Modellbildung und Simulation

Größe: px
Ab Seite anzeigen:

Download "Modellbildung und Simulation"

Transkript

1 Modellbildung und Simulation Wintersemester 2007/2008 Klaus Kasper

2 Praktikum Mittwochs: 10:15 13:30 (Y) Start: Ort: D15/202 Donnerstags: 14:15 17:30 (X) Start: Ort: D15/102 Zulassungsvoraussetzung für Klausur

3 Hinweise zum Praktikum freie Wahl der Programmiersprache Lösungen müssen dokumentiert werden Hinweise für die Durchführung der Kompilation Hinweise für die Ausführung der Lösungen

4 Klausur Klausur: , 10:15 Anmeldeschluss: Abmeldeschluss:

5 Einführung in Modellbildung und Simulation Überblick Nomenklatur und Schema für Modellbildung und Simulation (insb. System/Umwelt) Lineare versus nichtlineare Systeme, Komplexe Systeme Modelltypen Messung/Sammlung der Daten

6 Fortsetzung Aufbereitung der Daten Modellierungstechniken (Stochastische Modelle, Künstliche Neuronale Netzwerke, Planspiele) Simulation (Prognose, Klassifikation) Prozess der Modellbildung und Simulation Anwendungsbeispiele

7 Überblick

8 Modellierung Modelle sind Hilfsmittel für den Umgang mit Realität. Die Realität wird nicht direkt abgebildet sondern abstrahiert. Nicht zentrale Details werden ignoriert. Komplexität des Modells wird minimiert. Die Leistungsfähigkeit moderner Rechenmaschinen erweitert den Möglichkeitsraum der Modellierung.

9 Prozess Die Entwicklung des Zustands eines Systems wird als Prozess bezeichnet. Exakt handelt es sich um dynamische Prozesse, da zeitliche Entwicklungen untersucht werden. Ziele der Modellierung von Prozessen: Prognose zukünftiger Zustände des Systems. Klassifikation von Muster, die vom untersuchten System erzeugt wurden. Optimierung von Geschäftsabläufen.

10 Ziele der Modellierung Prognose Wetter / Klima Kursverläufe (Risikobewertung) gesellschaftliche Dynamiken Klassifikation Qualitätskontrolle Bild- / Spracherkennung Optimierung bzw. Standardisierung von Prozessen ITIL/eTOM Mobilitätsmanagement

11 Modelltypen Alltagsmodelle (z.b. Bauernregeln) Analytische Modelle (z.b. Ökonomie (Marx), Physik (Newton)) Datengetriebene Modelle (z.b. Klimamodelle) Akteurgetriebene Modelle (z.b. Modellierung gesellschaftlicher Dynamiken) Technische Modelle (z.b. Schaltungssimulation)

12 Datengetriebene Modellbildung und Simulation Definition System / Umwelt Austausch zwischen System und Umwelt Messung und Sammlung der Eingangsgrößen Größen für Beschreibung des Systemzustands (Ausgangsgrößen) Berechnung von unbekannten Systemzuständen durch Simulation

13 Modellbildung Umwelt System Messung

14 Simulation Messdaten Modell Prognose/Klassifikation

15 Nichtlineare Systeme Nichtlineare Systeme reagieren auf Störungen, im Gegensatz zu linearen Systemen, nicht proportional. Die meisten in der Natur vorkommenden Systeme sind nichtlinear. Beispiele sind die Dynamik der Weltwirtschaft, das ökologische System der Erde oder das Wetter.

16 Lineare Regression f( x)=a x+b

17 Linear versus nichtlinear

18 Berechnung linearer/nichtlinearer Zusammenhänge Lineare Regression Singulärwertzerlegung Künstliche Neuronale Netzwerke Stochastische Verfahren

19 Datengetriebene Modellierung Mikrofon Fourier KNN Prognose Zellverband A/D ICA HMM Klassifikation Aktienkurse Zählraten Fuzzy Daten Digitalisierung Parametrisierung Modellierung Simulation

20 Anwendung 1: Value at Risk Monte Carlo Simulation Sammlung und Analyse historischer Daten. Modellierung der Verteilung. Simulation von Kursentwicklungen gemäß der modellierten Verteilung. Große Zahl an Simulationen. Prognose von Kursentwicklungen. Berechnung des monetären Risikos für die Entwicklung des Portfolios.

21 Anwendung 1: Value at Risk

22 Anwendung 2: Schätzung der Prosodie Rekurrente neuronale Netzwerke Sammlung und Analyse gesprochener Sprache eines Sprechers Training der Netzwerke Schätzung der Lautdauer Schätzung des Frequenzverlaufs für stimmhafte Laute

23 Prosodiegenerierung Lautdauer relative F0-Kontur RNN t I S d E > 1 < > 1 > 2 Wortposition relativ Wortart Phraseninformation

24 Anwendung 3: Spracherkennung Hidden Markov Modelle Sammlung und Analyse gesprochener Sprache vieler Sprecher Berechnung der Parameter des stochastischen Modells Schätzung von Emissionswahrscheinlichkeiten Berechnung von Hypothesen durch Decodierung von Markovketten 1. Ordnung und Verwendung des Viterbi-Algorithmus

25 Modellierungsebenen keine Sie hat zwei Kinder sieben z m s i: n s1 s2 s3

26 Anwendung 4: Biosensor Zellen (neuronale Zellen oder Herzmuskelzellen) wachsen auf einen Silizium-Chip auf Die Signale der Zellen werden abgeleitet und können analysiert werden die Zellen befinden sich in einer Nährlösung Reaktionsmuster des Zellverbandes auf Schadstoffeinträge oder Pharmazeutika wird modelliert

27 Recording of Neural Signals Formation of synapses are the prerequisite for neural communication 50 µm MicroElectrode-Array Chip Mammalian Neural Net patterned onto MEA-chip Thielemann / AK Knoll Spontaneous neural signals recorded by the MEA-chip Voltage / µv spikes burst time /sec

28 Konzepttransfer Modellierung ist keiner Disziplin explizit zugeordnet. In unterschiedlichen Anwendungsbereichen sind die Techniken zu Modellierung sehr weit entwickelt. Geringe Verbreitung des Wissens. Wegen hoher Abstraktion gute Chancen für Konzepttransfer.

Signalverarbeitung 2. Volker Stahl - 1 -

Signalverarbeitung 2. Volker Stahl - 1 - - 1 - Hidden Markov Modelle - 2 - Idee Zu klassifizierende Merkmalvektorfolge wurde von einem (unbekannten) System erzeugt. Nutze Referenzmerkmalvektorfolgen um ein Modell Des erzeugenden Systems zu bauen

Mehr

PRAKTIKUM Experimentelle Prozeßanalyse 2. VERSUCH AS-PA-2 "Methoden der Modellbildung statischer Systeme" Teil 2 (für ausgewählte Masterstudiengänge)

PRAKTIKUM Experimentelle Prozeßanalyse 2. VERSUCH AS-PA-2 Methoden der Modellbildung statischer Systeme Teil 2 (für ausgewählte Masterstudiengänge) FACHGEBIET Systemanalyse PRAKTIKUM Experimentelle Prozeßanalyse 2 VERSUCH AS-PA-2 "Methoden der Modellbildung statischer Systeme" Teil 2 (für ausgewählte Masterstudiengänge) Verantw. Hochschullehrer: Prof.

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Boltzmann Maschine David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2014 Übersicht Boltzmann Maschine Neuronale Netzwerke Die Boltzmann Maschine Gibbs

Mehr

Überblick über multivariate Verfahren in der Statistik/Datenanalyse

Überblick über multivariate Verfahren in der Statistik/Datenanalyse Überblick über multivariate Verfahren in der Statistik/Datenanalyse Die Klassifikation multivariater Verfahren ist nach verschiedenen Gesichtspunkten möglich: Klassifikation nach der Zahl der Art (Skalenniveau)

Mehr

Schriftlicher Test Teilklausur 2

Schriftlicher Test Teilklausur 2 Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Künstliche Intelligenz: Grundlagen und Anwendungen Wintersemester 2009 / 2010 Albayrak, Fricke (AOT) Opper, Ruttor (KI) Schriftlicher

Mehr

Praktikum Computational Intelligence 2 Ulrich Lehmann, Johannes Brenig, Michael Schneider

Praktikum Computational Intelligence 2 Ulrich Lehmann, Johannes Brenig, Michael Schneider Praktikum Computational Intelligence 2 Ulrich Lehmann, Johannes Brenig, Michael Schneider Versuch: Training des XOR-Problems mit einem Künstlichen Neuronalen Netz (KNN) in JavaNNS 11.04.2011 2_CI2_Deckblatt_XORbinaer_JNNS_2

Mehr

Modellbildung und Simulation

Modellbildung und Simulation Modellbildung und Simulation 5. Vorlesung Wintersemester 2007/2008 Klaus Kasper Value at Risk (VaR) Glossar Portfolio: In der Ökonomie bezeichnet der Begriff Portfolio ein Bündel von Investitionen, das

Mehr

Informationsveranstaltung zum Lehrprogramm des Fachgebiets Regelungs- g und Systemtheorie. Wintersemester 2009 / 2010

Informationsveranstaltung zum Lehrprogramm des Fachgebiets Regelungs- g und Systemtheorie. Wintersemester 2009 / 2010 Informationsveranstaltung zum Lehrprogramm des Fachgebiets Regelungs- g und Systemtheorie Wintersemester 2009 / 2010 1 Übersicht über das Lehrveranstaltungsangebot Grundlagen der Regelungstechnik (3V+1Ü,SoSe)

Mehr

Zustandsraum: Historische Einordnung

Zustandsraum: Historische Einordnung Zustandsraum: Historische Einordnung Die Grundlagen der Zustandsraummethoden wurden im Zeitraum 1955 1965 von Kalman und seinen Kollegen in dem Research Institute for Advanced Studies in Baltimore entwickelt.

Mehr

Regressionsanalyse zur Optimierung von künstlichen neuronalen Netzen bei der DAX-Prognose

Regressionsanalyse zur Optimierung von künstlichen neuronalen Netzen bei der DAX-Prognose Informatik Philipp von der Born Regressionsanalyse zur Optimierung von künstlichen neuronalen Netzen bei der DAX-Prognose Bachelorarbeit Universität Bremen Studiengang Informatik Regressionsanalyse zur

Mehr

Vorläufiger schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Mathematik

Vorläufiger schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Mathematik Vorläufiger schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Mathematik 2.1.1 ÜBERSICHTSRASTER UNTERRICHTSVORHABEN EINFÜHRUNGSPHASE Unterrichtsvorhaben I: Unterrichtsvorhaben II: Beschreibung

Mehr

Makrem Kadachi. Kriterien für eine simulationskonforme Abbildung von Materialflusssystemen. Herbert Utz Verlag München

Makrem Kadachi. Kriterien für eine simulationskonforme Abbildung von Materialflusssystemen. Herbert Utz Verlag München Makrem Kadachi Kriterien für eine simulationskonforme Abbildung von Materialflusssystemen Herbert Utz Verlag München Zugl.: München, Techn. Univ., Diss., 2003 Bibliografische Information Der Deutschen

Mehr

Entwicklung einer Entscheidungssystematik für Data- Mining-Verfahren zur Erhöhung der Planungsgüte in der Produktion

Entwicklung einer Entscheidungssystematik für Data- Mining-Verfahren zur Erhöhung der Planungsgüte in der Produktion Entwicklung einer Entscheidungssystematik für Data- Mining-Verfahren zur Erhöhung der Planungsgüte in der Produktion Vortrag Seminararbeit David Pogorzelski Aachen, 22.01.2015 Agenda 1 2 3 4 5 Ziel der

Mehr

Simulationsmethoden in der Bayes-Statistik

Simulationsmethoden in der Bayes-Statistik Simulationsmethoden in der Bayes-Statistik Hansruedi Künsch Seminar für Statistik, ETH Zürich 6. Juni 2012 Inhalt Warum Simulation? Modellspezifikation Markovketten Monte Carlo Simulation im Raum der Sprungfunktionen

Mehr

Friedrich-Alexander-Universität Professur für Computerlinguistik. Nguyen Ai Huong

Friedrich-Alexander-Universität Professur für Computerlinguistik. Nguyen Ai Huong Part-of-Speech Tagging Friedrich-Alexander-Universität Professur für Computerlinguistik Nguyen Ai Huong 15.12.2011 Part-of-speech tagging Bestimmung von Wortform (part of speech) für jedes Wort in einem

Mehr

Statistik für Ökonomen

Statistik für Ökonomen Wolfgang Kohn Riza Öztürk Statistik für Ökonomen Datenanalyse mit R und SPSS 2., überarbeitete Auflage 4ü Springer Gabler Inhaltsverzeichnis Teil I Einführung 1 Kleine Einführung in R '! 3 1.1 Installieren

Mehr

Inhaltsverzeichnis. Teil I Einführung

Inhaltsverzeichnis. Teil I Einführung Inhaltsverzeichnis Teil I Einführung 1 Statistik-Programme... 1.1 Kleine Einführung in R... 1.1.1 Installieren und Starten von R. 1.1.2 R-Konsole... 1.1.3 R-Workspace... 1.1.4 R-History... 1.1.5 R-Skripteditor...

Mehr

Asset Allocation Entscheidungen im Portfolio-Management

Asset Allocation Entscheidungen im Portfolio-Management Asset Allocation Entscheidungen im Portfolio-Management von Dr. Christian Gast Verlag Paul Haupt Bern Stuttgart Wien - Inhaltsverzeichnis - XI Inhaltsverzeichnis Abbildungsverzeichnis ' XV Tabellenverzeichnis

Mehr

Zellulare Neuronale Netzwerke

Zellulare Neuronale Netzwerke Fakultät Informatik, Institut für Technische Informatik, Professur für VLSI-Entwurfssysteme, Diagnostik und Architektur Zellulare Neuronale Netzwerke Florian Bilstein Dresden, 13.06.2012 Gliederung 1.

Mehr

Inhaltsverzeichnis. 2 Kurzbeschreibung von SPSS Der SPSS-Dateneditor Statistische Analysen mit SPSS DieDaten...

Inhaltsverzeichnis. 2 Kurzbeschreibung von SPSS Der SPSS-Dateneditor Statistische Analysen mit SPSS DieDaten... Inhaltsverzeichnis Teil I Einführung 1 Kleine Einführung in R... 3 1.1 Installieren und Starten von R... 3 1.2 R-Befehleausführen... 3 1.3 R-Workspace speichern... 4 1.4 R-History sichern........ 4 1.5

Mehr

Predictive Modeling Markup Language. Thomas Morandell

Predictive Modeling Markup Language. Thomas Morandell Predictive Modeling Markup Language Thomas Morandell Index Einführung PMML als Standard für den Austausch von Data Mining Ergebnissen/Prozessen Allgemeine Struktur eines PMML Dokuments Beispiel von PMML

Mehr

Robert Klein Claudius Steinhardt. Revenue Management. Grundlagen und Mathematische Methoden. 4ü Springer

Robert Klein Claudius Steinhardt. Revenue Management. Grundlagen und Mathematische Methoden. 4ü Springer Robert Klein Claudius Steinhardt Revenue Management Grundlagen und Mathematische Methoden 4ü Springer Inhaltsverzeichnis Vorwort Symbole und Abkürzungen V XI 1 Grundlagen des Revenue Managements '. 1 1.1

Mehr

Simulation von Zufallsvariablen und Punktprozessen

Simulation von Zufallsvariablen und Punktprozessen Simulation von Zufallsvariablen und Punktprozessen 09.11.2009 Inhaltsverzeichnis 1 Einleitung 2 Pseudozufallszahlen 3 Punktprozesse Zufallszahlen Definition (Duden): Eine Zufallszahl ist eine Zahl, die

Mehr

Modulverzeichnis - Mathematik Anlage 2

Modulverzeichnis - Mathematik Anlage 2 1 Modulverzeichnis - Mathematik Anlage 2 : Grstrukturen Einführung, Reflexion Vertiefung grlegender mathematischer Begriffe Strukturen keine Abschlussklausur 6 240 8.1: Einführung in Grstrukturen.2: Seminar

Mehr

Von Big Data zu Deep Insights

Von Big Data zu Deep Insights Von Big Data zu Deep Insights Prof. Dr. Dirk Nowotka Christian-Albrechts-Universität zu Kiel Maritime IT 2013 Big Data = Überwachung + Marketing? Kommunikations- und Kundendaten XKeyScore, Google Ads,

Mehr

Spracherkennung. Gliederung:

Spracherkennung. Gliederung: Spracherkennung Gliederung: - Einführung - Geschichte - Spracherkennung - Einteilungen - Aufbau und Funktion - Hidden Markov Modelle (HMM) - HMM bei der Spracherkennung - Probleme - Einsatzgebiete und

Mehr

1. Einleitung. Ziel der Vorlesung: Einführung in deskriptive Statistik + Wirtschaftsstatistik. Internet-Seite der Vorlesung:

1. Einleitung. Ziel der Vorlesung: Einführung in deskriptive Statistik + Wirtschaftsstatistik. Internet-Seite der Vorlesung: 1. Einleitung Ziel der Vorlesung: Einführung in deskriptive Statistik + Wirtschaftsstatistik Internet-Seite der Vorlesung: http://www1.wiwi.uni-muenster.de/oeew/ Studium Veranstaltungen im Wintersemester

Mehr

1 Zahlen... 1 1.1 Anzahlen... 1 1.2 Reelle Zahlen... 10 1.3 Dokumentation von Messwerten... 12 1.4 Ausgewählte Übungsaufgaben...

1 Zahlen... 1 1.1 Anzahlen... 1 1.2 Reelle Zahlen... 10 1.3 Dokumentation von Messwerten... 12 1.4 Ausgewählte Übungsaufgaben... Inhaltsverzeichnis 1 Zahlen... 1 1.1 Anzahlen... 1 1.2 Reelle Zahlen... 10 1.3 Dokumentation von Messwerten... 12 1.4 Ausgewählte Übungsaufgaben... 14 2 Beschreibende Statistik... 15 2.1 Merkmale und ihre

Mehr

Probe-Klausur zur Vorlesung Multilinguale Mensch-Maschine Kommunikation 2013

Probe-Klausur zur Vorlesung Multilinguale Mensch-Maschine Kommunikation 2013 Probe-Klausur zur Vorlesung Multilinguale Mensch-Maschine Kommunikation 2013 Klausurnummer Name: Vorname: Matr.Nummer: Bachelor: Master: Aufgabe 1 2 3 4 5 6 7 8 max. Punkte 10 5 6 7 5 10 9 8 tats. Punkte

Mehr

Produktionsbasiertes Energiemanagement in der Lebensmittelindustrie

Produktionsbasiertes Energiemanagement in der Lebensmittelindustrie Produktionsbasiertes Energiemanagement in der Lebensmittelindustrie Ansätze und Ergebnisse aus einem Forschungsprojekt, aufbereitet für die Lehrstuhl für Lebensmittelverpackungstechnik, Lehrstuhl für mathematische

Mehr

Entwicklung einer netzbasierten Methodik zur Modellierung von Prozessen der Verdunstungskühlung

Entwicklung einer netzbasierten Methodik zur Modellierung von Prozessen der Verdunstungskühlung Institut für Energietechnik - Professur für Technische Thermodynamik Entwicklung einer netzbasierten Methodik zur Modellierung von Prozessen der Verdunstungskühlung Tobias Schulze 13.11.2012, DBFZ Leipzig

Mehr

Gliederung. Biologische Motivation Künstliche neuronale Netzwerke. Anwendungsbeispiele Zusammenfassung. Das Perzeptron

Gliederung. Biologische Motivation Künstliche neuronale Netzwerke. Anwendungsbeispiele Zusammenfassung. Das Perzeptron Neuronale Netzwerke Gliederung Biologische Motivation Künstliche neuronale Netzwerke Das Perzeptron Aufbau Lernen und Verallgemeinern Anwendung Testergebnis Anwendungsbeispiele Zusammenfassung Biologische

Mehr

Objektorientierte Prozeßsimulation in C++

Objektorientierte Prozeßsimulation in C++ Joachim Fischer Klaus Ahrens Objektorientierte Prozeßsimulation in C++ SUB Göttingen 204938 880 98A24564 ADDISON-WESLEY PUBLISHING COMPANY Bonn Reading, Massachusetts Menlo Park, California New York Don

Mehr

I. Deskriptive Statistik 1

I. Deskriptive Statistik 1 I. Deskriptive Statistik 1 1. Einführung 3 1.1. Grundgesamtheit und Stichprobe.................. 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................

Mehr

Seminar im Wintersemester 2010/2011: Quantitative und implementierte Methoden der Marktrisikobewertung

Seminar im Wintersemester 2010/2011: Quantitative und implementierte Methoden der Marktrisikobewertung M.Sc. Brice Hakwa hakwa@uni-wuppertal.de Seminar im Wintersemester 2010/2011: Quantitative und implementierte Methoden der Marktrisikobewertung - Zusammenfassung zum Thema: Berechnung von Value-at-Risk

Mehr

Kapitel 6. Komplexität von Algorithmen. Xiaoyi Jiang Informatik I Grundlagen der Programmierung

Kapitel 6. Komplexität von Algorithmen. Xiaoyi Jiang Informatik I Grundlagen der Programmierung Kapitel 6 Komplexität von Algorithmen 1 6.1 Beurteilung von Algorithmen I.d.R. existieren viele Algorithmen, um dieselbe Funktion zu realisieren. Welche Algorithmen sind die besseren? Betrachtung nicht-funktionaler

Mehr

Anleitung: Standardabweichung

Anleitung: Standardabweichung Anleitung: Standardabweichung So kann man mit dem V200 Erwartungswert und Varianz bzw. Standardabweichung bei Binomialverteilungen für bestimmte Werte von n, aber für allgemeines p nach der allgemeinen

Mehr

Value at Risk Einführung

Value at Risk Einführung Value at Risk Einführung Veranstaltung Risk Management & Computational Finance Dipl.-Ök. Hans-Jörg von Mettenheim mettenheim@iwi.uni-hannover.de Institut für Wirtschaftsinformatik Leibniz Universität Hannover

Mehr

Kapitel MK:III. III. Begriffe der Modellierung

Kapitel MK:III. III. Begriffe der Modellierung Kapitel MK:III III. Begriffe der Modellierung System und Modell Modellieren zum Schlussfolgern Modellbildung Systemraum und Modellraum Adäquate Modellierung MK:III-19 Modeling Concepts STEIN 2000-2015

Mehr

Modellfreie numerische Prognosemethoden zur Tragwerksanalyse

Modellfreie numerische Prognosemethoden zur Tragwerksanalyse Modellfreie numerische Prognosemethoden zur Tragwerksanalyse Zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.) an der Fakultät Bauingenieurwesen der Technischen Universität Dresden eingereichte

Mehr

Erweiterte Messunsicherheit

Erweiterte Messunsicherheit Erweiterte Messunsicherheit Gerd Wübbeler, Stephan Mieke PTB, 8.4 Berechnung der Messunsicherheit Empfehlungen für die Praxis Berlin, 11. und 12. März 2014 Gliederung 1. Was gibt die erweiterte Messunsicherheit

Mehr

Data Mining Anwendungen und Techniken

Data Mining Anwendungen und Techniken Data Mining Anwendungen und Techniken Knut Hinkelmann DFKI GmbH Entdecken von Wissen in banken Wissen Unternehmen sammeln ungeheure mengen enthalten wettbewerbsrelevantes Wissen Ziel: Entdecken dieses

Mehr

Eine zweidimensionale Stichprobe

Eine zweidimensionale Stichprobe Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,

Mehr

Wärmebedarfsprognose für Einfamilienhaushalte auf Basis von Künstlichen Neuronalen Netzen

Wärmebedarfsprognose für Einfamilienhaushalte auf Basis von Künstlichen Neuronalen Netzen Wärmebedarfsprognose für Einfamilienhaushalte auf Basis von Künstlichen Neuronalen Netzen Internationale Energiewirtschaftstagung Wien - 12.02.2015 Maike Hasselmann, Simon Döing Einführung Wärmeversorgungsanlagen

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik Wintersemester 2016/2017 2V, Mittwoch, 12:00-13:30 Uhr, F303 2Ü, Dienstag, 12:00-13:30 Uhr, BE08 2Ü, Dienstag, 15:00-16:30 Uhr, B212 2Ü, Mittwoch, 8:30-10:00 Uhr, B312 Fachprüfung:

Mehr

Nr. 42 / 13 vom 31. Mai 2013

Nr. 42 / 13 vom 31. Mai 2013 Nr. 42 / 13 vom 31. Mai 2013 2. Satzung zur Änderung der Prüfungsordnung für den Master-Studiengang Elektrotechnik der Fakultät für Elektrotechnik, Informatik und Mathematik an der Universität Paderborn

Mehr

Bachelorstudiengang Medizintechnik Masterstudiengang Medizintechnik. Kompetenzfeld Systemdynamik Simulationstechnik

Bachelorstudiengang Medizintechnik Masterstudiengang Medizintechnik. Kompetenzfeld Systemdynamik Simulationstechnik Bachelorstudiengang Medizintechnik Masterstudiengang Medizintechnik Kompetenzfeld Systemdynamik Simulationstechnik Module des Kompetenzfelds Prof. Dr. Ing. Cristina Tarín Systemdynamische Grundlagen der

Mehr

Mathematik I für Chemie

Mathematik I für Chemie Mathematik I für Chemie Dr. Sebastian Franz WS 2012/13 sebastian.franz@tu-dresden.de Mathematik I 1 / 24 Physikalische und chemische Gesetzmäßigkeiten werden häufig mittels mathematischer Formeln beschrieben.

Mehr

PSYCHOLOGEN. Ingenieurswissenschaft trifft Verhaltenswissenschaft

PSYCHOLOGEN. Ingenieurswissenschaft trifft Verhaltenswissenschaft EINFÜHRUNG IN DIE SYSTEMTHEORIE FÜR PSYCHOLOGEN Ingenieurswissenschaft trifft Verhaltenswissenschaft Offizieller Rahmen 2 7x2 SWS (2-wöchentlich) öh tlih) Wahlfach Interaktiv: Fragen bitte jederzeit stellen,

Mehr

CKE TrainingsCamp. Excel für die Energiewirtschaft Die sinnvolle Unterstützung für Ihren Alltag Jeder Tag ist einzeln buchbar!

CKE TrainingsCamp. Excel für die Energiewirtschaft Die sinnvolle Unterstützung für Ihren Alltag Jeder Tag ist einzeln buchbar! CKE TrainingsCamp Excel für die Energiewirtschaft Die sinnvolle Unterstützung für Ihren Alltag 21. 24.11.2016 Jeder Tag ist einzeln buchbar! Veranstaltungsort: PERCUMA by CKE - die moderne Conference-

Mehr

Statistik, Geostatistik

Statistik, Geostatistik Geostatistik Statistik, Geostatistik Statistik Zusammenfassung von Methoden (Methodik), die sich mit der wahrscheinlichkeitsbezogenen Auswertung empirischer (d.h. beobachteter, gemessener) Daten befassen.

Mehr

Einführung. Rechnerarchitekturen Entwicklung und Ausführung von Programmen Betriebssysteme

Einführung. Rechnerarchitekturen Entwicklung und Ausführung von Programmen Betriebssysteme Teil I Einführung Überblick 1 2 Geschichte der Informatik 3 Technische Grundlagen der Informatik Rechnerarchitekturen Entwicklung und Ausführung von Programmen Betriebssysteme 4 Daten, Informationen, Kodierung

Mehr

Demographie. Band 1 B evölkerungsdynamik. Dr. Reiner Hans Dinkel. Professor für Bevölkerungswissenschaft an der Otto-Friedrich Universität Bamberg

Demographie. Band 1 B evölkerungsdynamik. Dr. Reiner Hans Dinkel. Professor für Bevölkerungswissenschaft an der Otto-Friedrich Universität Bamberg Demographie Band 1 B evölkerungsdynamik Dr. Reiner Hans Dinkel Professor für Bevölkerungswissenschaft an der Otto-Friedrich Universität Bamberg Verlag Franz Vahlen München Inhaltsverzeichnis Vorwort. Kapitel

Mehr

Modul Prfgs.-Nr. Modulfach

Modul Prfgs.-Nr. Modulfach Modul Prfgs.-Nr. Modulfach Kraftfahrzeugtechnik 95160 Kfz I - Längsdynamik 95170 Kfz II - Vertikal - und Querdynamik 95121 Kfz III - Berechnung und Konstruktion von Kraftfahrzeugen 95140 Elektronik und

Mehr

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2016

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2016 Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 1 M. Sperber (matthias.sperber@kit.edu) S. Nguyen (thai.nguyen@kit.edu) Übungsblatt 3 Maschinelles Lernen und Klassifikation Abgabe online

Mehr

Maschinelles Lernen in der Bioinformatik

Maschinelles Lernen in der Bioinformatik Maschinelles Lernen in der Bioinformatik Spezialvorlesung Modul 10-202-2206 (Fortgeschrittene Methoden in der Bioinformatik) VL 2 HMM und (S)CFG Jana Hertel Professur für Bioinformatik Institut für Informatik

Mehr

Kohonennetze Selbstorganisierende Karten

Kohonennetze Selbstorganisierende Karten Kohonennetze Selbstorganisierende Karten Julian Rith, Simon Regnet, Falk Kniffka Seminar: Umgebungsexploration und Wegeplanung mit Robotern Kohonennetze: Neuronale Netze In Dendriten werden die ankommenden

Mehr

Grundlagen zum Umgang mit mathematischen Softwarepaketen

Grundlagen zum Umgang mit mathematischen Softwarepaketen MathSoft Praktikum 2016 Fakultät für Mathematik Grundlagen zum Umgang mit mathematischen Softwarepaketen Praktikum 2016 Roman Unger Fakultät für Mathematik Januar 2016 TUC Januar 2016 Roman Unger 1 / 31

Mehr

Einführung in Statistik und Messwertanalyse für Physiker

Einführung in Statistik und Messwertanalyse für Physiker Gerhard Böhm, Günter Zech Einführung in Statistik und Messwertanalyse für Physiker SUB Göttingen 7 219 110 697 2006 A 12486 Verlag Deutsches Elektronen-Synchrotron Inhalt sverzeichnis 1 Einführung 1 1.1

Mehr

Statistics, Data Analysis, and Simulation SS 2015

Statistics, Data Analysis, and Simulation SS 2015 Mainz, May 12, 2015 Statistics, Data Analysis, and Simulation SS 2015 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Dr. Michael O. Distler

Mehr

Mittwoch, :00 9:35

Mittwoch, :00 9:35 Mittwoch, 29.01.2014 8:00 9:35 Mathematik Grundkurs (GK) oder Leistungskurs (LK) Mathe ist grundsätzlich Pflicht (4 Semester) bis zum Abitur (das 1.LK- Fach muss De, FS, Ma oder Bi/Ch/Ph sein, 2 Fächer

Mehr

Laborversuche und Wahlpflichtfächer

Laborversuche und Wahlpflichtfächer Laborversuche und Wahlpflichtfächer Wärmeleitung Lernziele: Verständnis und Erfahrung in Bezug auf Wärmeleitung sammeln. Ingenieurtechnisches Gespür für Größenordnungen und den Einfluss der Parameter entwickeln.

Mehr

Commercial Banking. Kreditportfoliosteuerung

Commercial Banking. Kreditportfoliosteuerung Commercial Banking Kreditportfoliosteuerung Dimensionen des Portfoliorisikos Risikomessung: Was ist Kreditrisiko? Marking to Market Veränderungen des Kreditportfolios: - Rating-Veränderung bzw. Spreadveränderung

Mehr

Portfolio Insurance - CPPI im Vergleich zu anderen Strategien

Portfolio Insurance - CPPI im Vergleich zu anderen Strategien Roger Uhlmann Portfolio Insurance - CPPI im Vergleich zu anderen Strategien Haupt Verlag Bern Stuttgart Wien Inhaltsverzeichnis Abbildungsverzeichnis Tabellenverzeichnis Abkürzungsverzeichnis Symbol- und

Mehr

SBWL Tourismusanalyse und Freizeitmarketing, Vertiefungskurs 2

SBWL Tourismusanalyse und Freizeitmarketing, Vertiefungskurs 2 Inhalt SBWL Tourismusanalyse und Freizeitmarketing, Vertiefungskurs 2 1. Teil: Zerlegungsmodelle und naive Prognosemethoden für Zeitreihen Regina Tüchler Einleitung 1. Einführung in das Modellieren von

Mehr

Zusammenfassung Performancegesetze

Zusammenfassung Performancegesetze Zusammenfassung Performancegesetze Utilization Law Forced Flow Law Service Demand Law Little s Law Response Time Law 0 i i X V X Z X M/ A 0 i i i S X U 0 i i i i X / U S V D X A N Leistungsmodelle System-

Mehr

Neuronale Netze, Fuzzy Control, Genetische Algorithmen. Prof. Jürgen Sauer. 5. Aufgabenblatt: Neural Network Toolbox 1

Neuronale Netze, Fuzzy Control, Genetische Algorithmen. Prof. Jürgen Sauer. 5. Aufgabenblatt: Neural Network Toolbox 1 Neuronale Netze, Fuzzy Control, Genetische Algorithmen Prof. Jürgen Sauer 5. Aufgabenblatt: Neural Network Toolbox 1 A. Mit Hilfe der GUI vom Neural Network erstelle die in den folgenden Aufgaben geforderten

Mehr

Lehrplan Mathematik. Ausbildungsprofil n. Grundlagenfach Schwerpunktfach Ergänzungsfach. Ausbildungsprofile s, m. Grundlagenfach Ergänzungsfach

Lehrplan Mathematik. Ausbildungsprofil n. Grundlagenfach Schwerpunktfach Ergänzungsfach. Ausbildungsprofile s, m. Grundlagenfach Ergänzungsfach Lehrplan Mathematik Ausbildungsprofil n Grundlagenfach Schwerpunktfach Ergänzungsfach Ausbildungsprofile s, m Grundlagenfach Ergänzungsfach 02.12.03 / 19.01.04 1 Mathematik Ausbildungsprofil N, Grundlagenfach

Mehr

Auswirkungen auf den Wasserhaushalt in Deutschland. Sabine Attinger, Luis Samaniego, Rohini Kumar, Matthias Zink, Matthias Cuntz

Auswirkungen auf den Wasserhaushalt in Deutschland. Sabine Attinger, Luis Samaniego, Rohini Kumar, Matthias Zink, Matthias Cuntz Auswirkungen auf den Wasserhaushalt in Deutschland Sabine Attinger, Luis Samaniego, Rohini Kumar, Matthias Zink, Matthias Cuntz 2. REKLIM Konferenz Klimawandel in den Regionen Leipzig 08.09.2011 Motivation

Mehr

Innovationen in Prognoseverfahren und deren Anwendung

Innovationen in Prognoseverfahren und deren Anwendung AG Prognoseverfahren der GOR Innovationen in Prognoseverfahren und deren Anwendung Prof. em. Dr. Klaus Spicher, Iserlohn Ingoldstadt, 8./9. Juni 2015 1 Hinweis /Disclaimer Alle im Vortrag verwendeten Daten

Mehr

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn Maschinelles Lernen: Neuronale Netze Ideen der Informatik Kurt Mehlhorn 16. Januar 2014 Übersicht Stand der Kunst im Bilderverstehen: Klassifizieren und Suchen Was ist ein Bild in Rohform? Biologische

Mehr

Informationen zur Grundlagenausbildung Elektrotechnik

Informationen zur Grundlagenausbildung Elektrotechnik Informationen zur Grundlagenausbildung Elektrotechnik Kontakt: Fakultät für ET und IT Professur für Hochfrequenztechnik und Theoretische ET Vorlesungen und Übungen: Dr.-Ing. Weber, mario.weber@etit.tu-chemnitz.de

Mehr

C++ für Ingenieure. Einführung in die objektorientierte Programmierung. Seite Programmverzeichnis VII HARALD NAHRSTEDT

C++ für Ingenieure. Einführung in die objektorientierte Programmierung. Seite Programmverzeichnis VII HARALD NAHRSTEDT VII HARALD NAHRSTEDT C++ für Ingenieure Einführung in die objektorientierte Programmierung Seite Erstellt am 15.01.2009 Beschreibung VIII 1 Grundlagen der Programmierung 1-1 Struktur einer Header-Datei

Mehr

Monte-Carlo-Simulation

Monte-Carlo-Simulation Modellierung und Simulation Monte-Carlo-Simulation Universität Hamburg Johannes Schlundt 7. Januar 2013 Monte-Carlo-Simulation Johannes S. 1/31 Inhalt Motivation Geschichtliche Entwicklung Monte-Carlo-Simulation

Mehr

Matrizen und Determinanten, Lineare Gleichungssysteme, Vektorrechnung, Analytische Geometrie

Matrizen und Determinanten, Lineare Gleichungssysteme, Vektorrechnung, Analytische Geometrie Regina Gellrich Carsten Gellrich Matrizen und Determinanten, Lineare Gleichungssysteme, Vektorrechnung, Analytische Geometrie Mit zahlreichen Abbildungen, Aufgaben mit Lösungen und durchgerechneten Beispielen

Mehr

Inhaltsverzeichnis. Vorwort... V. Symbolverzeichnis... XIII

Inhaltsverzeichnis. Vorwort... V. Symbolverzeichnis... XIII Inhaltsverzeichnis Vorwort................................................................. V Symbolverzeichnis...................................................... XIII Kapitel 1: Einführung......................................................

Mehr

Investition und Risiko. Finanzwirtschaft I 5. Semester

Investition und Risiko. Finanzwirtschaft I 5. Semester Investition und Risiko Finanzwirtschaft I 5. Semester 1 Gliederung Ziel Korrekturverfahren: Einfache Verfahren der Risikoberücksichtigung Sensitivitätsanalyse Monte Carlo Analyse Investitionsentscheidung

Mehr

Begleitmaterial zum Buch Statistik, Ökonometrie und Optimierung: Methoden und praktische Anwendungen in Finanzanalyse und Portfoliomanagement

Begleitmaterial zum Buch Statistik, Ökonometrie und Optimierung: Methoden und praktische Anwendungen in Finanzanalyse und Portfoliomanagement Begleitmaterial zum Buch Statistik, Ökonometrie und Optimierung: Methoden und praktische Anwendungen in Finanzanalyse und Portfoliomanagement 1. Vorbemerkungen Dieses Dokument gibt eine kurze Übersicht

Mehr

Dynamische Programmierung. Problemlösungsstrategie der Informatik

Dynamische Programmierung. Problemlösungsstrategie der Informatik als Problemlösungsstrategie der Informatik und ihre Anwedung in der Diskreten Mathematik und Graphentheorie Fabian Cordt Enisa Metovic Wissenschaftliche Arbeiten und Präsentationen, WS 2010/2011 Gliederung

Mehr

Überblick. Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung

Überblick. Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Grundlagen Überblick Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Klassifikation bei bekannter Wahrscheinlichkeitsverteilung Entscheidungstheorie Bayes- Entscheidungsfunktionen

Mehr

Motivation. Themenblock: Klassifikation. Binäre Entscheidungsbäume. Ansätze. Praktikum: Data Warehousing und Data Mining.

Motivation. Themenblock: Klassifikation. Binäre Entscheidungsbäume. Ansätze. Praktikum: Data Warehousing und Data Mining. Motivation Themenblock: Klassifikation Praktikum: Data Warehousing und Data Mining Ziel Item hat mehrere Attribute Anhand von n Attributen wird (n+)-tes vorhergesagt. Zusätzliches Attribut erst später

Mehr

Kapitel 1 Beschreibende Statistik

Kapitel 1 Beschreibende Statistik Beispiel 1.25: fiktive Aktienkurse Zeitpunkt i 0 1 2 Aktienkurs x i 100 160 100 Frage: Wie hoch ist die durchschnittliche Wachstumsrate? Dr. Karsten Webel 53 Beispiel 1.25: fiktive Aktienkurse (Fortsetzung)

Mehr

Empirische Wirtschaftsforschung

Empirische Wirtschaftsforschung Empirische Wirtschaftsforschung Anne Neumann 21. Oktober 2015 Anne Neumann EWF 21. Oktober 2015 1 / 9 Inhaltsverzeichnis 1 Grobgliederung 2 Grundlagen Anne Neumann EWF 21. Oktober 2015 2 / 9 Grobgliederung

Mehr

Simulation. Lineare Regression Methode der kleinsten Quadrate (Excel-Matrix-Formel) Verknüpfung des Euler- und Newton-Verfahrens. Das Euler-Verfahren

Simulation. Lineare Regression Methode der kleinsten Quadrate (Excel-Matrix-Formel) Verknüpfung des Euler- und Newton-Verfahrens. Das Euler-Verfahren Simulation Lineare Regression Methode der kleinsten Quadrate (Excel-Matrix-Formel) Verknüpfung des Euler- und Newton-Verfahrens Dynamische Prozesse: Prozesse, bei denen sich das zeitliche und örtliche

Mehr

Informatikgrundlagen (WS 2015/2016)

Informatikgrundlagen (WS 2015/2016) Informatikgrundlagen (WS 2015/2016) Klaus Berberich (klaus.berberich@htwsaar.de) Wolfgang Braun (wolfgang.braun@htwsaar.de) 0. Organisatorisches Dozenten Klaus Berberich (klaus.berberich@htwsaar.de) Sprechstunde

Mehr

Aufstellungssystematik der Abteilung Mathematik

Aufstellungssystematik der Abteilung Mathematik Aufstellungssystematik der Abteilung Mathematik 00* Allgemeines Überblicke Anwendungen der Mathematik (siehe auch 92) Industrie-Mathematik Didaktik Gesetze 01 Geschichtliches Biographien 03 Mathematische

Mehr

Markov-Ketten-Monte-Carlo-Verfahren

Markov-Ketten-Monte-Carlo-Verfahren Markov-Ketten-Monte-Carlo-Verfahren Anton Klimovsky 21. Juli 2014 Strichprobenerzeugung aus einer Verteilung (das Samplen). Markov- Ketten-Monte-Carlo-Verfahren. Metropolis-Hastings-Algorithmus. Gibbs-Sampler.

Mehr

Die Ökonomie von Glücksspielen

Die Ökonomie von Glücksspielen Die Ökonomie von Glücksspielen Teil II: Risiko, Unsicherheit, EVF-Model Dr. Ingo Fiedler 09.04.2013 Organisatorisches Keine Verschiebung der Veranstaltung Eventuell: Beginn bereits um 16Uhr? Erinnerung:

Mehr

MA Projekt: Langfristige Kapitalmarktsimulation

MA Projekt: Langfristige Kapitalmarktsimulation MA Projekt: Langfristige Kapitalmarktsimulation Einführung in Anlagestrategien Prof. Dr. Thorsten Poddig Lehrstuhl für Allgemeine Betriebswirtschaftslehre, insbes. Finanzwirtschaft Universität Bremen Hochschulring

Mehr

Studienverlaufspläne M.Sc. Computational Science. 19. Juli 2011

Studienverlaufspläne M.Sc. Computational Science. 19. Juli 2011 Studienverlaufspläne M.Sc. Computational Science 19. Juli 2011 1 Vertiefungsfach Wissenschaftliches Rechnen Specialization Scientific Computing Zusatzpraktikum Modellierung und Simulation I P2 4 Modellierung

Mehr

Entwicklung von Visualisierungskomponenten

Entwicklung von Visualisierungskomponenten Entwicklung von Visualisierungskomponenten Das Assistenzsystem proknows, das am Fraunhofer Institut in Lemgo entwickelt wird, ermöglicht neben der Durchführung verschiedener Assistenzfunktionen wie der

Mehr

Einführung in die C++ Programmierung für Ingenieure

Einführung in die C++ Programmierung für Ingenieure Einführung in die C++ Programmierung für Ingenieure MATTHIAS WALTER / JENS KLUNKER Universität Rostock, Lehrstuhl für Modellierung und Simulation 16. November 2012 c 2012 UNIVERSITÄT ROSTOCK FACULTY OF

Mehr

Anhang 4. Bias durch Überdiagnose von papillären Mikrokarzinomen

Anhang 4. Bias durch Überdiagnose von papillären Mikrokarzinomen Anhang 4 Bias durch Überdiagnose von papillären Mikrokarzinomen Bias durch Überdiagnose von papillären Mikrokarzinomen H. Bertelsmann AG Epidemiologie und Medizinische Statistik Universität Bielefeld Dezember

Mehr

1 Grundprinzipien statistischer Schlußweisen

1 Grundprinzipien statistischer Schlußweisen Grundprinzipien statistischer Schlußweisen - - Grundprinzipien statistischer Schlußweisen Für die Analyse zufallsbehafteter Eingabegrößen und Leistungsparameter in diskreten Systemen durch Computersimulation

Mehr

2.3 Nichtlineare Regressionsfunktion

2.3 Nichtlineare Regressionsfunktion Nichtlineare Regressionsfunktion Bisher: lineares Regressionsmodell o Steigung d. Regressionsgerade ist konstant o Effekt einer Änderung von X auf Y hängt nicht vom Niveau von X oder von anderen Regressoren

Mehr

SEDRIS als Datenmodell für eine synthetische 3D-Umweltdatenbasis

SEDRIS als Datenmodell für eine synthetische 3D-Umweltdatenbasis Workshop 3D Stadtmodelle CPA Systems GmbH Martin Krückhans SEDRIS als Datenmodell für eine synthetische 3D-Umweltdatenbasis http://www.sedris.org Inhalt Motivation Simulation Umweltdatenbasis SEDRIS Abbildung

Mehr

Gütebewertung und Performanceanalyse von Prognosealgorithmen bei unterschiedlichen Signalklassen

Gütebewertung und Performanceanalyse von Prognosealgorithmen bei unterschiedlichen Signalklassen Gütebewertung und Performanceanalyse von Prognosealgorithmen bei unterschiedlichen Signallassen Diplomverteidigung Yongrui Qiao 25. 06. 2009 1/33 Gliederung Motivation und Problemstellung Testverfahren

Mehr

Enzo Mondello. Aktienbewertung. Theorie und Anwendungsbeispiele. ö Springer Gabler

Enzo Mondello. Aktienbewertung. Theorie und Anwendungsbeispiele. ö Springer Gabler Enzo Mondello Aktienbewertung Theorie und Anwendungsbeispiele ö Springer Gabler 1 Einführung in die Aktienbewertung 1 1.1 Einleitung 1 1.2 Aktienbewertung 2 1.2.1 Anwendungsbereiche 2 1.2.2 Aktienbewertungsmodelle

Mehr

Differenzengleichungen. und Polynome

Differenzengleichungen. und Polynome Lineare Differenzengleichungen und Polynome Franz Pauer Institut für Mathematik, Universität Innsbruck Technikerstr. 13/7, A-600 Innsbruck, Österreich franz.pauer@uibk.ac.at 1 Einleitung Mit linearen Differenzengleichungen

Mehr