die Familie der χ (n)-verteilungen Sind Z 1,..., Z m für m 1 unabhängig identisch standardnormalverteilte Zufallsvariablen, so genügt die Summe der quadrierten Zufallsvariablen χ := m Z i = Z 1 +... +

Mehr

Modelle diskreter Zufallsvariablen

Modelle diskreter Zufallsvariablen Statistik 2 für SoziologInnen Modelle diskreter Zufallsvariablen Univ.Prof. Dr. Marcus Hudec Zufallsvariable Eine Variable (Merkmal) X, deren numerische Werte als Ergebnisse eines Zufallsvorgangs aufgefasst

Mehr

Alternativtest Einführung und Aufgabenbeispiele

Alternativtest Einführung und Aufgabenbeispiele Alternativtest Einführung und Aufgabenbeispiele Ac Einführendes Beispiel: Ein Medikament half bisher 10% aller Patienten. Von einem neuen Medikament behauptet der Hersteller, dass es 20% aller Patienten

Mehr

Ablaufschema beim Testen

Ablaufschema beim Testen Ablaufschema beim Testen Schritt 1 Schritt 2 Schritt 3 Schritt 4 Schritt 5 Schritt 6 Schritt 7 Schritt 8 Schritt 9 Starten Sie die : Flashanimation ' Animation Ablaufschema Testen ' siehe Online-Version

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2

Mehr

Aufgabe 7: Stochastik (WTR)

Aufgabe 7: Stochastik (WTR) Abitur Mathematik: Nordrhein-Westfalen 2013 Aufgabe 7 a) SITUATION MODELLIEREN Annahmen: Es werden 100 Personen unabhängig voneinander befragt. Auf die Frage, ob mindestens einmal im Monat ein Fahrrad

Mehr

Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen

Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen Induktive Statistik Prof. Dr. W.-D. Heller

Mehr

Kapitel 5. Univariate Zufallsvariablen. 5.1 Diskrete Zufallsvariablen

Kapitel 5. Univariate Zufallsvariablen. 5.1 Diskrete Zufallsvariablen Kapitel 5 Univariate Zufallsvariablen Im ersten Teil dieses Skriptes haben wir uns mit Daten beschäftigt und gezeigt, wie man die Verteilung eines Merkmals beschreiben kann. Ist man nur an der Population

Mehr

1.4 Der Binomialtest. Die Hypothesen: H 0 : p p 0 gegen. gegen H 1 : p p 0. gegen H 1 : p > p 0

1.4 Der Binomialtest. Die Hypothesen: H 0 : p p 0 gegen. gegen H 1 : p p 0. gegen H 1 : p > p 0 1.4 Der Binomialtest Mit dem Binomialtest kann eine Hypothese bezüglich der Wahrscheinlichkeit für das Auftreten einer Kategorie einer dichotomen (es kommen nur zwei Ausprägungen vor, z.b. 0 und 1) Zufallsvariablen

Mehr

4 Testen von Hypothesen

4 Testen von Hypothesen 4 Testen von Hypothesen Oft müssen zweiwertige Entscheidungen ( Ja oder Nein ) gefällt werden. Denken wir an die elektronisch gesicherten Waren, wo am Ausgang eines Geschäftes durch eine Maschine geprüft

Mehr

Ein- und Zweistichprobentests

Ein- und Zweistichprobentests (c) Projekt Neue Statistik 2003 - Lernmodul: Ein- Zweistichprobentests Ein- Zweistichprobentests Worum geht es in diesem Modul? Wiederholung: allgemeines Ablaufschema eines Tests Allgemeine Voraussetzungen

Mehr

Analytische Statistik II

Analytische Statistik II Analytische Statistik II Institut für Geographie 1 Schätz- und Teststatistik 2 Das Testen von Hypothesen Während die deskriptive Statistik die Stichproben nur mit Hilfe quantitativer Angaben charakterisiert,

Mehr

Konkretes Durchführen einer Inferenzstatistik

Konkretes Durchführen einer Inferenzstatistik Konkretes Durchführen einer Inferenzstatistik Die Frage ist, welche inferenzstatistischen Schlüsse bei einer kontinuierlichen Variablen - Beispiel: Reaktionszeit gemessen in ms - von der Stichprobe auf

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet

Mehr

Hypothesentest, ein einfacher Zugang mit Würfeln

Hypothesentest, ein einfacher Zugang mit Würfeln R. Brinkmann http://brinkmann-du.de Seite 4..4 ypothesentest, ein einfacher Zugang mit Würfeln Von einem Laplace- Würfel ist bekannt, dass bei einmaligem Wurf jede einzelne der Zahlen mit der Wahrscheinlichkeit

Mehr

Wahrscheinlichkeit und Statistik BSc D-INFK

Wahrscheinlichkeit und Statistik BSc D-INFK Prof. Dr. P. Bühlmann ETH Zürich Winter 2010 Wahrscheinlichkeit und Statistik BSc D-INFK 1. (10 Punkte) Bei den folgenden 10 Fragen ist jeweils genau eine Antwort richtig. Es gibt pro richtig beantwortete

Mehr

1,64 1,96 2,56. Statistik. Cusanus-Gymnasium Wittlich Faustregeln

1,64 1,96 2,56. Statistik. Cusanus-Gymnasium Wittlich Faustregeln Faustregeln Die folgenden Faustregeln für Binomialverteilungen gelten umso genauer, je größer n ist, insbesondere falls die Laplace- Bedingung n p q 3 erfüllt ist. Radius der Umgebung Wahrscheinlichkeit

Mehr

Schließende Statistik

Schließende Statistik Schließende Statistik [statistical inference] Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr

1. rechtsseitiger Signifikanztest

1. rechtsseitiger Signifikanztest Testen von Hypothesen HM2 Seite Geschichte und ufgabe der mathematischen Statistik Stochastik ist die Kunst, im Falle von Ungewißheit auf geschickte Weise Vermutungen aufzustellen. Entwickelt wurde sie

Mehr

DWT 334/460 csusanne Albers

DWT 334/460 csusanne Albers Die Wahrscheinlichkeit fur den Fehler 1. Art wird mit bezeichnet, und man spricht deshalb gelegentlich vom -Fehler. heit auch Signikanzniveau des Tests. In der Praxis ist es ublich, sich ein Signikanzniveau

Mehr

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 LÖSUNG 4B a.) Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 Mit "Deskriptive Statistiken", "Kreuztabellen " wird die Dialogbox "Kreuztabellen" geöffnet. POL wird in das Eingabefeld von

Mehr