4.2.2.Das Wasserstoff-Molekül H 2 Vergleich der Wellenfunktionen für antiparallele Spinkonfiguration

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "4.2.2.Das Wasserstoff-Molekül H 2 Vergleich der Wellenfunktionen für antiparallele Spinkonfiguration"

Transkript

1 g Das Wasserstoff-Molekül H 2 Vergleich der Wellenfunktionen für antiparallele Spinkonfiguration a () ϕ ( 2) ϕ ( 2) ϕ ( 1) ψ = ϕ + 1 b a b Heitler-London ( ) ϕ ( 2) + ϕ ( 2) ϕ ( 1) + [ ϕ ( 1) ϕ ( 2) ϕ ( 1) ( 2) ] ψ + g = ϕ a 1 b a b c a a b ϕ b d = 0 Heitler-London + ionisch g [ ϕ () + ϕ () 1 ][ ϕ ( 2) ϕ ( 2) ] ψ = + Hund-Mulliken-Bloch a 1 b a b d = 1 Allgemeine Wellenfunktion ϕ ϕ + dϕ, ϕ ϕ + a a b b b dϕ a d 1 konstanter Koeffizient ψ g = [ ϕ a () 1 + dϕ b () 1 ][ ϕ b ( 2) + dϕ a ( 2) ] [ ϕ ( 2) + dϕ ( 2) ][ ϕ () 1 + dϕ () 1 ] + a b b a

2 Chemische Bindung: Modelle Valenzbindung-Theorie: die an der Bindung beteiligten Atomorbitale überlappen sich, bleiben aber als Atomorbitale erhalten. Heitler-London Modell Molekülorbital-Theorie: die Atomorbitale wechselwirken und bilden neue Orbitale: die Molekülorbitale. Hund-Mulliken-Bloch Modell Besetzung von Einelektronzuständen: aus Linearkombinationen von Atomorbitalen werden Molekülorbitale gebildet die Molekülorbitale werden ihrer energetischen Reihenfolge nach aufgefüllt, unter Berücksichtigung des Pauli-Prinzips die Besetzung energetisch entarteter Orbitale wird nach Hundschen Regel durchgeführt (Anordnung mit parallelen Spin bevorzugt)

3 4.2.3 Homonukleares zweiatomiges Molekül Atome A und B Molekül AB die zentrale Symmetrie des Coulomb-Feldes wird aufgehoben die Elektronen gehören gleichzeitig zu beiden Atomen die ursprünglich miteinander entarteten Zustände spalten auf Quantenzahlen: (n,l,m l,m s ) (n,λ, m s ) l präzediert um die z-achse mit einer gequantelten z-komponente l: keine gute Quantenzahl in AB A l r B l z =λh λ= m l =0,1,2,,l-1, l

4 m λ 0 ±1 ±2 ±3 λ Symbol σ π δ ϕ e - Zahl In nicht-rotierenden Moleküle sind die Drehimpulszustände (Ausnahme:σ) zweifach entartet. Molekülorbitale: Nomenklatur: getrennte Atome (R ) (n,λ) parität Beispiel: 1σ g,1σ u, 2σ g, 2σ u, 2π g,. (λ,n,l) Beispiel: σ1s A, σ2p B vereinigtes Atom (R 0) (n,l,λ) Beispiel: 1sσ, 2sσ, 2pσ, 2pπ,. σ*- antibindend

5 σ u 1s*=σ1s A -σ1s B 1s A 1s B Atom A σ g 1s =σ1s A +σ1s B Molekül Atom B

6 Molekülorbitale Nomenklatur: n,l,λ, Beispiel: 1sσ, 2sσ, 2pσ, 2pπ,. Konfiguration: (1sσ) 2 (1sσ) 2 (1sσ*) 2 Stabil: (1sσ) 2 (1sσ*)2sσ (excimer)

7

8 Besetzung der MOs H 2 -N 2 Bindungsordnung (BO) = Zahl der Elektronen in bindenden Orbitalen minus Zahl der Elektronen in antibindenden Orbitalen geteilt durch 2. Die Bindungsordnung im N 2 -Molekül ist 3, elementarer Stickstoff ist im Grundzustand diamagnetisch (Singulett-Zustand).

9 Besetzung der MOs O 2, F 2 Die Bindungsordnung im O 2 -Molekül ist 2, elementarer Sauerstoff ist im Grundzustand paramagnetisch (Triplett-Zustand).

10 Beispiele 8 Elektronen in bindenden MOs, 4 in antibindenden MOs Doppelbindung

11 Molekülorbitale Nomenklatur: n,l,λ, Beispiel: 1sσ, 2sσ, 2pσ, 2pπ,. Konfiguration: (1sσ) 2 (1sσ) 2 (1sσ*) 2 Stabil: (1sσ) 2 (1sσ*)2sσ (excimer)

12

13 Besetzung der MOs H 2 -N 2 Bindungsordnung (BO) = Zahl der Elektronen in bindenden Orbitalen minus Zahl der Elektronen in antibindenden Orbitalen geteilt durch 2. Die Bindungsordnung im N 2 -Molekül ist 3, elementarer Stickstoff ist im Grundzustand diamagnetisch (Singulett-Zustand).

14 Besetzung der MOs O 2, F 2 Die Bindungsordnung im O 2 -Molekül ist 2, elementarer Sauerstoff ist im Grundzustand paramagnetisch (Triplett-Zustand).

15 Beispiele 8 Elektronen in bindenden MOs, 4 in antibindenden MOs Doppelbindung

16 Heteronukleares zweiatomiges Molekül σ*=1s A -1s B 1s A 1s B Atom A (H) σ =1s A +1s B Molekül (HHe) + Atom B (He + )

17 Mehrelektronenzustände von zweiatomigen Molekülen A L = L( L +1)h B L r A S = S( S +1)h B S r L z =±Λh, mit Λ= Σλ i Λ= 0,1,2, Symbole: Σ, Π, S r L r J z =Ωh J r L z =Λh S z =Σh S z = Σh, mit Σ = S, S-1,, -S Spektroskopiescher Term: 2S+1 Λ Ω g, u: Parität d. Gesamtwellenfunktion +, - : symmetrisch bzw. antisymmetrisch gegenüber einer Spiegelung an einer Spiegelebene durch die Kernverbindungslinie

18 Spektroskopiescher Term: 2S+1 Λ Ω Beispiel: Ein Zustand sei durch (2pπ)(3sσ)(3dπ) mit 4 3/2 bezeichnet. Es gibt 3 Valenzelektronen mit: n= 2, l=1, λ=1 n= 3, l=0, λ=0 n= 3, l=2, λ=1 Für den Bahndrehimpuls gilt: Λ=1+1=2, daher Für den resultierenden Spin gilt: S=1/2+1/2+1/2=3/2, daher 2S+1=4 Wegen der Multiplizität 4 sind die folgende Konfigurationen möglich: 4 7/2, 4 5/2, 4 3/2, 4 1/2 Aufspaltung: W=A L S W= Spin-Bahn-Wechselwirkungsenergie

19 Spektroskopiescher Term: 2S+1 Λ Ω m l1 m l2

20 Mögliche Konfigurationen der beiden äußersten Elektronen im O 2 -Molekül

21 Spektroskopische Terme Grundzustand und tiefste elektronische Anregungs- Zustände des H 2 -Moleküls

22 Elektronische Terme des H 2 -Moleküls

23 Berechnete Potentialflächen für verschiedene Anregungszustände des H 2 -Moleküls R e (n=4) R e (n=1)

24 Spektroskopische Terme Elektronenkonfiguration homonuklearer zweiatomiger Moleküle Die eingeklammerten Moleküle sind nicht stabil. Diese Reihenfolge der Orbitale ist nicht in allen Fällen die energetische Sequenz. zb.o 2,F 2

25 5. Elektronen- und Rotations- Spektren von Molekülen

26 Absorptionsspektren Optische Dichte Elektronischer Übergang S 0 S 2 von Benzol: In der Gasphase: Rotations-Schwingungsstruktur Im Kristall: Spektrale Verschiebung gegenüber dem Lösungsspektrum Zweite Progression von Schwingungsbändern: Kristallsymmetrie beeinflusst die Symmetrie der Schwingungszustände

27 Energetische Niveaus in Moleküle I und II: Elektronische Zustände v: Quantenzahl der Schwingungsniveaus J: Quantenzahl der Rotationsniveaus E = E el + E vib + E rot

28 Optische Molekülspektren Rotationsspektren: Übergänge zwischen den Rotationsniveaus eines gegebenen Schwingungsniveaus Mikrowellen, Ferninfrarot Rotationsschwingungsspektren: Übergänge zwischen den Rotationsniveaus eines bestimmten Schwingungsniveaus zu den Rotationsniveaus eines anderen Schwingungsniveaus im gleichen Elektronenzustand Infrarot Elektronenspektren: Übergänge zwischen zwei Elektronenzustände Sichtbar, UV, Röntgenstrahlen Beispiel: HCl

29 5.1. Lichtabsorption: Elektronische Banden E = E el + E vib + E rot E ν =0 E ν =0 Intensität: bestimmt durch die Übergangsmatrixelemente und durch die Auswahlregeln: S = 0; Λ = 0; ±1; g u; + +; - -

30 Energie Franck-Condon Prinzip Elektronenübergänge erfolgen senkrecht unter Erhaltung des Kernabstandes R und mit größter Wahrscheinlichkeit zwischen den Bereichen der Wellenfunktion χ(r) in denen die Amplitude am größten ist. R e =R e R e >R e R Übergangswahrscheinlichkeit: χ v' ( R) χ ( ) v' ' R dvkerne Intensität

31 Photodissoziation D Direkte Photodissoziation durch Rotations-Schwingungs-Anregung nur durch Mehrquantenabsorption unter großen Photonenfluss möglich! z.b. mit Hilfe CO 2 Laser AB + nhν vib A*+B* (+E kin ) D Photodissoziation durch eine elektronische Anregung viel wahrscheinlicher!

32 Absorption und Fluoreszenz Absorptionsspektrum: Schwingungsstruktur des elektronischen Anregungszustandes Fluoreszenzspektrum: Schwingungsstruktur des elektronischen Grundszustandes

33 Absorption, Fluoreszenz und Phosphoreszenz

34 Elektronische Spektren größerer Moleküle: Chromophore C O Absorption durch nicht-bindende Elektronen, die zu einer lokalisierten Gruppe im Molekül gehören Beispiel: Carbonyl - Gruppe Ein Elektron von O wird in ein leeres Orbital der C=O Bindung angeregt Absorption bei ~290 nm (4.3 ev) C O

35 Elektronische Spektren größerer Moleküle: d d Übergang Oktaedrischer Komplex (d 1 ) O e g Die energetische Entartung der d-orbitale wird im Metall- Komplexe der d-gruppe aufgehoben t 2g O - Ligandenfeldaufspaltungs- Parameter Charakteristische Absorption: ~500 nm (2.5 ev) [Ti(OH 2 ) 6 ] 3+ in Lösung g g Übergang nur möglich wenn das Inversionszentrum durch eine asymmetrische Schwingung aufgehoben wird! Vibronischer Übergang

36 d d und Ladungs-Transfer- (CT-) Übergang Absorption: ein Elektron wird vom Liganden zu einem d-orbital des zentralen Atoms übertragen (Ligand zu Metall-Ladungs-Transfer = LMCT) oder umgekehrt (Metall zu Ligand-Ladungs-Transfer = MLCT) Großes Übergangsdipolmoment Starke Absorption 2500 d - d CT von Ni O O N N O O Ni O d * x²-y² O 2- ε / M -1 cm ε / M -1 cm -1 d xy d z² λ / nm 0 d xz d yz

37 Elektronische Spektren größerer Moleküle: π π* Übergang Absorption durch ein Elektron einer π-bindung und Anregung des Elektrons in ein anti-bindendes π*- Orbital π* Charakteristische Absorption für C=C: 180 nm (7 ev) π

38 Elektronische Spektren größerer Moleküle: π π* Übergang Absorption durch nicht-bindende aber über das ganze Molekül delokalisierte Elektronen π* : tiefste elektronische Anregungen aromatischer Molekülen (Tetracen)

39 Elektronische Spektren größerer Moleküle: Kristallochromie - Rot-Verschiebung der Absorptionsbanden in Kristallen im Vergleich zu den Banden in Lösung durch intermolekulare Wechselwirkung

40 Elektronische Spektren größerer Moleküle: Fluoreszenz Spektrale Verschiebung mit zunehmender Ausdehnung des π-elektronensystems

41 Elektronische Spektren größerer Moleküle: π π* Übergang Konjugierte Ketten: z. B. lineare Polyene C 6 H 5 -(CH=CH) n -C 6 H 5 Verschiebung der Absorption zu größeren Wellenlängen mit zunehmender Konjugationszahl

5. Elektronen- und Rotations- Spektren von Molekülen

5. Elektronen- und Rotations- Spektren von Molekülen 5. Elektronen- und Rotations- Spektren von Molekülen Absorptionsspektren Optische Dichte Elektronischer Übergang S 0 S von Benzol: In der Gasphase: Rotations-Schwingungsstruktur Im Kristall: Spektrale

Mehr

Induzierte und spontane Übergänge: Einstein-Koeffizienten

Induzierte und spontane Übergänge: Einstein-Koeffizienten Induzierte und spontane Übergänge: Einstein-Koeffizienten Ein Atom im Zustand E k, das sich in einem elektromagnetischen Strahlungsfeld mit der spektralen Energiedichte w v (ν) n i hv befindet, kann ein

Mehr

Kapitel 7: Elektronische Spektroskopie

Kapitel 7: Elektronische Spektroskopie Kapitel 7: Elektronische Spektroskopie Übersicht: 7.1 Drehimpuls-Kopplungshierarchien in Molekülen: Hundsche Fälle 7.2 Auswahlregeln für rovibronische Übergänge 7.3 Das Franck-Condon-Prinzip 7.4 Zerfall

Mehr

: Quantenmechanische Lösung H + 2. Molekülion und. Aufstellen der Schrödingergleichung für das H + 2

: Quantenmechanische Lösung H + 2. Molekülion und. Aufstellen der Schrödingergleichung für das H + 2 H + 2 Die molekulare Bindung : Quantenmechanische Lösung Aufstellen der Schrödingergleichung für das H + 2 Molekülion und Lösung Wichtige Einschränkung: Die Kerne sind festgehalten H Ψ(r) = E Ψ(r) (11)

Mehr

ORGANISCHE CHEMIE 1. Stoff der 16. Vorlesung: Hybridisierung, Hückel-MO...

ORGANISCHE CHEMIE 1. Stoff der 16. Vorlesung: Hybridisierung, Hückel-MO... Stoff der 16. Vorlesung: Hybridisierung, Hückel-MO... ORGANISCHE CHEMIE 1 16. Vorlesung, Freitag, 14. Juni 2013 I. Hybridorbitale im Kohlenstoff - Regeln für Wechselwirkung von Orbitalen - σ und π MO s

Mehr

z n z m e 2 WW-Kern-Kern H = H k + H e + H ek

z n z m e 2 WW-Kern-Kern H = H k + H e + H ek 2 Molekülphysik Moleküle sind Systeme aus mehreren Atomen, die durch Coulomb-Wechselwirkungen Elektronen und Atomkerne ( chemische Bindung ) zusammengehalten werden. 2.1 Born-Oppenheimer Näherung Der nichtrelativistische

Mehr

(2.65 ev), da sich die beiden Elektronen gegenseitig abstossen.

(2.65 ev), da sich die beiden Elektronen gegenseitig abstossen. phys4.026 Page 1 13.8 Das Wasserstoff-Molekül Wie im Fall des H2 + Moleküls führen im H2 Molekül symmetrische Wellenfunktionen zu bindenden Zuständen, wohingegen anti-symmetrische Wellenfunktionen zu anti-bindenden

Mehr

Modul: Allgemeine Chemie

Modul: Allgemeine Chemie Modul: Allgemeine Chemie 5. Grundlagen der chemischen Bindung Ionenbindung Eigenschaften, Ionengitter, Kugelpackung Strukturtypen, Kreisprozesse Kovalente Bindung Lewis Formeln, Oktettregel, Formalladungen

Mehr

2. Linear Combination of Atomic Orbitals

2. Linear Combination of Atomic Orbitals . Linear Combination of Atomi Orbitals Molekülorbitale werden mit ilfe des Variationsansatzes erhalten. Beispiel: -atomiges Molekül Atom, ϕ Atom, ϕ amilton-operator: Orthonormierung: ˆ ϕ El. Atom ϕ = =

Mehr

Das H + 2 -Molekül. Das Wasserstoffmolekülion H + 2 ist das einfachste

Das H + 2 -Molekül. Das Wasserstoffmolekülion H + 2 ist das einfachste Moleküle Wir haben in den vergangenen Wochen gelernt, wie sich Atome, zusammengesetzt aus elektrisch geladenen Kernen und Elektronen, verhalten. Wie aber verbinden sich elektrisch neutrale Atome zu Molekülen

Mehr

Einführung in die Spektroskopie für Studenten der Biologie

Einführung in die Spektroskopie für Studenten der Biologie Einführung in die Spektroskopie für Studenten der Biologie Jörg H. Kleinschmidt http://www.biologie.uni-konstanz.de/folding/home.html Literatur Banwell, C. N., Elaine M. McCash, Molekülspektroskopie. Ein

Mehr

Chemische Bindung zweiatomiger Moleküle

Chemische Bindung zweiatomiger Moleküle Die Born Oppenheimer Näherung vernachlässigt Elektronenimpulse gegenüber Kernimpulsen und erlaubt die Gesamtwellenfunktion als ein Produkt aus einer Kernwellenfunktion F q ( R) und der einer Elektronenwellenfunktion

Mehr

Die meisten Elemente liegen in gebundener Form als einzelne Moleküle, in Flüssigkeiten oder in Festkörpern vor.

Die meisten Elemente liegen in gebundener Form als einzelne Moleküle, in Flüssigkeiten oder in Festkörpern vor. phys4.025 Page 1 13. Moleküle Nur eine kleine Anzahl von Elementen kommt natürlich in Form von einzelnen Atomen vor. Die meisten Elemente liegen in gebundener Form als einzelne Moleküle, in Flüssigkeiten

Mehr

Die chemische Bindung

Die chemische Bindung Die chemische Bindung Die Valenz-Bond Theorie Molekülorbitale Die Bänder Theorie der Festkörper bei einer ionischen Bindung bildet bildet sich ein Dipol aus ('Übertragung von Elektronen') Eine kovalente

Mehr

Grundlagen der Chemie Allgemeine Chemie Teil 2

Grundlagen der Chemie Allgemeine Chemie Teil 2 Allgemeine Chemie Teil 2 Prof. Annie Powell KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu AO-Theorie Wellenmechanik So wie Licht

Mehr

Übungen zur Vorlesung Physikalische Chemie II Lösungsvorschlag zu Blatt 5

Übungen zur Vorlesung Physikalische Chemie II Lösungsvorschlag zu Blatt 5 Wintersemester 006 / 007 04.1.006 1. Aufgabe Die Wellenfunktionen unterscheiden sich gar nicht. Während der Lösung der elektronischen Schrödingergleichung werden die Kerne als ruhend betrachtet. Es kommt

Mehr

FERIENKURS EXPERIMENTALPHYSIK 4. Mehrelektronensysteme

FERIENKURS EXPERIMENTALPHYSIK 4. Mehrelektronensysteme FERIENKURS EXPERIMENTALPHYSIK 4 Vorlesung 3 am 04.09.2013 Mehrelektronensysteme Hannah Schamoni, Susanne Goerke Inhaltsverzeichnis 1 Das Helium-Atom 2 1.1 Grundlagen und Ortswellenfunktion........................

Mehr

Valenz-Bindungstheorie H 2 : s Ueberlappung von Atomorbitalen s-bindung: 2 Elektronen in einem Orbital zylindrischer Symmetrie

Valenz-Bindungstheorie H 2 : s Ueberlappung von Atomorbitalen s-bindung: 2 Elektronen in einem Orbital zylindrischer Symmetrie Valenz-Bindungstheorie Beschreibung von Molekülen mit Hilfe von Orbitalen H H H 2 : H 2 s Ueberlappung von Atomorbitalen s-bindung: 2 Elektronen in einem Orbital zylindrischer Symmetrie um die interatomare

Mehr

UV/Vis-Spektroskopie oder auch: Elektronenanregungsspektroskopie

UV/Vis-Spektroskopie oder auch: Elektronenanregungsspektroskopie Teil 5 UV/Vis-Spektroskopie oder auch: Elektronenanregungsspektroskopie Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2017/18 www.ruhr-uni-bochum.de/chirality 1 Reminder: MO-Diagramm von O 2 2- MdS-1 UV/Vis-Spektroskopie

Mehr

6. Viel-Elektronen Atome

6. Viel-Elektronen Atome 6. Viel-Elektronen 6.1 Periodensystem der Elemente 6.2 Schwerere 6.3 L S und j j Kopplung 6.1 6.1 Periodensystem der Elemente 6.2 Auffüllen der Elektronen-Orbitale Pauliprinzip: je 1 Elektron je Zustand

Mehr

4.Teil Kovalente Bindung

4.Teil Kovalente Bindung 4.Teil Kovalente Bindung Lewis-Konzept, Valenstrichformel, Oktettregel Polare Elektronenpaarbindung und Elektronegativität Gebrochene Bindungsordnung und Mesomerie Valenzschalen-Elektronenpaar-Abstoßungsmodell

Mehr

Molekülphysik und Quantenchemie

Molekülphysik und Quantenchemie Hermann Haken Hans Christoph Wolf Molekülphysik und Quantenchemie Einführung in die experimentellen und theoretischen Grundlagen Mit 245 Abbildungen und 43 Tabellen Physikalische Bibliothek Fachbereich

Mehr

Orbitalmodell SPF BCH am

Orbitalmodell SPF BCH am Orbitalmodell Inhaltsverzeichnis Sie können sich unter einer elektromagnetischen Welle etwas vorstellen. Sie kennen typische Eigenschaften von Wellen im Vergleich zu Teilchen-Strahlen...2 Sie können die

Mehr

2-01. Das Ethen-Molekül. Perspektivische Darstellung des Ethen-Moleküls.

2-01. Das Ethen-Molekül. Perspektivische Darstellung des Ethen-Moleküls. Das Ethen-Molekül 2-01 Perspektivische Darstellung des Ethen-Moleküls. Rot: Sigma-Bindungen σ mit je zwei Bindungselektronen Blau: pz-orbitale mit je einem Elektron Die C-Atome sind sp 2 -hybridisiert,

Mehr

Der nichtrelativistische Hamiltonoperator für ein System aus N k Atomkernen (mit Ladung +Z n ) und N e = N k. n=1 Z n Elektronen lautet: z n z m e 2

Der nichtrelativistische Hamiltonoperator für ein System aus N k Atomkernen (mit Ladung +Z n ) und N e = N k. n=1 Z n Elektronen lautet: z n z m e 2 2 Molekülphysik Moleküle sind Systeme aus mehreren Atomen, die durch Coulomb-Wechselwirkungen Elektronen und Atomkerne ( chemische Bindung ) zusammengehalten werden. 2.1 Born-Oppenheimer Näherung Der nichtrelativistische

Mehr

Oktett-Theorie von Lewis

Oktett-Theorie von Lewis Oktett-Theorie von Lewis Oktettregel Atome versuchen durch die Nutzung gemeinsamer Elektronenpaare möglichst ein Elektronenoktett zu erlangen. allgemeiner: Edelgasregel Atome streben durch Vereinigung

Mehr

Übungen zu Physik 2 für Maschinenwesen

Übungen zu Physik 2 für Maschinenwesen Physikdepartment E13 SS 011 Übungen zu Physik für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung 1.07.011,

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Probeklausur Markus Perner, Markus Kotulla, Jonas Funke Aufgabe 1 (Allgemeine Fragen). : (a) Welche Relation muss ein Operator erfüllen damit die dazugehörige Observable

Mehr

Chemische Bindungen Atombindung

Chemische Bindungen Atombindung Atombindung Das Lewis Modell der kovalenten Bindung Die Entstehung von Molekülen beruht auf der Bildung von gemeinsamen, bindenden Elektronenpaaren in dem Bestreben der Atome, eine energetisch stabile

Mehr

2. Elementare Stöchiometrie I Definition und Gesetze, Molbegriff, Konzentrationseinheiten

2. Elementare Stöchiometrie I Definition und Gesetze, Molbegriff, Konzentrationseinheiten Inhalt: 1. Regeln und Normen Modul: Allgemeine Chemie 2. Elementare Stöchiometrie I Definition und Gesetze, Molbegriff, Konzentrationseinheiten 3.Bausteine der Materie Atomkern: Elementarteilchen, Kernkräfte,

Mehr

Chemische Bindungen Atombindung

Chemische Bindungen Atombindung Atombindung Das Lewis Modell der kovalenten Bindung Bildung von Molekülen (Einfachbindungen) Aus jeweils einem ungepaarten Elektron eines Atoms bildet sich ein gemeinsames Elektronenpaar als Molekülorbital

Mehr

Prof. Christoffers, Vorlesung Organische Chemie für Verfahrensingenieure, Umweltschutztechniker und Werkstoffwissenschaftler

Prof. Christoffers, Vorlesung Organische Chemie für Verfahrensingenieure, Umweltschutztechniker und Werkstoffwissenschaftler Prof. hristoffers, Vorlesung Organische hemie für Verfahrensingenieure, Umweltschutztechniker und Werkstoffwissenschaftler 1. inführung 1.1 Atomorbitale Die Atome im Molekülverband werden durch lektronen

Mehr

Atommodell. Atommodell nach Bohr und Sommerfeld Für sein neues Atommodell stellte Bohr folgende Postulate auf:

Atommodell. Atommodell nach Bohr und Sommerfeld Für sein neues Atommodell stellte Bohr folgende Postulate auf: Für sein neues Atommodell stellte Bohr folgende Postulate auf: Elektronen umkreisen den Kern auf bestimmten Bahnen, wobei keine Energieabgabe erfolgt. Jede Elektronenbahn entspricht einem bestimmten Energieniveau

Mehr

Molekülphysik. Theoretische Grundlagen und experimentelle Methoden Von Wolfgang Demtröder. Oldenbourg Verlag München Wien

Molekülphysik. Theoretische Grundlagen und experimentelle Methoden Von Wolfgang Demtröder. Oldenbourg Verlag München Wien Molekülphysik Theoretische Grundlagen und experimentelle Methoden Von Wolfgang Demtröder Oldenbourg Verlag München Wien Vorwort XI 1 1.1 1.2 1.3 1.4 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 Einleitung 1 Kurzer historischer

Mehr

WAS FEHLT? STATISCHE KORRELATION UND VOLLE KONFIGURATIONSWECHSELWIRKUNG

WAS FEHLT? STATISCHE KORRELATION UND VOLLE KONFIGURATIONSWECHSELWIRKUNG 31 besetzen als die β Elektronen. Wenn man dies in der Variation der Wellenfunktion zulässt, also den Satz der Orbitale verdoppelt und α und β Orbitale gleichzeitig optimiert, so ist i. A. die Energie

Mehr

Die Bindung in Übergangsmetallkomplexenn. Klassische Koordinationschemie (Alfred Wernersche) Valenzstruktur-Theorie (Valenzbindungsth

Die Bindung in Übergangsmetallkomplexenn. Klassische Koordinationschemie (Alfred Wernersche) Valenzstruktur-Theorie (Valenzbindungsth Die Bindung in Übergangsmetallkomplexenn Klassische Koordinationschemie (Alfred Wernersche) Valenzstruktur-Theorie (Valenzbindungsth heorie) Ligandenfeld-Theorie H 3 3+ H 3 H 3 Cr H 3 H 3 H 3 Molekülorbital-Theorie

Mehr

Absorptionsspektrum von PTCDA und DiMe-PTCDI

Absorptionsspektrum von PTCDA und DiMe-PTCDI 3. Gruppentheorie Absorption coefficient *10 5 6 4 2 0 Absorptionsspektrum von PTCDA und DiMe-PTCDI PTCDA Wavelength / nm 800 700 600 500 400 HOMO-LUMO Übergang S 0 -S 1 transition S 0 -S 2 transition

Mehr

Die Rotationsterme werden im Folgenden wegen der geringen Auflösung des Gerätes nicht weiter betrachtet. Für kleine Schwingungsamplituden gilt näherun

Die Rotationsterme werden im Folgenden wegen der geringen Auflösung des Gerätes nicht weiter betrachtet. Für kleine Schwingungsamplituden gilt näherun UV/VIS-Spektroskopie: Optische Bestimmung der Dissoziationsenergie von I 2 Es soll ein UV/VIS-Spektrum von Ioddampf aufgenommen werden. Daraus sollen die Bandensysteme der v 00 -Progressionen (v 00 = 0,

Mehr

5. Atome mit 1 und 2 Leucht-Elektronen 5.1 Alkali-Atome 5.2 He-Atom

5. Atome mit 1 und 2 Leucht-Elektronen 5.1 Alkali-Atome 5.2 He-Atom 5. Atome mit 1 und 2 Leucht- 5.1 Alkali-Atome 5.2 He-Atom 5.1 5.1 Alkali Atome ein "Leuchtelektron" Alkali Erdalkali 5.2 Tauchbahnen grosser Bahndrehimpuls l: geringes Eintauchen kleiner Bahndrehimpuls

Mehr

Dr. Jan Friedrich Nr

Dr. Jan Friedrich Nr Übungen zu Experimentalphysik 4 - Lösungsvorschläge Prof. S. Paul Sommersemester 5 Dr. Jan Friedrich Nr. 4.7.5 Email Jan.Friedrich@ph.tum.de Telefon 89/89-586 Physik Department E8, Raum 564 http://www.e8.physik.tu-muenchen.de/teaching/phys4/

Mehr

Lernziele zu Farbigkeit von Stoffen

Lernziele zu Farbigkeit von Stoffen Farbstoffe Lernziele zu Farbigkeit von Stoffen du verstehst, wie Farbigkeit mit der Absorption von EM-Strahlung zusammenhängt. du verstehst die Unterschiede zwischen Feuerwerksfarben und Textilfarbstoffen.

Mehr

Molekülphysik. April Grundzustand und angeregte Zustände eines Moleküls

Molekülphysik. April Grundzustand und angeregte Zustände eines Moleküls Molekülphysik April 2010 1 Grundzustand und angeregte Zustände eines Moleküls 1.1 Hamiltonoperator für das Gesamtproblem Die Quantenmechanik ist die fundamentale Theorie der Materie. Sowohl die Koordinaten

Mehr

Schrödinger-Gleichung

Schrödinger-Gleichung Schrödinger-Gleichung abgeleitet aus Teilchen-Welle-Dualismus (de Broglie) Ψ = Ε Ψ Der amiltonian enthält kinetische und potentielle Energie aller Teilchen wirkt auf die Wellenfunktion Ψ. Ψ 2 beschreibt

Mehr

Dynamik von Molekülen. Rotationen und Schwingungen von Molekülen

Dynamik von Molekülen. Rotationen und Schwingungen von Molekülen Rotationen und Schwingungen von Molekülen Schwingungen und Rotationen Bis jetzt haben wir immer den Fall betrachtet, daß die Kerne fest sind Was geschieht nun, wenn sich die Kerne bewegen können? Zwei

Mehr

Ausarbeitung zum Theoretischen Seminar

Ausarbeitung zum Theoretischen Seminar Ausarbeitung zum Theoretischen Seminar Kovalente Molekübindungen 28.01.2015 Robin.Stegmueller@googlemail.com Inhaltsverzeichnis 1 Einführung 1 1.1 Molekulare Bindungen......................... 1 1.2 Beispiel:

Mehr

[ H, L 2 ]=[ H, L z. ]=[ L 2, L z. U r = Warum haben wir soviel Zeit mit L 2 verbracht? = x 2 2. r 1 2. y 2 2. z 2 = 2. r 2 2 r

[ H, L 2 ]=[ H, L z. ]=[ L 2, L z. U r = Warum haben wir soviel Zeit mit L 2 verbracht? = x 2 2. r 1 2. y 2 2. z 2 = 2. r 2 2 r Warum haben wir soviel Zeit mit L 2 verbracht? = x 2 2 y 2 2 z 2 = 2 r 2 2 r r 1 2 L r 2 ħ 2 11. Das Wasserstoffatom H = p2 2 U r μ = Masse (statt m, da m später als Quantenzahl verwendet wird) U r = e2

Mehr

c = Ausbreitungsgeschwindigkeit (2, m/s) λ = Wellenlänge (m) ν = Frequenz (Hz, s -1 )

c = Ausbreitungsgeschwindigkeit (2, m/s) λ = Wellenlänge (m) ν = Frequenz (Hz, s -1 ) 2.3 Struktur der Elektronenhülle Elektromagnetische Strahlung c = λ ν c = Ausbreitungsgeschwindigkeit (2,9979 10 8 m/s) λ = Wellenlänge (m) ν = Frequenz (Hz, s -1 ) Quantentheorie (Max Planck, 1900) Die

Mehr

Basiswissen Chemie. Vorkurs des MINTroduce-Projekts

Basiswissen Chemie. Vorkurs des MINTroduce-Projekts Basiswissen Chemie Vorkurs des MINTroduce-Projekts Christoph Wölper christoph.woelper@uni-due.de Sprechzeiten (Raum: S07 S00 C24 oder S07 S00 D27) Organisatorisches Kurs-Skript http://www.uni-due.de/ adb297b

Mehr

Elektronenspektrum von [Ti(H 2 O) 6 ] 3+

Elektronenspektrum von [Ti(H 2 O) 6 ] 3+ Elektronenspektrum von [Ti(H 2 O) 6 ] 3+ 3 2 1 15 20 25 30 1000 cm -1 e g hv t 2g Deutung der Elektronenspektren Absorption bestimmter Frequenzen des eingestrahlten Lichts durch: Elektronenübergang zwischen

Mehr

Übungsblatt 10. PHYS4100 Grundkurs IV (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, oder 1. 7.

Übungsblatt 10. PHYS4100 Grundkurs IV (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, oder 1. 7. Übungsblatt 10 PHYS4100 Grundkurs IV (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, (othmar.marti@uni-ulm.de) 30. 6. 2005 oder 1. 7. 2005 1 Aufgaben 1. Zeigen Sie, dass eine geschlossene nl-schale

Mehr

Gruppentheorie ERNST MORITZ ARNDT UNIVERSITÄT GREIFSWALD. Mathematisch-Naturwissenschaftliche Fakultät INSTITUT FÜR BIOCHEMIE

Gruppentheorie ERNST MORITZ ARNDT UNIVERSITÄT GREIFSWALD. Mathematisch-Naturwissenschaftliche Fakultät INSTITUT FÜR BIOCHEMIE ERNST MORITZ ARNDT UNIVERSITÄT GREIFSWALD Mathematisch-Naturwissenschaftliche Fakultät INSTITUT FÜR BIOCHEMIE Arbeitskreis Physikalische Chemie Prof. Dr. Walter Langel Gruppentheorie Molekülschwingungen

Mehr

Übungen zur Vorlesung Theoretische Chemie II Übungsblatt 1 SoSe 2015 Lösungen Ĥ Ψ = E Ψ (1) c b

Übungen zur Vorlesung Theoretische Chemie II Übungsblatt 1 SoSe 2015 Lösungen Ĥ Ψ = E Ψ (1) c b Übungen zur Vorlesung Theoretische Chemie II Übungsblatt SoSe 205 Lösungen. H 2 + Molekülion a) Konstruieren Sie die Schrödingergleichung in Matrixdarstellung. Zunächst geht man von der stationären Schrödinger-Gleichung

Mehr

Spektroskopie-Seminar SS UV-Vis-Spektroskopie. UV-Vis-Spektroskopie

Spektroskopie-Seminar SS UV-Vis-Spektroskopie. UV-Vis-Spektroskopie UV-Vis-Spektroskopie 7.1 Allgemeines UV-Vis-Spektroskopie verwendet elektromagnetische Strahlung im sichtbaren und UV-Bereich. 190 nm bis 700 nm. Dabei kommt es zur Anregung von Elektronen ( Elektronenspektroskopie

Mehr

Schwingungen (Vibrationen) zweiatomiger Moleküle

Schwingungen (Vibrationen) zweiatomiger Moleküle Schwingungen (Vibrationen) zweiatomiger Moleküle Das Molekülpotential ist die Potentialkurve für die Schwingung H 2 Molekül 0.0 2.5 4 5 6 H( 1s) + H( 3l ) Energie in ev 5.0 7.5 H( 1s) + H( 2l ) H( 1s)

Mehr

Vorlesung Anorganische Chemie

Vorlesung Anorganische Chemie Vorlesung Anorganische Chemie Prof. Ingo Krossing WS 2007/08 B.Sc. Chemie Lernziele Block 4 Molekülstruktur Ausnahmen von der Oktettregel Hypervalente Verbindungen VSEPR Hybridisierung Molekülorbitale

Mehr

Wechselwirkung zwischen Licht und chemischen Verbindungen

Wechselwirkung zwischen Licht und chemischen Verbindungen Photometer Zielbegriffe Photometrie. Gesetz v. Lambert-Beer, Metallkomplexe, Elektronenanregung, Flammenfärbung, Farbe Erläuterungen Die beiden Versuche des 4. Praktikumstages sollen Sie mit der Photometrie

Mehr

9 WOODWARD-HOFFMANN-REGELN 92

9 WOODWARD-HOFFMANN-REGELN 92 9 WOODWARD-HOFFMANN-REGELN 92 Die SMOs des Reaktanden und der Produkte (die nach Idealisierung nicht mehr unterschieden werden) müssen konstruiert und nach ihrer Knotenstruktur energetisch klassifiziert

Mehr

Chemistry Department Cologne University. Photochemie 1 PC 2 SS Chemistry Department Cologne University. Photochemie

Chemistry Department Cologne University. Photochemie 1 PC 2 SS Chemistry Department Cologne University. Photochemie Photochemie 1 PC 2 2016 Photochemie 2 PC 2 2016 1 Wichtige photophysikalische Prozesse 3 PC 2 2016 Der Grundzustand Boltzmann Verteilung: Alle Moleküle sind im elektronischen Grundzustand (0) chwingungsgrundzustand

Mehr

Elektronenspektroskopie

Elektronenspektroskopie Elektronenspektroskopie Die Elektronenspektroskopie befasst sich mit der Wechselwirkung elektromagnetischer Strahlung des Wellenlängenbereichs von etwa 100 bis 800 nm mit Materie. Es werden dabei Elektronen

Mehr

ORGANISCHE CHEMIE 1. Stoff der 15. Vorlesung: Atommodell, Bindungsmodell...

ORGANISCHE CHEMIE 1. Stoff der 15. Vorlesung: Atommodell, Bindungsmodell... Stoff der 15. Vorlesung: Atommodell, Bindungsmodell... ORGANISCHE CHEMIE 1 15. Vorlesung, Dienstag, 07. Juni 2013 - Einelektronensysteme: H-Atom s,p,d Orbital - Mehrelektronensysteme: He-Atom Pauli-Prinzip,

Mehr

3 Mehrelektronensysteme

3 Mehrelektronensysteme 3.1 Lernziele 1. Sie sind in der Lage, den Aufbau des Periodensystems nachzuvollziehen. 2. Sie können die Elektronenverteilung eines Atoms angeben, wenn Sie seine Elektronenanzahl kennen. 3. Sie können

Mehr

Atome und Bindungen. Was sollen Sie mitnehmen?

Atome und Bindungen. Was sollen Sie mitnehmen? Was sollen Sie mitnehmen? Elementare Grundlagen: Atome und Bindungen Schalenmodell Orbitalmodell Periodensystem der Elemente Typische Eigenschaften der Elemente Die vier Bindungstypen Kovalente Bindung

Mehr

Aufbau von Atomen. Atommodelle Spektrum des Wasserstoffs Quantenzahlen Orbitalbesetzung Periodensystem

Aufbau von Atomen. Atommodelle Spektrum des Wasserstoffs Quantenzahlen Orbitalbesetzung Periodensystem Aufbau von Atomen Atommodelle Spektrum des Wasserstoffs Quantenzahlen Orbitalbesetzung Periodensystem Wiederholung Im Kern: Protonen + Neutronen In der Hülle: Elektronen Rutherfords Streuversuch (90) Goldatome

Mehr

2.4. Atome mit mehreren Elektronen

2.4. Atome mit mehreren Elektronen 2.4. Atome mit mehreren Elektronen 2.4.1. Das Heliumatom Wellenfunktion für das Heliumatom Nach dem Wasserstoffatom ist das Heliumatom das nächst einfachere Atom. Das Heliumatom besitzt einen Kern der

Mehr

Spin- und Ortsraum-Wellenfunktion

Spin- und Ortsraum-Wellenfunktion Spin- und Ortsraum-Wellenfunktion Der Spin,,lebt in einem unabhängigen abstrakten Raum. 02.07.2013 Michael Buballa 1 Spin- und Ortsraum-Wellenfunktion Der Spin,,lebt in einem unabhängigen abstrakten Raum.

Mehr

ACF-Vorkurs: Symmetrie in der Anorganischen Chemie

ACF-Vorkurs: Symmetrie in der Anorganischen Chemie ACF-Vorkurs: Symmetrie in der Anorganischen Chemie Stichworte: - Symmetrielemente - Punktgruppen - Charaktertafeln - Anwendung in der MO-Theorie I.1 Zur qualitativen Beschreibung genügt es oft, die Form

Mehr

6.10 Pauli-Verbot & Hundsche Regel Quantenmech. Ursprung

6.10 Pauli-Verbot & Hundsche Regel Quantenmech. Ursprung 6.0 Pauli-Verbot & Hundsche Regel Quantenmech. Ursprung 6.0. Nichtunterscheidbarkeit identischer Elementar-Teilchen Klassische Physik: Identische Teilchen lassen sich messtechnisch unterscheiden z.b. durch

Mehr

Atom-, Molekül- und Festkörperphysik

Atom-, Molekül- und Festkörperphysik Atom-, Molekül- und Festkörperphysik für LAK, SS 2013 Peter Puschnig basierend auf Unterlagen von Prof. Ulrich Hohenester 6. Vorlesung, 16. 5. 2013 Molekülspektren, Normalkoordinaten, Franck-Condonprinzip,

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Sarah Römer (roemer@em.uni-frankfurt.de) Simona Scheit (simona.scheit@googlemail.com) Juanma

Mehr

1 Atome mit mehreren Elektronen

1 Atome mit mehreren Elektronen 1 Atome mit mehreren Elektronen 1.1 Zentralfeldnäherungen Wir wollen uns in diesem Abschnitt die Elektronenkonfiguration (besser Zustandskonfiguration) von Atomen mit mehreren Elektronen klarmachen. Die

Mehr

Übersicht Teil 1 - Atomphysik

Übersicht Teil 1 - Atomphysik Übersicht Teil - Atomphysik Datum Tag Thema Dozent VL 3.4.3 Mittwoch Einführung Grundlegende Eigenschaften von Atomen Schlundt ÜB 5.4.3 Freitag Ausgabe Übung Langowski VL 8.4.3 Montag Kernstruktur des

Mehr

Die Erwartungswerte von Operatoren sind gegeben durch. (x, t)a (x, t) =h A i

Die Erwartungswerte von Operatoren sind gegeben durch. (x, t)a (x, t) =h A i Die Wahrscheinlichkeit, das System zu einem bestimmten Zeitpunkt in einem bestimmten Zustand anzutreffen, ist durch das Betragsquadrat der Wellenfunktion (x, t) 2 gegeben Die Erwartungswerte von Operatoren

Mehr

Das Bohrsche Atommodell

Das Bohrsche Atommodell Das Bohrsche Atommodell Auf ein Elektron, welches im elektrischen Feld eines Atomkerns kreist wirkt ein magnetisches Feld. Der Abstand zum Atomkern ist das Ergebnis, der elektrostatischen Coulomb-Anziehung

Mehr

13.1 Die Spektren zweiatomiger Moleküle

13.1 Die Spektren zweiatomiger Moleküle 3. Die pektren zweiatomiger Moleküle 39 3 Anhang 3. Die pektren zweiatomiger Moleküle Die Bezeichnung von Molekülbanden zweiatomiger Moleküle ist in der Literatur oft nicht einheitlich. Daher beschäftigt

Mehr

Gesamtdrehimpuls Spin-Bahn-Kopplung

Gesamtdrehimpuls Spin-Bahn-Kopplung Gesamtdrehimpuls Spin-Bahn-Kopplung > 0 Elektron besitzt Bahndrehimpuls L und S koppeln über die resultierenden Magnetfelder (Spin-Bahn-Kopplung) Vektoraddition zum Gesamtdrehimpuls J = L + S Für J gelten

Mehr

5 Mehrelektronensysteme

5 Mehrelektronensysteme 5.1 Übersicht und Lernziele Thema Im ersten Teil dieses Kapitels behandeln wir Atome, die mehr als ein Elektron besitzen. Anschliessend betrachten wir im zweiten Teil die Bildung von Bindungen zwischen

Mehr

Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil

Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil 1. Grundlagen der Quantenmechanik (a) Wellenfunktion: Die Wellenfunktion Ψ(x, t) beschreibt den quantenmechanischen Zustand eines Teilchens am Ort x zur

Mehr

Dr. Jan Friedrich Nr

Dr. Jan Friedrich Nr Übungen zu Experimentalphysik 4 - Lösungsvorschläge Prof. S. Paul Sommersemester 2005 Dr. Jan Friedrich Nr. 7 06.06.2005 Email Jan.Friedrich@ph.tum.de Telefon 089/289-2586 Physik Department E8, Raum 3564

Mehr

M. Musso: Physik II Teil 37 Moleküle Seite 1

M. Musso: Physik II Teil 37 Moleküle Seite 1 M. Musso: Physik II Teil 37 Moleküle Seite 1 Tipler-Mosca Physik Moderne Physik 37. Moleküle (Molecules) 37.1 Die chemische Bindung (Molecular bonding) 37. Mehratomige Moleküle (Polyatomic molecules) 37.3

Mehr

Seminar zum Praktikum Anorganische Chemie III III

Seminar zum Praktikum Anorganische Chemie III III Seminar zum Praktikum Anorganische Chemie III III Metallorganische Chemie Dr. J. Wachter IR-Teil3 www.chemie.uni-regensburg.de/anorganische_chemie/scheer/lehre.html www.chemie.uniregensburg.de/anorganische_chemie/wachter/lehre.html

Mehr

Theoretische Chemie II. (Gruppentheorie)

Theoretische Chemie II. (Gruppentheorie) Theoretische Chemie II (Gruppentheorie) Modul BCh 4.4 Sommersemester 2016 i Vorwort Dieses Skript enthält die wesentlichen Inhalte, mathematischen Formeln und Abbildungen der Vorlesung Theoretische Chemie

Mehr

Da Atome viele ununterscheidbare Elektronen besitzen, sind ihre Zustände durch interelektronische Coulomb- und Austausch-Wechselwirkungen bestimmt.

Da Atome viele ununterscheidbare Elektronen besitzen, sind ihre Zustände durch interelektronische Coulomb- und Austausch-Wechselwirkungen bestimmt. 12 Moleküle Slide 267 Vorbemerkungen Da Atome viele ununterscheidbare Elektronen besitzen, sind ihre Zustände durch interelektronische Coulomb- und Austausch-Wechselwirkungen bestimmt. Je 2 Elektronen

Mehr

Moderne Methoden in der Spektroskopie

Moderne Methoden in der Spektroskopie J. Michael Hollas Moderne Methoden in der Spektroskopie Übersetzt von Martin Beckendorf und Sabine Wohlrab Mit 244 Abbildungen und 72 Tabellen vieweg V nhaltsverzeichnis orwort zur ersten Auflage orwort

Mehr

FERIENKURS EXPERIMENTALPHYSIK 4

FERIENKURS EXPERIMENTALPHYSIK 4 FERIENKURS EXPERIMENTALPHYSIK 4 Musterlösung 3 - Mehrelektronensysteme Hannah Schamoni 1 Hundsche Regeln Ein Atom habe die Elektronenkonfiguration Ne3s 3p 6 3d 6 4s. Leite nach den Hundschen Regeln die

Mehr

Teil 1 Schwingungsspektroskopie (Raman-Spektroskopie) Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17

Teil 1 Schwingungsspektroskopie (Raman-Spektroskopie) Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 Teil 1 Schwingungsspektroskopie (Raman-Spektroskopie) Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 www.ruhr-uni-bochum.de/chirality Rückblick: Die Essentials der letzten Vorlesung Funktionelle Gruppen

Mehr

Molekülphysik und Quantenchemie

Molekülphysik und Quantenchemie Hermann Haken Hans Christoph Wolf Molekülphysik und Quantenchemie Einführung in die experimentellen und theoretischen Grundlagen Dritte, überarbeitete und erweiterte Auflage Mit 300 Abbildungen, 43 Tabellen,

Mehr

Hinweise zur Zusatzaufgabe Permanentes magnetisches Moment

Hinweise zur Zusatzaufgabe Permanentes magnetisches Moment 1 Hinweise zur Zusatzaufgabe Permanentes magnetisches Moment Zusatzaufgaben zu Versuch 316 : 1. Berechnen Sie das magnetische Moment des Co + - Ions.. Welche Niveaus der Valenzelektronen sind beim Co +

Mehr

Eigenschaften des Photons

Eigenschaften des Photons Eigenschaften des Photons Das Photon ist das Energiequant der elektromagnetischen Wellen, d.h. Licht hat wie von Einstein postuliert nicht nur Wellencharakter, sondern auch Teilchencharakter mit den oben

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Topic: Helium-Atom Vorlesung: Mo 10h-12h, Do9h-10h Übungen: Do 8h-9h Web site: http://www.theochem.uni-frankfurt.de/tc1

Mehr

Günter Baars E-Lern- und Lehrmedium: Quantenchemie und Chemie farbiger Stoffe Modul: Quantenchemie und chemische Bindung Übungen mit Lösungen

Günter Baars E-Lern- und Lehrmedium: Quantenchemie und Chemie farbiger Stoffe Modul: Quantenchemie und chemische Bindung Übungen mit Lösungen Günter Baars E-Lern- und Lehrmedium: Quantenchemie und Chemie farbiger Stoffe Modul: Quantenchemie und chemische Bindung Übungen mit Lösungen Korrektorat: Dina Baars, Bern Illustrationen: Christoph Frei,

Mehr

2.3. Atome in äusseren Feldern

2.3. Atome in äusseren Feldern .3. Atome in äusseren Feldern.3.1. Der Zeeman-Effekt Nobelpreis für Physik 19 (...researches into the influence of magnetism upon radiation phenomena ) H. A. Lorentz P. Zeeman Die Wechselwirkung eines

Mehr

VL 21 VL Periodensystem VL Röntgenstrahlung VL Homonukleare Moleküle VL Heteronukleare Moleküle

VL 21 VL Periodensystem VL Röntgenstrahlung VL Homonukleare Moleküle VL Heteronukleare Moleküle VL 21 VL 19 20.1. Periodensystem VL 20 21.1. Röntgenstrahlung VL 21 22.1. Homonukleare Moleküle VL 22 23.1. Heteronukleare Moleküle Wim de Boer, Karlsruhe Atome und Moleküle, 02.07.2013 1 Vorlesung 22:

Mehr

Eigenschaften des Photons

Eigenschaften des Photons Eigenschaften des Photons Das Photon ist das Energiequant der elektromagnetischen Wellen, d.h. Licht hat wie von Einstein postuliert nicht nur Wellencharakter, sondern auch Teilchencharakter mit den oben

Mehr

Einführung in die Schwingungsspektroskopie

Einführung in die Schwingungsspektroskopie Einführung in die Schwingungsspektroskopie Quelle: Frederik Uibel und Andreas Maurer, Uni Tübingen 2004 Molekülbewegungen Translation: Rotation: Die Bewegung des gesamten Moleküls ls in die drei Raumrichtungen.

Mehr

Das Lewis-Modell zur Erklärung kovalenter Bindungen

Das Lewis-Modell zur Erklärung kovalenter Bindungen Das Lewis-Modell zur Erklärung kovalenter Bindungen Erarbeiten Sie sich, innerhalb der Expertengruppe, einen Überblick über das Lewis-Modell zur Erklärung kovalenter Bindungen! Gehen Sie zusätzlich auf

Mehr

Basiswissen Chemie. Vorkurs des MINTroduce-Projekts

Basiswissen Chemie. Vorkurs des MINTroduce-Projekts Basiswissen Chemie Vorkurs des MINTroduce-Projekts Christoph Wölper christoph.woelper@uni-due.de Sprechzeiten (Raum: S07 S00 C24 oder S07 S00 D27) Wechselwirkungen zwischen Atomen Was bisher geschah Quantenmechanisches

Mehr

UNIVERSITÄT GREIFSWALD. Mathematisch-Naturwissenschaftliche Fakultät INSTITUT FÜR BIOCHEMIE. Arbeitskreis Biophysikalische Chemie

UNIVERSITÄT GREIFSWALD. Mathematisch-Naturwissenschaftliche Fakultät INSTITUT FÜR BIOCHEMIE. Arbeitskreis Biophysikalische Chemie UNIVERSITÄT GREIFSWALD Mathematisch-Naturwissenschaftliche Fakultät INSTITUT FÜR BIOCHEMIE Arbeitskreis Biophysikalische Chemie Prof. Dr. Walter Langel Modelle für elektronische Zustände Einfachstes klassisches

Mehr

EXKURS: Ligandenfeld-Theorie (bitte lesen: Riedel )

EXKURS: Ligandenfeld-Theorie (bitte lesen: Riedel ) EXKURS: Ligandenfeld-Theorie (bitte lesen: Riedel 5.4.6.1-3) 1 1. Definition eines Komplexes (A. Werner ca. 1900): Ein Komplex ist eine Koordinationsverbindung, in der das Zentralatom (eine Lewis-Säure)

Mehr

Atome und Bindungen. Was sollen Sie mitnehmen?

Atome und Bindungen. Was sollen Sie mitnehmen? Was sollen Sie mitnehmen? Elementare Grundlagen: Atome und Bindungen Schalenmodell Orbitalmodell Periodensystem der Elemente Typische Eigenschaften der Elemente Die vier Bindungstypen Kovalente Bindung

Mehr