Das quantenmechanische Atommodell

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Das quantenmechanische Atommodell"

Transkript

1 Ende 93 konzipierte de Broglie seine grundlegenden Ideen über die Dualität von Welle und Korpuskel. Albert Einstein hatte schon 905 von den korpuskularen Eigenschaften des Lichtes gesprochen; de Broglie ordnete nun umgekehrt jedem materiellen Teilchen mit der Energie E und dem Impuls p eine Wellenerscheinung zu. ERWIN SCHRÖDINGER war ein österreichischer Physiker. Aufbauend auf der von DE - BROGLIE stammenden Vorstellung der Materiewellen und daraus resultierend des Welle- Teilchen- Dualismus entwickelte SCHRÖDINGER die SCHRÖDINGER- Gleichung. Gemeinsam mit DIRAC erhielt er dafür 933 den Nobelpreis für Physik. Zu den wichtigsten Erfolgen zählt die Born-Oppenheimer-Näherung, welche im Jahre 98 zum Orbitalmodell führte. Er entwickelte die statistische Interpretation der Wellenfunktion, die später als Kopenhagener Interpretation bekannt wurde und für die er 954 den Nobelpreis für Physik erhielt. Bereits 948 wurde ihm die Max-Planck-Medaille verliehen, 950 die Hughes- Medaille.

2 Orbitale und Quantenzahlen Die Wellenfunktion eines Elektrons in Abhängigkeit von den Raumkoordinaten (x, y, z) nennt man Orbitale. Diese Orbitale beschreiben den Raum, in dem sich ein Elektron mit einer Wahrscheinlichkeit von 90% aufhält. Orbitale sind das quantenmechanische Äquivalent der Elektronenschalen, entsprechen diskreten Energieniveaus und werden durch Quantenzahlen charakterisiert. Im dreidimensionalen Raum benötigt man zur Lösung der Schrödinger - Gleichung drei Quantenzahlen. Aus diesem Grund ist die Magnetquantenzahl m eingeführt worden. Da jedoch jedes Orbital mit zwei Elektronen besetzt werden kann musste noch eine vierte, die Spinquantenzahl n eingeführt werden.

3 Orbitale und Quantenzahlen Quantenzahl Nebenquantenzahl Hauptquantenzahl Magnetquantenzahl Spinquantenzahl Werte n =,, 7 L = 0,,, 3 L <= (n-) m = -L -, 0, L -L <= m <= L s = +½ oder -½ Bedeutung Bestimmt die Größe des Orbitals und die Orbitalenergie. Je größer n desto größer der Raum, dem ein Elektron zur Verfügung steht und desto geringer ist die Elektronendichte Ψ Sagt etwas über die Gestalt des Orbitals aus wie kugelförmig (s Orbitale) oder hantelförmig (p Orbitale) Bestimmt die Orientierung des Orbitals im Raum wie die drei p Orbitale p X, p Y, p Z, die auf den Achsen des kartesischen Raumkoordinatensystems liegen Bezeichnet den Spin des Elektrons 3

4 Darstellung der Orbitale Problem: Orbitale müssen als vierdimensionales Gebilde dargestellt werden. Lösung: Zweiteilung der Darstellung Im Polarkoordinatensystem wird die Wellenfunktion in einen radialabhängigen Teil R n,l (r) und einen winkelabhängigen Teil Ψ l,m (νφ) aufgespalten. Aus der Darstellung Ψ² = ist die Wahrscheinlichkeit zu entnehmen, das Elektron in einer Kugelschale mit dem Radius r anzutreffen. Sie beschreibt die Änderung der Elektronendichte mit steigendem Abstand zum Kern und hängt von den Quantenzahlen n und l ab. 4

5 Darstellung der Orbitale Darstellung des radialabhängigen Teils der Wellenfunktion Ψ². Ψ s s Orbital n = l = 0 Ψ s s Orbital n = l = 0 r 0 r r 0 r 5

6 Darstellung der Orbitale Darstellung des radialabhängigen Teils der Wellenfunktion Ψ². A + B AB Ψ Ψ r B Bohrscher Atomradius r r B r 6

7 Darstellung der Orbitale Darstellung des winkelabhängigen Teils der Wellenfunktion Ψ². Aus der winkelabhängigen Darstellung Ψ² = Y² ist die Gestalt des Raumes zu entnehmen, in dem sich das Elektron aufhält. Sie beschreibt die Geometrie der Orbitale und die Ausrichtung im Raum in Abhängigkeit von den Quantenzahlen l und m. Bei p- und d- Orbitalen ist die Magnetquantenzahl m sehr wichtig. Bei s- Orbitalen sind l und m immer Null. Dadurch ist hier nur die Kugelgeometrie möglich. Entartete Systeme: In Einelektronensystemen gibt es mehrere Lösungen der Schrödinger Gleichung mit gleicher Hauptquantenzahl, die den gleichen Energieeigenwert besitzen. Die entsprechenden Orbitale werden als entartet bezeichnet 7

8 Darstellung der Orbitale Darstellung des winkelabhängigen Teils der Wellenfunktion Ψ². x x x y y y z s Orbitale z p Orbitale z d - Orbitale x x y z y z 8

9 Darstellung der Orbitale Darstellung des winkelabhängigen Teils der Wellenfunktion Ψ². 9

10 Darstellung der Orbitale Darstellung des winkelabhängigen Teils der Wellenfunktion Ψ². Die Quantenzahlen bestimmen auch die Energie der Orbitale. In erster Linie hängt die Energie von der Hauptquantenzahl n ab, d. h. dem Abstand der negativen Elektronen vom positiv geladenen Atomkern 0

11 Elektronenkonfiguration von Mehrelektronensystemen Elektronenverteilung für Energieniveaus mit n = bis 3 Fast alle Atome oder Ionen sind Mehrelektronensysteme. Die Verteilung der Elektronen auf die Orbitalen ist die Elektronenkonfiguration. n 3 l l m Orbitale s s p 3s 3p 3d s Elektronen 6 6 0

12 Elektronenkonfiguration von Mehrelektronensystemen Die Verteilung der Elektronen auf die Atomorbitale (AO) erfolgt immer in dem Bestreben, einen energetisch stabilen Zustand zu erreichen. Am stabilsten ist der Zustand minimaler Energie. Nach dem Aufbauprinzip werden die Elektronen so in die Atome eingefügt, dass zunächst die Kernnächsten, energetisch stabilsten Niveaus mit Elektronen besetzt werden.

13 E Elektronenkonfiguration von Mehrelektronensystemen 5f Orbitale 5d 4f 7 Anzahl Elektronen 0 4 n = 5 n = 4 5p 4d 5s 4p 3d 4s n = 3 3p 3s 3 6 n = p s 3 6 n = s 3

14 Elektronenkonfiguration von Mehrelektronensystemen Bei der Besetzung der Energieniveaus gelten neben dem Aufbauprinzip noch zwei weitere grundlegende Prinzipien:. Die hundsche Regel verlangt, dass energiegleiche Orbitale zunächst jeweils mit einem Elektron und erst danach unter Spinpaarung schrittweise mit zwei Elektronen besetzt werden.. Das Pauli Prinzip besagt, dass ein durch die drei Quantenzahlen n, l, und m charakterisiertes Orbital maximal mit zwei Elektronen mit entgegen gesetztem Spin besetzt werden kann. 4

15 Elektronenkonfiguration von Mehrelektronensystemen Die Besetzung der Orbitale mit Elektronen nach dem Aufbauprinzip, der hundschen Regel und dem Pauli Prinzip führt zur Elektronenkonfiguration der Atome und Ionen. Schreibweise für die Elektronenbesetzung Nach einer älteren Schreibweise wird die Anzahl der Elektronen pro Schale als Hochzahl dargestellt. Beispiel Siliziumatom mit 4 Elektronen: s²s²p 6 3s²3p² 5

Atommodell. Atommodell nach Bohr und Sommerfeld Für sein neues Atommodell stellte Bohr folgende Postulate auf:

Atommodell. Atommodell nach Bohr und Sommerfeld Für sein neues Atommodell stellte Bohr folgende Postulate auf: Für sein neues Atommodell stellte Bohr folgende Postulate auf: Elektronen umkreisen den Kern auf bestimmten Bahnen, wobei keine Energieabgabe erfolgt. Jede Elektronenbahn entspricht einem bestimmten Energieniveau

Mehr

2. Elementare Stöchiometrie I Definition und Gesetze, Molbegriff, Konzentrationseinheiten

2. Elementare Stöchiometrie I Definition und Gesetze, Molbegriff, Konzentrationseinheiten Inhalt: 1. Regeln und Normen Modul: Allgemeine Chemie 2. Elementare Stöchiometrie I Definition und Gesetze, Molbegriff, Konzentrationseinheiten 3.Bausteine der Materie Atomkern: Elementarteilchen, Kernkräfte,

Mehr

Wiederholung der letzten Vorlesungsstunde:

Wiederholung der letzten Vorlesungsstunde: Wiederholung der letzten Vorlesungsstunde: Das (wellen-) quantenchemische Atommodell Orbitalmodell Beschreibung atomarer Teilchen (Elektronen) durch Wellenfunktionen, Wellen, Wellenlänge, Frequenz, Amplitude,

Mehr

c = Ausbreitungsgeschwindigkeit (2, m/s) λ = Wellenlänge (m) ν = Frequenz (Hz, s -1 )

c = Ausbreitungsgeschwindigkeit (2, m/s) λ = Wellenlänge (m) ν = Frequenz (Hz, s -1 ) 2.3 Struktur der Elektronenhülle Elektromagnetische Strahlung c = λ ν c = Ausbreitungsgeschwindigkeit (2,9979 10 8 m/s) λ = Wellenlänge (m) ν = Frequenz (Hz, s -1 ) Quantentheorie (Max Planck, 1900) Die

Mehr

Atome und ihre Eigenschaften

Atome und ihre Eigenschaften Atome und ihre Eigenschaften Vom Atomkern zum Atom - von der Kernphysik zur Chemie Die Chemie beginnt dort, wo die Temperaturen soweit gefallen sind, daß die positiv geladenen Atomkerne freie Elektronen

Mehr

10.7 Moderne Atommodelle

10.7 Moderne Atommodelle 10.7 Moderne Atommodelle Zu Beginn des 20. Jahrhunderts entwickelte Niels Bohr sein berühmtes Bohrsches Atommodell. Mit diesem Modell konnten die Atomhüllen von einfachen Atomen wie dem Wasserstoffatom

Mehr

Daltonsche Atomhypothese (1808)

Daltonsche Atomhypothese (1808) Daltonsche Atomhypothese (1808) Chemische Elemente bestehen aus kleinsten, chemisch nicht weiter zerlegbaren Teilchen, den Atomen. Alle Atome eines Elementes haben untereinander gleiche Masse, während

Mehr

Grundlagen der Chemie Allgemeine Chemie Teil 2

Grundlagen der Chemie Allgemeine Chemie Teil 2 Allgemeine Chemie Teil 2 Prof. Annie Powell KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu AO-Theorie Wellenmechanik So wie Licht

Mehr

Das Bohrsche Atommodell

Das Bohrsche Atommodell Das Bohrsche Atommodell Auf ein Elektron, welches im elektrischen Feld eines Atomkerns kreist wirkt ein magnetisches Feld. Der Abstand zum Atomkern ist das Ergebnis, der elektrostatischen Coulomb-Anziehung

Mehr

Atommodell führte Rutherford den nach ihm benannten Streuversuch durch. Dabei bestrahlte er eine dünne Goldfolie mit α Teilchen.

Atommodell führte Rutherford den nach ihm benannten Streuversuch durch. Dabei bestrahlte er eine dünne Goldfolie mit α Teilchen. Atommodell nach Rutherford 1911 führte Rutherford den nach ihm benannten Streuversuch durch. Dabei bestrahlte er eine dünne Goldfolie mit α Teilchen. Beobachtung: Fast alle Teilchen fliegen ungestört durch.

Mehr

Das Periodensystem der Elemente

Das Periodensystem der Elemente Q34 LK Physik 17. November 2015 Aufbau Die ermittelten Zusammenhänge der Elektronenzustände in der Atomhülle sollen dazu dienen, den der Elemente zu verstehen. Dem liegen folgende Prinzipien zugrunde:

Mehr

Orbitalmodell im gymnasialen Chemieunterricht MINT-LERNZENTRUM

Orbitalmodell im gymnasialen Chemieunterricht MINT-LERNZENTRUM Orbitalmodell im gymnasialen Chemieunterricht Atom @ Google Kugelwolkenmodell Schrödingergleichung Orbitalmodell Ausgangslage Experiment Folgerung Streuversuch von E. Rutherford (1911) Kern-Hülle-Modell

Mehr

3. Bausteine der Materie: Atomhülle. Form der Atomorbitale. s-orbitale kugelsymmetrische Elektronendichteverteilung

3. Bausteine der Materie: Atomhülle. Form der Atomorbitale. s-orbitale kugelsymmetrische Elektronendichteverteilung 3. Bausteine der Materie: Atomhülle Form der Atomorbitale s-orbitale kugelsymmetrische Elektronendichteverteilung 1s 2s 3d - Orbitale 3. Bausteine der Materie: Atomhülle 3. Bausteine der Materie: Atomhülle

Mehr

Orbitalmodell SPF BCH am

Orbitalmodell SPF BCH am Orbitalmodell Inhaltsverzeichnis Sie können sich unter einer elektromagnetischen Welle etwas vorstellen. Sie kennen typische Eigenschaften von Wellen im Vergleich zu Teilchen-Strahlen...2 Sie können die

Mehr

Atombau, Elektronenkonfiguration und das Orbitalmodell:

Atombau, Elektronenkonfiguration und das Orbitalmodell: Bohrsches Atommodell: Atombau, Elektronenkonfiguration und das Orbitalmodell: Nachdem Rutherford mit seinem Streuversuch bewiesen hatte, dass sich im Kern die gesamte Masse befindet und der Kern zudem

Mehr

Atommodelle und Periodensystem

Atommodelle und Periodensystem Atommodelle und Periodensystem 1 Kern-Hülle-Modell (Rutherford) a) Streuversuch V D : α-strahlenquelle dünne Goldfolie aus nur einer Schicht Atome Film B : c Es werden nur wenige Teilchen der α-strahlen

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Probeklausur Markus Perner, Markus Kotulla, Jonas Funke Aufgabe 1 (Allgemeine Fragen). : (a) Welche Relation muss ein Operator erfüllen damit die dazugehörige Observable

Mehr

Bundesrealgymnasium Imst. Chemie Klasse 7. Atommodell

Bundesrealgymnasium Imst. Chemie Klasse 7. Atommodell Bundesrealgymnasium Imst Chemie 2- Klasse 7 Atommodell Dieses Skriptum dient der Unterstützung des Unterrichtes - es kann den Unterricht aber nicht ersetzen, da im Unterricht der Lehrstoff detaillierter

Mehr

10 Teilchen und Wellen. 10.1 Strahlung schwarzer Körper

10 Teilchen und Wellen. 10.1 Strahlung schwarzer Körper 10 Teilchen und Wellen Teilchen: m, V, p, r, E, lokalisierbar Wellen: l, f, p, E, unendlich ausgedehnt (harmonische Welle) Unterscheidung: Wellen interferieren 10.1 Strahlung schwarzer Körper JEDER Körper

Mehr

Entwicklung der Atommodelle

Entwicklung der Atommodelle Entwicklung der Atommodelle Entwicklung der Atommodelle Demokrit 460 v Chr. Nur scheinbar hat ein Ding eine Farbe, nur scheinbar ist es süß oder bitter; in Wirklichkeit gibt es nur Atome im leeren Raum.

Mehr

[ H, L 2 ]=[ H, L z. ]=[ L 2, L z. U r = Warum haben wir soviel Zeit mit L 2 verbracht? = x 2 2. r 1 2. y 2 2. z 2 = 2. r 2 2 r

[ H, L 2 ]=[ H, L z. ]=[ L 2, L z. U r = Warum haben wir soviel Zeit mit L 2 verbracht? = x 2 2. r 1 2. y 2 2. z 2 = 2. r 2 2 r Warum haben wir soviel Zeit mit L 2 verbracht? = x 2 2 y 2 2 z 2 = 2 r 2 2 r r 1 2 L r 2 ħ 2 11. Das Wasserstoffatom H = p2 2 U r μ = Masse (statt m, da m später als Quantenzahl verwendet wird) U r = e2

Mehr

Vorlesungsteil II - Atombau und Periodensystem

Vorlesungsteil II - Atombau und Periodensystem Chemie Zusammenfassung Vorlesungsteil II - Atombau und Periodensystem Zwei wichtige Formeln dazu: Coulombkraft: Schrödinger Gleichung: beschreibt die Kraft zwischen zwei kugelsymmetrisch verteilten elektrischen

Mehr

Welche Prinzipien bestimmen die quantenmechanischen Zustände, beschrieben durch ihre Quantenzahlen, die die Elektronen eines Atoms einnehmen?

Welche Prinzipien bestimmen die quantenmechanischen Zustände, beschrieben durch ihre Quantenzahlen, die die Elektronen eines Atoms einnehmen? phys4.021 Page 1 12. Mehrelektronenatome Fragestellung: Betrachte Atome mit mehreren Elektronen. Welche Prinzipien bestimmen die quantenmechanischen Zustände, beschrieben durch ihre Quantenzahlen, die

Mehr

Periodensystem der Elemente (PSE) Z = Ordnungszahl, von 1 bis 112 (hier)

Periodensystem der Elemente (PSE) Z = Ordnungszahl, von 1 bis 112 (hier) 1 1.0079 H 3 Li 6.941 19 39.098 K 23 50.942 V 27 58.933 Co 73 180.95 Ta 78 195.08 Pt 82 207.2 Pb 21 44.956 Sc 25 54.938 Mn 29 63.546 Cu 33 74.922 As 7 14.007 N 75 186.21 Re 80 200.59 Hg 84 208.98 Po* 55

Mehr

Die Nebenquantenzahl oder Bahndrehimpulsquantenzahl l kann ganzzahlige Werte von 0 bis n - 1 annehmen. Jede Hauptschale unterteilt sich demnach in n

Die Nebenquantenzahl oder Bahndrehimpulsquantenzahl l kann ganzzahlige Werte von 0 bis n - 1 annehmen. Jede Hauptschale unterteilt sich demnach in n 1 1. Was sind Orbitale? Wie sehen die verschiedenen Orbital-Typen aus? Bereiche mit einer bestimmten Aufenthaltswahrscheinlichkeit eines Elektrons werden als Orbitale bezeichnet. Orbitale sind keine messbaren

Mehr

29. Lektion. Atomaufbau. 39. Atomaufbau und Molekülbindung

29. Lektion. Atomaufbau. 39. Atomaufbau und Molekülbindung 29. Lektion Atomaufbau 39. Atomaufbau und Molekülbindung Lernziele: Atomare Orbitale werden von Elektronen nach strengen Regeln der QM aufgefüllt. Ein Orbital darf von nicht mehr als zwei Elektronen besetzt

Mehr

4 Die Atombindung im Wasserstoff-Molekül

4 Die Atombindung im Wasserstoff-Molekül 4.1 Übersicht und Lernziele Thema Bis jetzt haben wir nur von Atomen gesprochen. In der Chemie beschäftigen wir uns aber normalerweise mit Molekülen oder Ionen. Wir wollen deshalb in diesem Kapitel auf

Mehr

Aufbau von Atomen. Atommodelle Spektrum des Wasserstoffs Quantenzahlen Orbitalbesetzung Periodensystem

Aufbau von Atomen. Atommodelle Spektrum des Wasserstoffs Quantenzahlen Orbitalbesetzung Periodensystem Aufbau von Atomen Atommodelle Spektrum des Wasserstoffs Quantenzahlen Orbitalbesetzung Periodensystem Wiederholung Im Kern: Protonen + Neutronen In der Hülle: Elektronen Rutherfords Streuversuch (90) Goldatome

Mehr

10. Das Wasserstoff-Atom Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell:

10. Das Wasserstoff-Atom Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell: phys4.016 Page 1 10. Das Wasserstoff-Atom 10.1.1 Das Spektrum des Wasserstoff-Atoms im Bohr-Modell: Bohr-Modell liefert eine ordentliche erste Beschreibung der grundlegenden Eigenschaften des Spektrums

Mehr

ORGANISCHE CHEMIE 1. Stoff der 15. Vorlesung: Atommodell, Bindungsmodell...

ORGANISCHE CHEMIE 1. Stoff der 15. Vorlesung: Atommodell, Bindungsmodell... Stoff der 15. Vorlesung: Atommodell, Bindungsmodell... ORGANISCHE CHEMIE 1 15. Vorlesung, Dienstag, 07. Juni 2013 - Einelektronensysteme: H-Atom s,p,d Orbital - Mehrelektronensysteme: He-Atom Pauli-Prinzip,

Mehr

Erratum: Potentialbarriere

Erratum: Potentialbarriere Erratum: Potentialbarriere E

Mehr

Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil

Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil 1. Grundlagen der Quantenmechanik (a) Wellenfunktion: Die Wellenfunktion Ψ(x, t) beschreibt den quantenmechanischen Zustand eines Teilchens am Ort x zur

Mehr

FERIENKURS EXPERIMENTALPHYSIK 4. Mehrelektronensysteme

FERIENKURS EXPERIMENTALPHYSIK 4. Mehrelektronensysteme FERIENKURS EXPERIMENTALPHYSIK 4 Vorlesung 3 am 04.09.2013 Mehrelektronensysteme Hannah Schamoni, Susanne Goerke Inhaltsverzeichnis 1 Das Helium-Atom 2 1.1 Grundlagen und Ortswellenfunktion........................

Mehr

mentor Abiturhilfe: Chemie Oberstufe

mentor Abiturhilfe: Chemie Oberstufe mentor Abiturhilfen mentor Abiturhilfe: Chemie Oberstufe Organische Chemie. Aufbauwissen von eribert Rampf, Sandra Schaumann-Eckel 1. Auflage mentor Abiturhilfe: Chemie Oberstufe Rampf / Schaumann-Eckel

Mehr

2.4. Atome mit mehreren Elektronen

2.4. Atome mit mehreren Elektronen 2.4. Atome mit mehreren Elektronen 2.4.1. Das Heliumatom Wellenfunktion für das Heliumatom Nach dem Wasserstoffatom ist das Heliumatom das nächst einfachere Atom. Das Heliumatom besitzt einen Kern der

Mehr

4. Aufbau der Elektronenhülle 4.1. Grundlagen 4.2. Bohrsches Atommodell 4.3. Grundlagen der Quantenmechanik 4.4. Quantenzahlen 4.5.

4. Aufbau der Elektronenhülle 4.1. Grundlagen 4.2. Bohrsches Atommodell 4.3. Grundlagen der Quantenmechanik 4.4. Quantenzahlen 4.5. 4. Aufbau der Elektronenhülle 4.. Grundlagen 4.. Bohrsches Atommodell 4.3. Grundlagen der Quantenmechanik 4.4. Quantenzahlen 4.5. Atomorbitale 4. Aufbau der Elektronenhülle 4.. Grundlagen 4.. Bohrsches

Mehr

2 Die Atombindung im Wasserstoff-Molekül

2 Die Atombindung im Wasserstoff-Molekül 2.1 Lernziele 1. Sie wissen, wie eine chemische Bindung zwischen zwei Wasserstoff-Atomen zustande kommt. 2. Sie können den bindenden vom antibindenden Zustand unterscheiden. 3. Sie wissen, weshalb das

Mehr

Werkstoffe in der Elektrotechnik

Werkstoffe in der Elektrotechnik Hansgeorg Hofmann Jürgen Spindler Werkstoffe in der Elektrotechnik Grundlagen Struktur Eigenschaften Prüfung Anwendung Technologie 7., neu bearbeitete Auflage 1 Grundlagen 1.0 Überblick Physik: Lehre von

Mehr

Günter Baars E-Lern- und Lehrmedium: Quantenchemie und Chemie farbiger Stoffe Modul: Quantenchemie und chemische Bindung Übungen mit Lösungen

Günter Baars E-Lern- und Lehrmedium: Quantenchemie und Chemie farbiger Stoffe Modul: Quantenchemie und chemische Bindung Übungen mit Lösungen Günter Baars E-Lern- und Lehrmedium: Quantenchemie und Chemie farbiger Stoffe Modul: Quantenchemie und chemische Bindung Übungen mit Lösungen Korrektorat: Dina Baars, Bern Illustrationen: Christoph Frei,

Mehr

2.4. Atome mit mehreren Elektronen

2.4. Atome mit mehreren Elektronen 2.4. Atome mit mehreren Elektronen 2.4.1. Das Heliumatom Wellenfunktion für das Heliumatom Nach dem Wasserstoffatom ist das Heliumatom das nächst einfachere Atom. Das Heliumatom besitzt einen Kern der

Mehr

CHEMIE KAPITEL 1 AUFBAU DER MATERIE. Timm Wilke. Georg-August-Universität Göttingen. Wintersemester 2014 / 2015

CHEMIE KAPITEL 1 AUFBAU DER MATERIE. Timm Wilke. Georg-August-Universität Göttingen. Wintersemester 2014 / 2015 CHEMIE KAPITEL 1 AUFBAU DER MATERIE Timm Wilke Georg-August-Universität Göttingen Wintersemester 2014 / 2015 Folie 2 Atombau und Elementarteilchen Folie 3 Atommasse und Stoffmenge Stoffmenge [mol]: 12,000

Mehr

Die zu dieser Zeit bekannten 63 Elemente konnten trotzdem nach ihren chemischen Eigenschaften in einem periodischen System angeordnet werden.

Die zu dieser Zeit bekannten 63 Elemente konnten trotzdem nach ihren chemischen Eigenschaften in einem periodischen System angeordnet werden. phys4.022 Page 1 12.4 Das Periodensystem der Elemente Dimitri Mendeleev (1869): Ordnet man die chemischen Elemente nach ihrer Ladungszahl Z, so tauchen Elemente mit ähnlichen chemischen und physikalischen

Mehr

Der Gesamtbahndrehimpuls ist eine Erhaltungsgrösse (genau wie in der klassischen Mechanik).

Der Gesamtbahndrehimpuls ist eine Erhaltungsgrösse (genau wie in der klassischen Mechanik). phys4.017 Page 1 10.4.2 Bahndrehimpuls des Elektrons: Einheit des Drehimpuls: Der Bahndrehimpuls des Elektrons ist quantisiert. Der Gesamtbahndrehimpuls ist eine Erhaltungsgrösse (genau wie in der klassischen

Mehr

Atome und Periodensystem

Atome und Periodensystem Kapitel 1 Atome und Periodensystem Lernziele Aufbau und Bestandteile der Atome Isotope Periodensystem der chemischen Elemente Atomaufbau und Isotope Nach dem Atommodell von Rutherford besteht das Atom

Mehr

Das Rutherfordsche Atommodelle

Das Rutherfordsche Atommodelle Dieses Lernskript soll nochmals die einzelnen Atommodelle zusammenstellen und die Bedeutung der einzelnen Atommdelle veranschaulichen. Das Rutherfordsche Atommodelle Entstehung des Modells Rutherford beschoss

Mehr

Periodensystem der Elemente (PSE) Z = Ordnungszahl, von 1 bis 112 (hier) woher kommen Zeilen und Spalten?

Periodensystem der Elemente (PSE) Z = Ordnungszahl, von 1 bis 112 (hier) woher kommen Zeilen und Spalten? 1 1.0079 H 3 Li 6.941 19 39.098 K 23 50.942 V 27 58.933 Co 73 180.95 Ta 78 195.08 Pt 82 207.2 Pb 21 44.956 Sc 25 54.938 Mn 29 63.546 Cu 33 74.922 As 7 14.007 N 75 186.21 Re 80 200.59 Hg 84 208.98 Po* 55

Mehr

Die Schrödingergleichung II - Das Wasserstoffatom

Die Schrödingergleichung II - Das Wasserstoffatom Die Schrödingergleichung II - Das Wasserstoffatom Das Wasserstoffatom im Bohr-Sommerfeld-Atommodell Entstehung des Emissionslinienspektrums von Wasserstoff Das Bohr-Sommerfeld sche Atommodell erlaubt für

Mehr

Das Wasserstoffatom Energiestufen im Atom

Das Wasserstoffatom Energiestufen im Atom 11. 3. Das Wasserstoffatom 11.3.1 Energiestufen im Atom Vorwissen: Hg und Na-Dampflampe liefern ein charakteristisches Spektrum, das entweder mit einem Gitter- oder einem Prismenspektralapparat betrachtet

Mehr

Vom Atombau zum Königreich der Elemente

Vom Atombau zum Königreich der Elemente Vom Atombau zum Königreich der Elemente Wiederholung: Elektronenwellenfunktionen (Orbitale) Jedes Orbital kann durch einen Satz von Quantenzahlen n, l, m charakterisiert werden Jedes Orbital kann maximal

Mehr

5 Mehrelektronensysteme

5 Mehrelektronensysteme 5.1 Übersicht und Lernziele Thema Im ersten Teil dieses Kapitels behandeln wir Atome, die mehr als ein Elektron besitzen. Anschliessend betrachten wir im zweiten Teil die Bildung von Bindungen zwischen

Mehr

Das Periodensystem. 1. Auflage, WS 2015/16

Das Periodensystem. 1. Auflage, WS 2015/16 Das Periodensystem Prof. Dr.-Ing. Jürgen Ulm Fakultät für Technik und Wirtschaft Künzelsau (TW) Studiengang Elektrotechnik Institut für schnelle mechatronische Systeme (ISM) 1. Auflage, WS 2015/16 Vorwort

Mehr

V Chemie. B Der Atombau. 1 Energiestufen in der Elektronenhülle. 1.1 Kern und Elektronenhülle. 1.1.1 Kern-Hülle-Modell. 1.1.

V Chemie. B Der Atombau. 1 Energiestufen in der Elektronenhülle. 1.1 Kern und Elektronenhülle. 1.1.1 Kern-Hülle-Modell. 1.1. -V.B1- B Der Atombau 1 Energiestufen in der Elektronenhülle 1.1 Kern und Elektronenhülle 1.1.1 Kern-Hülle-Modell Rutherford 1 ) bestrahlte dünne Metallfolien mit -Strahlen. Diese durchdrangen fast alle

Mehr

Chemische Bindung zweiatomiger Moleküle

Chemische Bindung zweiatomiger Moleküle Die Born Oppenheimer Näherung vernachlässigt Elektronenimpulse gegenüber Kernimpulsen und erlaubt die Gesamtwellenfunktion als ein Produkt aus einer Kernwellenfunktion F q ( R) und der einer Elektronenwellenfunktion

Mehr

Korrektorat: Dina Baars, Bern Illustrationen: Christoph Frei, Bern. 1. Auflage 2010 Alle Rechte vorbehalten Copyright Pädagogische Hochschule PHBern

Korrektorat: Dina Baars, Bern Illustrationen: Christoph Frei, Bern. 1. Auflage 2010 Alle Rechte vorbehalten Copyright Pädagogische Hochschule PHBern Günter Baars (unter Mitarbeit von R. Ciorciaro, S. Hitz, F. Lang, R. Schlegel, P. Süess) E-Lern- und Lehrmedium: Quantenchemie und Chemie farbiger Stoffe Leitprogramm: Quantenchemie und chemische Bindungen;

Mehr

9. GV: Atom- und Molekülspektren

9. GV: Atom- und Molekülspektren Physik Praktikum I: WS 2005/06 Protokoll zum Praktikum Dienstag, 25.10.05 9. GV: Atom- und Molekülspektren Protokollanten Jörg Mönnich Anton Friesen - Betreuer Andreas Branding - 1 - Theorie Zur Erläuterung

Mehr

Das Lewis-Modell zur Erklärung kovalenter Bindungen

Das Lewis-Modell zur Erklärung kovalenter Bindungen Das Lewis-Modell zur Erklärung kovalenter Bindungen Erarbeiten Sie sich, innerhalb der Expertengruppe, einen Überblick über das Lewis-Modell zur Erklärung kovalenter Bindungen! Gehen Sie zusätzlich auf

Mehr

9. Das Wasserstoff-Atom. 9.1 Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell:

9. Das Wasserstoff-Atom. 9.1 Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell: 09. Wasserstoff-Atom Page 1 9. Das Wasserstoff-Atom 9.1 Das Spektrum des Wasserstoff-Atoms im Bohr-Modell: Bohr-Modell liefert eine ordentliche erste Beschreibung der grundlegenden Eigenschaften des Spektrums

Mehr

1 Atombau und Periodensystem. 1.1 Struktur der Elektronenhülle. Quantentheorie (Max Planck, 1900)

1 Atombau und Periodensystem. 1.1 Struktur der Elektronenhülle. Quantentheorie (Max Planck, 1900) 1 Atombau und Periodensystem 1.1 Struktur der Elektronenhülle Quantentheorie (Max Planck, 1900) Die Emission oder Absorption von elektromagnetischer Strahlung durch Materie ist nur in Form von Energieportionen

Mehr

Übungen zur Vorlesung Physikalische Chemie II Lösungsvorschlag zu Blatt 5

Übungen zur Vorlesung Physikalische Chemie II Lösungsvorschlag zu Blatt 5 Wintersemester 006 / 007 04.1.006 1. Aufgabe Die Wellenfunktionen unterscheiden sich gar nicht. Während der Lösung der elektronischen Schrödingergleichung werden die Kerne als ruhend betrachtet. Es kommt

Mehr

Prof. Christoffers, Vorlesung Organische Chemie für Verfahrensingenieure, Umweltschutztechniker und Werkstoffwissenschaftler

Prof. Christoffers, Vorlesung Organische Chemie für Verfahrensingenieure, Umweltschutztechniker und Werkstoffwissenschaftler Prof. hristoffers, Vorlesung Organische hemie für Verfahrensingenieure, Umweltschutztechniker und Werkstoffwissenschaftler 1. inführung 1.1 Atomorbitale Die Atome im Molekülverband werden durch lektronen

Mehr

Die Wellenfunktion ψ(r,t) ist eine komplexe skalare Größe, da keine Polarisation wie bei elektromagnetischen Wellen beobachtet wurde.

Die Wellenfunktion ψ(r,t) ist eine komplexe skalare Größe, da keine Polarisation wie bei elektromagnetischen Wellen beobachtet wurde. 2. Materiewellen und Wellengleichung für freie Teilchen 2.1 Begriff Wellenfunktion Auf Grund des Wellencharakters der Materie können wir den Zustand eines physikalischen Systemes durch eine Wellenfunktion

Mehr

VL 19 VL Laser VL Mehrelektronensysteme VL Periodensystem

VL 19 VL Laser VL Mehrelektronensysteme VL Periodensystem VL 19 VL 18 18.1. Laser (Light Amplification by Stimulated Emission of Radiation) Maser = Laser im Mikrowellenbereich, d.h. Microwave Amplification by Stimulated Emission of Radiation) VL 19 19.1. Mehrelektronensysteme

Mehr

Der Aufbau der Atome und das Periodensystem

Der Aufbau der Atome und das Periodensystem Der Aufbau der Atome und das Periodensystem Licht l*n = c Lichtgeschwindigkeit (c = 3.00*10 8 ms -1 ) Wellenlänge Frequenz (1Hz = 1 s -1 ) Wellenlänge, l Elektrisches Feld Farbe, Frequenz und Wellenlänge

Mehr

VL 19 VL 17 VL 18. 18.1. Mehrelektronensysteme VL 19. 19.1. Periodensystem. Wim de Boer, Karlsruhe Atome und Moleküle, 25.06.

VL 19 VL 17 VL 18. 18.1. Mehrelektronensysteme VL 19. 19.1. Periodensystem. Wim de Boer, Karlsruhe Atome und Moleküle, 25.06. VL 19 VL 17 17.1. Laser (Light Amplification by Stimulated Emission of Radiation) Maser = Laser im Mikrowellenbereich, d.h. Microwave Amplification by Stimulated Emission of Radiation) VL 18 18.1. Mehrelektronensysteme

Mehr

Toll! Wir wissen nun eine Menge über den Bau von Atomen. Wir können Infos über Elemente aus dem PSE ablesen. Aber als Chemiker wollen wir auch

Toll! Wir wissen nun eine Menge über den Bau von Atomen. Wir können Infos über Elemente aus dem PSE ablesen. Aber als Chemiker wollen wir auch Toll! Wir wissen nun eine Menge über den Bau von Atomen. Wir können Infos über Elemente aus dem PSE ablesen. Aber als Chemiker wollen wir auch Verbindungen untersuchen, ihre Zusammensetzung verstehen und

Mehr

Elektronenkonfiguration

Elektronenkonfiguration Um die chemischen Eigenschaften von Elementen zu verstehen, muss man deren Elektronenkonfiguration kennen. Als Elektronenkonfiguration bezeichnet man die Verteilung der Elektronen auf Schalen um den Kern

Mehr

VL 18 VL Laser VL Mehrelektronensysteme VL Periodensystem

VL 18 VL Laser VL Mehrelektronensysteme VL Periodensystem VL 18 VL 17 17.1. Laser (Light Amplification by Stimulated Emission of Radiation) Maser = Laser im Mikrowellenbereich, d.h. Microwave Amplification by Stimulated Emission of Radiation) VL 18 18.1. Mehrelektronensysteme

Mehr

Einführung in die Quantenmechanik

Einführung in die Quantenmechanik Einführung in die Quantenmechanik Gliederung 1. Einleitung - Womit beschäftigt sich die Quantenmechanik 2. Pauliprinzip 3. Wahrscheinlichkeitswellen 3.1. Schrödingers Katze 3.2. Allgemein und am Beispiel

Mehr

1 Elektronenhülle der Atome und Periodensystem

1 Elektronenhülle der Atome und Periodensystem 1 Elektronenhülle der Atome und Periodensystem Größenverhältnisse in Atomen Durchmesser von Atomkernen 10-14 - 10-15 m Durchmesser von Atomen 10-10 m Größenverhältnis Kern Hülle 1 : 10.000-100.000 1 cm

Mehr

Hybridorbitale und ihre Bedeutung

Hybridorbitale und ihre Bedeutung Hybridorbitale und ihre Bedeutung Roland Heynkes 27.4.2005, Aachen Die Chemie wird kaum von den Atomkernen und den inneren Elektronenschalen, sondern hauptsächlich von der jeweils äußersten Elektronenschale

Mehr

Die Macht und Ohnmacht der Quantenwelt

Die Macht und Ohnmacht der Quantenwelt Die Macht und Ohnmacht der Quantenwelt Prof. Dr. Sebastian Eggert Tag der Physik, TU Kaiserslautern, 5. Dezember 2015 Quantenmechanik heute Quanteninformatik Ultrakalte Quantengase Supraleitung und Vielteilchenphysik

Mehr

Allg. u. Anorg. Chemie

Allg. u. Anorg. Chemie Allg. u. Anorg. Chemie Übungsaufgaben Atommodell SoSe 2014, Amadeu Daten: h=6,6 10-34 J.s, C=3 10 8 m/s. 1) Stellen Sie das klassische Modell für die elektromagnetische Strahlen graphisch dar. Erklären

Mehr

Übungen zu Physik 2 für Maschinenwesen

Übungen zu Physik 2 für Maschinenwesen Physikdepartment E13 SS 011 Übungen zu Physik für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung 1.07.011,

Mehr

Für Geowissenschaftler. EP WS 2009/10 Dünnweber/Faessler

Für Geowissenschaftler. EP WS 2009/10 Dünnweber/Faessler Für Geowissenschaftler Termin Nachholklausur Vorschlag Mittwoch 14.4.10 25. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Wärmestrahlung und Quantenmechanik Photometrie Plancksches Strahlungsgesetze, Welle/Teilchen

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Probeklausur Markus Perner, Markus Kotulla, Jonas Funke Aufgabe 1 (Allgemeine Fragen). : (a) Welche Relation muss ein Operator erfüllen damit die dazugehörige Observable

Mehr

Atome und Bindungen. Was sollen Sie mitnehmen?

Atome und Bindungen. Was sollen Sie mitnehmen? Was sollen Sie mitnehmen? Elementare Grundlagen: Atome und Bindungen Schalenmodell Orbitalmodell Periodensystem der Elemente Typische Eigenschaften der Elemente Die vier Bindungstypen Kovalente Bindung

Mehr

Übungen Quantenphysik

Übungen Quantenphysik Ue QP 1 Übungen Quantenphysik Kernphysik Historische Entwicklung der Atommodelle Klassische Wellengleichung 5 Schrödinger Gleichung 6 Kastenpotential (Teilchen in einer Box) 8 Teilchen im Potentialtopf

Mehr

Fachschule für f. r Technik. Dipl.FL. D.Strache FST UH

Fachschule für f. r Technik. Dipl.FL. D.Strache FST UH . FST UH Ein Atommodell ist eine Vorstellung von den kleinsten Teilen der Stoffe. Lange Zeit gab es keine experimentellen Hinweise für die Existenz kleinster Teilchen, sondern lediglich die intuitive Ablehnung

Mehr

Der Stern-Gerlach-Versuch

Der Stern-Gerlach-Versuch Der Stern-Gerlach-Versuch Lukas Mazur Physik Fakultät Universität Bielefeld Physikalisches Proseminar, 08.05.2013 1 Einleitung 2 Wichtige Personen 3 Motivation 4 Das Stern-Gerlach-Experiment 5 Pauli-Prinzip

Mehr

1 Atome mit mehreren Elektronen

1 Atome mit mehreren Elektronen 1 Atome mit mehreren Elektronen 1.1 Zentralfeldnäherungen Wir wollen uns in diesem Abschnitt die Elektronenkonfiguration (besser Zustandskonfiguration) von Atomen mit mehreren Elektronen klarmachen. Die

Mehr

: Quantenmechanische Lösung H + 2. Molekülion und. Aufstellen der Schrödingergleichung für das H + 2

: Quantenmechanische Lösung H + 2. Molekülion und. Aufstellen der Schrödingergleichung für das H + 2 H + 2 Die molekulare Bindung : Quantenmechanische Lösung Aufstellen der Schrödingergleichung für das H + 2 Molekülion und Lösung Wichtige Einschränkung: Die Kerne sind festgehalten H Ψ(r) = E Ψ(r) (11)

Mehr

Quantenmechanik. Eine Kurzvorstellung für Nicht-Physiker

Quantenmechanik. Eine Kurzvorstellung für Nicht-Physiker Quantenmechanik Eine Kurzvorstellung für Nicht-Physiker Die Quantenvorstellung Der Ursprung: Hohlraumstrahlung Das Verhalten eines Von Interesse: idealen Absorbers Energiedichte in Abhängigkeit zur Wellenlänge

Mehr

Fachschule für f. r Technik. Dipl.FL. D.Strache

Fachschule für f. r Technik. Dipl.FL. D.Strache . Ein Atommodell ist eine Vorstellung von den kleinsten Teilen der Stoffe. Lange Zeit gab es keine experimentellen Hinweise für die Existenz kleinster Teilchen, sondern lediglich die intuitive Ablehnung

Mehr

ν und λ ausgedrückt in Energie E und Impuls p

ν und λ ausgedrückt in Energie E und Impuls p phys4.011 Page 1 8.3 Die Schrödinger-Gleichung die grundlegende Gleichung der Quantenmechanik (in den bis jetzt diskutierten Fällen) eine Wellengleichung für Materiewellen (gilt aber auch allgemeiner)

Mehr

er atomare Aufbau der Materie

er atomare Aufbau der Materie er atomare Aufbau der Materie 6. Jhd. v. Chr.: Thales von Milet Wasser = Urgrund aller Dinge 5. Jhd. v. Chr.: Demokrit Atombegriff 5. Jhd. v. Chr.: Empedokles vier Elemente: Erde, Wasser, Feuer, Luft (unterstützt

Mehr

2. H Atom Grundlagen. Physik IV SS H Grundl. 2.1

2. H Atom Grundlagen. Physik IV SS H Grundl. 2.1 . H Atom Grundlagen.1 Schrödingergleichung mit Radial-Potenzial V(r). Kugelflächen-Funktionen Y lm (θ,φ).3 Radial-Wellenfunktionen R n,l (r).4 Bahn-Drehimpuls l.5 Spin s Physik IV SS 005. H Grundl..1 .1

Mehr

27. Wärmestrahlung, Quantenmechanik (Abschluß: Welle-Teilchen-Dualismus

27. Wärmestrahlung, Quantenmechanik (Abschluß: Welle-Teilchen-Dualismus 26. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Wärmestrahlung, Quantenmechanik (Abschluß: Welle-Teilchen-Dualismus 28. Atomphysik, Röntgenstrahlung, Bohrsches Atommodell Versuche: Elektronenbeugung Linienspektrum

Mehr

Wiederholung der letzten Vorlesungsstunde:

Wiederholung der letzten Vorlesungsstunde: Wiederholung der letzten Vorlesungsstunde: Stern-Gerlach-Versuch, Orbitalmodell, Heisenberg sche Unschärferelation, Schrödinger Gleichung, Zustände der Elektronen sind Orbitale, die durch 4 Quantenzahlen

Mehr

Aufspaltung der Energieniveaus von Atomen im homogenen Magnetfeld

Aufspaltung der Energieniveaus von Atomen im homogenen Magnetfeld Simon Lewis Lanz 2015 simonlanzart.de Aufspaltung der Energieniveaus von Atomen im homogenen Magnetfeld Zeeman-Effekt, Paschen-Back-Effekt, Fein- und Hyperfeinstrukturaufspaltung Fließt elektrischer Strom

Mehr

3. Geben Sie ein Bespiel, wie man Bra und Ket Notation nützen kann.

3. Geben Sie ein Bespiel, wie man Bra und Ket Notation nützen kann. Fragen zur Vorlesung Einführung in die Physik 3 1. Was ist ein quantenmechanischer Zustand? 2. Wenn die Messung eines quantenmechanischen Systems N unterscheidbare Ereignisse liefern kann, wie viele Parameter

Mehr

Die seltsame Welt der Quanten

Die seltsame Welt der Quanten Saturday Morning Physics Die seltsame Welt der Quanten Wie spielt Gott sein Würfelspiel? 12. 11. 2005 Gernot Alber und Gerhard Birkl Institut für Angewandte Physik Technische Universität Darmstadt gernot.alber@physik.tu-darmstadt.de

Mehr

Atom-, Molekül- und Festkörperphysik

Atom-, Molekül- und Festkörperphysik Atom-, Molekül- und Festkörperphysik für LAK, SS 2014 Peter Puschnig basierend auf Unterlagen von Prof. Ulrich Hohenester 3. Vorlesung, 20. 3. 2014 Mehrelektronensysteme, Fermionen & Bosonen, Hartree-Fock,

Mehr

Die chemische Bindung

Die chemische Bindung Die chemische Bindung Die Valenz-Bond Theorie Molekülorbitale Die Bänder Theorie der Festkörper bei einer ionischen Bindung bildet bildet sich ein Dipol aus ('Übertragung von Elektronen') Eine kovalente

Mehr

Periodensystem, elektromagnetische Spektren, Atombau, Orbitale

Periodensystem, elektromagnetische Spektren, Atombau, Orbitale Periodensystem, elektromagnetische Spektren, Atombau, Orbitale Als Mendelejew sein Periodensystem aufstellte waren die Edelgase sowie einige andere Elemente noch nicht entdeck (gelb unterlegt). Trotzdem

Mehr

Übungen zur VL Chemie für Biologen und Humanbiologen Diese Aufgaben werden in der Übung besprochen.

Übungen zur VL Chemie für Biologen und Humanbiologen Diese Aufgaben werden in der Übung besprochen. Übungen zur VL Chemie für Biologen und umanbiologen 03.10.2010 Diese Aufgaben werden in der Übung besprochen. Die Geometrie organischer Verbindungen 1. Welche Form hat ein s-orbital? Welche Form haben

Mehr

Elektronenkonfigurationen von Mehrelektronenatomen

Elektronenkonfigurationen von Mehrelektronenatomen Elektronenkonfigurationen von Mehrelektronenatomen Der Grundzustand ist der Zustand, in dem alle Elektronen den tiefstmöglichen Zustand einnehmen. Beispiel: He: n 1 =n 2 =1 l 1 =l 2 =0 m l1 =m l2 =0 Ortsfunktion

Mehr

11. Quantenchemische Methoden

11. Quantenchemische Methoden Computeranwendung in der Chemie Informatik für Chemiker(innen) 11. Quantenchemische Methoden Jens Döbler 2004 "Computer in der Chemie", WS 2003-04, Humboldt-Universität VL11 Folie 1 Grundlagen Moleküle

Mehr

Einführung in die Quantentheorie der Atome und Photonen

Einführung in die Quantentheorie der Atome und Photonen Einführung in die Quantentheorie der Atome und Photonen 23.04.2005 Jörg Evers Max-Planck-Institut für Kernphysik, Heidelberg Quantenmechanik Was ist das eigentlich? Physikalische Theorie Hauptsächlich

Mehr

Die Welt der Quanten Murmeln oder Wellen? Max Camenzind Senioren Uni WS2013

Die Welt der Quanten Murmeln oder Wellen? Max Camenzind Senioren Uni WS2013 Die Welt der Quanten Murmeln oder Wellen? Max Camenzind Senioren Uni Würzburg @ WS2013 Die Krise des mechanischen Weltbildes und die Gründerväter der modernen Physik. Elektromagnetische Strahlung Maxwell,

Mehr

Atomphysik. M. Jakob. 14. Januar Gymnasium Pegnitz

Atomphysik. M. Jakob. 14. Januar Gymnasium Pegnitz Atomphysik M. Jakob Gymnasium Pegnitz 14. Januar 2015 Inhaltsverzeichnis 1 Potentialtopf (7 Std.) Die Schrödingergleichung Elektronen im Potentialtopf 2 Wasserstoffmodell (7 Std.) Eindimensionales Wasserstoffmodell

Mehr