P (A B) P (B) = P ({3}) P ({1, 3, 5}) = 1 3.

Größe: px
Ab Seite anzeigen:

Download "P (A B) P (B) = P ({3}) P ({1, 3, 5}) = 1 3."

Transkript

1 2 Wahrscheinlichkeitstheorie Beispiel. Wie wahrscheinlich ist es, eine Zwei oder eine Drei gewürfelt zu haben, wenn wir schon wissen, dass wir eine ungerade Zahl gewürfelt haben? Dann ist Ereignis A das Ereignis Zwei oder Drei, i.e. A {2, 3} und B das Ereignis ungerade Zahl, d.h. B {1, 3, 5}. Also finden wir P (A B) P ({3}) P ({1, 3, 5}) 1 3. Die bedingte Wahrscheinlichkeit erlaubt uns, ein gewisses Vorwissen in die Berechnung einer Wahrscheinlichkeit einfließen zu lassen. Im Beispiel wissen wir schon, dass wir eine ungerade Zahl gewürfelt haben, und fragen dann - unter dieser Bedingung - wie wahrscheinlich es ist, eine zwei oder eine drei zu werfen. Unabhängige Ereignisse Zwei Ereignisse A, B sind abhängig, wenn sich die bedingte Wahrscheinlichkeit von der unbe- K! dingten Wahrscheinlichkeit unterscheidet, und unabhängig, falls dem nicht so ist. Also ist A von B unabhängig, falls > 0 und P (A B) P (A). aus dem Produktsatz folgt dann für unabhängige A und B (mit > 0), dass P (A B) P (A). Beispiel. Im Beispiel Rauchen und Geschlecht finden wir für die Häufigkeiten und Daher ist P (Rauchen) 0.23 P (Rauchen Frau) 0.2. P (Rauchen) P (Rauchen Frau) und folglich sind Rauchen und Geschlecht nicht unabhängige Größen. Beispiel. Betrachtet werden die beiden Ereignisse A {1, 2} und B gerade Zahl {2, 4, 6} beim Werfen eines Würfels. Dann ist P (A) und P (A B) 1/6 1/ Also sind A und B unabhängige Ereignisse. Das ist letztlich der gleiche Gedanke wie der, welcher sich im Kontingenzkoeffizienten ausdrückt. Frage: Wenn A von B unabhängig ist, ist dann auch B von A unabhängig? Sei P (A), > 0. Dann nutzen wir die Unabhängigkeit A von B, d.h. P (A B) P (A) und finden P (B A) P (A) Also ist auch B von A unabhängig. P (A) P (A B) P (A) P (A) P (A). Unabhängigkeit zweier Ereignisse impliziert also, dass ein Vorwissen über das eine Ereignis nichts an der Wahrscheinlichkeit des anderen Ereignisses ändert. 50

2 2.2 Wahrscheinlichkeitsrechnung Satz von der Totalen Wahrscheinlichkeit Nehmen wir an, dass der Ereignisraum in endlich viele paarweise disjunkte Ereignisse A 1,..., A n zerlegt werden kann, d.h. Ω A i und A i A j für i j. Dann haben wir i1 P (Ω) 1 P ( A i ) i1 n P (A i ) 1 Eine solche Zerlegung könnte z.b. die Kategorisierung einer Population in 10-Jahres Intervalle sein oder die Aufteilung einer Zeckenpopulation in Nymphen, Weibchen und Männchen sein. Betrachten wir ein weiteres Ereignis B Ω, z.b. dass eine Zufällig gezogene Zecke einen bestimmten Erreger trägt. Dies lässt sich mit dem Satz der totalen Wahrscheinlichkeit bestimmen. K! ( ) ( n ) n n P B ( A i ) P (B A i ) P (B A i ) P (B A i )P (A i ) i1 i1 Obwohl wir also nur P (B A i ) und P (A i ) kennen, lässt sich trotzdem berechnen. Im Beispiel mit den Zecken wären die P (A i ) die Wahrscheinlichkeit, dass es sich bei der gezogenen Zecke um eine Nymphe, Weibchen bzw. Männchen handelt. Die P (B A i ) sind die geschlechtsspezifischen Wahrscheinlichkeiten, dass die Zecke den Erreger trägt. i1 i1 i1 Anwendung von bedingten Wahrscheinlichkeiten Wir haben einen Test auf HIV, der entweder positiv (T ) oder negativ (T ) ist. Bei der Klassifikation eines Probands können zwei Fehler passieren: Entweder eine Person ist HIV-negativ (HIV ) und der Test besagt, dass die Person HIV-Positiv ist ( Falsch-Positiv) oder umgekehrt, die Person ist HIV-positiv (HIV ) und der Test besagt, dass der Betreffende HIV-negativ ist ( Falsch-Negativ ). Sei P (T HIV ) p die Wahrscheinlichkeit für Falsch-Positiv, und P (T HIV ) p die Wahrscheinlichkeit für Falsch-Negativ. Diese bedingten Wahrscheinlichkeiten für das Testergebnis gegeben Patientenzustand lassen sich auch in der folgenden Tabelle darstellen: HIV HIV T 1 p + p + T p + 1 p + Wie wahrscheinlich ist es nun, dass in der Praxis ein Test eines zufällig ausgewählten Probands Falsch-Positiv ausfällt? Nein, die Wahrscheinlichkeit ist nicht einfach p +, da wir bei dieser Wahrscheinlichkeit schon vorausgesetzt haben, dass der Proband HIV nicht hat. Das wissen wir in der Praxis nun nicht. Wir benötigen an dieser Stelle eine Zusatz-Information: sei P (HIV ) q die Wahrscheinlichkeit, dass eine zufällig gewählte Person HIV hat. Diese Wahrscheinlichkeit wird auch die Prävalenz von HIV genannt. Dann finden wir durch den Satz der totalen Wahrscheinlichkeit P (Falsch-Positiv) P (Falsch-Positiv Proband hat kein HIV) P (Proband hat kein HIV) + P (Falsch-Positiv Proband hat HIV) P (Proband hat HIV) 51

3 2 Wahrscheinlichkeitstheorie Weil P (Falsch-Positiv Proband hat HIV) 0 folgt aus Obigen, dass Analog ist P (Falsch-Positiv Proband hat kein HIV) P (Proband hat kein HIV) p + (1 q) P (Falsch-Negativ) P (Falsch-Negativ Proband hat kein HIV) P (Proband hat kein HIV) +P (Falsch-Negativ Proband hat HIV) P (Proband hat HIV) P (Falsch-Negativ Proband hat HIV) P (Proband hat HIV) Wenn sich also Personen testen lassen, so erwarten wir 4995 Falsch-Positive und 1 Falsch- Negativen Fall (wobei 100 erkrankte Personen unter den getesteten Personen zu erwarten sind) Satz von Bayes Wie kommen wir von der bedingten Wahrscheinlichkeit P (A B) zu der bedingten Wahrscheinlichkeit P (B A)? Nehmen wir wie beim Satz über die totale Wahrscheinlichkeit an, dass der Ereignisraum in endlich viele disjunkte Ereignisse A 1,..., A n zerlegt werden kann, d.h. Ω A i und A i A j falls i j. i1 Dann folgt für jedes j {1,..., n}, dass K! P (A j B) P (A j B) P (B A j)p (A j ) P (B A j )P (A j ) n i1 P (B A i)p (A i ) Dies wird auch der Satz von Bayes genannt und spielt in dem Zweig der Bayesianischen Statistik eine ganz wichtige Rolle. Anwendung vom Satz von Bayes Nun führen wir das HIV-Test-Beispiel weiter. Unsere Person hat nun tatsächlich ein positives K! Ergebnis erhalten: Der Test besagt, dass er HIV hat. Wie wahrscheinlich ist es nun, dass er tatsächlich HIV hat? Dies wird auch der prädiktive Wert des Tests genannt. Gegeben die Person ist gesund, ist die Wahrscheinlichkeit für Falsch-Positiv p Das ist eigentlich ein ziemlich sicheres Resultat. Was wir aber berechnen wollen, ist P (Patien HIV-Positiv Test ist Positiv) P (HIV T ) Hier benötigen wir den Satz von Bayes, da wir nur P (T HIV ) 1 P (T HIV ) 1 p

4 2.2 Wahrscheinlichkeitsrechnung gegeben haben. Also mit A HIV Proband hat HIV und B T Test ist positiv kann der Satz von Bayes benutzt werden: P (HIV T ) P (T HIV )P (HIV ). P (T ) Es ist P (T ) P (T HIV ) P (HIV ) + P (T HIV ) P (HIV ) (1 p + )q + p + (1 q) d.h. P (HIV T ) P (T HIV )P (HIV ) (1 p + )q P (T ) (1 p + )q + p + (1 q) (1 0.01) Also haben wir nur in 2% der Fälle tatsächlich eine kranke Person vor uns, wenn der Test Alarm schlägt(!). Das vermutet man zunächst nicht - das Problem ist letztlich, dass viel, viel mehr Gesunde getestet werden als Kranke, und daher die Falsch-Positiven bei den als positiv Getesteten die Mehrheit haben, obwohl der Test gar nicht so schlecht ist. Weiteres Beispiel / Genetische Beratung Genetische Beratung versucht u.a. aus den Informationen über die Familie auf die Wahrscheinlichkeit der Gendefekte bei einer Person zu schließen. Hämophilie A (Bluterkrankheit) wird über das X-Chromosom weitergegeben und ist rezessiv (d.h. eine Frau wird nur mit zwei kranken X-Chromosomen krank). Eine Frau hat gesunde (symptomfreie) Eltern, und einen kranken Großvater mütterlicherseits. Ihr Vater muss also ein gesundes X-Chromosom haben, ihre Mutter dagegen muss ein gesundes und ein krankes X-Chromosom haben, d.h. sie ist ein Träger der Krankheit. Nach den Mendelschen Regeln für Segregation sind die Wahrscheinlichkeiten P (Sie hat kein krankes X-Chromosom) 0.5, P (Sie hat ein krankes X-Chromosom) 0.5, P (Sie hat zwei kranke X-Chromosomen) 0. Nun sei weiter die Information gegeben, dass die Frau zwei gesunde Söhne hat, d.h. diese beiden haben gesunde X-Chromosomen. Diese Information (im Stammbaum in Abb. 2.1 dargestellt) wird das Ergebnis, das man aus den Krankengeschichten der Eltern erhalten hat, verfeinern. Dabei ist Individuum 7 in der Abbildung die betrachtete Frau und ein großes X gibt ein krankes X-Chromosom an). Die Wahrscheinlichkeit, dass ein männlicher Nachkomme gesund ist, wenn die Mutter ein krankes X-Chromosom hat, ist: P (Männlicher Nachkomme gesund Mutter hat ein krankes X-Chromosom)

5 2 Wahrscheinlichkeitstheorie 2 y/x 1 x/x 4 3 x/x 5 X/x x/? 9 10 Abbildung 2.1: Stammbaum für das Beispiel der genetischen Beratung. Individuum 7 ist die Frau, für die wir wissen wollen, ob sie ein krankes X-Chromosom trägt. Frage: Wie wahrscheinlich ist es, dass diese Frau Träger der Krankheit ist? P (Frau ist Träger Beide Söhne gesund) P (Beide Söhne gesund Frau ist Träger)P (Frau ist Träger) P (Beide Söhne gesund) Es ist nun P (Beide Söhne gesund) P (Beide Söhne gesund Frau ist Träger)P (Frau ist Träger) +P (Beide Söhne gesund Frau ist gesund)p (Frau ist gesund) P (Ein Sohn gesund Frau ist Träger) 2 P (Frau ist Träger) +1 P (Frau ist gesund) d.h. P (Frau ist Träger Beide Söhne gesund) P (Ein Sohn gesund Frau ist Träger) 2 P (Frau ist Träger) P (Ein Sohn gesund Frau ist Träger) 2 P (Frau ist Träger) + 1 P (Frau ist gesund) Bemerkung. Die Annahmen, die wir zu Grunde gelegt haben, sind zu strikt: In der Regel wissen wir nichts über die Großmutter; weiter sind etwa 30% der Hämophilie-Fälle Spontanmutationen. Beides müsste man eigentlich in das Modell einfließen lassen. Mehr zu dem Thema über statistische Modelle in der genetischen Epidemiologie liefert z.b. Bickeböller und Fischer (2007). 54

6 2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallsexperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel wenn ein Würfel fünf Augen zeigt, wird dem Ergebnis die reelle Zahl fünf zugewiesen. Mit Ereignissen wie blaue Augen, grüne Augen und graue Augen ist das etwas schwieriger - hier würde man jedem der drei Ereignisse eine Zahl, z.b. 1 für blaue Augen, 2 für grüne Augen und 3 für graue Augen, zuordnen. Insgesamt wird die Behandlung von Zufallsereignissen auf diese Weise einfacher zu handhaben und die Einführung von sogenannten Zufallsvariablen erleichtert die praktische Anwendung von stochastischen Modellen. Als Beispiel: Beim viermaligen Münzwurf besteht der Ereignisraum aus den Kombinationen aus Kopf und Zahl. Wenn wir uns aber nur für die Anzahl Kopf interessieren, ist das Ergebnis des zugrundeliegenden Zufallexperiments nicht von Interesse und wir können uns auf den Zufallsraum {0, 1, 2, 3, 4} beschränken. Eine solche Vereinfachung bietet die Zufallsvariable. Definition (Zufallsvariable) Eine Zufallsvariable ist eine Funktion, die jedem Elementarereignis e eine reelle Zahl x X(e), zuweist, d.h. X : Ω R. Dabei kann man auch mehrere Elementarereignisse auf die gleiche Zahl abbilden. Die möglichen Werte, die eine Zufallsvariable X annimmt, heißen Realisationen der Zufallsvariablen. Beispiel Sei X eine Zufallsvariable, welche die Anzahl Kopf beim viermaligen Münzwurf zählt. Für e (Z, Z, K, K) gilt z.b. X(e) 2. Sei {X 2} Es tritt zweimal Kopf auf. Dies entspricht allen Elemtarereignissen e, sodass X(e) 2 also {(Z, Z, K, K), (Z, K, Z, K), (Z, K, K, Z), (K, K, Z, Z), (K, Z, K, Z), (K, Z, Z, K)}. Beispiel. Wir werfen mit zwei Würfeln. Der Ereignisraum besteht also aus allen Zahlenpaaren mit Zahlen zwischen Eins und Sechs, Ω {(1, 1), (1, 2),..., (6, 6) } Wenn wir uns nur für die Summe der Augenzahlen interessieren, betrachten wir die Zufallsvariable X, die durch X Summe der Augenzahlen x 1 + x 2 für (x 1, x 2 ) Ω gegeben ist. Wir finden z.b. P (X 2) 1/36, P (X 3) 2/36,... Oft tritt der Charakter der Zufallsvariable als Funktion in den Hintergrund und man betrachtet als Ergebnisraum oft direkt den Wertebereich der Zufallsvariablen. Das heißt im Beispiel mit den Augenfarben: Angenommen die Zufallsvariable Y gibt die Augenfarbe einer Person an, dann würden wir auch Y blau schreiben, anstatt die zugrundeliegende Kodierung Y 1 zu benutzen. Ebenso wie in Kapitel 1 werden die Begriffe zu Skaleniveaus einer Messung und die Unterscheidung in diskrete und stetige Merkmale auf Zufallsvariablen übertragen. Stetige Zufallsvariablen sind somit meistens metrisch skaliert, während diskrete Zufallsvariablen nominal- oder ordinalskaliert sind. Beispiele für diskrete Zufallsvariablen sind z.b. Würfelzahlen und Populationsgröße. Das Gewicht oder die Größe eines Individuums wird mit einer stetigen Zufallsvariable dargestellt. 55

Unabhängigkeit KAPITEL 4

Unabhängigkeit KAPITEL 4 KAPITEL 4 Unabhängigkeit 4.1. Unabhängigkeit von Ereignissen Wir stellen uns vor, dass zwei Personen jeweils eine Münze werfen. In vielen Fällen kann man annehmen, dass die eine Münze die andere nicht

Mehr

Satz 16 (Multiplikationssatz)

Satz 16 (Multiplikationssatz) Häufig verwendet man die Definition der bedingten Wahrscheinlichkeit in der Form Damit: Pr[A B] = Pr[B A] Pr[A] = Pr[A B] Pr[B]. (1) Satz 16 (Multiplikationssatz) Seien die Ereignisse A 1,..., A n gegeben.

Mehr

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen.

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen. Dieses Quiz soll Ihnen helfen, Kapitel 2.5-2. besser zu verstehen. Frage Wir betrachten ein Würfelspiel. Man wirft einen fairen, sechsseitigen Würfel. Wenn eine oder eine 2 oben liegt, muss man 2 SFr zahlen.

Mehr

2.2 Ereignisse und deren Wahrscheinlichkeit

2.2 Ereignisse und deren Wahrscheinlichkeit 2.2 Ereignisse und deren Wahrscheinlichkeit Literatur: [Papula Bd., Kap. II.2 und II.], [Benning, Kap. ], [Bronstein et al., Kap. 1.2.1] Def 1 [Benning] Ein Zufallsexperiment ist ein beliebig oft wiederholbarer,

Mehr

Übungsaufgaben, Statistik 1

Übungsaufgaben, Statistik 1 Übungsaufgaben, Statistik 1 Kapitel 3: Wahrscheinlichkeiten [ 4 ] 3. Übungswoche Der Spiegel berichtet in Heft 29/2007 von folgender Umfrage vom 3. und 4. Juli 2007:,, Immer wieder werden der Dalai Lama

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 6 5 Hilfsmittel aus der Kombinatorik 7 1 Vorbemerkungen

Mehr

15 Wahrscheinlichkeitsrechnung und Statistik

15 Wahrscheinlichkeitsrechnung und Statistik 5 Wahrscheinlichkeitsrechnung und Statistik Alles, was lediglich wahrscheinlich ist, ist wahrscheinlich falsch. ( Descartes ) Trau keiner Statistik, die du nicht selbst gefälscht hast. ( Churchill zugeschrieben

Mehr

Wahrscheinlichkeiten

Wahrscheinlichkeiten Wahrscheinlichkeiten Bestimmung der Wahrscheinlichkeit Bei einem Zufallsexperiment kann man nicht voraussagen, welches Ereignis eintritt, aber manche Ereignisse treten naturgemäß mit einer größeren Wahrscheinlichkeit

Mehr

4. Grundzüge der Wahrscheinlichkeitsrechnung

4. Grundzüge der Wahrscheinlichkeitsrechnung 4. Grundzüge der Wahrscheinlichkeitsrechnung Dr. Antje Kiesel Institut für angewandte Mathematik WS 2010/2011 In der beschreibenden Statistik haben wir verschiedene Kennzahlen (Statistiken) für Stichproben

Mehr

Statistische Methoden der Datenanalyse Wintersemester 2011/2012 Albert-Ludwigs-Universität Freiburg

Statistische Methoden der Datenanalyse Wintersemester 2011/2012 Albert-Ludwigs-Universität Freiburg Statistische Methoden der Datenanalyse Wintersemester 2011/2012 Albert-Ludwigs-Universität Freiburg Prof. Markus Schumacher Physikalisches Institut Westbau 2 OG Raum 008 Telefonnummer 07621 203 7612 E-Mail:

Mehr

Discrete Probability - Übungen (SS5) Wahrscheinlichkeitstheorie. 1. KR, Abschnitt 6.1, Aufgabe 5: 2. KR, Abschnitt 6.1, Aufgabe 7:

Discrete Probability - Übungen (SS5) Wahrscheinlichkeitstheorie. 1. KR, Abschnitt 6.1, Aufgabe 5: 2. KR, Abschnitt 6.1, Aufgabe 7: Discrete Probability - Übungen (SS5) Felix Rohrer Wahrscheinlichkeitstheorie 1. KR, Abschnitt 6.1, Aufgabe 5: Bestimmen Sie die Wahrscheinlichkeit dafür, dass die Augensumme von zwei geworfenen Würfeln

Mehr

Wahrscheinlichkeitstheorie

Wahrscheinlichkeitstheorie Kapitel 2 Wahrscheinlichkeitstheorie Josef Leydold c 2006 Mathematische Methoden II Wahrscheinlichkeitstheorie 1 / 24 Lernziele Experimente, Ereignisse und Ereignisraum Wahrscheinlichkeit Rechnen mit Wahrscheinlichkeiten

Mehr

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten Zufallsgrößen Ergebnisse von Zufallsexperimenten werden als Zahlen dargestellt 0 Einführung Wahrscheinlichkeitsrechnung 2 Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Hypothesentests

Mehr

Grundbegriffe der Wahrscheinlichkeitstheorie

Grundbegriffe der Wahrscheinlichkeitstheorie KAPITEL 1 Grundbegriffe der Wahrscheinlichkeitstheorie 1. Zufallsexperimente, Ausgänge, Grundmenge In der Stochastik betrachten wir Zufallsexperimente. Die Ausgänge eines Zufallsexperiments fassen wir

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 5 Hilfsmittel aus der Kombinatorik 7 Bedingte

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Zufallsvorgänge, Ereignisse und Wahrscheinlichkeiten Zufallsvorgang: Geschehen mit ungewissem

Mehr

Wahrscheinlichkeitsrechnung für die Mittelstufe

Wahrscheinlichkeitsrechnung für die Mittelstufe Wahrscheinlichkeitsrechnung für die Mittelstufe Wir beginnen mit einem Beispiel, dem Münzwurf. Es wird eine faire Münze geworfen mit den Seiten K (für Kopf) und Z (für Zahl). Fair heißt, dass jede Seite

Mehr

Kapitel 5. Stochastik

Kapitel 5. Stochastik 76 Kapitel 5 Stochastik In diesem Kapitel wollen wir die Grundzüge der Wahrscheinlichkeitstheorie behandeln. Wir beschränken uns dabei auf diskrete Wahrscheinlichkeitsräume Ω. Definition 5.1. Ein diskreter

Mehr

Stochastik Klasse 10 Zufallszahlen

Stochastik Klasse 10 Zufallszahlen Thema Grit Moschkau Stochastik Klasse 10 Zufallszahlen Sek I Sek II ClassPad TI-Nspire CAS. Schlagworte: Urnenmodell, Histogramm, absolute und relative Häufigkeit, Zufallsexperiment, Wahrscheinlichkeit,

Mehr

Modul 203: Stochastische Unabhängigkeit!

Modul 203: Stochastische Unabhängigkeit! Modul 203: Stochastische Unabhängigkeit! 1 Alarm und falscher Alarm 2 Alarm und falscher Alarm Feuer kein Feuer 3 Alarm und falscher Alarm Feuer p = 0.001 kein Feuer p = 0.999 4 Alarm und falscher Alarm

Mehr

Biomathematik für Mediziner, Klausur SS 2001 Seite 1

Biomathematik für Mediziner, Klausur SS 2001 Seite 1 Biomathematik für Mediziner, Klausur SS 2001 Seite 1 Aufgabe 1: Von den Patienten einer Klinik geben 70% an, Masern gehabt zu haben, und 60% erinnerten sich an eine Windpockeninfektion. An mindestens einer

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren. 1. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen)

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren. 1. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen) Dr. Jürgen Senger INDUKTIVE STATISTIK Wahrscheinlichkeitstheorie, Schätz- und Testverfahren ÜUNG. - LÖSUNGEN. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen Die Urne enthält 4 weiße und 8 rote Kugeln.

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

y 1 2 3 4 5 6 P (Y = y) 1/6 1/6 1/6 1/6 1/6 1/6

y 1 2 3 4 5 6 P (Y = y) 1/6 1/6 1/6 1/6 1/6 1/6 Fachhochschule Köln Fakultät für Wirtschaftswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 39 14 jutta.arrenberg@fh-koeln.de Übungen zur Statistik für Prüfungskandidaten und Prüfungskandidatinnen Unabhängigkeit

Mehr

MafI I: Logik & Diskrete Mathematik (Autor: Gerrit (-Arthur) Gruben)

MafI I: Logik & Diskrete Mathematik (Autor: Gerrit (-Arthur) Gruben) Musterlösung zum. Aufgabenblatt zur Vorlesung MafI I: Logik & Diskrete Mathematik (Autor: Gerrit (-Arthur Gruben. Wahrscheinlichkeiten I ( Punkte Die Seiten von zwei Würfeln sind mit den folgenden Zahlen

Mehr

Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein Element aus,

Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein Element aus, V. Stochastik ================================================================== 5.1 Zählprinzip Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein

Mehr

Übungen zur Mathematik für Pharmazeuten

Übungen zur Mathematik für Pharmazeuten Blatt 1 Aufgabe 1. Wir betrachten den Ereignisraum Ω = {(i,j) 1 i,j 6} zum Zufallsexperiment des zweimaligem Würfelns. Sei A Ω das Ereignis Pasch, und B Ω das Ereignis, daß der erste Wurf eine gerade Augenzahl

Mehr

Beurteilende Statistik

Beurteilende Statistik Beurteilende Statistik Wahrscheinlichkeitsrechnung und Beurteilende Statistik was ist der Unterschied zwischen den beiden Bereichen? In der Wahrscheinlichkeitstheorie werden aus gegebenen Wahrscheinlichkeiten

Mehr

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Wahrscheinlichkeitstheorie Was will die Sozialwissenschaft damit? Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Auch im Alltagsleben arbeiten wir mit Wahrscheinlichkeiten, besteigen

Mehr

Elemente der Stochastik (SoSe 2016) 10. Übungsblatt

Elemente der Stochastik (SoSe 2016) 10. Übungsblatt Dr. M. Weimar 3.06.206 Elemente der Stochastik (SoSe 206) 0. Übungsblatt Aufgabe (2+2+2+2+3= Punkte) Zur zweimaligen Drehung des nebenstehenden Glücksrads (mit angenommener Gleichverteilung bei jeder Drehung)

Mehr

Wahrscheinlichkeitstheorie. Zapper und

Wahrscheinlichkeitstheorie. Zapper und Diskrete Wahrscheinlichkeitsräume Slide 1 Wahrscheinlichkeitstheorie die Wissenschaft der Zapper und Zocker Diskrete Wahrscheinlichkeitsräume Slide 2 Münzwürfe, Zufallsbits Elementarereignisse mit Wahrscheinlichkeiten

Mehr

Kapitel ML:IV (Fortsetzung)

Kapitel ML:IV (Fortsetzung) Kapitel ML:IV (Fortsetzung) IV. Statistische Lernverfahren Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen ML:IV-18 Statistical Learning c STEIN 2005-2011 Satz 3 (Bayes)

Mehr

Ma 13 - Stochastik Schroedel Neue Wege (CON)

Ma 13 - Stochastik Schroedel Neue Wege (CON) Bedingte Wahrscheinlichkeiten S. 70, Nr. 5 Richtiges Anwenden der Multiplikationsregel A: Abonnement liest Werbeanzeige B: Produkt wird gekauft S. 70, Nr. 6 Übersetzung von Daten in ein Baumdiagramm A

Mehr

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen?

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen? 1 Kombinatorik Aus einer Grundgesamtheit mit n Elementen wird eine Stichprobe k Elementen entnommen. Dabei kann die Stichprobe geordnet oder ungeordnet sein. "Geordnet" bedeutet, dass die Reihenfolge der

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Was du wissen musst: Die Begriffe Zufallsexperiment, Ereignisse, Gegenereignis, Zufallsvariable und Wahrscheinlichkeit sind dir geläufig. Du kannst mehrstufige Zufallsversuche

Mehr

Übungsrunde 4, Gruppe 2 LVA , Übungsrunde 4, Gruppe 2, Markus Nemetz, TU Wien, 10/2006

Übungsrunde 4, Gruppe 2 LVA , Übungsrunde 4, Gruppe 2, Markus Nemetz, TU Wien, 10/2006 Übungsrunde 4, Gruppe 2 LVA 107.369, Übungsrunde 4, Gruppe 2, 07.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 10/2006 1 17 1.1 Angabe Ein Parallelsystem funktioniert, wenn wenigstens eine seiner

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Rainer Hauser Dezember 2012 1 Einleitung 1.1 Zufallsexperimente Im Folgenden wird das Resultat eines Experiments als Ereignis bezeichnet. Lässt man eine Metallkugel aus einer

Mehr

Data Mining: Einige Grundlagen aus der Stochastik

Data Mining: Einige Grundlagen aus der Stochastik Data Mining: Einige Grundlagen aus der Stochastik Hagen Knaf Studiengang Angewandte Mathematik Hochschule RheinMain 21. Oktober 2015 Vorwort Das vorliegende Skript enthält eine Zusammenfassung verschiedener

Mehr

Ergebnis Ergebnisraum Ω. Ereignis. Elementarereignis

Ergebnis Ergebnisraum Ω. Ereignis. Elementarereignis Stochastik Die Stochastik besteht aus zwei Teilgebieten, der Statistik und der Wahrscheinlichkeitsrechnung. Die Statistik beschreibt die Vergangenheit und verwendet Informationen, die (in realen Versuchen)

Mehr

Prof. Dr. Christoph Karg Hochschule Aalen. Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik. Sommersemester 2016

Prof. Dr. Christoph Karg Hochschule Aalen. Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik. Sommersemester 2016 Prof. Dr. Christoph Karg 5.7.2016 Hochschule Aalen Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik Sommersemester 2016 Name: Unterschrift: Klausurergebnis Aufgabe 1 (15 Punkte) Aufgabe 3

Mehr

Proseminarvortrag. Markov-Ketten in der Biologie (Anwendungen)

Proseminarvortrag. Markov-Ketten in der Biologie (Anwendungen) Proseminarvortrag Markov-Ketten in der Biologie (Anwendungen) von Peter Drössler 20.01.2010 2 Markov-Ketten in der Biologie (Peter Drössler, KIT 2010) Inhalt 1. Das Wright-Fisher Modell... 3 1.1. Notwendige

Mehr

Stochastik (Laplace-Formel)

Stochastik (Laplace-Formel) Stochastik (Laplace-Formel) Übungen Spielwürfel oder Münzen werden ideal (oder fair) genannt, wenn jedes Einzelereignis mit gleicher Wahrscheinlichkeit erwartet werden kann. 1. Ein idealer Spielwürfel

Mehr

Aufgabe 2.1. Ergebnis, Ergebnismenge, Ereignis

Aufgabe 2.1. Ergebnis, Ergebnismenge, Ereignis Aufgabe 2. Ergebnis, Ergebnismenge, Ereignis Ergebnis und Ergebnismenge Vorgänge mit zufälligem Ergebnis, oft Zufallsexperiment genannt Bei der Beschreibung der Ergebnisse wird stets ein bestimmtes Merkmal

Mehr

2. Rechnen mit Wahrscheinlichkeiten

2. Rechnen mit Wahrscheinlichkeiten 2. Rechnen mit Wahrscheinlichkeiten 2.1 Axiome der Wahrscheinlichkeitsrechnung Die Wahrscheinlichkeitsrechnung ist ein Teilgebiet der Mathematik. Es ist üblich, an den Anfang einer mathematischen Theorie

Mehr

Diskrete Verteilungen

Diskrete Verteilungen KAPITEL 6 Disrete Verteilungen Nun werden wir verschiedene Beispiele von disreten Zufallsvariablen betrachten. 1. Gleichverteilung Definition 6.1. Eine Zufallsvariable X : Ω R heißt gleichverteilt (oder

Mehr

I. Deskriptive Statistik 1

I. Deskriptive Statistik 1 I. Deskriptive Statistik 1 1. Einführung 3 1.1. Grundgesamtheit und Stichprobe.................. 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................

Mehr

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp Datenanalyse (PHY31) Herbstsemester 015 Olaf Steinkamp 36-J- olafs@physik.uzh.ch 044 63 55763 Einführung, Messunsicherheiten, Darstellung von Messdaten Grundbegriffe der Wahrscheinlichkeitsrechnung und

Mehr

1 Axiomatische Definition von Wahrscheinlichkeit

1 Axiomatische Definition von Wahrscheinlichkeit Schülerbuchseite 174 176 Lösungen vorläufig und Unabhängigkeit 1 Axiomatische Definition von Wahrscheinlichkeit S. 174 1 Ein Schätzwert für die Wahrscheinlichkeit von Sau kann nur mithilfe der relativen

Mehr

Würfelspiele und Zufall

Würfelspiele und Zufall Würfelspiele und Zufall Patrik L. Ferrari 29. August 2010 1 Random horse die Irrfahrt des Pferdchens Betrachte ein Schachbrett mit einem Pferd (Springer), welches sich nach den üblichen Springer-Regeln

Mehr

Zufallsgrößen. Vorlesung Statistik für KW 29.04.2008 Helmut Küchenhoff

Zufallsgrößen. Vorlesung Statistik für KW 29.04.2008 Helmut Küchenhoff Zufallsgrößen 2.5 Zufallsgrößen 2.5.1 Verteilungsfunktion einer Zufallsgröße 2.5.2 Wahrscheinlichkeits- und Dichtefunktion Wahrscheinlichkeitsfunktion einer diskreten Zufallsgröße Dichtefunktion einer

Mehr

Kapitel 9: Verfahren für Nominaldaten

Kapitel 9: Verfahren für Nominaldaten Kapitel 9: Verfahren für Nominaldaten Eindimensionaler Chi²-Test Der eindimensionale χ²-test wird dann herangezogen, wenn die Versuchspersonen einer Population anhand eines Merkmals mit zwei oder mehr

Mehr

7 Unabhängigkeit von Ereignissen; bedingte Wahrscheinlichkeit

7 Unabhängigkeit von Ereignissen; bedingte Wahrscheinlichkeit Übungsmaterial 7 Unabhängigkeit von reignissen; bedingte Wahrscheinlichkeit 7. Unabhängigkeit von reignissen Wir betrachten folgendes Beispiel: Zwei unterscheidbare Münzen werden geworfen. Man betrachtet

Mehr

STATISTISCHE KRANKHEITSTESTS. Simon Schimpf und Nico Schmitt

STATISTISCHE KRANKHEITSTESTS. Simon Schimpf und Nico Schmitt 1 STATISTISCHE KRANKHEITSTESTS 18.11.2008 Simon Schimpf und Nico Schmitt Gliederung 2 Hintergrund des Themas (worum geht es Voraussetzungen Lernziele Die intuitive Herangehensweise ohne Satz von Bayes

Mehr

Statistik I für Betriebswirte Vorlesung 5

Statistik I für Betriebswirte Vorlesung 5 Statistik I für Betriebswirte Vorlesung 5 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik 07. Mai 2015 PD Dr. Frank Heyde Statistik I für Betriebswirte Vorlesung 5 1 Klassische Wahrscheinlichkeitsdefinition

Mehr

1.4 Der Binomialtest. Die Hypothesen: H 0 : p p 0 gegen. gegen H 1 : p p 0. gegen H 1 : p > p 0

1.4 Der Binomialtest. Die Hypothesen: H 0 : p p 0 gegen. gegen H 1 : p p 0. gegen H 1 : p > p 0 1.4 Der Binomialtest Mit dem Binomialtest kann eine Hypothese bezüglich der Wahrscheinlichkeit für das Auftreten einer Kategorie einer dichotomen (es kommen nur zwei Ausprägungen vor, z.b. 0 und 1) Zufallsvariablen

Mehr

Kurs 2 Stochastik EBBR Vollzeit (1 von 2)

Kurs 2 Stochastik EBBR Vollzeit (1 von 2) Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 281 Bremen Kurs 2 Stochastik EBBR Vollzeit (1 von 2) Name: Ich 1. 2. 3. 4.. 6. 7. So schätze ich meinen Lernzuwachs ein.

Mehr

Auf dem Schulfest bietet Peter als Spielleiter das Glücksspiel "GlücksPasch" an.

Auf dem Schulfest bietet Peter als Spielleiter das Glücksspiel GlücksPasch an. Aufgabe 4 Glückspasch" (16 Punkte) Auf dem Schulfest bietet Peter als Spielleiter das Glücksspiel "GlücksPasch" an. Spielregeln: Einsatz 1. Der Mitspieler würfelt mit 2 Oktaederwürfeln. Fällt ein Pasch,

Mehr

Statistik für Psychologen und Sozialwissenschaftler

Statistik für Psychologen und Sozialwissenschaftler Markus Bühner Matthias Ziegler Statistik für Psychologen und Sozialwissenschaftler Mit über 480 Abbildungen PEARSON Studium Ein Imprint von Pearson Education München Boston San Francisco Harlow, England

Mehr

Laplace und Gleichverteilung

Laplace und Gleichverteilung Laplace und Gleichverteilung Aufgaben Aufgabe 1 An einem Computer, dessen Tastatur die 26 Tasten für die kleinen Buchstaben (a,b,c... z) hat, sitzt ein Nutzer (User) und tippt zufällige auf den Tasten

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 0.0.009 Fachbereich Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Hypothesentest, ein einfacher Zugang mit Würfeln

Hypothesentest, ein einfacher Zugang mit Würfeln R. Brinkmann http://brinkmann-du.de Seite 4..4 ypothesentest, ein einfacher Zugang mit Würfeln Von einem Laplace- Würfel ist bekannt, dass bei einmaligem Wurf jede einzelne der Zahlen mit der Wahrscheinlichkeit

Mehr

Tabellarische und graphie Darstellung von univariaten Daten

Tabellarische und graphie Darstellung von univariaten Daten Part I Wrums 1 Motivation und Einleitung Motivation Satz von Bayes Übersetzten mit Paralleltext Merkmale und Datentypen Skalentypen Norminal Ordinal Intervall Verältnis Merkmalstyp Diskret Stetig Tabellarische

Mehr

Wir setzen daher den Anteil der weiblichen Nichtraucher gleich dem Anteil der Nichtraucher und berechnen X:

Wir setzen daher den Anteil der weiblichen Nichtraucher gleich dem Anteil der Nichtraucher und berechnen X: Übungsblatt 1 Beispiel 1. Von den 50 Teilnehmern eines Kurses sind 35 weiblich und 10 Raucher/innen. Wie viele nicht-rauchende Teilnehmerinnen sind zu erwarten, wenn die Merkmale Geschlecht und Rauchverhalten

Mehr

Kapitel 9: Verfahren für Nominaldaten

Kapitel 9: Verfahren für Nominaldaten Kapitel 9: Verfahren für Nominaldaten Eindimensionaler Chi²-Test 1 Der zweidimensionale Chi²-Test 4 Eindimensionaler Chi²-Test Der eindimensionale χ²-test wird dann herangezogen, wenn die Versuchspersonen

Mehr

Probleme und Möglichkeiten der Behandlung der bedingten Wahrscheinlichkeit

Probleme und Möglichkeiten der Behandlung der bedingten Wahrscheinlichkeit Hans-Dieter Sill, Universität Rostock Probleme und Möglichkeiten der Behandlung der bedingten Wahrscheinlichkeit 1. Der Begriff der bedingte Wahrscheinlichkeit in Planungsdokumenten 2. Eine Prozessbetrachtung

Mehr

Stochastische Lernalgorithmen

Stochastische Lernalgorithmen Stochastische Lernalgorithmen Gerhard Jäger 14. Mai 2003 Das Maximum-Entropy-Prinzip Der Entropiebegriff Entropie: Chaos, Unordung, Nicht-Vorhersagbarkeit,... Begriff kommt ursprünglich aus der Physik:

Mehr

Stochastik für die Naturwissenschaften

Stochastik für die Naturwissenschaften Stochastik für die Naturwissenschaften Dr. C.J. Luchsinger 5. Erwartungswert E und Varianz V Literatur Kapitel 5 * Storrer: (37.9)-(37.12), (38.4), (40.6)-(40.9), (41.2) * Stahel: Kapitel 5 und 6 (nur

Mehr

Grundlegende Eigenschaften von Punktschätzern

Grundlegende Eigenschaften von Punktschätzern Grundlegende Eigenschaften von Punktschätzern Worum geht es in diesem Modul? Schätzer als Zufallsvariablen Vorbereitung einer Simulation Verteilung von P-Dach Empirische Lage- und Streuungsparameter zur

Mehr

Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure

Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure Von Prof. Hubert Weber Fachhochschule Regensburg 3., überarbeitete und erweiterte Auflage Mit zahlreichen Bildern, Tabellen sowie

Mehr

Einführung in die Computerlinguistik Statistische Grundlagen

Einführung in die Computerlinguistik Statistische Grundlagen Statistik 1 Sommer 2015 Einführung in die Computerlinguistik Statistische Grundlagen Laura Heinrich-Heine-Universität Düsseldorf Sommersemester 2015 Statistik 2 Sommer 2015 Überblick 1. Diskrete Wahrscheinlichkeitsräume

Mehr

Bedingte Wahrscheinlichkeiten & Unabhängigkeit

Bedingte Wahrscheinlichkeiten & Unabhängigkeit Statistik 1 für SoziologInnen Bedingte Wahrscheinlichkeiten & Univ.Prof. Dr. Marcus Hudec Bedingte Wahrscheinlichkeit Das Konzept bedingter Wahrscheinlichkeit erlaubt zu untersuchen, inwieweit sich die

Mehr

Dieser Begriff wurde von Jacob Bernoulli Ars conjectandi geprägt (1773), in dem das erste Gesetz der großen Zahlen bewiesen wurde.

Dieser Begriff wurde von Jacob Bernoulli Ars conjectandi geprägt (1773), in dem das erste Gesetz der großen Zahlen bewiesen wurde. 10.1 Über den Begriff Stochastik Die Wahrscheinlichkeitsrechnung ist eine Teildisziplin von Stochastik. Dabei kommt das Wort Stochastik aus dem Griechischen : die Kunst des Vermutens (von Vermutung, Ahnung,

Mehr

Prüfung nicht bestanden. Die gleiche Tabelle kann man auch mit den entsprechenden Wahrscheinlichkeiten (relative Häufigkeit) erstellen.

Prüfung nicht bestanden. Die gleiche Tabelle kann man auch mit den entsprechenden Wahrscheinlichkeiten (relative Häufigkeit) erstellen. 6 Vierfeldertafel An einer Prüfung nehmen 100 Studenten teil, von denen 40 als Raucher bekannt sind. 65 Studenten haben die Prüfung. Von den Nichtrauchern haben 50 die Prüfung. Wie groß ist der Anteil

Mehr

10 Bedingte Wahrscheinlichkeit

10 Bedingte Wahrscheinlichkeit 10 Bedingte Wahrscheinlichkeit Vor allem dann, wenn man es mit mehrstufigen Zufallsexperimenten zu tun hat, kommt dem Begriff der bedingten Wahrscheinlichkeit eine bedeutende Rolle zu. Wir klären dazu

Mehr

Bayes sche Klassifikatoren. Uwe Reichel IPS, LMU München 16. Juli 2008

Bayes sche Klassifikatoren. Uwe Reichel IPS, LMU München 16. Juli 2008 Bayes sche Klassifikatoren Uwe Reichel IPS, LMU München reichelu@phonetik.uni-muenchen.de 16. Juli 2008 Inhalt Einleitung Grundlagen der Wahrscheinlichkeitsrechnung Noisy-Channel-Modell Bayes sche Klassifikation

Mehr

3 Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen

3 Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen.1 Pfadregeln.1.1 Pfadmultiplikationsregel Eine faire Münze und

Mehr

Venndiagramm, Grundmenge und leere Menge

Venndiagramm, Grundmenge und leere Menge Venndiagramm, Grundmenge und leere Menge In späteren Kapitel wird manchmal auf die Mengenlehre Bezug genommen. Deshalb sollen hier die wichtigsten Grundlagen und Definitionen dieser Disziplin kurz zusammengefasst

Mehr

Signalverarbeitung 2. Volker Stahl - 1 -

Signalverarbeitung 2. Volker Stahl - 1 - - 1 - Hidden Markov Modelle - 2 - Idee Zu klassifizierende Merkmalvektorfolge wurde von einem (unbekannten) System erzeugt. Nutze Referenzmerkmalvektorfolgen um ein Modell Des erzeugenden Systems zu bauen

Mehr

Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK)

Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) für Studierende des Maschinenbaus vom 7. Juli (Dauer: 8 Minuten) Übersicht über die

Mehr

Vorlesung - Medizinische Biometrie

Vorlesung - Medizinische Biometrie Vorlesung - Medizinische Biometrie Stefan Wagenpfeil Institut für Medizinische Biometrie, Epidemiologie und Medizinische Informatik Universität des Saarlandes, Homburg / Saar Vorlesung - Medizinische Biometrie

Mehr

An die Zweige schreibt man jeweils die Wahrscheinlichkeit, die für dieses Ereignis gilt.

An die Zweige schreibt man jeweils die Wahrscheinlichkeit, die für dieses Ereignis gilt. . Mehrstufige Zufallsversuche und Baumdiagramme Entsprechend der Anmerkung in. wollen wir nun auf der Basis von bekannten Wahr- scheinlichkeiten weitere Schlüsse ziehen. Dabei gehen wir immer von einem

Mehr

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

Wirtschaftsstatistik I [E1]

Wirtschaftsstatistik I [E1] 040571-1 WMS: Wirtschaftsstatistik 1 :: WiSe07/08 Wirtschaftsstatistik I [E1] Schwab, Harald 1 harald.schwab@univie.ac.at http://homepage.univie.ac.at/harald.schwab October 7, 2007 1 Sprechstunde: MO 17-18h

Mehr

2. Übung: Chromosomentheorie

2. Übung: Chromosomentheorie Konzepte: 2. Übung: Chromosomentheorie Mitose/Meiose Geschlechtschromosomale Vererbung Chromosomentheorie Regeln zur Vererbung Autosomal rezessiv: - Merkmal tritt auf in Nachkommen nicht betroffener Eltern

Mehr

6 Mehrstufige zufällige Vorgänge Lösungshinweise

6 Mehrstufige zufällige Vorgänge Lösungshinweise 6 Mehrstufige zufällige Vorgänge Lösungshinweise Aufgabe 6.: Begründen Sie, warum die stochastische Unabhängigkeit zweier Ereignisse bzw. zufälliger Vorgänge nur ein Modell der Realität darstellen kann.

Mehr

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate Regression ein kleiner Rückblick Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate 05.11.2009 Gliederung 1. Stochastische Abhängigkeit 2. Definition Zufallsvariable 3. Kennwerte 3.1 für

Mehr

"Chromosomen Didac 2" Einzelsatz Best.- Nr / Paket von 6 Sätzen

Chromosomen Didac 2 Einzelsatz Best.- Nr / Paket von 6 Sätzen "Chromosomen Didac 2" Einzelsatz Best.- Nr. 2013336 / 2013337 Paket von 6 Sätzen Zusammensetzung Der Einzelsatz besteht aus: 2 blauen Sätzen mit 3 Chromosomen + 1 Geschlechtschromosom + 1 Stück von einem

Mehr

Aufgaben zum Wahrscheinlichkeitsrechnen

Aufgaben zum Wahrscheinlichkeitsrechnen 1.) Wie groß ist die Wahrscheinlichkeit, beim einmaligen Werfen mit einem Würfel keine 4 zu werfen? % 2.) Wie groß ist beim einmaligen Werfen von zwei verschieden farbigen Würfeln die Wahrscheinlichkeit,...

Mehr

Bachelor BEE Statistik Übung: Blatt 1 Ostfalia - Hochschule für angewandte Wissenschaften Fakultät Versorgungstechnik Aufgabe (1.1): Gegeben sei die folgende Messreihe: Nr. ph-werte 1-10 6.4 6.3 6.7 6.5

Mehr

Diskrete Wahrscheinlichkeitstheorie - Probeklausur

Diskrete Wahrscheinlichkeitstheorie - Probeklausur Diskrete Wahrscheinlichkeitstheorie - robeklausur Sommersemester 2007 - Lösung Name: Vorname: Matrikelnr.: Studiengang: Hinweise Sie sollten insgesamt Blätter erhalten haben. Tragen Sie bitte Ihre Antworten

Mehr

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung Mathematik: LehrerInnenteam Arbeitsblatt 7-7. Semester ARBEITSBLATT Erwartungswert, Varianz und Standardabweichung Die Begriffe Varianz und Standardabweichung sind uns bereits aus der Statistik bekannt

Mehr

Europa-Universität Flensburg Zentrum für Methodenlehre Tutorium Statistik I

Europa-Universität Flensburg Zentrum für Methodenlehre Tutorium Statistik I Europa-Universität Flensburg Zentrum für Methodenlehre Tutorium Statistik I In einer sozialwissenschaftlichen Studie wurden Personen nach ihrem allgemeinen Schulabschluss (mögliche Optionen kein Schulabschluss,

Mehr

Würfel-Aufgabe Bayern LK 2006

Würfel-Aufgabe Bayern LK 2006 Würfel-Aufgabe Bayern LK 2006 Die Firma VEGAS hat ein neues Gesellschaftsspiel entwickelt, bei dem neben Laplace-Würfeln auch spezielle Vegas-Würfel verwendet werden, die sich äußerlich von den Laplace-Würfeln

Mehr

Stammbaumanalyse und Vererbungsmuster

Stammbaumanalyse und Vererbungsmuster Stammbaumanalyse und Vererbungsmuster Bei den meisten Tieren und Pflanzen lässt sich der eines Merkmals in der Regel zweifelsfrei durch mehr oder weniger umfangreiche Kreuzungsexperimente erheben. Bei

Mehr

Diskrete Wahrscheinlichkeitsverteilungen

Diskrete Wahrscheinlichkeitsverteilungen Diskrete Wahrscheinlichkeitsverteilungen Worum geht es in diesem Modul? Zufallsvariablen Wahrscheinlichkeitsverteilungen Maßzahlen theoretischer Verteilungen Eigenschaften von Erwartungswert und Varianz

Mehr

Müsli-Aufgabe Bayern GK 2009

Müsli-Aufgabe Bayern GK 2009 Müsli-Aufgabe Bayern GK 2009 1 Anlässlich einer Studie wurden 2000 Jugendliche im Alter von 18 Jahren zu ihren Ernährungsgewohnheiten befragt Von den Befragten gaben 740 an, am Morgen nicht zu frühstücken

Mehr

Stochastik und Statistik für Ingenieure Vorlesung 4

Stochastik und Statistik für Ingenieure Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Stochastik und Statistik für Ingenieure Vorlesung 4 30. Oktober 2012 Quantile einer stetigen Zufallsgröße Die reelle Zahl

Mehr

Maximilian Gartner, Walther Unterleitner, Manfred Piok. Einstieg in die Wahrscheinlichkeitsrechnung

Maximilian Gartner, Walther Unterleitner, Manfred Piok. Einstieg in die Wahrscheinlichkeitsrechnung Zufallsexperimente Den Zufall erforschen Maximilian Gartner, Walther Unterleitner, Manfred Piok Thema Stoffzusammenhang Klassenstufe Einstieg in die Wahrscheinlichkeitsrechnung Daten und Zufall 1. Biennium

Mehr

Abiturienten-Aufgabe Bayern GK 2004

Abiturienten-Aufgabe Bayern GK 2004 Abiturienten-Aufgabe Bayern GK 2004 Die Bezeichnungen Abiturienten und Schüler beziehen sich im folgenden Text sowohl auf männliche als auch auf weibliche Personen. Die Abiturienten eines bayerischen Gymnasiums

Mehr

Rechnen mit einfachem Mengenkalkül

Rechnen mit einfachem Mengenkalkül edingte ahrscheinlichkeiten llgemeine Frage: Rechnen mit einfachem Mengenkalkül ie groß ist die ahrscheinlichkeit für ein Ereignis falls bereits ein Ereignis eingetreten ist (und der etrachter über diese

Mehr