Ludwig Pohlmann PC III - Elektrochemie SS Elektrodenkinetik. 2. Überspannung und Überspannungen. 3. Kinetik der Einschritt-Durchtrittsreaktion

Größe: px
Ab Seite anzeigen:

Download "Ludwig Pohlmann PC III - Elektrochemie SS Elektrodenkinetik. 2. Überspannung und Überspannungen. 3. Kinetik der Einschritt-Durchtrittsreaktion"

Transkript

1 Ludwig Pohlmann P III - Eletrochemie SS 25 Eletrodenineti 1. Eletrischer Stromfluss und Eletrodenreationen 2. Überspannung und Überspannungen 3. Kineti der Einschritt-Durchtrittsreation 4. Theorie des ativierten Komplexes 5. utler-volmer-gleichung 6. Schlussfolgerungen und Grenzfälle 7. Mehrschrittreationen 8. Diffusionsontrolle Literatur: Hamann/Vielstich

2 Ludwig Pohlmann P III - Eletrochemie SS Eletrischer Stromfluss und Eletrodenreationen Grundlegendes harateristium einer eletrochemischen Reation: Übergang von Eletronenleitung zu Ionenleitung durch Eletronen- oder Ionendurchtritt an der Eletrodengrenzfläche! Der Stromfluss durch die Grenzfläche hängt ab von: - der Ladungsmenge Q pro Fläche, die durch die Grenzfläche tritt - der Zeitspanne t, in der dies passiert - dem Flächeninhalt der Grenzfläche Q I t zfm t da die Ladungsmenge gleich der Stoffmenge der Ionen M, welche sich umsetzen, ist (multipliziert mit Ladungszahl z und Faradayonstanten F). M mol v, [v] - heterogene Reationsgeschwindigeit: ist proportional zur Konzentration an der 2 t s cm Oberfläche: ( t,x ) v, [] cm s 6-2

3 Ludwig Pohlmann P III - Eletrochemie SS 25 sinnvoll: Stromdichte statt Strom: I i zfv für eine Teilreation erster Ordnung einfachstes eispiel: Redoxreation O + ze 1 Strom Strom(Hinreation) Strom(Rücreation) 2 R [ ( t,) ( t,) ] i i1 i2 zf Heterogene Kineti der Durchtrittsreation(en) und der Stromfluss sind unmittelbar und eindeutig miteinander vernüpft! 6-3

4 Ludwig Pohlmann P III - Eletrochemie SS Überspannung und Überspannungen Im eletrochemischen Gleichgewicht fließt ein Strom, das Eletrodenpotential ist das Gleichgewichts- Eletrodenpotential E entsprechend der Nernst-Gleichung. Nur wenn das atuelle Potential an der Eletrode von E verschieden ist, ann auch ein Strom fließen! Vermutung: je größer diese Differenz, desto größer ist der Stromfluss Definition der Überspannung: E E (Singular!) Maß der bweichung vom Gleichgewicht (thermodynamische Kraft)! Stromfluss Reation auf die uslenung vom Gleichgewicht (thermodynamischer Fluss) Nach der linearen irreversiblen Thermodynami gilt eine einfache Proportionalität: i 6-4

5 Ludwig Pohlmann P III - Eletrochemie SS 25 Es gibt noch eine zweite Definition des egriffs der Überspannung: Überspannung als Maß für die Hemmung des Stromflusses: Je größer die Hemmung, desto größer muss die angelegte Überspannung sein, damit ein definierter Strom i fließt! n einer Eletrodenreation sind immer mehrere Prozesse beteiligt, mindestens aber zwei: Durchtrittsreation und Ionentransport Ox Red Hemmung Durchtrittshemmung + Diffusionshemmung Überspannung Durchtrittsüberspannung + Diffusionsüberspannung (Plural!) Doppelschicht Diffusionsschicht 6-5

6 Ludwig Pohlmann P III - Eletrochemie SS 25 llerdings ist diese zweite Definition etwas unglüclich: eine Spannung (Triebraft) als Maß einer Hemmung! esser und logischer: der eletrische Widerstand (Systemeigenschaft) als Maß für die Hemmung des jeweiligen Teilschrittes: Überspannung Durchtritts-Spannungsabfall + Diffusions- Spannungsabfall Durchtritt Diffusion ( R R ) i R + i R i + i R gesamt R Durchtritt + R Diffusion Durchtritt Diffusion Statt Summe der Überspannungen besser: Summe der Prozesswiderstände! ndere Widerstandsarten: chemische Folgereationen ( Reations-Ü. ) dsorption/desorption ( dsorptions-ü. ) Kristallisation ( Kristallisations-Ü. ) Mehrschritt-Durchtritts-Reationen 6-6

7 Ludwig Pohlmann P III - Eletrochemie SS Kineti der Einschritt-Durchtrittsreation (Eletronentransfer, tivierungsontrolle) ei in Reihe geschalteten Prozessen (Hemmungen, Prozesswiderständen) dominiert der langsamste Prozess (der größte Widerstand): 1. Grenzfall: die Durchtrittsreation ist bestimmend für die Gesamtineti - Prozess ist ativierungsontrolliert (ativierungslimitiert) - Transportprozesse sind so schnell, dass sie nicht berücsichtigt werden müssen Durchtrittsreation Eletronentransfer (Redoxeletrode) bzw. Ionentransfer ( Metallioneneletrode) Einfachster Fall: nur ein Reationsschritt Ox + ne Red Redoxeletrode Me Me n + + ne Metallioneneletrode Wie schnell ist die Durchtrittsreation? Wie hängt sie vom Eletrodenpotential ab? 6-7

8 Ludwig Pohlmann P III - Eletrochemie SS Zwischenspiel: Theorie des ativierten Komplexes (Theorie des Übergangszustandes, absolute rate theory) eispiel: monomoleulare Reation Wovon hängt die Reationsgeschwindigeit ab? G # G rüc # G X # 6-8

9 Ludwig Pohlmann P III - Eletrochemie SS 25 nnahmen: 1. Die Moleüle des Reatanden formen zuerst einen ativierten Komplex (energetisch instabil) X #. Dieser befindet sich im Gleichgewicht mit dem Reatanden! 2. Dieser ativierte Komplex zerfällt danach mit gleicher Wahrscheinlicheit entweder nach oder nach. Folglich ist die Reationsgeschwindigeit proportional zur Konzentration des ativierten Komplexes! Gleichgewicht: # K # G # G # - freie Standard-Reationsenthalpie des ativierten Komplexes Freie Standard-Enthalpie der tivierung ( tivierungsenergie ) v # G # v f mit f G # Reationsgeschwindigeitsonstante 6-9

10 Ludwig Pohlmann P III - Eletrochemie SS Eletrochemische Kineti: utler-volmer- Gleichung G # G rüc # G X # m # s 6-1

11 Ludwig Pohlmann P III - Eletrochemie SS 25 Der ativierte Komplex tritt irgendwo innerhalb der Helmholtz-Schicht auf, wenn das Potential eine Wert #, zwischen den Potentialen des Metalls und der Lösung, besitzt. Dann verschiebt sich die Freie Standard-Enthalpie der tivierung nach: G ~ # G # n F # wobei immer gilt: ( ), < 1 # m s <, also: G ~ # # G n F Entsprechend gilt für die Reationsgeschwindigeitsonstante f G ~ # G # d.h. die Geschwindigeitsonstante der Hinreation hängt onentiell von der Potentialdifferenz an der Eletrode (d.h. in der Doppelschicht) ab! Für die Rücreation gelten analoge Überlegungen, mit dem Unterschied, dass: 6-11

12 Ludwig Pohlmann P III - Eletrochemie SS 25 b 1. die Rücreation verzögert wird, wenn die Hinreation beschleunigt wurde; 2. der wirsame nteil der Potentialdifferenz statt hier (1-) ist: G ~ # Rüc # G Rüc eide Reationen zusammen ergeben die resultierende Reationsgeschwindigeit: # G v v f v b, f Geschwindigeitsonstanten - chemischer nteil der v f b, Konzentrationen an der Grenzfläche x! Dann ist die Stromdichte bei einer Einschrittreation, bei der n Eletronen übertragen werden, gleich: i! f b utler-volmer-gleichung (inetische Schreibweise) 6-12

13 Ludwig Pohlmann P III - Eletrochemie SS Schlussfolgerungen und Grenzfälle 1. Zum Vergleich thermisch und eletrochemisch ativierter Reationen: eispiel: 1 V F eletrochemisch 8 KJ / mol, T 1 K thermisch 2. Das Gleichgewicht: liegt vor, wenn ein Netto-Strom mehr fließt: f b ln ( f ) + + ln( ) ln( b ) + + ln, - Konzentrationen im Volumen, x " Nernst-Gleichung für das Gleichgewichts-Potential: b + ln mit ln!! f Gleichgewicht als Grenzfall der Kineti: v ( ) 6-13

14 Ludwig Pohlmann P III - Eletrochemie SS Kineti als Reation des Systems auf uslenung vom Gleichgewicht: - an das System angelegte Überspannung + i! f b ergibt mit: i f b schließlich die beanntere Stromdichte-Form der utler- Volmer-Gleichung (wenn, ) i i! eine Limitierung durch Transport! i ist dabei die so genannte ustauschstromdichte: Maß für die Intensität des Ladungsdurchsatzes, für die heterogene Reationsgeschwindigeit (dynamisches Gleichgewicht!) 6-14

15 Ludwig Pohlmann P III - Eletrochemie SS 25 llgemeiner: wenn die Transportprozesse auch eine Rolle spielen, d.h. # #,, dann ist die resultierende utler-volmer-gleichung etwas omplizierter:! i i entscheidend sind immer die Konzentrationen an der Grenzfläche! 4. Polarisierbare und nicht-polarisierbare Eletroden: utler-volmer-gleichung 1 Stromdichte.4.4 i.5 i.5 i 5 hohe ustauschstromdichte: nicht polarisierbar niedrige ustauschstromdichte: polarisierbar 1 Überspannung in V 6-15

16 Ludwig Pohlmann P III - Eletrochemie SS Grenzfälle: a) leine Überspannungen (leine Entfernung vom Gleichgewicht): << 1 Taylor-Reihen-Entwiclung: ( x) 1+ x + x + L i! 1+ 1 i i lineare bhängigeit von der Überspannung (s.o. lineare irreversible Thermodynami!) b) große Überspannungen: i i für >> 1 bzw. i i für >> 1 Jetzt führt eine logarithmische Darstellung (Tafel-uftragung) zu einer Geraden: ln() i ln( i ) + für > Tafel-Gleichung 6-16

Elektrochemische Kinetik. FU Berlin Constanze Donner / Ludwig Pohlmann 2010 1

Elektrochemische Kinetik. FU Berlin Constanze Donner / Ludwig Pohlmann 2010 1 Elektrochemische Kinetik FU Berlin Constanze Donner / Ludwig Pohlmann 2010 1 FU Berlin Constanze Donner / Ludwig Pohlmann 2010 2 Elektrochemische Kinetik Was war: Die NernstGleichung beschreibt das thermodynamische

Mehr

Für eine allgemeine chemische Reaktion mit der stöchiometrischen Gleichung. aa + bb cc + dd

Für eine allgemeine chemische Reaktion mit der stöchiometrischen Gleichung. aa + bb cc + dd 5. Reationsineti 96 5. Reationsineti 5. Die Geschwindigeit chemischer Reationen Die Umsatzgeschwindigeit ω ist definiert als: dλ ω = [mol s - ] mit λ = Umsatzvariable (Gleichung 86) Für eine allgemeine

Mehr

Elektrochemie: Grundprinzipien

Elektrochemie: Grundprinzipien Elektrochemie: Grundprinzipien 1. Wo passiert eine elektrochemische Reaktion? 1. Immer in unmittelbarer Nähe (wenige Atomdurchmesser, endliche Tunnelwahrscheinlichkeit für elektronen) der Grenzfläche zwischen

Mehr

Elektrochemie. Alessandro Giuseppe Antonio Anastasio Volta ( ) Luigi Galvani ( )

Elektrochemie. Alessandro Giuseppe Antonio Anastasio Volta ( ) Luigi Galvani ( ) Eletrochemie Luigi Galvani (1737 1798 ) Alessandro Giuseppe Antonio Anastasio Volta (1745 1827 ) Daniell-Element John Frederic Daniell (1790-1845) Oxidation = Eletronenabgabe Redution = Eletronenaufnahme

Mehr

1. Elektroanalytik-I (Elektrochemie)

1. Elektroanalytik-I (Elektrochemie) Instrumentelle Analytik SS 2008 1. Elektroanalytik-I (Elektrochemie) 1 1. Elektroanalytik-I 1. Begriffe/Methoden (allgem.) 1.1 Elektroden 1.2 Elektrodenreaktionen 1.3 Galvanische Zellen 2 1. Elektroanalytik-I

Mehr

5. Messtechnik Grundlegende Zweiteilung der Meßmethoden: A) Kontrolle/Steuerung des fließenden Stromes ( galvanostatisch ):

5. Messtechnik Grundlegende Zweiteilung der Meßmethoden: A) Kontrolle/Steuerung des fließenden Stromes ( galvanostatisch ): 5. Messtechnik Grundlegende Zweiteilung der Meßmethoden: A) Kontrolle/Steuerung des fließenden Stromes ( galvanostatisch ): Sehr einfach zu realisieren Historisch zuerst Führt zu kontraintuitiven Begriffsbildungen

Mehr

5 Katalyse. 5.1 Allgemeines 5.2 Homogene Katalyse 5.3 Heterogene Katalyse. Ulm University. R.J. Behm Physikalische Chemie I SoS / C1

5 Katalyse. 5.1 Allgemeines 5.2 Homogene Katalyse 5.3 Heterogene Katalyse. Ulm University. R.J. Behm Physikalische Chemie I SoS / C1 5 Katalyse 5. llgemeines 5. Homogene Katalyse 5. Heterogene Katalyse R.J. ehm Physialische Chemie I SoS 06 06 / C 5. Katalyse: Historische Entwiclung Döbereiner (8) Entdect, daß H in Gegenwart von Pt-Schwamm

Mehr

Elektrochemische Thermodynamik. Wiederholung : Potentiale, Potentialbegriff

Elektrochemische Thermodynamik. Wiederholung : Potentiale, Potentialbegriff Elektrochemische Thermodynamik Wiederholung : Potentiale, Potentialbegriff Elektrische Potentiale in der EC Begriffe: Galvani-Potentialdifferenz, Galvani-Spannung: zwischen den inneren Potentialen zweier

Mehr

Die Modellierung einer Lithium-Batterie Zwischenpräsentation zum Praktikum Nichtlineare Modellierung in den Naturwissenschaften

Die Modellierung einer Lithium-Batterie Zwischenpräsentation zum Praktikum Nichtlineare Modellierung in den Naturwissenschaften MÜNSTER Die Modellierung einer Lithium-Batterie Zwischenpräsentation zum Praktikum Nichtlineare Modellierung in den Naturwissenschaften Christoph Fricke, Natascha von Aspern, Carla Tameling 12.06.2012

Mehr

Seminar zum Quantitativen Anorganischen Praktikum WS 2011/12

Seminar zum Quantitativen Anorganischen Praktikum WS 2011/12 Seminar zum Quantitativen Anorganischen Praktikum WS 211/12 Teil des Moduls MN-C-AlC Dr. Matthias Brühmann Dr. Christian Rustige Inhalt Montag, 9.1.212, 8-1 Uhr, HS III Allgemeine Einführung in die Quantitative

Mehr

Elektrizität. = C J m. Das Coulomb Potential φ ist dabei:

Elektrizität. = C J m. Das Coulomb Potential φ ist dabei: Elektrizität Die Coulombsche potentielle Energie V einer Ladung q im Abstand r von einer anderen Ladung q ist die Arbeit, die aufgewendet werden muss um die zwei Ladungen aus dem Unendlichen auf den Abstand

Mehr

A.5 Reaktionsfolgen: Quasistationarität bei reaktivem Zwischenprodukt

A.5 Reaktionsfolgen: Quasistationarität bei reaktivem Zwischenprodukt Prof. Dr. H.-H. Kohler, WS 004/05 PC1 Kapitel A.5- Reationsfolge A.5-1 A.5 Reationsfolgen: Quasistationarität bei reatiem Zwischenprodut A.5.1 Allgemeines Wenn das Produt einer Reation R1 Edut einer anderen

Mehr

Grundgedanke Zumindest über einen gewissen Zeitraum kann B als konstant angesehen werden. Das gilt umso eher, je kleiner B ist. db dt. A k.

Grundgedanke Zumindest über einen gewissen Zeitraum kann B als konstant angesehen werden. Das gilt umso eher, je kleiner B ist. db dt. A k. Stationaritätsprinzip nac Bodenstein B C Grundgedane Zumindest über einen gewissen Zeitraum ann B als onstant angeseen werden. as gilt umso eer, je leiner B ist. db B araus ergibt sic die stationäre Konzentration

Mehr

Einführung: Wovon handelt die Thermodynamik? Was sind thermodynamische Systeme?

Einführung: Wovon handelt die Thermodynamik? Was sind thermodynamische Systeme? Einführung: Wovon handelt die Thermodynamik? Was sind thermodynamische Systeme? Thermodynamische Systeme: 1. Charakteristikum: - sehr große Anzahl von Freiheitsgraden: N = 6 10 23 Teilchen pro Mol - es

Mehr

AUFLÖSUNGSGESCHWINDIGKEIT EINES SALZES. 1. Versuchsplatz. 2. Allgemeines zum Versuch

AUFLÖSUNGSGESCHWINDIGKEIT EINES SALZES. 1. Versuchsplatz. 2. Allgemeines zum Versuch Pratium Teil A und B 17. AUFLÖSUNGSGESCHWINDIGKEIT Stand 17/1/7 AUFLÖSUNGSGESCHWINDIGKEIT EINES SALZES 1. ersuchsplatz Komponenten: - Thermostat - Reationsgefäß mit Rührer - Leitfähigeitsmessgerät mit

Mehr

3. Polarographie. Hamann / Vielstich Prinzip: Voltammetrische Messungen an einer tropfenden Quecksilberelektrode (Heyrowsky 1925)

3. Polarographie. Hamann / Vielstich Prinzip: Voltammetrische Messungen an einer tropfenden Quecksilberelektrode (Heyrowsky 1925) 3. Polarographie Hamann / Vielstich 1.2.1 Prinzip: Voltammetrische Messungen an einer tropfenden Quecksilberelektrode (Heyrowsky 1925) Warum Quecksilber? Flüssiges Metall: jeder Tropfen hat eine neue reine

Mehr

3. Elektrischer Strom

3. Elektrischer Strom 3. Eletrischer Strom in diesem Kapitel nur stationäre Ströme = Gleichströme a) Stromstäre 3.1. Stromstäre und Stromdichte eletrischer Strom ist Ladungstransport Betrachte Leiter mit Querschnitt und angelegter

Mehr

Experimentalphysik II (Kip SS 2007)

Experimentalphysik II (Kip SS 2007) Zusatzvorlesungen: Z-1 Ein- und mehrdimensionale ntegration Z-2 Gradient, Divergenz und Rotation Z-3 Gaußscher und Stokesscher ntegralsatz Z-4 Kontinuitätsgleichung Z-5 Elektromagnetische Felder an Grenzflächen

Mehr

Chemisches Potential und Nernstgleichung Carsten Stick

Chemisches Potential und Nernstgleichung Carsten Stick Chemisches Potential und Nernstgleichung Carsten Stick Definition der mechanischen Arbeit: Kraft mal Weg W = F! ds W = Arbeit oder Energie; F = Kraft; s = Weg Diese Definition lässt sich auch auf die Kompression

Mehr

d. h. die Summe der positiven und negativen Ladungsträger, welche in einer Zeit t durch eine senkrecht stehende Fläche A treten: I = I +

d. h. die Summe der positiven und negativen Ladungsträger, welche in einer Zeit t durch eine senkrecht stehende Fläche A treten: I = I + Elektrolyte Teil II Solvatation, elektrische Leitfähigkeit, starke und schwache Elektrolyte, Ionenstärke, Debye Hückeltheorie, Migration, Diffusion, Festelektrolyte Wie hängt der Strom von der Geschwindigkeit

Mehr

Grundlagen der Physiologie

Grundlagen der Physiologie Grundlagen der Physiologie Bioenergetik www.icbm.de/pmbio Energieformen Von Lebewesen verwertete Energieformen o Energie ist etwas, das Arbeit ermöglicht. o Lebewesen nutzen nur zwei Formen: -- Licht --

Mehr

ELEKTROCHEMISCHE DIFFUSIONSKINETIK

ELEKTROCHEMISCHE DIFFUSIONSKINETIK 1. Lernziele ELEKTOCHEMISCHE IUSIONSKINETIK Grundonzept der Kineti eletrochemischer edoxreationen. Erfassung des Zusammenhangs zwischen eletrochemischen Kenngrössen (Strom und Eletrodenpotential) ine einem

Mehr

Allgemeine Chemie für Studierende mit Nebenfach Chemie Andreas Rammo

Allgemeine Chemie für Studierende mit Nebenfach Chemie Andreas Rammo Allgemeine Chemie für Studierende mit Nebenfach Chemie Andreas Rammo Allgemeine und Anorganische Chemie Universität des Saarlandes E-Mail: a.rammo@mx.uni-saarland.de innere Energie U Energieumsatz bei

Mehr

METTLER TOLEDO Prozessanalytik. Online-Prozessund Reinwassersysteme. Leitfaden für Online-Leitfähigkeitsmessungen Theorie und Praxis

METTLER TOLEDO Prozessanalytik. Online-Prozessund Reinwassersysteme. Leitfaden für Online-Leitfähigkeitsmessungen Theorie und Praxis Leitfaden Schulexperimente Leitfähigkeit METTLER TOLEDO Prozessanalytik Online-Prozessund Reinwassersysteme Leitfaden für Online-Leitfähigkeitsmessungen Theorie und Praxis Inhaltsverzeichnis 1 Einleitung

Mehr

Korrosion und Korrosionsschutz

Korrosion und Korrosionsschutz Korrosion und Korrosionsschutz Von Tobias Reichelt und Birte Schwan Teil A I. Einleitung II. Thermodynamik III. Kinetik Teil B I. Korrosionsarten (atmosphärischer Korrosion) II. Vermeidungsstrategien III.

Mehr

Zyklische Voltammetrie Die Strom/Spannungscharakteristik einer Platinelektrode in 0.1 n Schwefelsäure mit und ohne elektrochemisch aktiver Substanz so

Zyklische Voltammetrie Die Strom/Spannungscharakteristik einer Platinelektrode in 0.1 n Schwefelsäure mit und ohne elektrochemisch aktiver Substanz so Zyklische Voltammetrie Die Strom/Spannungscharakteristik einer Platinelektrode in 0.1 n Schwefelsäure mit und ohne elektrochemisch aktiver Substanz soll mit Hilfe der zyklischen Voltammetrie untersucht

Mehr

= n + + Thermodynamik von Elektrolytlösungen. Wdhlg: Chemisches Potential einer Teilchenart: Für Elektrolytlösungen gilt: wobei : und

= n + + Thermodynamik von Elektrolytlösungen. Wdhlg: Chemisches Potential einer Teilchenart: Für Elektrolytlösungen gilt: wobei : und Elektrolyte Teil III Solvatation, elektrische Leitfähigkeit, starke und schwache Elektrolyte, Ionenstärke, Debye Hückeltheorie, Migration, Diffusion, Festelektrolyte Thermodynamik von Elektrolytlösungen

Mehr

Kommentierter Themenschwerpunkt 2: Elektrolyse

Kommentierter Themenschwerpunkt 2: Elektrolyse Kommentierter Themenschwerpunkt 2: Elektrolyse Grundlagenwissen: Ich sollte... o grundlegende Begriffe der Elektrochemie definieren und sicher anwenden können (Oxidation, Reduktion, Oxidationszahl, Oxidationsmittel,

Mehr

Nichtlineare Prozesse in der Elektrochemie II

Nichtlineare Prozesse in der Elektrochemie II Nichtlineare Prozesse in der Elektrochemie II 5. Stabilität und Instabilität Neue (dissipative) Strukturen entstehen, wenn der bisherige stationäre Zustand, der den thermodynamischen Zweig repräsentiert,

Mehr

Erich Tag Elektrochemie

Erich Tag Elektrochemie STUDIENBÜCHER CHEMIE Erich Tag Elektrochemie Eine Einführung in die Theorie elektrochemischer Gleichgewichte und elektrochemischer Prozesse Herausgegeben von W. Botsch, E. Höfling und J. Mauch VERLAG MORITZ

Mehr

Onsagersche Gleichung. Energetische Beziehungen

Onsagersche Gleichung. Energetische Beziehungen Onsagersche Gleichung. Energetische Beziehungen R I 4 V t t 1 r 8... D A p l J LX c x Zustandsgrössen sind Grössen, die zur Beschreibung des Zustandes eines stofflichen Systems dienen, T, V, p, m,... T,

Mehr

Was ist Elektrochemie?

Was ist Elektrochemie? Was ist Elektrochemie? Eine elektrochemische Reaktion erfüllt folgende vier Eigenschaften: Sie findet an Phasengrenzen statt. Die einzelnen Phasen sind unterschiedlich geladen. (unterschiedliche elektrische

Mehr

Vorlesung Kinetik SS 07 Mi 11-13h, HS A; Beginn: 18.4.

Vorlesung Kinetik SS 07 Mi 11-13h, HS A; Beginn: 18.4. Vorlesung Kineti SS 7 Mi -3h, HS A; Beginn: 8.4. Prof. Ingo Fischer Raum /, Tel: 888-636 Email: ingo@phys-chemie.uni-wuerzburg.de http://www.phys-chemie.uni-wuerzburg.de/ arbeitsgruppen/a_prof_i_fischer/startseite/

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde VL # 14,

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde VL # 14, Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde VL # 14, 20.05.2009 Vladimir Dyakonov Experimentelle Physik VI dyakonov@physik.uni-wuerzburg.de Professor Dr. Vladimir

Mehr

Physikalische Chemie für Fortgeschrittene. Protokoll

Physikalische Chemie für Fortgeschrittene. Protokoll niversität Leipzig Studiengang Chemie (Bachelor) Physikalische Chemie für Fortgeschrittene Sommersemester 2014 Protokoll ersuch 7 Elektrodenkinetik Betreuer: Priv.-Doz. Dr. Klaus-Dieter Schulze Praktikanten:

Mehr

Einführung. Galvanische Zelle. Korrosion + - Univ.-Prof. Dr. Max J. Setzer Vorlesung - Korrosion Seite 1

Einführung. Galvanische Zelle. Korrosion + - Univ.-Prof. Dr. Max J. Setzer Vorlesung - Korrosion Seite 1 Univ.-Prof. Dr. Max J. Setzer Vorlesung - Korrosion Seite 1 Einführung MWG 8 / Die Korrosion ist ein Redox-Prozess Bei der Änderung der Oxidationsstufe entstehen Ionen geladene Teilchen. Der Oxidationsprozess

Mehr

Versuch 17: Kennlinie der Vakuum-Diode

Versuch 17: Kennlinie der Vakuum-Diode Versuch 17: Kennlinie der Vakuum-Diode Inhaltsverzeichnis 1 Einleitung 3 2 Theorie 3 2.1 Prinzip der Vakuumdiode.......................... 3 2.2 Anlaufstrom.................................. 3 2.3 Raumladungsgebiet..............................

Mehr

Grundlagen der Chemie Chemisches Gleichgewicht

Grundlagen der Chemie Chemisches Gleichgewicht Chemisches Gleichgewicht Prof. Annie Powell KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Das Massenwirkungsgesetz Wenn Substanzen

Mehr

Kontakte zwischen Metallen und verschiedenen Halbleitermaterialien

Kontakte zwischen Metallen und verschiedenen Halbleitermaterialien UniversitätQOsnabrück Fachbereich Physik Dr. W. Bodenberger Kontakte zwischen Metallen und verschiedenen Halbleitermaterialien Betrachtet man die Kontakstelle zweier Metallischer Leiter mit unterschiedlichen

Mehr

Elektrochemische Messmethoden III: Mikroelektroden

Elektrochemische Messmethoden III: Mikroelektroden Elektrochemische Messmethoden III: Mikroelektroden 1. Grundprobleme elektrochemischer Messungen - die Kapazität C der Elektrode ist proportional zum Flächeninhalt und führt in der Voltammetrie zu störenden

Mehr

- Thermochemie - Universität Hamburg Institut für Technische und Makromolekulare Chemie

- Thermochemie - Universität Hamburg Institut für Technische und Makromolekulare Chemie - hermochemie - Institut für echnische und Maromoleulare Chemie 1 Wiederholung 1. Hauptsatz: Die innere Energie eines abgeschlossenen Systems ist onstant Der 1. Hauptsatz gibt usunft darüber, elche Prozesse

Mehr

Elektrischen Phänomene an Zellmembranen

Elektrischen Phänomene an Zellmembranen Konzeptvorlesung 17/18 1. Jahr Block 1 Woche 4 Physikalische Grundlagen der Bioelektrizität Physik PD Dr. Hans Peter Beck Laboratorium für Hochenergiephysik der niversität Bern HPB11 1 Elektrischen Phänomene

Mehr

Elektrodentypen - Intro. Elektrodentypen?! Was ist eine Elektrode? Was für Elektrodentypen gibt es? Betrachtung einzelner Elektroden:

Elektrodentypen - Intro. Elektrodentypen?! Was ist eine Elektrode? Was für Elektrodentypen gibt es? Betrachtung einzelner Elektroden: Elektrodentypen - Intro Elektrodentypen?! Was ist eine Elektrode? Was für Elektrodentypen gibt es? Betrachtung einzelner Elektroden: Elektrodentypen - Einleitung Was ist eine Elektrode? Eletrode leitet

Mehr

Elektrochemische Kinetik. FU Berlin Constanze Donner / Ludwig Pohlmann

Elektrochemische Kinetik. FU Berlin Constanze Donner / Ludwig Pohlmann Elektrochemische Kinetik FU Berlin Constnze Donner / Ludwig Pohlmnn 21 1 Trnsportprozesse Trnsportprozesse werden geschwindigkeitsbestimmend! Es tritt immer dnn uf, wenn der Ldungsdurchtritt sehr schnell

Mehr

SS 98 / Platz 1. Versuchsprotokoll. (Elektronik-Praktikum) zu Versuch 4. Differenzverstärker

SS 98 / Platz 1. Versuchsprotokoll. (Elektronik-Praktikum) zu Versuch 4. Differenzverstärker Dienstag, 19.5.1998 SS 98 / Platz 1 Dennis S. Weiß & Christian Niederhöfer Versuchsprotokoll (Elektronik-Praktikum) zu Versuch 4 Differenzverstärker 1 Inhaltsverzeichnis 1 Problemstellung 3 2 Physikalische

Mehr

Wiederholung. H. Hennig; Humboldt-Universität Vorlesungen Chemische Kinetik Komplexe Chemische Reaktionen 8. Mai 2006

Wiederholung. H. Hennig; Humboldt-Universität Vorlesungen Chemische Kinetik Komplexe Chemische Reaktionen 8. Mai 2006 Wiederholung us der marosopishen Bruttoreationsgleihung ann niht auf den onzentrationsabhängigen Teil im Geshwindigeitsgesetz, d.h. auf die inetishe Reationsordnung geshlossen werden! Vorlesungen hemishe

Mehr

2Fs m = 2 600N 0.225m. t = s v = 30m 30m/s = 1s = gt = 10 m s21s = 10m/s. v y. tanα = (v y /v x ) α = 18. m 1 v 1 = (m 1 + m 2 )v 2

2Fs m = 2 600N 0.225m. t = s v = 30m 30m/s = 1s = gt = 10 m s21s = 10m/s. v y. tanα = (v y /v x ) α = 18. m 1 v 1 = (m 1 + m 2 )v 2 Lösungen Vorschlag I: Massepunkte im Gravitationsfeld 1. (a) (b) Fallzeit = Flugzeit: a = F m v = 2as = v y 2Fs m = 2 600N 0.225m = 30 m/s 0.3kg t = s v = 30m 30m/s = 1s = gt = 10 m s21s = 10m/s v x α

Mehr

Elektrolytlösungen, Leitfähigkeit, Ionentransport. Teil I

Elektrolytlösungen, Leitfähigkeit, Ionentransport. Teil I Elektrolytlösungen, Leitfähigkeit, Ionentransport Teil I 1. Einführende Überlegungen 2. Solvatation, Hydratation 3. Ionenbeweglichkeiten und Leitfähigkeiten Literatur: Wedler 1.6.2-1.6.7 Teil II 4. Schwache

Mehr

1. Wärmelehre 1.1. Temperatur. Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités)

1. Wärmelehre 1.1. Temperatur. Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Ein Maß für die Temperatur Prinzip

Mehr

Übung zum chemischen Praktikum für Studierende mit Chemie als Nebenfach Übung Nr. 3, /

Übung zum chemischen Praktikum für Studierende mit Chemie als Nebenfach Übung Nr. 3, / Übung zum chemischen Praktikum für Studierende mit Chemie als Nebenfach Übung Nr. 3, 02.05.11/03.05.11 1. Sie haben Silberbesteck geerbt. Um Ihren neuen Reichtum ordentlich zur Schau zu stellen, haben

Mehr

Physik. Abiturwiederholung. Das Elektrische Feld

Physik. Abiturwiederholung. Das Elektrische Feld Das Elektrische Feld Strom Strom ist bewegte Ladung, die Stromstärke ergibt sich also als Veränderung der Ladung nach der Zeit, also durch die Ableitung. Somit kann man die Ladung als Fläche betrachten,

Mehr

Enzymreaktion (Hydrolyse von Harnstoff)

Enzymreaktion (Hydrolyse von Harnstoff) Enzymreation (ydrolyse von arnstoff) Ziel des Versuches: Kennenlernen des Michaelis-Menten-Mechanismus enzymatischer Reationen Messung der Enzymativität (aus der Abhängigeit der anfänglichen Reationsgeschwindigeit

Mehr

13. Ionenleitung in Festkörpern

13. Ionenleitung in Festkörpern 13. Ionenleitung in Festkörpern 1. Defekte in Ionenkristallen 2. Prinzip und Beschreibung Ionenleitung 3. Schnelle Ionenleitung durch homogene Dotierung durch Unordnung durch Grenzflächeneffekte 4. Impedanzspektroskopie

Mehr

Hauptsätze der Thermodynamik

Hauptsätze der Thermodynamik Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Hauptsätze der Thermodynamik Dominik Pfennig, 31.10.2012 Inhalt 0. Hauptsatz Innere Energie 1. Hauptsatz Enthalpie Satz von Hess 2. Hauptsatz

Mehr

Wir gehen jetzt zu reversiblen Reaktionen über und betrachten eine reversible Reaktion einfacher Art in der allgemeinen Form (s. Gl.(A.

Wir gehen jetzt zu reversiblen Reaktionen über und betrachten eine reversible Reaktion einfacher Art in der allgemeinen Form (s. Gl.(A. Prof. Dr. H.-H. ohler, W 004/05 PC1 apitel.4 - Reversible Reation.4-1.4 Reversible Reationen.4.1 Diretionale und Netto-Reationsgeshwindigeit Wir gehen jetzt zu reversiblen Reationen über und betrahten

Mehr

Kurze Einführung in die Thermodynamik mit Begriffsklärungen

Kurze Einführung in die Thermodynamik mit Begriffsklärungen Kurze Einführung in die Thermodynamik mit Begriffsklärungen Gliederung 1. Begriffsklärungen 2. Energieumwandlungen 3. Molare Volumenarbeit 4. Hauptsätze der Thermodynamik 5. Quellen 1. Begriffsklärungen

Mehr

Musterlösung 8. Übungsblatt, Physik 2. a,c) Den Bänderverlauf am Metall-Halbleiterübergang (n-typ dotierter Halbleiter) zeigt die folgende Skizze.

Musterlösung 8. Übungsblatt, Physik 2. a,c) Den Bänderverlauf am Metall-Halbleiterübergang (n-typ dotierter Halbleiter) zeigt die folgende Skizze. Musterlösung 8 Übungsblatt, Physi a,c en änderverlauf am Metall-Halbleiterübergang (n-ty dotierter Halbleiter zeigt die folgende Sizze Vauum-iveau Φ M Ξ Φ S W F,M W W F,Si Φ Φ MS W W F W i W i Metall Metall

Mehr

Einführung in die Elektrochemie

Einführung in die Elektrochemie Einführung in die Elektrochemie > Grundlagen, Methoden > Leitfähigkeit von Elektrolytlösungen, Konduktometrie > Elektroden Metall-Elektroden 1. und 2. Art Redox-Elektroden Membran-Elektroden > Potentiometrie

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 19. 05. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 19. 05.

Mehr

Bei der Wärmeübertragung kann man drei Transportvorgänge voneinander unterscheiden:

Bei der Wärmeübertragung kann man drei Transportvorgänge voneinander unterscheiden: 6 ärmeübertragung Bei der ärmeübertragung kann man drei Transportvorgänge voneinander unterscheiden: ärmeleitung ärmeübergang / onvektion ärmestrahlung Der ärmetransport durch Leitung oder onvektion benötigt

Mehr

Test zum Begriff Spannung Ein grundlegender Begriff der Elektrizitätslehre

Test zum Begriff Spannung Ein grundlegender Begriff der Elektrizitätslehre Test zum Begriff Spannung Ein grundlegender Begriff der Elektrizitätslehre Kontakt: Dr. Hermann Härtel Gastwissenschaftler am Institut für Theoretische Physik und Astrophysik Leibnizstr. 15-24098 Kiel

Mehr

22. Entropie; Zweiter Hauptsatz der Wärmelehre

22. Entropie; Zweiter Hauptsatz der Wärmelehre 22. Entropie; Zweiter Hauptsatz der Wärmelehre Nicht alle Prozesse, die dem Energiesatz genügen, finden auch wirklich statt Beispiel: Um alle Energieprobleme zu lösen, brauchte man keine Energie aus dem

Mehr

4 Flaschen mit Stammlösung (0,001 M HCl, 0,001 M NaCl, 0,1 M Essigsäure, 0,001 M Natriumacetat), demineralisiertes Wasser.

4 Flaschen mit Stammlösung (0,001 M HCl, 0,001 M NaCl, 0,1 M Essigsäure, 0,001 M Natriumacetat), demineralisiertes Wasser. Juni 29, 2017 Physikalisch-Chemisches Praktikum Versuch Nr. 9 Thema: Aufgabenstellung: Material: Substanzen: Ablauf: 1: 2: 3: 4: 5: 6: 7: 8: Ladungstransport in Elektrolytlösungen Ermittlung der Dissoziationskonstanten

Mehr

Reaktionskinetik - Geschwindigkeitsgesetze

Reaktionskinetik - Geschwindigkeitsgesetze Reationsineti - Geshwindigeitsgesetze Lernziele: Ø Thermodynamishe Beshreibung hemisher Reationen Ø Berehnen und Beshreiben von Reationsordnungen Ø Kinetishe Beshreibung von Reationsmehanismen (z.b. Lindemann-Mehanismus)

Mehr

Elektrochemisches Gleichgewicht

Elektrochemisches Gleichgewicht Elektrochemisches Gleichgewicht - Me 2 - Me Me 2 - Me 2 - Me 2 Oxidation: Me Me z z e - Reduktion: Me z z e - Me ANODE Me 2 Me 2 Me 2 Me 2 Me Oxidation: Me Me z z e - Reduktion: Me z z e - Me KATHODE Instrumentelle

Mehr

E2: Wärmelehre und Elektromagnetismus 15. Vorlesung

E2: Wärmelehre und Elektromagnetismus 15. Vorlesung E2: Wärmelehre und Elektromagnetismus 15. Vorlesung 11.06.2018 Wissenschaftliche Instrumente aus dem 18. und 19. Jahrhundert aus der Sammlung des Teylers Museum in Haarlem, Niederlande Heute: - Reihen-

Mehr

6. Niederfrequente Wechselfelder

6. Niederfrequente Wechselfelder 6. Niederfrequente Wechselfelder 6.1. Der Skin-Effekt Übergang zu niedrigen Frequenzen und leitfähigem Material -> Wechselstromtechnik Wir starten von der Telegraphen-Gleichung: E = 1 c 2 E µ E mit 1 c

Mehr

Quadratische Gleichungen. Üben. Lösung. Quadratische Gleichungen. Klasse. Schwierigkeit. Art. math. Thema. Nr. Löse mit der Lösungsformel:

Quadratische Gleichungen. Üben. Lösung. Quadratische Gleichungen. Klasse. Schwierigkeit. Art. math. Thema. Nr. Löse mit der Lösungsformel: 1a Löse mit der sformel: a) x 2 + 6x + 5 = 0 b) y 2 + 6y + 7 = 0 c) z 2 13z 48 = 0 1a a) a = 1, b = 6, c = 5 2 6 ± 6 4 1 5 x 1/ 2 = ; x1 5 ; x2 = 1 2 1 b) x 1 = 3 2 ; x 2 = 3+ 2 c) x1 = - 3 ; x2 = 16 1b

Mehr

Prof. Dr. Stefan Schuster Lehrstuhl für Tierphysiologie

Prof. Dr. Stefan Schuster Lehrstuhl für Tierphysiologie Prof. Dr. Stefan Schuster Lehrstuhl für Tierphysiologie Tierphysiologie = Wie Tiere funktionieren Welche Anpassungen. Leistungen, Moleküle etc sie einsetzen um zu leben und möglichst am Leben zu beiben

Mehr

Zusammenfassung v09 vom 28. Mai 2013

Zusammenfassung v09 vom 28. Mai 2013 Zusammenfassung v09 vom 28. Mai 2013 Ohm sche Widerstände sind durch die Befolgung des Ohm schen Gesetzes charakterisiert. Dies beinhaltet in (idealisierten Fällen) die Linearität zwischen Strom und Spannung,

Mehr

ZERSETZUNGSSPANNUNG UND ÜBERSPANNUNG

ZERSETZUNGSSPANNUNG UND ÜBERSPANNUNG ZERSETZUNGSSPANNUNG UND ÜBERSPANNUNG 1. Versuchslatz Komonenten: - Rührer - Reaktionsgefäß - Netzgerät - Kabel - Ameremeter - Elektroden 2. Allgemeines zum Versuch Bei der Leitung des elektrischen Stromes

Mehr

Reaktionskinetik: - Geschwindigkeit chemischer Reaktionen - Untersuchung (bzw. Bestimmung) der Reaktionsmechanismen. c(a) t. v = -

Reaktionskinetik: - Geschwindigkeit chemischer Reaktionen - Untersuchung (bzw. Bestimmung) der Reaktionsmechanismen. c(a) t. v = - REAKTIONSKINETIK 1 Reaktionskinetik Reaktionskinetik: - Geschwindigkeit chemischer Reaktionen - Untersuchung (bzw. Bestimmung) der Reaktionsmechanismen Anwendung: - Vorgänge in den lebenden Organismen

Mehr

ZERSETZUNGSSPANNUNG ÜBERSPANNUNG

ZERSETZUNGSSPANNUNG ÜBERSPANNUNG ZERSETZNGSSPANNNG ÜBERSPANNNG 1. Versuchsplatz Komponenten: - Rührer - Reaktionsgefäß - Netzgerät - Kabel - Amperemeter - Elektroden. Allgemeines zum Versuch Bei der Leitung des elektrischen Stromes durch

Mehr

ELEKTROCHEMIE. Elektrischer Strom: Fluß von elektrischer Ladung. elektrolytische (Ionen) Zwei Haupthemen der Elektrochemie.

ELEKTROCHEMIE. Elektrischer Strom: Fluß von elektrischer Ladung. elektrolytische (Ionen) Zwei Haupthemen der Elektrochemie. ELEKTROCHEMIE Elektrischer Strom: Fluß von elektrischer Ladung Elektrische Leitung: metallische (Elektronen) elektrolytische (Ionen) Zwei Haupthemen der Elektrochemie Galvanische Zellen Elektrolyse Die

Mehr

Übung 6. Allgemeine Chemie I Herbstsemester O(l) H 3. (g), (4) G 0 R = ( 32.89) kj/mol ( ) kj/mol (5) G 0 R = 101.

Übung 6. Allgemeine Chemie I Herbstsemester O(l) H 3. (g), (4) G 0 R = ( 32.89) kj/mol ( ) kj/mol (5) G 0 R = 101. Übung 6 Allgemeine Chemie I Herbstsemester 01 1. Aufgabe MM Aufgabe 1.10 Wir betrachten zuerst den Fall X = F. Reaktionsgleichung: BX 3 (g) + 3 H O(l) H 3 BO 3 (aq) + 3 HX(g) (X = F oder Cl) G 0 R = i

Mehr

Institut für Elektrotechnik Übungen zu Elektrotechnik I Version 3.0, 02/2002 Laborunterlagen

Institut für Elektrotechnik Übungen zu Elektrotechnik I Version 3.0, 02/2002 Laborunterlagen Institut für Elektrotechnik Übungen zu Elektrotechnik I Version 3.0, 0/00 7 Magnetismus 7. Grundlagen magnetischer Kreise Im folgenden wird die Vorgehensweise bei der Untersuchung eines magnetischen Kreises

Mehr

Studienbegleitende Prüfung Modul 12 Anorganisch-Chemisches Grundpraktikum WS 2002/

Studienbegleitende Prüfung Modul 12 Anorganisch-Chemisches Grundpraktikum WS 2002/ Studienbegleitende Prüfung Modul 12 Anorganisch-Chemisches Grundpraktikum WS 2002/2003 22.04.2003 Name: Vorname: Matrikelnummer: Fachsemester: Punkte: Note: Frage 1 Welche Flammenfärbung zeigen folgende

Mehr

(3) Wurzelfunktionen. Definition Sei f : D R eine Funktion. Eine Funktion g : D R heißt Umkehrfunktion von f, wenn für alle (x, y) R 2 die Äquivalenz

(3) Wurzelfunktionen. Definition Sei f : D R eine Funktion. Eine Funktion g : D R heißt Umkehrfunktion von f, wenn für alle (x, y) R 2 die Äquivalenz (3) Wurzelfunktionen Definition Sei f : D R eine Funktion. Eine Funktion g : D R heißt Umkehrfunktion von f, wenn für alle (x, y) R 2 die Äquivalenz Definition y = f (x) g(y) = x gilt. Für jedes k N ist

Mehr

Ausgewählte Anwendungen der Elektrochemie

Ausgewählte Anwendungen der Elektrochemie Ausgewählte Anwendungen der Elektrochemie 1. Korrosion 2. Passivierung 3. Nervenleitungsmodell 4. Halbleiterelektroden 5. Photoelektrochemische Solarzellen http://userpage.fu-berlin.de/~lap/lppciii.htm

Mehr

Mathematik und Nanotechnologie: Warum werden Computer immer kleiner?

Mathematik und Nanotechnologie: Warum werden Computer immer kleiner? 1 Mathematik und Nanotechnologie: Warum werden Computer immer kleiner? Ansgar Jüngel Institut für Analysis und Scientific Computing www.juengel.at.vu (einige Bilder sind aus urheberrechtlichen Gründen

Mehr

Thermodynamik. Christian Britz

Thermodynamik. Christian Britz Hauptsätze der Klassische nanoskaliger Systeme 04.02.2013 Inhalt Einleitung Hauptsätze der Klassische nanoskaliger Systeme 1 Einleitung 2 Hauptsätze der 3 4 Klassische 5 6 7 nanoskaliger Systeme 8 Hauptsätze

Mehr

SS Thomas Schrader. der Universität Duisburg-Essen. (Teil 8: Redoxprozesse, Elektrochemie)

SS Thomas Schrader. der Universität Duisburg-Essen. (Teil 8: Redoxprozesse, Elektrochemie) Chemie für Biologen SS 2010 Thomas Schrader Institut t für Organische Chemie der Universität Duisburg-Essen (Teil 8: Redoxprozesse, Elektrochemie) Oxidation und Reduktion Redoxreaktionen: Ein Atom oder

Mehr

2. Elektrostatik und Ströme

2. Elektrostatik und Ströme 2. Elektrostatik und Ströme 2.1. elektrische Ladung, ionische Lösungen Wir haben letztes Semester angeschnitten, dass die meisten Wechselwirkungen elektrischer Natur sind. Jetzt wollen wir elektrische

Mehr

Reduktive Dehalogenierung chlorierter Kohlenwasserstoffe mit Metallen in wäßrigen Medien

Reduktive Dehalogenierung chlorierter Kohlenwasserstoffe mit Metallen in wäßrigen Medien Redutive Dehalogenierung chlorierter Kohlenwasserstoffe it Metallen in wäßrigen Medien Dissertation zur Erlangung des Dotorgrades der Naturwissenschaften f Berichte aus der Cheie Christian Schli Redutive

Mehr

Die freie Energie wird also bei konstantem Volumen und konstanter Temperatur minimal

Die freie Energie wird also bei konstantem Volumen und konstanter Temperatur minimal Die freie Energie wird also bei konstantem Volumen und konstanter Temperatur minimal 7.2 Die Enthalpie Die Enthalpie H ist definiert als H = U + pv, womit wir für die Änderung erhalten dh = pdv + TdS +

Mehr

d( ) Thermodynamische Grundlagen 1. Lineare irreversible Thermodynamik

d( ) Thermodynamische Grundlagen 1. Lineare irreversible Thermodynamik Ludwig Pohlmann Thermodynamik offener Systeme und Selbstorganisationsphänomene SS 007 Thermodynamishe Grundlagen 1. Lineare irreversible Thermodynamik Beispiel Diffusion: der Fluß der diffundierenden Teilhen

Mehr

Besprechung am

Besprechung am PN2 Einführung in die Physik für Chemiker 2 Prof. T. Weitz SS 207 Übungsblatt 4 Übungsblatt 4 Besprechung am 29.05.207 Aufgabe Ohmsches Gesetz. a) Ein Lautsprecherkabel aus Kupfer mit einer Länge von 5,0

Mehr

Organische Experimentalchemie

Organische Experimentalchemie Dr. Franziska Thomas (fthomas@gwdg.de) Georg-August-Universität Göttingen SoSe 2017 Veranstaltungsnummer: 15 133 30200 Organische Experimentalchemie Für Studierende der Humanmedizin, Zahnmedizin und Biologie

Mehr

Lösungsvorschlag Übung 5

Lösungsvorschlag Übung 5 Lösungsvorschlag Übung 5 Aufgabe 1: Massendefet a) Der Massendefet scheint der Massenerhaltung zu widersprechen, da die Masse eines aus Elementarteilchen zusammengesetzten Elements X nicht die Summe der

Mehr

Elektrochemie fester Stoffe

Elektrochemie fester Stoffe H. Rickert Einführung in die Elektrochemie fester Stoffe Bibliothek^5 d. Instituts f. anorgan. u. physikal. Chemie (er Technischen Hochschale Darmstödt Ä Springer-Verlag Berlin Heidelberg New York 1973

Mehr

Skript zur Vorlesung

Skript zur Vorlesung Skript zur Vorlesung 1. Wärmelehre 1.1. Temperatur Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Ein Maß für

Mehr

Physikalische Chemie II (für Biol./Pharm. Wiss.) FS Lösung 7. Musterlösung zum Übungsblatt 7 vom

Physikalische Chemie II (für Biol./Pharm. Wiss.) FS Lösung 7. Musterlösung zum Übungsblatt 7 vom Physikalische Chemie II (für Biol./Pharm. Wiss.) S 207 Lösung 7 Musterlösung zum Übungsblatt 7 vom 0.04.207 Diffusionspotential. Zu dieser Teilaufgabe vgl. Adam, Läuger, Stark, S. 326/327 und Skript I.3.3.

Mehr

Energetik und Kinetik chemischer Reaktionen

Energetik und Kinetik chemischer Reaktionen Energetik und Kinetik chemischer Reaktionen Reaktionsenergetik als Teil der Thermodynamik - wann läuft eine chemische Reaktion freiwillig ab? - in welchem Umfang läuft eine Reaktion ab? - wie viel Energie

Mehr

Die chemische Zusammensetzung natiirlicher Gewasser

Die chemische Zusammensetzung natiirlicher Gewasser Inhaltsverzeichnis Vorwort XI KAPITEL 1 KAPITEL 2 Die chemische Zusammensetzung natiirlicher Gewasser 1.1 Einleitung 1.2 Verwitterungsprozesse 1.3 Wechselwirkungen zwischen Organismen und Wasser 1.4 Das

Mehr

Mathematik 2 SS 2016

Mathematik 2 SS 2016 Mathematik 2 SS 2016 2. Übungsblatt Gruppe 1 18. Man zeige, dass die Gleichung f(x, y) = y 5 e y (2x 2 + 3) sin y + x 2 y 2 x cos x = 0 in einer Umgebung des Punktes P (0, 0) nach y aufgelöst werden kann,

Mehr

Grundlagen der Technischen Informatik. Einführung in CMOS-Technologie. Kapitel 7.2

Grundlagen der Technischen Informatik. Einführung in CMOS-Technologie. Kapitel 7.2 Einführung in CMOS-Technologie Kapitel 7.2 Prof. Dr.-Ing. Jürgen Teich Lehrstuhl für Hardware-Software-Co-Design Abstraktionsebenen SYSTEM-Ebene + MODUL-/RT-Ebene (Register-Transfer) Logik-/GATTER-Ebene

Mehr

1 I. Thermodynamik. 1.1 Ideales Gasgesetz. 1.2 Vereinfachte kinetische Gastheorie. 1.3 Erster Hauptsatz der Thermodynamik.

1 I. Thermodynamik. 1.1 Ideales Gasgesetz. 1.2 Vereinfachte kinetische Gastheorie. 1.3 Erster Hauptsatz der Thermodynamik. 1 I. hermodynamik 1.1 Ideales Gasgesetz eilchenzahl N Stoffmenge: n [mol], N A = 6.022 10 23 mol 1 ; N = nn A molare Größen: X m = X/n ideales Gasgesetz: V = nr, R = 8.314JK 1 mol 1 Zustandsgrößen:, V,,

Mehr

ELEMENTE DER WÄRMELEHRE

ELEMENTE DER WÄRMELEHRE ELEMENTE DER WÄRMELEHRE 3. Elemente der Wärmelehre 3.1 Grundlagen 3.2 Die kinetische Gastheorie 3.3 Energieumwandlungen 3.4 Hauptsätze der Thermodynamik 2 t =? 85 ºC t =? 61.7 ºC Warum wird der Kaffe eigentlich

Mehr

Reduction / Oxidation

Reduction / Oxidation H :! H.. C.. H :! H H :! H.. C.. OH :! H H :! H 3 C.. C.. OH :! H O ::! H 3 C.. C.. H O ::! H 3 C.. C.. O -! O=C=O Oxidationszahl Methan -4 Methanol -2 Ethanol -1 Acetaldehyd +1 Acetat +3 Kohlendioxyd

Mehr