Mathematik anschaulich dargestellt

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Mathematik anschaulich dargestellt"

Transkript

1 Peter Dörsam Mathematik anschaulich dargestellt für Studierende der Wirtschaftswissenschaften 15. überarbeitete Auflage mit zahlreichen Abbildungen PD-Verlag Heidenau

2 Inhaltsverzeichnis 1 Lineare Algebra Vektorrechnung Grundlagen Lineare Abhängigkeit Vektorräume Dimension und Basis Matrizen Definition einer Matrix Elementare Rechenregeln für Matrizen Addition von Matrizen N Multiplikation einer Matrix mit einer reellen Zahl Transposition von Matrizen Multiplikation von Matrizen mit Matrizen Grundlagen Inhaltliche Interpretation von Matrizenprodukten Einheitsmatrizen und Grundlagen zu inversen Matrizen Übungsaufgaben zur Matrizenmultiplikation Lineare Gleichungssysteme Strukturiertes Additionsverfahren Der Gauß-Algorithmus Mehrdeutige Lösungen Schema für den Gauß-Algorithmus Umgehen von Brüchen Lösbarkeit linearer Gleichungssysteme Weitere Zusammenhänge Determinanten, Rang und Inverse Determinanten Grundlagen Der Laplace Entwicklungssatz Der Zahlenwert einer Determinante Rechenregeln für Determinanten Rang einer Matrix 73

3 1.4.3 Inverse Matrizen Grundlagen Existenz der inversen Matrix Bestimmung der Inversen mittels der adjungierten Matrix Bestimmung der Inversen mittels des Gauß-Algorithmus Einige spezielle inverse Matrizen Übungsaufgaben Anwendungen auf lineare Gleichungssysteme Mehrdeutige Lösungen und Lösbarkeit von linearen Gleichungssystemen Die Cramersche Regel Formales Rechnen mit Matrizen ' Grundlagen Übungsaufgaben Konkrete Überprüfung auf lineare Abhängigkeit Grundlagen Übungsaufgaben Überprüfung auf Vektorraumeigenschaften Grundlagen Unterräume Bestimmung von Dimension und Basis des Vektorraumes Lineare Optimierung Grundlagen Graphische Lösung Spezifizierung der Optimierungsprobleme Simplex Algorithmus Schema zum Simplex Algorithmus Folgen und Reihen Grundlagen Grenzwerte von Folgen 147

4 3 Funktionen Begriff der Funktion Ganzrationale Funktionen Nullstellen von Funktionen Gebrochenrationale Funktionen Wurzelfunktionen Umkehrfunktionen Exponentialfunktion und Logarithmus Exponentialfunktionen \ Darstellung des Taschenrechners für sehr große und sehr kleine Zahlen Rechenregeln für Exponenten Umkehrfunktion zur Exponentialfunktion Rechenregeln für Logarithmen Trigonometrische Funktionen Die Sinusfunktion Winkelmaße - Bogenmaß (rad) und Gradmaß (deg) Cosinus und Tangens Trigonometrische Umkehrfunktionen Grenzwerte von Funktionen Grenzwerte für x gegen unendlich Grenzwerte gegen eine reelle Zahl Regel von de l 1 Hospital Schema zur Regel von de 1' Hospital Übungsaufgaben Stetige und unstetige Funktionen Differentialrechnung einer Veränderlichen Einführung Steigung einer Funktion Steigung einer Geraden Steigung von Sekante und Tangente Bestimmung der Steigung einer Funktion Differenzierbarkeit 191

5 4.3 Ableitungen verschiedener Funktionen Ableitung für Potenzen von x Ableitungen mit Faktoren Ableitungen für Sinus- und Cosinusfunktionen Ableitungen von Exponentialfunktionen Ableitung von Umkehrfunktionen Ableitungen von verknüpften Funktionen Ableitungen von Summen und Differenzen Kettenregel Produktregel Quotientenregel Ableitungsübersicht Ableitungsübungen Bestimmung von Extremwerten Einführung Bestimmung von Hoch-, Tief-und Sattelpunkten Notwendige Bedingung Hinreichende Bedingung für Hoch-und Tiefpunkte Randextrema und Klassifizierung von Extrema Besonderheiten bei unstetigen Funktionen Besonderheiten bei streng monotonen Funktionen Schema für die Bestimmung und Klassifizierung von Extremstellen Übungsaufgaben Wendepunkte Weitere Zusammenhänge Monotonie Konkave und konvexe Funktionen Newton-Verfahren Grundlagen Berechnung von Nullstellen Konvergenz des Newton-Verfahrens Mittelwertsatz 241

6 4.9.5 Potenzreihen und Taylorpolynome Grundlagen Entwicklung einer Funktion in eine Potenzreihe Taylorpolynome Grafische Interpretation Fehlerabschätzung Allgemeine Taylorpolynome Elastizitäten Integralrechnung Grundlagen Berechnung von Integralen Bestimmtes Integral Flächenberechnung Bestimmung von einfachen Integralen Einfache Stammfunktionen Integrale von Funktionen, die addiert oder mit Konstanten multipliziert werden Einfache verkettete Funktionen Komplexere Integrationsmethoden Substitutionsregel Grundlagen Substitution als Umkehrung der Kettenregel Substitution zur Umformung des Integrals Substitution bei bestimmten Integralen Schema zur Integration mittels Substitution Partielle Integration Partialbruchzerlegung Grundlagen Weitere Zusammenhänge Schema zur Partialbruchzerlegung Tabelle wichtiger Stammfunktionen Integralfunktionen Uneigentliche Integrale Berechnung von Summen mittels Integralen Rotationskörper Übungsaufgaben 305

7 6 Differential-und Differenzengleichungen Differentialgleichungen Ökonomischer Bezug Einteilungen von Differentialgleichungen Trennung der Variablen Lineare Differentialgleichung 1. Ordnung Homogene lineare Differentialgleichung Inhomogene lineare Differentialgleichung Aufgaben zu Differentialgleichungen Differenzengleichungen Differentialrechnung mehrerer Veränderlicher Grundlagen Partielle Ableitungen Grundlagen Der Gradient einer Funktion Übungen zu partiellen Ableitungen Extremwerte von Funktionen mit mehreren Variablen Lagrangetechnik Grundlagen Hinreichende Bedingung Beispielaufgaben Funktionen mit mehreren Nebenbedingungen Verknüpfte Funktionen Minimalkostenkombination Totales Differential Abbildungen in den R n Ableitungsmatrizen Mehrdimensionale Kettenregel Aufgaben zur mehrdimensionalen Kettenregel Finanzmathematik Grundlagen Auf- und Abzinsen Konstante Zahlungsströme (Renten) Vorschüssige Zinszahlungen Unterjährige und kontinuierliche Verzinsung 362

8 9 Anhang Lösungen von Gleichungen Lineare Gleichungen Quadratische Gleichungen Quadratische Ergänzung pq-formel Weitere Zusammenhänge Homogene Gleichungen höherer Ordnung Inhomogene Gleichungen höherer Ordnung Gleichungen mit Quotienten Nicht lineare Gleichungssysteme Ungleichungen Bruchrechnen Grundlegende Rechenregeln Wurzeln und Potenzen Multiplizieren von Klammern Typische Fehler Formern Rechenregeln für Matrizen Rechenregeln für Determinanten Rechenregeln für den Rang Inverse Matrizen Begriffe zu Matrizen Lineare Gleichungssysteme Bruchrechnen Rechnen mit Exponenten Logarithmen Wichtige Identitäten Ableitungsregeln Ableitungsübersicht Integrationsregeln Tabelle wichtiger Stammfunktionen Mathematische Zeichen Griechisches Alphabet 392 Stichwortverzeichnis 394

Inhaltsverzeichnis. 1 Lineare Algebra 12

Inhaltsverzeichnis. 1 Lineare Algebra 12 Inhaltsverzeichnis 1 Lineare Algebra 12 1.1 Vektorrechnung 12 1.1.1 Grundlagen 12 1.1.2 Lineare Abhängigkeit 18 1.1.3 Vektorräume 22 1.1.4 Dimension und Basis 24 1.2 Matrizen 26 1.2.1 Definition einer

Mehr

Oberstufenmathematik leicht gemacht

Oberstufenmathematik leicht gemacht Peter Dörsam Oberstufenmathematik leicht gemacht Band 1: Differential- und Integralrechnung 5. überarbeitete Auflage mit zahlreichen Abbildungen und Beispielaufgaben PD-Verlag Heidenau Inhaltsverzeichnis

Mehr

Inhalt 1 GRUNDLAGEN Zahlen Natürliche Zahlen Ganze Zahlen Rationale Zahlen Reelle Zahlen 4

Inhalt 1 GRUNDLAGEN Zahlen Natürliche Zahlen Ganze Zahlen Rationale Zahlen Reelle Zahlen 4 Inhalt 1 GRUNDLAGEN 1 1.1 Zahlen 1 1.1.1 Natürliche Zahlen 1 1.1.2 Ganze Zahlen 2 1.1.3 Rationale Zahlen 3 1.1.4 Reelle Zahlen 4 1.2 Rechnen mit reellen Zahlen 8 1.2.1 Grundgesetze der Addition 8 1.2.2

Mehr

Großes Lehrbuch der Mathematik für Ökonomen

Großes Lehrbuch der Mathematik für Ökonomen Großes Lehrbuch der Mathematik für Ökonomen Von Professor Dr. Karl Bosch o. Professor für angewandte Mathematik und Statistik an der Universität Stuttgart-Hohenheim und Professor Dr. Uwe Jensen R. Oldenbourg

Mehr

Mathematik für Fachhochschule, Duale Hochschule und Berufsakademie

Mathematik für Fachhochschule, Duale Hochschule und Berufsakademie Mathematik für Fachhochschule, Duale Hochschule und Berufsakademie mit ausführlichen Erläuterungen und zahlreichen Beispielen Bearbeitet von Prof. Dr. Guido Walz 1. Auflage 2010. Taschenbuch. xi, 580 S.

Mehr

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57 Vorwort... 13 Vorwort zur 3. deutschen Auflage... 17 Kapitel 1 Einführung, I: Algebra... 19 1.1 Die reellen Zahlen... 20 1.2 Ganzzahlige Potenzen... 23 1.3 Regeln der Algebra... 29 1.4 Brüche... 34 1.5

Mehr

1 ALLGEMEINE HINWEISE Das Fach Mathematik für Wirtschaftswissenschaftler Bisheriger Aufbau der Klausur...

1 ALLGEMEINE HINWEISE Das Fach Mathematik für Wirtschaftswissenschaftler Bisheriger Aufbau der Klausur... Grundlagen Mathe V Inhaltsverzeichnis 1 ALLGEMEINE HINWEISE... 1-1 1.1 Das Fach Mathematik für Wirtschaftswissenschaftler... 1-1 1.2 Bisheriger Aufbau der Klausur... 1-1 1.3 Zugelassene Hilfsmittel und

Mehr

Mathematik für. Wirtschaftswissenschaftler. Basiswissen mit Praxisbezug. 4., aktualisierte und erweiterte Auflage

Mathematik für. Wirtschaftswissenschaftler. Basiswissen mit Praxisbezug. 4., aktualisierte und erweiterte Auflage Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 4., aktualisierte und erweiterte Auflage Knut Sydsaeter Peter Hammond mit Arne Strom Übersetzt und fach lektoriert durch Dr. Fred Böker

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Knut Sydsaeter Peter HammondJ Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 2., aktualisierte Auflage Inhaltsverzeichnis Vorwort 13 Vorwort zur zweiten Auflage 19 Kapitel 1 Einführung,

Mehr

REPETITORIUM DER HÖHEREN MATHEMATIK. Gerhard Merziger Thomas Wirth

REPETITORIUM DER HÖHEREN MATHEMATIK. Gerhard Merziger Thomas Wirth REPETITORIUM DER HÖHEREN MATHEMATIK Gerhard Merziger Thomas Wirth 6 INHALTSVERZEICHNIS Inhaltsverzeichnis Fl Formelsammlung F2 Formelsammlung Alphabete 11 Zeichenindex 12 1 Grundbegriffe 14 1.1 Logische

Mehr

Mathematik 1. ^A Springer. Albert Fetzer Heiner Fränkel. Lehrbuch für ingenieurwissenschaftliche Studiengänge

Mathematik 1. ^A Springer. Albert Fetzer Heiner Fränkel. Lehrbuch für ingenieurwissenschaftliche Studiengänge Albert Fetzer Heiner Fränkel Mathematik 1 Lehrbuch für ingenieurwissenschaftliche Studiengänge Mit Beiträgen von Akad. Dir. Dr. rer. nat. Dietrich Feldmann Prof. Dr. rer. nat. Albert Fetzer Prof. Dr. rer.

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Helge Röpcke Markus Wessler Wirtschaftsmathematik Methoden - Beispiele - Anwendungen Mit 84 Bildern, 113 durchgerechneten Beispielen und 94 Aufgaben mit ausführlichen Lösungen im Internet Fachbuchverlag

Mehr

Brückenkurs Mathematik für Wirtschaftswissenschaftler

Brückenkurs Mathematik für Wirtschaftswissenschaftler VlEWEG+ TIUBNER Walter Purkert Brückenkurs Mathematik für Wirtschaftswissenschaftler Z, aktualisierte Auflage STUDIUM Inhaltsverzeichnis 1 Das Rechnen mit reellen Zahlen 1.1 Grundregeln des Rechnens....

Mehr

Mathematik im Betrieb

Mathematik im Betrieb Heinrich Holland/Doris Holland Mathematik im Betrieb Praxisbezogene Einführung mit Beispielen 7, überarbeitete Auflage GABLER Inhaltsverzeichnis Vorwort 1 Mathematische Grundlagen 1.1 Zahlbegriffe 1.2

Mehr

Ingenieurmathematik mit MATLAB

Ingenieurmathematik mit MATLAB Dieter Schott Ingenieurmathematik mit MATLAB Algebra und Analysis für Ingenieure Mit 179 Abbildungen, zahlreichen Beispielen, Übungsaufgaben und Lernkontrollen Fachbuchverlag Leipzig im Carl Hanser Verlag

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Walter Purkert 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Brückenkurs Mathematik für Wirtschaftswissenschaftler.

Mehr

Enrico G. De Giorgi. Mathematik. 2. Auflage Lehrstuhl für Mathematik Universität St.Gallen. Diese Version: August 2014.

Enrico G. De Giorgi. Mathematik. 2. Auflage Lehrstuhl für Mathematik Universität St.Gallen. Diese Version: August 2014. Enrico G. De Giorgi Mathematik 2. Auflage 2014 Lehrstuhl für Mathematik Universität St.Gallen Diese Version: August 2014. c 2014, Enrico De Giorgi, Universität St.Gallen, alle Rechte vorbehalten. Die Vervielfältigung

Mehr

Mathematik I+II. für FT, LOT, PT, WT im WS 2015/2016 und SS 2016

Mathematik I+II. für FT, LOT, PT, WT im WS 2015/2016 und SS 2016 Mathematik I+II für FT, LOT, PT, WT im WS 2015/2016 und SS 2016 I. Wiederholung Schulwissen 1.1. Zahlbereiche 1.2. Rechnen mit reellen Zahlen 1.2.1. Bruchrechnung 1.2.2. Betrag 1.2.3. Potenzen 1.2.4. Wurzeln

Mehr

Mathematik für die ersten Semester

Mathematik für die ersten Semester Mathematik für die ersten Semester von Prof. Dr. Wolfgang Mückenheim 2., verbesserte Auflage Oldenbourg Verlag München Inhaltsverzeichnis I Grundlagen 1 1 Logik 3 2 Mengen 7 3 Relationen 15 3.1 Abbildungen

Mehr

1 Mathematische Zeichen und Symbole 1. 2 Logik 9. 3 Arithmetik 11

1 Mathematische Zeichen und Symbole 1. 2 Logik 9. 3 Arithmetik 11 IX 1 Mathematische Zeichen und Symbole 1 2 Logik 9 3 Arithmetik 11 3.1 Mengen 11 3.1.1 Allgemeines 11 3.1.2 Mengenrelationen 12 3.1.3 Mengenoperationen 12 3.1.4 Beziehungen, Gesetze, Rechenregeln 14 3.1.5

Mehr

Mathematik für Ingenieure mit Maple

Mathematik für Ingenieure mit Maple Thomas Westermann Mathematik für Ingenieure mit Maple Band 1: Differential- und Integralrechnung für Funktionen einer Variablen, Vektor- und Matrizenrechnung, Komplexe Zahlen, Funktionenreihen 2. Auflage

Mehr

Friederike Goerigk (Autor) Mathematik nicht nur für Wirtschaftswissenschaftler

Friederike Goerigk (Autor) Mathematik nicht nur für Wirtschaftswissenschaftler Friederike Goerigk (Autor) Mathematik nicht nur für Wirtschaftswissenschaftler https://cuvillier.de/de/shop/publications/1601 Copyright: Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Fred Böker Mathematik für Wirtschaftswissenschaftler Das Übungsbuch 2., aktualisierte Auflage Higher Education München Harlow Amsterdam Madrid Boston San Francisco Don Mills Mexico City Sydney a part of

Mehr

Mathematik im Betrieb

Mathematik im Betrieb Mathematik im Betrieb Praxisbezogene Einführung mit Beispielen von Heinrich Holland, Doris Holland 11., durchgesehene und korrigierte Auflage Springer Gabler Wiesbaden 2014 Verlag C.H. Beck im Internet:

Mehr

Modul Mathematik Grundlagen I (BA) Dr. Andreas Harder / Hugo Krause 1. Semester (Januar- März 2007)

Modul Mathematik Grundlagen I (BA) Dr. Andreas Harder / Hugo Krause 1. Semester (Januar- März 2007) Modul Mathematik Grundlagen I (BA) Dr. Andreas Harder / Hugo Krause 1. Semester (Januar- März 2007) 1. grundlagen I: gleichungen 1.1. nullstellen von polynomen 1.1.1. lineare gleichungen 1.1.1.1. form

Mehr

Mathematik für Ingenieure mit Maple

Mathematik für Ingenieure mit Maple Thomas Westermann Mathematik für Ingenieure mit Maple Bandl: Differential- und Integralrechnung für Funktionen einer Variablen, Vektor- und Matrizenrechnung, Komplexe Zahlen, Funktionenreihen 4., neu bearbeitete

Mehr

Mathematik für Ingenieure mit Maple

Mathematik für Ingenieure mit Maple Thomas Westermann Mathematik für Ingenieure mit Maple Band 1: Differential- und Integralrechnung für Funktionen einer Variablen, Vektor- und Matrizenrechnung, Komplexe Zahlen, Funktionenreihen Mit 300

Mehr

Elementare Wirtschaftsmathematik

Elementare Wirtschaftsmathematik Rainer Göb Elementare Wirtschaftsmathematik Erster Teil: Funktionen von einer und zwei Veränderlichen Mit 87 Abbildungen Methodica-Verlag Veitshöchheim Inhaltsverzeichnis 1 Grundlagen: Mengen, Tupel, Relationen.

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 4., aktualisierte und erweiterte Auflage Knut Sydsæter Peter Hammond mit Arne Strøm Übersetzt und fachlektoriert durch Dr. Fred Böker

Mehr

Kernkompetenz Mathematik (Teil Analysis)

Kernkompetenz Mathematik (Teil Analysis) Beschreibung der Kernkompetenzen in Mathematik (Teil Analysis) Themen Mindestkompetenzen 1. Grundlagen 1.1 Aussagen und Aussageformen 1.2 Vollständige Induktion 1.3 Reelle Funktionen und Graphen 1.4 Bijektivität

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Fred Böker Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug Das Übungsbuch ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario Sydney

Mehr

Mit 119 Bildern, 368 Beispielen und 225 Aufgaben mit Lösungen

Mit 119 Bildern, 368 Beispielen und 225 Aufgaben mit Lösungen Mathematik für Wirtschaftswissenschaftler Ein Lehr- und Übungsbuch für Bachelors 2., aktualisierte Auflage Mit 119 Bildern, 368 Beispielen und 225 Aufgaben mit Lösungen Fachbuchverlag Leipzig im Carl Hanser

Mehr

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014 Mathematik für Universität Trier Wintersemester 2013 / 2014 Inhalt der Vorlesung 1. Gleichungen und Summen 2. Grundlagen der Funktionslehre 3. Rechnen mit Funktionen 4. Optimierung von Funktionen 5. Funktionen

Mehr

Mathematik 2 für Nichtmathematiker

Mathematik 2 für Nichtmathematiker Mathematik 2 für Nichtmathematiker Funktionen - Folgen und Reihen - Differential- und Integralrechnung - Differentialgleichungen - Ordnung und Chaos von Professor Dr. Manfred Precht Dipl.-Math. Karl Voit

Mehr

Inhaltsverzeichnis. Teil I Grundlagen

Inhaltsverzeichnis. Teil I Grundlagen Inhaltsverzeichnis Teil I Grundlagen 1 Mengenlehre und Aussagenlogik... 3 1.1 Vorbemerkung... 3 1.2 Mengen... 4 1.2.1 Mengenoperationen..... 7 1.2.2 Mengengesetze... 10 1.2.3 Zahlenmengen... 12 1.3 Aussagenlogik...

Mehr

0 Einleitung I. 1 Elementarmathematik 1

0 Einleitung I. 1 Elementarmathematik 1 Inhaltsverzeichnis 0 Einleitung I i Das Team ist der Primus............................... II ii Eingangstest...................................... III iii Wolfis Welt.......................................

Mehr

2.5.5 Fundamentalsatz der Algebra, Folgen und Reihen, stetige Funktionen im Komplexen

2.5.5 Fundamentalsatz der Algebra, Folgen und Reihen, stetige Funktionen im Komplexen Inhaltsverzeichnis 1 Grundlagen 1 1.1 Reelle Zahlen..................................... 1 1.1.1 Die Zahlengerade................................. 1 1.1.2 Rechnen mit reellen Zahlen...........................

Mehr

Inhaltsverzeichnis. Vorwort 1. I Zahlen 5. II Algebra 29

Inhaltsverzeichnis. Vorwort 1. I Zahlen 5. II Algebra 29 Inhaltsverzeichnis Vorwort 1 I Zahlen 5 1. Rechnen mit ganzen Zahlen 6 Addition, Subtraktion und Multiplikation............. 7 Division mit Rest........................... 7 Teiler und Primzahlen........................

Mehr

Mathematik kompakt. ^ Springer. Y. Stry R. Schwenkert. für Ingenieure und Informatiker. Zweite, bearbeitete Auflage

Mathematik kompakt. ^ Springer. Y. Stry R. Schwenkert. für Ingenieure und Informatiker. Zweite, bearbeitete Auflage Y. Stry R. Schwenkert Mathematik kompakt für Ingenieure und Informatiker Zweite, bearbeitete Auflage Mit 156 Abbildungen und 10 Tabellen ^ Springer Inhaltsverzeichnis 1 Mathematische Grundbegriffe 1 1.1

Mehr

(Hoch)Schulmathematik

(Hoch)Schulmathematik Tobias Glosauer (Hoch)Schulmathematik Ein Sprungbrett vom Gymnasium an die Uni ~ Springer Spektrum Inhalt..2 2 2. 2.2 2. 2.4..2 Formales Fundament Ein wenig Logik. Aussagenlogik.... Aussagen...2 Junktoren..

Mehr

MATHEMATIK. Lehr- und Übungsbuch. Fachbuchverlag Leipzig im Carl Hanser Verlag. Band 2. Analysis

MATHEMATIK. Lehr- und Übungsbuch. Fachbuchverlag Leipzig im Carl Hanser Verlag. Band 2. Analysis i Lehr- und Übungsbuch MATHEMATIK Band 2 Analysis Mit 164 Bildern, 265 Beispielen und 375 Aufgaben mit Lösungen Fachbuchverlag Leipzig im Carl Hanser Verlag Inhaltsverzeichnis 1 Grundlagen 11 1.1 Abbildungen

Mehr

Inhaltsverzeichnis.

Inhaltsverzeichnis. Inhaltsverzeichnis 1 Mengenlehre 1 1.1 Definition 1 1.2 Mengenoperationen 2 1.3 Potenzmenge 3 1.4 Mengensysteme 3 1.5 Mengengesetze 4 1.6 Geordnetes Paar 4 1.7 Relation 5 1.8 Äquivalenzrelation 5 2 Inferenzregeln

Mehr

Inhaltsverzeichnis. Vorwort. I Zahlen 5. II Algebra 29

Inhaltsverzeichnis. Vorwort. I Zahlen 5. II Algebra 29 Inhaltsverzeichnis Vorwort I Zahlen 5 1. Rechnen mit ganzen Zahlen 6 Addition, Subtraktion und Multiplikation 7 Division mit Rest 7 Teiler und Primzahlen 9 Der ggt und das kgv 11 2. Rechnen mit Brüchen

Mehr

- Zusammenhang lineare, quadratische Funktion betonen

- Zusammenhang lineare, quadratische Funktion betonen Curriculum Mathematik JS 11/ Eph Kernlehrplan Methodische Vorgaben/ Koordinatengeometrie - Gerade, Parabel, Kreis - Lineare Gleichungssysteme zur Bestimmung von Geraden und Parabeln - Zusammenhang lineare,

Mehr

W. Oevel. Mathematik für Physiker I. Veranstaltungsnr: Skript zur Vorlesung, Universität Paderborn, Wintersemester 2003/2004

W. Oevel. Mathematik für Physiker I. Veranstaltungsnr: Skript zur Vorlesung, Universität Paderborn, Wintersemester 2003/2004 W. Oevel Mathematik für Physiker I Veranstaltungsnr: 172020 Skript zur Vorlesung, Universität Paderborn, Wintersemester 2003/2004 Zeit und Ort: V2 Di 11.15 12.45 D1.303 V2 Mi 11.15 12.45 D1.303 V2 Do 9.15

Mehr

Höhere Mathematik für Naturwissenschaftler und Ingenieure

Höhere Mathematik für Naturwissenschaftler und Ingenieure Günter Bärwolff Höhere Mathematik für Naturwissenschaftler und Ingenieure unter Mitarbeit von Gottfried Seifert ELSEVIER SPEKTRUM AKADEMISCHER VERLAG Spekt rum K-/1. AKADEMISCHER VERLAG AKADEMISC Inhaltsverzeichnis

Mehr

Heinrich Holland / Doris Holland Mathematik im Betrieb

Heinrich Holland / Doris Holland Mathematik im Betrieb Heinrich Holland / Doris Holland Mathematik im Betrieb HOLLAND/ HOLLAND MATHEMATIK IMBETRIEB PRAXISBEZOGENE EINFOHRUNG MIT BEISPIELEN GRUNDLAGEN. FUNKTIONEN. DIFFERENTIAL RECHNUNG INTEGRALRECHNUNG MATRIZEN

Mehr

Analysis für Wirtschaftswissenschaftler und Ingenieure

Analysis für Wirtschaftswissenschaftler und Ingenieure Dieter Hoffmann 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Analysis für Wirtschaftswissenschaftler und Ingenieure

Mehr

Holland/Holland. Mathematik im Betrieb

Holland/Holland. Mathematik im Betrieb Holland/Holland. Mathematik im Betrieb HEINRICH HOLLAND/ DORIS HOLLAND Mathematik im Betrieb Praxisbezogene Einführung mit Beispielen 4., überarbeitete Auflage LEHRBUCH Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Mehr

Inhaltsverzeichnis. Inhalt. Einleitung Vektoralgebra

Inhaltsverzeichnis. Inhalt. Einleitung Vektoralgebra Inhalt 3 Inhaltsverzeichnis Einleitung...9 1 Vektoralgebra 1.1 Geometrische Darstellung von Vektoren... 14 1.1.1 Begriff des Vektors... 14 1.1.2 Inverser Vektor und Nullvektor... 17 1.1.3 Addition von

Mehr

Inhaltsverzeichnis. Zeichenerklärung

Inhaltsverzeichnis. Zeichenerklärung Inhaltsverzeichnis Zeichenerklärung XIII 1 Grundlagen 1 1.1 Instrumente der Elementarmathematik 1 1.1.1 Zahlbereiche. Zahlendarstellung 1 1.1.2 Rechnen mit Zahlen 3 1.1.3 Bruchrechnung 7 1.1.4 Potenzrechnung

Mehr

Teil I: Mathematik ohne Anwendungsbezüge

Teil I: Mathematik ohne Anwendungsbezüge Inhaltsverzeichnis 1 Teil I: Mathematik ohne Anwendungsbezüge 1 Elementares Handwerkszeug 1.1 Vorrangregeln und Klammersetzung... 21 1.1.1 Beispiele dafür, wie es richtig gemacht wird... 21 1.1.2 Aufgaben...

Mehr

Berufliche Schulen des Landes Hessen Lehrplan Fachoberschule Allgemein bildender Lernbereich Mathematik

Berufliche Schulen des Landes Hessen Lehrplan Fachoberschule Allgemein bildender Lernbereich Mathematik Berufliche Schulen des Landes Hessen Lehrplan Fachoberschule Allgemein bildender Lernbereich Mathematik Unterrichtsinhalte Funktionale Zusammenhänge Ausbildungsabschnitt I, 50Stunden Lineare Funktionen

Mehr

Inhaltsverzeichnis VII

Inhaltsverzeichnis VII Inhaltsverzeichnis Teil I Analysis 1 Mengen... 3 1.1 Grundbegriffe..... 3 1.2 Mengenverknüpfungen... 5 1.3 Zahlenmengen... 6 1.3.1 Natürliche,ganzeundrationaleZahlen... 7 1.3.2 ReelleZahlen... 8 2 Elementare

Mehr

Mathematik in der Biologie

Mathematik in der Biologie Erich Bohl Mathematik in der Biologie 4., vollständig überarbeitete und erweiterte Auflage Mit 65 Abbildungen und 16 Tabellen ^J Springer Inhaltsverzeichnis Warum verwendet ein Biologe eigentlich Mathematik?

Mehr

Mathematik für BWL-Bachelor: Übungsbuch

Mathematik für BWL-Bachelor: Übungsbuch Heidrun Matthäus Wolf-Gert Matthäus Mathematik für BWL-Bachelor: Übungsbuch Ergänzungen für Vertiefung und Training STUDIUM VIEWEG+ TEUBNER Inhaltsverzeichnis AI Mathematisches Handwerkszeug: Beispiele

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik Eine Einführung mit Beispielen und Übungsaufgaben von Prof. Dr. Karl Bosch 14., korrigierte Auflage Oldenbourg Verlag München Inhaltsverzeichnis 1 Grundlagen der Mengenlehre 1 1.1

Mehr

Jahrgangsstufe Koordinatengeometrie 2. Analysis 3. Beschreibende Statistik ( in Projektwochen)

Jahrgangsstufe Koordinatengeometrie 2. Analysis 3. Beschreibende Statistik ( in Projektwochen) Jahrgangsstufe 11 1. Koordinatengeometrie Geraden und Geradengleichungen ( Steigungswinkel, Parallelität, Orthogonale, Schnittpunkt zweier Geraden) Parabeln und quadratische Funktionen Lagebeziehungen

Mehr

Inhaltsverzeichnis. 4 Elementare Funktionen und ihre Graphen...51

Inhaltsverzeichnis. 4 Elementare Funktionen und ihre Graphen...51 Inhaltsverzeichnis 1 1 Analysis...17 1.1 Funktionen...17 1.1.1 Begriff...17 1.1.2 Nutzen von Funktionen...19 1.1.3 Graph der Funktion...19 1.2 Aufgaben der Analysis...21 1.3 Vorschau...22 2 Elementares

Mehr

CARL HANSER VERLAG. Wolfgang Eichholz, Eberhard Vilkner. Taschenbuch der Wirtschaftsmathematik

CARL HANSER VERLAG. Wolfgang Eichholz, Eberhard Vilkner. Taschenbuch der Wirtschaftsmathematik CARL HANSER VERLAG Wolfgang Eichholz, Eberhard Vilkner Taschenbuch der Wirtschaftsmathematik 3-446-22080-1 www.hanser.de Inhaltsverzeichnis 1 Grundlagen... 11 1.1 Mengen... 11 1.2 Aussagenlogik... 13 1.3

Mehr

HollandIHolland. Mathematik im Betrieb

HollandIHolland. Mathematik im Betrieb HollandIHolland. Mathematik im Betrieb HEINRICH HOLLAND/ DORIS HOLLAND Mathematik im Betrieb Praxisbezogene Einführung mit Beispielen 5. r überarbeitete Auflage LEHRBUCH Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik Von Dr. Karl Bosch Professor für angewandte Mathematik und Statistik an der Universität Stuttgart-Hohenheim 10., verbesserte Auflage R. Oldenbourg Verlag München Wien Inhaltsverzeichnis

Mehr

Mathematische Probleme lösen mit Maple

Mathematische Probleme lösen mit Maple Mathematische Probleme lösen mit Maple Ein Kurzeinstieg Bearbeitet von Thomas Westermann überarbeitet 2008. Buch. XII, 169 S. ISBN 978 3 540 77720 5 Format (B x L): 15,5 x 23,5 cm Weitere Fachgebiete >

Mehr

Mathematik für Physiker 1

Mathematik für Physiker 1 Klaus Weltner Mathematik für Physiker 1 Basiswissen für das Grundstudium der Experimentalphysik 14. überarbeitete Auflage mit 231 Abbildungen und CD-ROM verfasst von Klaus Weltner, Hartmut Wiesner, Paul-Bernd

Mehr

Elemente der Mathematik für Pharmazeuten

Elemente der Mathematik für Pharmazeuten Hans-Heinrich Körle Richard Hirsch Elemente der Mathematik für Pharmazeuten Womit ein Pharmazeut rechnen muß Mit 54 Bildern und 101 Übungsaufgaben mit ausführlichen Lösungen vieweg IX Inhaltsverzeichnis

Mehr

Teil 3 -Analysis TEIL 3: ANALYSIS

Teil 3 -Analysis TEIL 3: ANALYSIS Mathematik Workshop TEIL 3: ANALYSIS Basis Funktionen Funktionsuntersuchung Nullstellen pq-formel, Diskriminanten Polynomdivision Mehrere Veränderliche Differenzieren Idee Regeln zum Rechnen Anwendung

Mehr

Springers Mathematische Formeln

Springers Mathematische Formeln Lennart Rade Bertil Westergren Springers Mathematische Formeln Taschenbuch für Ingenieure, Naturwissenschaftler, Informatiker, Wirtschaftswissenschaftler Übersetzt und bearbeitet von Peter Vachenauer Dritte,

Mehr

Mathematik für Physiker und Ingenieure 1

Mathematik für Physiker und Ingenieure 1 Klaus Weltner Mathematik für Physiker und Ingenieure 1 Basiswissen für das Grundstudium - lnit n1ehr als 1400 Aufgaben und Lösungen anline unter Mitwirkung von Hartmut Wiesner, PauI-Bemd Heinrich, Peter

Mehr

RRL GO- KMK EPA Mathematik. Ulf-Hermann KRÜGER Fachberater für Mathematik bei der Landesschulbehörde, Abteilung Hannover

RRL GO- KMK EPA Mathematik. Ulf-Hermann KRÜGER Fachberater für Mathematik bei der Landesschulbehörde, Abteilung Hannover RRL GO- KMK EPA Mathematik Jahrgang 11 Propädeutischer Grenzwertbegriff Rekursion /Iteration Ableitung Ableitungsfunktion von Ganzrationalen Funktionen bis 4. Grades x 1/(ax+b) x sin(ax+b) Regeln zur Berechnung

Mehr

Inhaltsverzeichnis. Kapitel 1: Rechnen mit Zahlen. Kapitel 2: Umformen von Ausdrücken. Kapitel 3: Gleichungen, Ungleichungen, Gleichungssysteme

Inhaltsverzeichnis. Kapitel 1: Rechnen mit Zahlen. Kapitel 2: Umformen von Ausdrücken. Kapitel 3: Gleichungen, Ungleichungen, Gleichungssysteme Kapitel 1: Rechnen mit Zahlen 1.1 Rechnen mit reellen Zahlen 1.2 Berechnen von Summen und Produkten 1.3 Primfaktorzerlegung 1.4 Größter gemeinsamer Teiler 1.5 Kleinstes gemeinsames Vielfaches 1.6 n-te

Mehr

MNF-math-phys Semester, Dauer: 1 Semester Prof. Dr. Walter Bergweiler Telefon 0431/ ,

MNF-math-phys Semester, Dauer: 1 Semester Prof. Dr. Walter Bergweiler Telefon 0431/ , Modulnummer Semesterlage / Dauer Verantwortliche(r) Studiengang / -gänge Lehrveranstaltungen Arbeitsaufwand Leistungspunkte Voraussetzungen Lernziele Lehrinhalte Prüfungsleistungen Mathematik für Physiker

Mehr

Bachelormodule Zweitfach Mathematik a) Überblick

Bachelormodule Zweitfach Mathematik a) Überblick Bachelormodule Zweitfach Mathematik a) Überblick 1 Mathematik 2 2 Module im Pflichtbereich 1 3 Modul NAT-5541 4 Modul NAT-5542 Mathematik: Elemente der Analysis I (EdA I) (Zweitfach) (Elements of analysis

Mehr

Heidrun Matthäus Wolf-Gert Matthäus. Ergänzungen für Vertiefung und Training

Heidrun Matthäus Wolf-Gert Matthäus. Ergänzungen für Vertiefung und Training Heidrun Matthäus Wolf-Gert Matthäus Mathematik für BWL-Bachelor: Übungsbuch Ergänzungen für Vertiefung und Training 3., erweiterte Auflage ö Springer Gabler Inhaltsverzeichnis Teil I: Mathematik ohne Anwendungsbezüge

Mehr

Mathematik für BWL-Bachelor

Mathematik für BWL-Bachelor Heidrun Matthäus Wolf-Gert Matthäus Mathematik für BWL-Bachelor Schritt für Schritt mit ausführlichen Lösungen 2., überarbeitete Auflage STUDIUM VIEWEG+ TEUBNER {Inhaltsverzeichnis 1 Analysis 17 1.1 Funktionen

Mehr

Definitions- und Formelübersicht Mathematik

Definitions- und Formelübersicht Mathematik Definitions- Formelübersicht Mathematik Definitions- Formelübersicht Mathematik Mengen Intervalle Eine Menge ist eine Zusammenfassung von wohlunterschiedenen Elementen zu einem Ganzen. Dabei muss entscheidbar

Mehr

Mathematik für Sozial- und Wirtschaftswissenschaftler

Mathematik für Sozial- und Wirtschaftswissenschaftler Mathematik für Sozial- und Wirtschaftswissenschaftler Von Dr. Gerhard Marineil o. Universitätsprofessor Fünfte, erweiterte Auflage R. Oldenbourg Verlag München Wien Inhalt Inhalt Vorwort V XIII I Mengenlehre

Mehr

1 Grundlagen 8 Funktionen 8 Differenzenquotient und Änderungsrate 9 Ableitung 11

1 Grundlagen 8 Funktionen 8 Differenzenquotient und Änderungsrate 9 Ableitung 11 Inhalt A Differenzialrechnung 8 Grundlagen 8 Funktionen 8 Differenzenquotient und Änderungsrate 9 Ableitung 2 Ableitungsregeln 2 Potenzregel 2 Konstantenregel 3 Summenregel 4 Produktregel 4 Quotientenregel

Mehr

Springers Mathematische Formeln

Springers Mathematische Formeln г Lennart Rade Bertil Westergren Springers Mathematische Formeln Taschenbuch für Ingenieure, Naturwissenschaftler, Wirtschaftswissenschaftler Übersetzt und bearbeitet von Peter Vachenauer Inhaltsverzeichnis

Mehr

Einführung in die höhere Mathematik 2

Einführung in die höhere Mathematik 2 Herbert Dallmann und Karl-Heinz Elster Einführung in die höhere Mathematik 2 Lehrbuch für Naturwissenschaftler und Ingenieure ab 1. Semester Mit 153 Bildern Friedr. Vieweg & Sohn Braunschweig /Wiesbaden

Mehr

Kompaktkurs Ingenieurmathematik mit Wahrscheinlichkeitsrechnung und Statistik

Kompaktkurs Ingenieurmathematik mit Wahrscheinlichkeitsrechnung und Statistik Kompaktkurs Ingenieurmathematik mit Wahrscheinlichkeitsrechnung und Statistik Bearbeitet von Wolfgang Schäfer, Gisela Trippler 2. Auflage 2001. Buch. 376 S. Hardcover ISBN 978 3 446 21595 5 Format (B x

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

LEISTUNGSKURS GESAMTBAND. bearbeitet von Heidi Bück Rolf Dürr Hans Freudigmann Günther Reinelt Manfred Zinser

LEISTUNGSKURS GESAMTBAND. bearbeitet von Heidi Bück Rolf Dürr Hans Freudigmann Günther Reinelt Manfred Zinser nsivsr i, LEISTUNGSKURS GESAMTBAND Mathematisches Unterrichtswerk für das Gymnasium Ausgabe A bearbeitet von Heidi Bück Rolf Dürr Hans Freudigmann Günther Reinelt Manfred Zinser unter Mitwirkung von Jürgen

Mehr

Mathematik für Ingenieure 1

Mathematik für Ingenieure 1 A. Hoffmann B. Marx W. Vogt Mathematik für Ingenieure 1 Lineare Algebra, Analysts Theorie und Numerik PEARSON Studium ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don

Mehr

Wolfgang Kohn Riza Öztürk. Mathematik für Ökonomen. Ökonomische Anwendungen der linearen. Algebra und Analysis mit Scilab

Wolfgang Kohn Riza Öztürk. Mathematik für Ökonomen. Ökonomische Anwendungen der linearen. Algebra und Analysis mit Scilab Wolfgang Kohn Riza Öztürk Mathematik für Ökonomen Ökonomische Anwendungen der linearen Algebra und Analysis mit Scilab 3., erweiterte und überarbeitete Auflage ^ Springer Gabler Inhaltsverzeichnis Teil

Mehr

W. Oevel. Mathematik II für Informatiker. Veranstaltungsnr: Skript zur Vorlesung, Universität Paderborn, Sommersemester 2002

W. Oevel. Mathematik II für Informatiker. Veranstaltungsnr: Skript zur Vorlesung, Universität Paderborn, Sommersemester 2002 W. Oevel Mathematik II für Informatiker Veranstaltungsnr: 172010 Skript zur Vorlesung, Universität Paderborn, Sommersemester 2002 Inhalt 1 Komplexe Zahlen 1 1.1 Definitionen..............................

Mehr

Mathematik für BWL-Bachelor

Mathematik für BWL-Bachelor Heidrun Matthäus Wolf-Gert Matthäus Mathematik für BWL-Bachelor Schritt für Schritt mit ausführlichen Lösungen 3., überarbeitete und erweiterte Auflage STUDIUM 4y Springer Gabler Inhaltsverzeichnis Teil

Mehr

Einführung in die Mathematik für Volks- und Betriebswirte

Einführung in die Mathematik für Volks- und Betriebswirte Einführung in die Mathematik für Volks- und Betriebswirte Von Prof. Dr. Heinrich Bader und Prof. Dr. Siegbert Fröhlich Mit 45 A bbildungen 8. A uflage R. Oldenbourg Verlag München Wien INHALTSVERZEICHNIS

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik

Mehr

Schulinternes Curriculum Mathematik SII

Schulinternes Curriculum Mathematik SII Schulinternes Curriculum Mathematik SII Koordinatengeometrie Gerade, Parabel, Kreis Lösen von LGS mithilfe des Gaußverfahrens zur Bestimmung von Geraden und Parabeln 11 Differentialrechnung ganzrationaler

Mehr

Formelsammlung für Wirtschaftswissenschaftler

Formelsammlung für Wirtschaftswissenschaftler Fred Böker Formelsammlung für Wirtschaftswissenschaftler Mathematik und Statistik PEARSON.. ;. ; ; ; *:;- V f - - ' / > Щ DtUClllirn ein Imprint von Pearson Education München Boston San Francisco Harlow,

Mehr

Stoffverteilungsplan Mathematik Oberstufe für Berlin und Brandenburg

Stoffverteilungsplan Mathematik Oberstufe für Berlin und Brandenburg Stoffverteilungsplan Mathematik Oberstufe für Berlin und Brandenburg Grundlagen: 1.) Rahmenstoffplan Mathematik für die gymnasiale Oberstufe, herausgegeben von der Senatsverwaltung für Bildung, Jugend

Mehr

BWL-Crash-Kurs Mathematik

BWL-Crash-Kurs Mathematik Ingolf Terveer BWL-Crash-Kurs Mathematik UVK Verlagsgesellschaft mbh Vorwort 9 1 Aufgaben der Linearen Wirtschaftsalgebra 13 Aufgaben 17 2 Lineare Gleichungssysteme 19 2.1 Lineare Gleichungssysteme in

Mehr

Stichpunkte zum Abschnitt Analysis der Höheren Mathematik für Ingenieure I

Stichpunkte zum Abschnitt Analysis der Höheren Mathematik für Ingenieure I Stichpunkte zum Abschnitt Analysis der Höheren Mathematik für Ingenieure I Komplexe Zahlen Definition komplexer Zahlen in der Gaußschen Zahlenebene, algebraische Form, trigonometrische Form, exponentielle

Mehr

Vorbereitungskurs Mathematik

Vorbereitungskurs Mathematik BBS Gerolstein Vorbereitungskurs Mathematik Vorbereitungskurs Mathematik für die Berufsoberschule II www.bbs-gerolstein.de/cms/download/mathematik/vorkurs-mathe-bos-.pdf bzw. www.p-merkelbach.de/bos/mathe/vorkurs-mathe-bos-.pdf

Mehr

Inhaltsverzeichnis. 3 Folgen Achilles und die Schildkröte Grundbegriffe Fraktale... 49

Inhaltsverzeichnis. 3 Folgen Achilles und die Schildkröte Grundbegriffe Fraktale... 49 Inhaltsverzeichnis 1 Analytische Geometrie: Geraden 8 1.1 Lineare Gleichungen........................ 8 1.2 Die Hauptform einer linearen Gleichung............. 8 1.3 Wertetabellen............................

Mehr

Inhaltsverzeichnis Grundlagen 2 Analysis von Funktionen einer Veränderlichen 3 Reihen 191

Inhaltsverzeichnis Grundlagen 2 Analysis von Funktionen einer Veränderlichen 3 Reihen 191 Inhaltsverzeichnis 1 Grundlagen 1 1.1 Logische G rundlagen... 2 1.2 Grundlagen der M engenlehre... 8 1.3 Abbildungen... 15 1.4 Die natürlichen Zahlen und die vollständige Induktion... 16 1.5 Ganze, rationale

Mehr

Differentialund. Integralrechnung. Von G. M. Fichtenholz. Mit 168 Abbildungen. Dreizehnte Auflage ^<= /' M^ntrKkiVr..

Differentialund. Integralrechnung. Von G. M. Fichtenholz. Mit 168 Abbildungen. Dreizehnte Auflage ^<= /' M^ntrKkiVr.. Differentialund Integralrechnung Von G. M. Fichtenholz Mit 168 Abbildungen Dreizehnte Auflage /' M^ntrKkiVr.. s^os«^

Mehr

Mathematik für Informatik und Biolnformatik

Mathematik für Informatik und Biolnformatik M.P.H. Wolff P. Hauck W. Küchlin Mathematik für Informatik und Biolnformatik Springer Inhaltsverzeichnis 1. Einleitung und Überblick... 1 1.1 Ziele und Entstehung des Buchs... 1 1.2 Wozu dient die Mathematik

Mehr

Kurt Meyberg Peter Vachenauer. Höhere Mathematik 1. Differential- und Integralrechnung Vektor- und Matrizenrechnung

Kurt Meyberg Peter Vachenauer. Höhere Mathematik 1. Differential- und Integralrechnung Vektor- und Matrizenrechnung Kurt Meyberg Peter Vachenauer Höhere Mathematik 1 Differential- und Integralrechnung Vektor- und Matrizenrechnung Vierte, korrigierte Auflage Mit 450 Abbildungen Springer Inhaltsverzeichnis Kapitel 1.

Mehr