Eingebettete Runge Kutta Verfahren DOPRI5(4) Verfahren: FSAL Verfahren

Größe: px
Ab Seite anzeigen:

Download "Eingebettete Runge Kutta Verfahren DOPRI5(4) Verfahren: FSAL Verfahren"

Transkript

1 Eingebettete Runge Kutta Verfahren DOPRI5(4) Verfahren: FSAL Verfahren p = ˆp = Kapitel IV.4 - Lineare Mehrschritt-Verfahren (rk17) 1

2 Eingebettete Runge Kutta Verfahren DOPRI8(7) Verfahren: Butcherschema entnommen aus Deuflhard/Bornemann Kapitel IV.4 - Lineare Mehrschritt-Verfahren (rk18) 2

3 Lineare Mehrschrittverfahren (MSV) Idee: Verwende zur Bestimmung von y i+1 nicht nur den zuletzt zurückliegenden Werte y i und f i, sondern zusätzlich noch weiter zurückliegende Werte. y i+1 = k 1 j=0 a j y i j + k 1 j= 1 b j f i j Es existieren zwei große Klassen: Adams Varianten basieren auf Quadraturformeln und Integration BDF Varianten basieren auf Interpolation und Differenziation Im Gegensatz zu konsistenten Einschrittverfahren sind MSV nicht automatisch Null-stabil. steigt bei MSV der Aufwand mit der Ordnung nicht an. Kapitel IV.4 - Lineare Mehrschritt-Verfahren (msv01) 3

4 Mehrschrittverfahren: Adams Bashforth Verfahren (1) Idee: y = f(t,y) y(t i+1 ) = y(t i )+ ti+1 t i f(t,y)dt Approximieref unterverwendungderbekanntenstützpunkte(t i,y i ),...,(t i+1 k,y i+1 k ) mit einem Interpolationspolynom vom Grad k 1 und integriere. f(t,y) P³(t) f(t,y) P³(t) Fehler t(i 3) t(i 2) t(i 1) t(i) t(i+1) t(i) t(i+1) Kapitel IV.4 - Lineare Mehrschritt-Verfahren (msv03) 4

5 Adams Bashforth Verfahren (ABV, explizit) (2) l : Polynomgrad, k : Schrittzahl, p : Ordnung l = 0, k = 1, p = 1 : y i+1 = y i +hf i, l = 1, k = 2, p = 2 : y i+1 = y i h(3f i f i 1 ), l = 2, k = 3, p = 3 : y i+1 = y i h(23f i 16f i 1 +5f i 2 ), l = 3, k = 4, p = 4 : y i+1 = y i h(55f i 59f i 1 +37f i 2 9f i 3 ). Bei expliziten ABV gilt: Polynomgrad+1 = Ordnung = Schrittzahl. Es existieren Verfahren beliebiger Ordnung. Kapitel IV.4 - Lineare Mehrschritt-Verfahren (msv04) 5

6 Adams Bashforth Verfahren: Verschiedene Ordnungen y = 10ty, y(0) = 1, Fehler bei t = AB2 AB AB2: Adams Bashforth Verfahren 2ter Ordnung AB3: Adams Bashforth Verfahren 3ter Ordnung : Adams Bashforth Verfahren 4ter Ordnung Kapitel IV.4 - Lineare Mehrschritt-Verfahren (msv05) 6

7 Adams Bashforth Verfahren: Verschiedene Ordnungen y = 5(y t 2 ) + 2t, y(0) = 0, Lösung y = t 2, Fehler bei t = AB2 AB AB2: Adams Bashforth Verfahren 2ter Ordnung AB3: Adams Bashforth Verfahren 3ter Ordnung : Adams Bashforth Verfahren 4ter Ordnung Kapitel IV.4 - Lineare Mehrschritt-Verfahren (msv06) 7

8 Adams Moulton Verfahren (AMV, implizit) l : Polynomgrad, k : Schrittzahl, p : Ordnung l = 0, k = 1, p = 1 : y i+1 = y i +hf i+1, l = 1, k = 1, p = 2 : y i+1 = y i h(f i+1+f i ), l = 2, k = 2, p = 3 : y i+1 = y i h(5f i+1+8f i f i 1 ), l = 3, k = 3, p = 4 : y i+1 = y i h(9f i+1+19f i 5f i 1 +1f i 2 ). Bei impliziten AMV gilt: Polynomgrad+1 = Ordnung Schrittzahl+1. Adams Bashforth Moulton / Prädiktor Korrektor Verfahren explizit l = 2, k = 2, p = 3 y (P) i+1 = y i h(3f i f i 1 ), y i+1 = y i h ( 5f ( ) ) t i+1, y (P) i+1 + 8f i f i 1. Kapitel IV.4 - Lineare Mehrschritt-Verfahren (msv09) 8

9 Vergleich: AB / AM / ABM Verfahren y = 10ty, y(0) = 1, Fehler bei t = 1 Fehler gegen Funktionsauswertungen 10 5 AM4 ABM AM4 ABM : Adams Bashforth Verfahren 4ter Ordnung AM4: Adams Moulton Verfahren 4ter Ordnung ABM4: Adams Bashforth Moulton Verfahren 4ter Ordnung Kapitel IV.4 - Lineare Mehrschritt-Verfahren (msv10) 9

10 Vergleich: AB / AM / ABM Verfahren y = 5(y t 2 ) + 2t, y(0) = 0, Lösung y = t 2, Fehler bei t = 5 Fehler gegen Funktionsauswertungen 10 5 AM4 ABM AM4 ABM : Adams Bashforth Verfahren 4ter Ordnung AM4: Adams Moulton Verfahren 4ter Ordnung ABM4: Adams Bashforth Moulton Verfahren 4ter Ordnung Kapitel IV.4 - Lineare Mehrschritt-Verfahren (msv11) 10

11 Mehrschrittverfahren: BDF Verfahren (1) Idee: Ersetze y(t) durch ein Interpolationspolynom P k (t) der Ordnung k mit den Stützstellen (t i+1, y i+1 ), (t i, y i ),..., (t i k+1, y i k+1 ), und löse Dies liefert ein Verfahren der Gestalt P k(t) = f(t,y(t)). a 1 y i+1 +a 0 y i +a 1 y i 1 + +a k 1 y i k+1 = hf (t i+1, y i+1 ), oder k 1 j= 1 a j y i j = hf (t i+1, y i+1 ). Kapitel IV.4 - Lineare Mehrschritt-Verfahren (msv25) 11

12 Mehrschrittverfahren: BDF Verfahren (2) l : Polynomgrad, k : Schrittzahl, p : Ordnung 1, 1, 1 : hf i+1 = y i+1 y i, 2, 2, 2 : hf i+1 = 3 2 y i+1 2y i y i 1, 3, 3, 3 : hf i+1 = 11 6 y i+1 3y i y i y i 2, 4, 4, 4 : hf i+1 = y i+1 4y i +3y i y i y i 3, 5, 5, 5 : hf i+1 = y i+1 5y i + 5y i y i y i y i 4 6, 6, 6 : hf i+1 = y i+1 6y i y i y i y i y i y i 5. Für k > 6 sind die Verfahren instabil. Kapitel IV.4 - Lineare Mehrschritt-Verfahren (msv26) 12

13 BDF Verfahren: Verschiedene Ordnungen y = 10ty, y(0) = 1, Fehler bei t = BDF2 BDF3 BDF BDF2: BDF Verfahren 2ter Ordnung BDF3: BDF Verfahren 3ter Ordnung BDF4: BDF Verfahren 4ter Ordnung Kapitel IV.4 - Lineare Mehrschritt-Verfahren (msv27) 13

14 BDF Verfahren: Verschiedene Ordnungen y = 5(y t 2 ) + 2t, y(0) = 0, Lösung y = t 2, Fehler bei t = BDF2 BDF3 BDF BDF2: BDF Verfahren 2ter Ordnung BDF3: BDF Verfahren 3ter Ordnung BDF4: BDF Verfahren 4ter Ordnung Kapitel IV.4 - Lineare Mehrschritt-Verfahren (msv28) 14

15 Vergleich: AB / ABM / BDF Verfahren y = 10ty, y(0) = 1, Fehler bei t = 1 Fehler gegen Funktionsauswertungen 10 5 ABM4 BDF ABM4 BDF : Adams Bashforth Verfahren 4ter Ordnung ABM4: Adams Bashforth Moulton Verfahren 4ter Ordnung BDF4: BDF Verfahren 4ter Ordnung Kapitel IV.4 - Lineare Mehrschritt-Verfahren (msv31) 15

16 Vergleich: AB / ABM / BDF Verfahren y = 5(y t 2 ) + 2t, y(0) = 0, Lösung y = t 2, Fehler bei t = 5 ABM4 BDF4 Fehler gegen Funktionsauswertungen ABM4 BDF4 : Adams Bashforth Verfahren 4ter Ordnung ABM4: Adams Bashforth Moulton Verfahren 4ter Ordnung BDF4: BDF Verfahren 4ter Ordnung Kapitel IV.4 - Lineare Mehrschritt-Verfahren (msv32) 16

17 Einfluss der Anlaufrechnung y = 5t(2+3t)y, y(0) = 1, Fehler bei t = BDF2 BDF3 BDF BDF2 BDF3 BDF BDF2 BDF3 BDF RK3 Verfahren Heun expliziter Euler BDF2: BDF Verfahren 2ter Ordnung BDF3: BDF Verfahren 3ter Ordnung BDF4: BDF Verfahren 4ter Ordnung Für MSV der Ordnung p Anlaufrechnung mit Ordnung p 1 nötig Kapitel IV.4 - Lineare Mehrschritt-Verfahren (msv36) 17

18 Konsistenz + Stabilität = Konvergenz y = y, y 0 = 1, y 1 = e h konsistent und stabil y i+1 = y i 1 +2hf i 1 y i t i h = 0.2 h = 0.1 exakt konsistent, NICHT stabil y i+1 = 3y i 1 +4y i 2hf i 1 y i t i h = 0.2 h = 0.1 exakt Kapitel IV.4 - Lineare Mehrschritt-Verfahren (msv02) 18

Begleitmaterial zur Vorlesung Numerik gewöhnlicher Differentialgleichungen

Begleitmaterial zur Vorlesung Numerik gewöhnlicher Differentialgleichungen Begleitmaterial zur Vorlesung Numerik gewöhnlicher Differentialgleichungen Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial

Mehr

Mehrschrittverfahren Ein weiterer, häufig benutzter Verfahrenstyp zur numerischen Lösung der Anfangswertaufgabe

Mehrschrittverfahren Ein weiterer, häufig benutzter Verfahrenstyp zur numerischen Lösung der Anfangswertaufgabe Mehrschrittverfahren Ein weiterer, häufig benutzter Verfahrenstyp zur numerischen Lösung der Anfangswertaufgabe y = f(x, y), y(a) =y 0 (1) sind die linearen Mehrschrittverfahren, bei denen man zur Berechnung

Mehr

Explizite gewöhnliche Differentialgleichung 1. Ordnung mit Anfangsbedingung

Explizite gewöhnliche Differentialgleichung 1. Ordnung mit Anfangsbedingung Explizite gewöhnliche Differentialgleichung 1. Ordnung mit Anfangsbedingung Gesucht ist eine Funktion y(x), welche erfüllt y = f(x,y) y(x 0 ) = y 0 Differentialgleichung Anfangsbedingung Wenn f in x stetig

Mehr

- Numerik in der Physik - Simulationen, DGL und Co. Max Menzel

- Numerik in der Physik - Simulationen, DGL und Co. Max Menzel - Numerik in der Physik - Simulationen, DGL und Co. Max Menzel 4.1.2011 1 Übersicht Differenzialgleichungen? Was ist das? Wo gibt es das? Lösen von Differenzialgleichungen Analytisch Numerisch Anwendungen

Mehr

Lokaler Fehler y = y 2, y(0.2) = 5/9, Lösung: y = 1 Fehler nach dem 1. Schritt

Lokaler Fehler y = y 2, y(0.2) = 5/9, Lösung: y = 1 Fehler nach dem 1. Schritt Lokaler Fehler y = y, y(.) = /9, Lösung: y = Fehler nach dem. Schritt ( t) 4 Fehler 6 8 4 (I) Euler explizit (II) Euler implizit (IIIa) Crank Nicolson (IIIb) Heun (IVa) Euler modifiziert (IVb) Euler mod.

Mehr

Gewöhnliche Differentialgleichungen

Gewöhnliche Differentialgleichungen Gewöhnliche Differentialgleichungen 10. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 22. Mai 2014 Gliederung 1 Aufgabenstellung und Interpretation

Mehr

Adaptive Mehrschrittverfahren

Adaptive Mehrschrittverfahren Adaptive Mehrschrittverfahren Moritz Neumann 21. März 2011 1 Inhaltsverzeichnis 1 Vorwort 3 2 Einführung 3 3 Adaptive Seuerung der Schrittweite und Ordnung 5 3.1 Adams-Verfahren................................

Mehr

Einführung und Beispiele

Einführung und Beispiele Kapitel 7 Gewöhnliche Differentialgleichungen Prof. R. Leithner, E. Zander Einführung in numerische Methoden für Ingenieure 7/2 Einführung und Beispiele Prof. R. Leithner, E. Zander Einführung in numerische

Mehr

Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB)

Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB) Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB) Prof. R. Leithner, Dipl. Phys. E. Zander Wintersemester 2010/2011 Kapitel 7 Gewöhnliche

Mehr

Abschnitt 1.7: Schrittweitensteuerung 27

Abschnitt 1.7: Schrittweitensteuerung 27 Abschnitt.7: Schrittweitensteuerung 7 zu oben analoge Schrittweitensteuerung durch Kombination von drei- und vierstufigen Runge- Kutta-Methoden ist nicht möglich, weil die betreffenden Gleichungssysteme

Mehr

TU Ilmenau Institut für Mathematik Übungsaufgaben zum Lehrgebiet Numerische Mathematik III Numerik gewöhnlicher Differentialgleichungen

TU Ilmenau Institut für Mathematik Übungsaufgaben zum Lehrgebiet Numerische Mathematik III Numerik gewöhnlicher Differentialgleichungen TU Ilmenau Institut für Mathematik Übungsaufgaben zum Lehrgebiet Numerische Mathematik III Numerik gewöhnlicher Differentialgleichungen Datei: NM34.TEX Serie 6 Mehrschrittverfahren (MSV) 1. Die allgemeine

Mehr

ODE-Solver. Inhalt. Einleitung. grundlegende Algorithmen. weiterführende Algorithmen

ODE-Solver. Inhalt. Einleitung. grundlegende Algorithmen. weiterführende Algorithmen Martin Reinhardt angewandte Mathematik 8. Semester Matrikel: 50108 ODE-Solver 11. Mai 2011 Inhalt Einleitung grundlegende Algorithmen weiterführende Algorithmen Martin Reinhardt (TUBAF) 1 Orientierung

Mehr

3. Lineare Mehrschrittverfahren 3.1 Begriffe

3. Lineare Mehrschrittverfahren 3.1 Begriffe 3.1 Begriffe Verfahren der Bauart k α j y n+j = h k β j f n+j, wobei f n+j := f (t n+j, y n+j ), (Mehr-S) heißen lineare Mehrschrittverfahren, genauer lineare k-schritt-verfahren. O.B.d.A. α k = 1 und

Mehr

Zehnte Vorlesung, 4. Juni 2009, Inhalt. Eigenwerte und Eigenvektoren (2) Gewöhnliche Differentialgleichungen

Zehnte Vorlesung, 4. Juni 2009, Inhalt. Eigenwerte und Eigenvektoren (2) Gewöhnliche Differentialgleichungen Zehnte Vorlesung, 4. Juni 2009, Inhalt Eigenwerte und Eigenvektoren (2) Gewöhnliche Differentialgleichungen 1 Eigenwerte und Eigenvektoren Wichtige Feststellungen zur Eigenwertaufgabe Ax = λx: Eigenwerte

Mehr

Explizite, eingebettete und implizite RK-Verfahren

Explizite, eingebettete und implizite RK-Verfahren Kutta-Teorie: Explizite, eingebettete und implizite RK-Verfaren Lukas Klic Kutta-Teorie: : Explizite, eingebettete und implizite RK- Verfaren Lukas Klic Seite: Gliederung -Verfaren - Explizite Verfaren

Mehr

Numerische Verfahren für gewöhnliche Differentialgleichungen

Numerische Verfahren für gewöhnliche Differentialgleichungen Numerische Verfahren für gewöhnliche Differentialgleichungen. Einschrittverfahren I: Einfache Verfahren. Konvergenzordnung. Einschrittverfahren II: Runge Kutta Verfahren 4. Stabilität 5. Schrittweitensteuerung

Mehr

Übungsblatt 10 Musterlösung

Übungsblatt 10 Musterlösung Übungsblatt 0 Musterlösung Numerik gewöhnlicher Differentialgleichungen MA2304 - SS6 Aufgabe 45 Fehlerkonstante von MSV Betrachten Sie ein allgemeines lineares q Schrittverfahren α q j y i+ j = h β q j

Mehr

Musterlösung Prüfung Numerische Methoden, Sommer 2012 Dr. Lars Kielhorn

Musterlösung Prüfung Numerische Methoden, Sommer 2012 Dr. Lars Kielhorn D-ITET, D-MATL Musterlösung Prüfung umerische Methoden, Sommer 01 Dr. Lars Kielhorn 1. a) z = exp(iϕ) = dz = i exp(iϕ) dϕ = c n [f] = 1 π f(exp(iϕ)) exp( iϕn) dϕ π 0 b) Allgemeine zusammengesetzte Trapezregel

Mehr

Grundlagen der Numerischen Mathematik II

Grundlagen der Numerischen Mathematik II J Manfred Reimer Grundlagen der Numerischen Mathematik II Studienbuch für Studenten der Mathematik, Informatik, Statistik und aller Naturwissenschaften Mit 29 Abbildungen Akademische Verlagsgesellschaft

Mehr

Übungen zu Meteorologische Modellierung Teil 'Grundlagen der Numerik'

Übungen zu Meteorologische Modellierung Teil 'Grundlagen der Numerik' Übungen zu Meteorologische Modellierung Teil 'Grundlagen der Numerik' 1. Diskretisierung in der Zeit: Die Evolutionsgleichung Kurzzusammenfassung Zur Erprobung der Verfahren zur zeitlichen Diskretisierung

Mehr

9 Numerische Verfahren für Anfangswertaufgaben

9 Numerische Verfahren für Anfangswertaufgaben Numerik II 63 9 Numerische Verfahren für Anfangswertaufgaben Inhalt 9.1 Einige einfache Verfahren 9.2 Einschrittverfahren Definition und Eigenschaften 9.3 Runge-Kutta-Verfahren 9.4 Lineare Mehrschrittverfahren

Mehr

Kapitel 1 Gewöhnliche Differentialgleichungen

Kapitel 1 Gewöhnliche Differentialgleichungen Kapitel 1 Gewöhnliche Differentialgleichungen Eines der wichtigsten Einsatzgebiete numerischer Verfahren sind Differentialgleichungen, also Gleichungen, die Funktionen sowie deren Ableitungen in Bezug

Mehr

Numerik gewöhnlicher Differentialgleichungen

Numerik gewöhnlicher Differentialgleichungen Numerik gewöhnlicher Differentialgleichungen Oliver Ernst Professur Numerische Mathematik Wintersemester 2016/17 Inhalt I 1 Einleitung 1.1 Volterras Prinzip 1.2 Begriffe und theoretische Resultate 1.3

Mehr

Numerische Verfahren für gewöhnliche Differentialgleichungen. Literaturliste. P.Deuflhard, F.Bornemann: Numerische Mathematik II, De Gruyter, 1994.

Numerische Verfahren für gewöhnliche Differentialgleichungen. Literaturliste. P.Deuflhard, F.Bornemann: Numerische Mathematik II, De Gruyter, 1994. Numerische Verfahren für gewöhnliche Differentialgleichungen. Einschrittverfahren I: Einfache Verfahren. Konvergenzordnung. Einschrittverfahren II: Runge Kutta Verfahren 4. Stabilität 5. Schrittweitensteuerung

Mehr

2. Numerische Verfahren für AWPe 2.1 Das Euler-Verfahren

2. Numerische Verfahren für AWPe 2.1 Das Euler-Verfahren 2.1 Das Euler-Verfahren Wir betrachten das AWP y = f (t, y), y(t 0 ) = y 0. (AWP) Unter den Voraussetzungen von Satz 1.1 besitzt es eine eindeutige Lösung, sagen wir über dem Intervall I. Wir wollen diese

Mehr

NUMERIK GEWÖHNLICHER DIFFERENTIALGLEICHUNGEN 1. Prof. Dr. Hans Babovsky. Technische Universität Ilmenau

NUMERIK GEWÖHNLICHER DIFFERENTIALGLEICHUNGEN 1. Prof. Dr. Hans Babovsky. Technische Universität Ilmenau NUMERIK GEWÖHNLICHER DIFFERENTIALGLEICHUNGEN 1 Prof. Dr. Hans Babovsky Institut für Mathematik Technische Universität Ilmenau 1 Version vom Herbst 2006 Inhaltsverzeichnis 1 Gewöhnl. Differentialgleichungen:

Mehr

NUMERISCHE MATHEMATIK FÜR MATHEMATIKER III 1 (Numerik gewöhnlicher Differentialgleichungen) Prof. Dr. Hans Babovsky. Institut für Mathematik

NUMERISCHE MATHEMATIK FÜR MATHEMATIKER III 1 (Numerik gewöhnlicher Differentialgleichungen) Prof. Dr. Hans Babovsky. Institut für Mathematik NUMERISCHE MATHEMATIK FÜR MATHEMATIKER III 1 (Numerik gewöhnlicher Differentialgleichungen) Prof. Dr. Hans Babovsky Institut für Mathematik Technische Universität Ilmenau WS 2003/04 1 Korrekturen, Kommentare

Mehr

Formelsammlung zur Numerischen Mathematik mitturbo-pascal- Programmen

Formelsammlung zur Numerischen Mathematik mitturbo-pascal- Programmen Formelsammlung zur Numerischen Mathematik mitturbo-pascal- Programmen von PROF. DR. GISELA ENGELN-MÜLLGES Fachhochschule Aachen und 0. PROF. EM. DR. FRITZ REUTTER Rheinisch-Westfälische Technische Hochschule

Mehr

Inhaltsverzeichnis. 1 Einleitung... 1

Inhaltsverzeichnis. 1 Einleitung... 1 Inhaltsverzeichnis 1 Einleitung................................................. 1 2 Fehleranalyse: Kondition, Rundungsfehler, Stabilität...... 11 2.1 Kondition eines Problems................................

Mehr

10 Stabilität und steife Systeme

10 Stabilität und steife Systeme Numerik II 34 Stabilität und steife Systeme Inhalt. Absolute Stabilität. Was sind steife Differentialgleichungen?.3 Weitere Stabilitätsbegriffe Stabilität und steife Systeme TU Bergakademie Freiberg, SS

Mehr

Numerik gewöhnlicher Differentialgleichungen

Numerik gewöhnlicher Differentialgleichungen Numerik gewöhnlicher Differentialgleichungen Oliver Ernst Professur Numerische Mathematik Wintersemester 2014/15 Inhalt I 1 Einleitung 1.1 Volterras Prinzip 1.2 Begriffe und theoretische Resultate 1.3

Mehr

Numerik gewöhnlicher Differentialgleichungen

Numerik gewöhnlicher Differentialgleichungen Numerik gewöhnlicher Differentialgleichungen Band 2 Mehrschrittverfahren Von Dr. phil. nat. Rolf Dieter Grigorieff o. Professor an der Technischen Universität Berlin unter Mitwirkung von Dr. phil. nat.

Mehr

Differenzialgleichungen

Differenzialgleichungen Differenzialgleichungen Fakultät Grundlagen April 2011 Fakultät Grundlagen Differenzialgleichungen Übersicht Grundsätzliches 1 Grundsätzliches Problemstellung Richtungsfeld Beispiel 2 Eulerverfahren Heunverfahren

Mehr

Dr. R. Käppeli D-ITET, D-MATL Winter Numerische Methoden Punkte

Dr. R. Käppeli D-ITET, D-MATL Winter Numerische Methoden Punkte Dr. R. Käppeli D-ITET, D-MATL Winter 2018 Prüfung Numerische Methoden Wichtige Hinweise Die Prüfung dauert 90 Minuten. Erlaubte Hilfsmittel: 5 A4-Blätter doppelseitig (=10 Seiten) eigenhändig und handschriftlich

Mehr

Kapitel 11 Gewöhnliche Differentialgleichungen

Kapitel 11 Gewöhnliche Differentialgleichungen Kapitel 11 Gewöhnliche Differentialgleichungen 11.1 Einführung Gesucht wird eine Funktion y = y(t) einer (Zeit-)Variablen t, die der Gleichung und der Anfangsbedingung genügen soll. y (t) = f(t, y(t)),

Mehr

Numerische Mathematik

Numerische Mathematik ».- Numerische Mathematik Von Dr. sc. math. Hans Rudolf Schwarz o. Professor an der Universität Zürich Mit einem Beitrag von Dr. sc. math. Jörg Waldvogel Titularprofessor an der Eidg. Technischen Hochschule

Mehr

Inhaltsverzeichnis. 1 Einleitung 1

Inhaltsverzeichnis. 1 Einleitung 1 Inhaltsverzeichnis 1 Einleitung 1 2 Fehleranalyse: Kondition, Rundungsfehler, Stabilitat 11 2.1 Kondition eines Problems 11 2.1.1 Elementare Beispiele 12 2.1.2 Bemessen, Normen 15 2.1.3 Relative und Absolute

Mehr

Numerik gewöhnlicher Differentialgleichungen. Prof. Dr. Guido Kanschat

Numerik gewöhnlicher Differentialgleichungen. Prof. Dr. Guido Kanschat Numerik gewöhnlicher Differentialgleichungen Prof. Dr. Guido Kanschat 7. Juni 03 Vorbemerkungen Bei diesen Blattern handelt es sich zur Zeit nur um eine begleitende Erganzung des Vorlesungsskriptes von

Mehr

Hohere Mathematik. fur Ingenieure, Physiker und Mathematiker von Dr. Dr. h.c. Norbert Herrmann Leibniz Universitat Hannover 2., uberarbeitete Auflage

Hohere Mathematik. fur Ingenieure, Physiker und Mathematiker von Dr. Dr. h.c. Norbert Herrmann Leibniz Universitat Hannover 2., uberarbeitete Auflage Hohere Mathematik fur Ingenieure, Physiker und Mathematiker von Dr. Dr. h.c. Norbert Herrmann Leibniz Universitat Hannover 2., uberarbeitete Auflage Oldenbourg Verlag MunchenWien Inhaltsverzeichnis Einleitung

Mehr

D-ITET, D-MATL. Prüfung Numerische Methoden, Sommer 2012 Dr. Lars Kielhorn

D-ITET, D-MATL. Prüfung Numerische Methoden, Sommer 2012 Dr. Lars Kielhorn Name: Wichtige Hinweise D-ITET, D-MATL Prüfung Numerische Methoden, Sommer 2012 Dr. Lars Kielhorn Prüfungsdauer: 90 Minuten. Nur begründete Resultate werden bewertet. Zugelassene Hilfsmittel: 10 A4-Seiten

Mehr

Inhaltsverzeichnis. 1 Einleitung... 1

Inhaltsverzeichnis. 1 Einleitung... 1 Inhaltsverzeichnis 1 Einleitung... 1 2 Fehleranalyse: Kondition, Rundungsfehler, Stabilität... 11 2.1 KonditioneinesProblems... 11 2.1.1 ElementareBeispiele... 12 2.1.2 Bemessen,Normen... 15 2.1.3 RelativeundAbsoluteKondition...

Mehr

NUMERISCHE VERFAHREN für Naturwissenschaftler und Ingenieure

NUMERISCHE VERFAHREN für Naturwissenschaftler und Ingenieure NUMERISCHE VERFAHREN für Naturwissenschaftler und Ingenieure Eine computerorientierte Einführung Von Prof. Dr. sc. nat. HUBERT SCHWETLICK Prof. Dr. sc. nat. HORST KRETZSCHMAR Mit 74 Bildern und 34 Tabellen

Mehr

Kapitel 6 Gewöhnliche Differenzialgleichungen (DGL)

Kapitel 6 Gewöhnliche Differenzialgleichungen (DGL) Kapitel 6 Gewöhnliche Differenzialgleichungen (DGL) Problemstellung Beispiele Klassifizierung von DGLs, Existenz und Eindeutigkeit des AWPs Einschrittverfahren Stabilität & Schrittweitenkontrolle Mehrschrittverfahren

Mehr

Klausur zur Vordiplom-Prüfung

Klausur zur Vordiplom-Prüfung Technische Universität Hamburg-Harburg SS Arbeitsbereich Mathematik Dr. Jens-Peter M. Zemke Klausur zur Vordiplom-Prüfung Numerische Verfahren. Juli Sie haben Minuten Zeit zum Bearbeiten der Klausur. Bitte

Mehr

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2.

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2. MATHEMATISCHES INSTITUT PROF. DR. ACHIM SCHÄDLE 9.8.7 KLAUSUR zur Numerik I mit Lösungen Aufgabe : ( Punkte) [ wahr falsch ]. Die maximale Ordnung einer s-stufigen Quadraturformel ist s. [ ]. Der Clenshaw

Mehr

Inhaltsverzeichnis. Vorwort zur 10. Auflage Informationen zur Programmbibliothek Bezeichnungen VII IX

Inhaltsverzeichnis. Vorwort zur 10. Auflage Informationen zur Programmbibliothek Bezeichnungen VII IX Inhaltsverzeichnis Vorwort zur 10. Auflage Informationen zur Programmbibliothek Bezeichnungen VII IX XI I I 1 Darstellung von Zahlen und Fehleranalyse 1 1.1 Definition von Fehlergrößen..........................

Mehr

Numerik für Ingenieure I Wintersemester 2008

Numerik für Ingenieure I Wintersemester 2008 1 / 32 Numerik für Ingenieure I Wintersemester 2008 J. Michael Fried Lehrstuhl Angewandte Mathematik III 23.1.2009 2 / 32 Wiederholung Stückweise Polynominterpolation Stückweise lineare Interpolierende

Mehr

Zuname: Vorname: KennNr: Matr.Nr: PRÜFUNG AUS MATHEMATIK 3. 1)(8 P.) Lösen Sie das folgende AWP mit Hilfe der Laplacetransformation.

Zuname: Vorname: KennNr: Matr.Nr: PRÜFUNG AUS MATHEMATIK 3. 1)(8 P.) Lösen Sie das folgende AWP mit Hilfe der Laplacetransformation. (8 P.) Lösen Sie das folgende AWP mit Hilfe der Laplacetransformation. y 7y + 10y = sin(2x), y(0) = 1, y (0) = 3. x ( ) Bemerkung: Für festes a gilt L(e ax ) = 1 und L sin(ax) = arctan a. s a x s Die auftretenden

Mehr

8 Gewöhnliche Differentialgleichungen

8 Gewöhnliche Differentialgleichungen 8 Gewöhnliche Differentialgleichungen Beispiel: Radioaktiver Zerfall Sei m(t) die Menge radioaktiven Materials zur Zeit t. Der Zerfall des Materials geschieht proportional zur vorhandenen Menge mit dem

Mehr

Numerische Verfahren

Numerische Verfahren Numerische Verfahren Numerische Methoden von gewöhnlichen Differentialgleichungen (AWP) Prof. Dr.-Ing. K. Warendorf, Prof. Dr.-Ing. P. Wolfsteiner Hochschule für Angewandte Wissenschaften München (FH)

Mehr

Numerik gewöhnlicher Differentialgleichungen

Numerik gewöhnlicher Differentialgleichungen Numerik gewöhnlicher Differentialgleichungen Oliver Ernst Professur Numerische Mathematik Wintersemester 2014/15 Inhalt I 1 Einleitung 1.1 Volterras Prinzip 1.2 Begriffe und theoretische Resultate 1.3

Mehr

Numerik-Algorithmen. fyj Springer. Verfahren, Beispiele, Anwendungen. Gisela Engeln-Müllges Klaus Niederdrenk Reinhard Wodicka

Numerik-Algorithmen. fyj Springer. Verfahren, Beispiele, Anwendungen. Gisela Engeln-Müllges Klaus Niederdrenk Reinhard Wodicka Gisela Engeln-Müllges Klaus Niederdrenk Reinhard Wodicka Numerik-Algorithmen Verfahren, Beispiele, Anwendungen Zehnte, überarbeitete und erweiterte Auflage fyj Springer Inhaltsverzeichnis Vorwort zur 10.

Mehr

1. Anfangswertprobleme 1. Ordnung

1. Anfangswertprobleme 1. Ordnung 1. Anfangswertprobleme 1. Ordnung 1.1 Grundlagen 1.2 Euler-Vorwärts-Verfahren 1.3 Runge-Kutta-Verfahren 1.4 Stabilität 1.5 Euler-Rückwärts-Verfahren 1.6 Differenzialgleichungssysteme 5.1-1 1.1 Grundlagen

Mehr

1. Anfangswertprobleme 1. Ordnung

1. Anfangswertprobleme 1. Ordnung 1. Anfangswertprobleme 1. Ordnung 1.1 Grundlagen 1.2 Euler-Vorwärts-Verfahren 1.3 Runge-Kutta-Verfahren 1.4 Stabilität 1.5 Euler-Rückwärts-Verfahren 1.6 Differentialgleichungssysteme Prof. Dr. Wandinger

Mehr

Dr. R. Käppeli D-ITET, D-MATL Sommer Numerische Methoden Punkte

Dr. R. Käppeli D-ITET, D-MATL Sommer Numerische Methoden Punkte Dr. R. Käppeli D-ITET, D-MATL Sommer 217 Prüfung Numerische Methoden Wichtige Hinweise Die Prüfung dauert 9 Minuten. Erlaubte Hilfsmittel: 5 A4-Blätter doppelseitig (=1 Seiten) eigenhändig und handschriftlich

Mehr

Differentialgleichungen

Differentialgleichungen Differentialgleichungen Viele physikalische Probleme können mathematisch als gewöhnliche Differentialgleichungen formuliert werden nur eine unabhängige Variable (meist t), z.b. Bewegungsgleichungen: gleichmäßig

Mehr

Extrapolationsverfahren

Extrapolationsverfahren Extrapolationsverfahren Vortrag im Rahmen des Seminars Numerik gewöhnlicher Differentialgleichungen unter der Leitung von Prof. Peter Bastian WS 2010/11 Marlene Beczalla 21.12.2010 1. Beschreibung des

Mehr

Numerik I. Gewöhnliche Differentialgleichungen. Prof.Dr.G.Wittum. Teil I:

Numerik I. Gewöhnliche Differentialgleichungen. Prof.Dr.G.Wittum. Teil I: Numerik I Prof.Dr.G.Wittum Teil I: Gewönlice Differentialgleicungen Sommersemester 2005 INHALTSVERZEICHNIS 1 Inaltsverzeicnis 1 Numerik gewönlicer Differentialgleicungen 2 1.1 Einleitung....................................

Mehr

Angewandte Mathematik und Programmierung

Angewandte Mathematik und Programmierung Angewandte Mathematik und Programmierung Einführung in das Konzept der objektorientierten Anwendungen zu mathematischen Rechnens WS 2012/13 DGL Grundlage Klassifikation Anwendung von lin. Ggln. M. konst.

Mehr

Numerische Mathematik

Numerische Mathematik Numerische Mathematik Von Prof. Dr. sc. math. Hans Rudolf Schwarz Universität Zürich Mit einem Beitrag von Prof. Dr. sc. math. Jörg Waldvogel Eidg. Technische Hochschule Zürich 4., überarbeitete und erweiterte

Mehr

Kapitel 3: Differentialgleichungen

Kapitel 3: Differentialgleichungen Kapitel 3: Differentialgleichungen Einführung: Vergleich zur Integration Zwischen der Integration und der Lösung von Differentialgleichungen besteht ein enger Zusammenhang: Das Aufsuchen der Lösung y(b)

Mehr

KAPITEL 10. Numerische Integration

KAPITEL 10. Numerische Integration KAPITEL 10. Numerische Integration 10.1 Einleitung Sei Es gilt I Ĩ = b I = b a a f(x) f(x) dx f(x) dx, Ĩ = b b a f(x) dx. a f(x) f(x) dx (b a) f f. I Ĩ I (b a) f f b a f(x) dx = ba f dx b a f(x) dx f f

Mehr

VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b.

VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b. NumaMB F14 Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Bewertung: Vier Fragen richtig beantwortet

Mehr

Ferienkurs Numerik Lösungsskizze. 1 Iterative Verfahren für lineare Gleichungssysteme

Ferienkurs Numerik Lösungsskizze. 1 Iterative Verfahren für lineare Gleichungssysteme Technische Universität München SoSe 1 Zentrum Mathematik Ferienkurse Dipl.-Math. Konrad Waldherr Ferienkurs Numerik Lösungsskizze 1 Iterative Verfahren für lineare Gleichungssysteme 1. Wir erhalten folgende

Mehr

Aufgabenstellung: Explizite gewöhnliche Differentialgleichung 1. Ordnung mit Anfangsbedingung Gesucht ist eine Funktion y = y(x).

Aufgabenstellung: Explizite gewöhnliche Differentialgleichung 1. Ordnung mit Anfangsbedingung Gesucht ist eine Funktion y = y(x). I Neunte Übungseinheit Inhalt der neunten Übungseinheit: Gewöhnliche Differentialgleichungen erster Ordnung I. Gewöhnliche Differentialgleichungen erster Ordnung Aufgabenstellung: Explizite gewöhnliche

Mehr

2 Anfangswertprobleme gewöhnlicher Differenzialgleichungen

2 Anfangswertprobleme gewöhnlicher Differenzialgleichungen 2 Anfangswertprobleme gewöhnlicher Differenzialgleichungen Bei der mathematischen Modellierung von ingenieur- oder naturwissenschaftlichen Problemen treten oft Differenzialgleichungen auf. Überall dort,

Mehr

2 Anfangswertprobleme gewöhnlicher Differenzialgleichungen

2 Anfangswertprobleme gewöhnlicher Differenzialgleichungen 2 Anfangswertprobleme gewöhnlicher Differenzialgleichungen Bei der mathematischen Modellierung von ingenieur- oder naturwissenschaftlichen Problemen treten oft Differenzialgleichungen auf. Überall dort,

Mehr

Explizite Runge-Kutta-Verfahren

Explizite Runge-Kutta-Verfahren Explizite Runge-Kutta-Verfahren Proseminar Numerische Mathematik Leitung: Professor Dr. W. Hofmann Dominik Enseleit 06.07.2005 1 1 Einleitung Nachdem wir schon einige numerische Verfahren zur Lösung gewöhnlicher

Mehr

2.3.1 Explizite Runge-Kutta-Verfahren

2.3.1 Explizite Runge-Kutta-Verfahren Somit ist y(t + h) = y + hf(t, y ) + h (f t (t, y ) + f y (t, y )f(t, y )) + O(h 3 ) Setzen wir Φ(t, y, h) := f(t, y) + h (f t(t, y) + f y (t, y)f(t, y)), so erhalten wir ein Verfahren mit der Konsistenzordnung

Mehr

Numerik gewöhnlicher Differentialgleichungen

Numerik gewöhnlicher Differentialgleichungen Kapitel 3 Numerik gewöhnlicher Differentialgleichungen 3 Inhalt dieses Kapitels ist die numerische Lösung eines Systems gewöhnlicher Differentialgleichungen y (x) = f(x, y(x)) (3.) bzw. ausgeschrieben

Mehr

Interpolation, numerische Integration

Interpolation, numerische Integration Interpolation, numerische Integration 8. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 8. Mai 2014 Gliederung 1 Interpolation polynomial Spline 2 Numerische

Mehr

Mehrschrittverfahren und Strukturerhaltung. Valentin Göbel 03. Februar 2011

Mehrschrittverfahren und Strukturerhaltung. Valentin Göbel 03. Februar 2011 Mehrschrittverfahren und Strukturerhaltung Valentin Göbel 03. Februar 2011 1 Inhaltsverzeichnis 1 Einleitung 3 2 Arten von Mehrschrittverfahren 4 2.1 Wiederholung: Lineare Mehrschrittverfahren............

Mehr

Inhaltsverzeichnis. 2 Grenzzyklen und Stabilitätskriterien VerfahrenderharmonischenBalance IdeedesVerfahrens...

Inhaltsverzeichnis. 2 Grenzzyklen und Stabilitätskriterien VerfahrenderharmonischenBalance IdeedesVerfahrens... Inhaltsverzeichnis Blau nummerierte Abschnitte enthalten Grundlagen, die einen Basiskurs über nichtlineare Systeme und Regelungen bilden. Schwarz nummerierte enthalten weitergehende Informationen, die

Mehr

Klausur im Fach Numerische Methoden II Universität Siegen; Fachbereich Maschinenbau,

Klausur im Fach Numerische Methoden II Universität Siegen; Fachbereich Maschinenbau, Aufgabe 1 (Polynominterpolation) Abb. 1: Roboter für Positionierungsaufgaben Industrieroboter erledigen oft Positionierungsaufgaben, indem sie einen vorgegebenen Pfad abfahren. Diese Trajektorie entspricht

Mehr

Numerik gewöhnlicher Differentialgleichungen

Numerik gewöhnlicher Differentialgleichungen Numerik gewöhnlicher Differentialgleichungen Oliver Ernst Professur Numerische Mathematik Wintersemester 2016/17 Inhalt I 1 Einleitung 1.1 Volterras Prinzip 1.2 Begriffe und theoretische Resultate 1.3

Mehr

h n = (t t 0 )/n Bevor wir diesen Satz beweisen, geben wir noch einen Hilfssatz an, der eine wichtige Abschätzung liefert.

h n = (t t 0 )/n Bevor wir diesen Satz beweisen, geben wir noch einen Hilfssatz an, der eine wichtige Abschätzung liefert. Kapitel 4 Berechnung von Lösungen 41 Die Euler sche Polygonzugmethode Die Grundlage dieser Methode ist die einfache Beobachtung, dass f(u, t) in der Nähe eines Punktes als nahezu konstant angesehen werden

Mehr

4. Runge-Kutta-Verfahren 4.1 Konstruktion und Beispiele

4. Runge-Kutta-Verfahren 4.1 Konstruktion und Beispiele 4. Konstruktion und Beispiele Ausgangspunkt wie immer (Substitution: s = t + τh, 0 τ ) y(t + h) = y(t) + [y(t + h) y(t)] = y(t) + = y(t) + h 0 y (t + τh) dτ. Approximiere Integral durch Quadraturformel

Mehr

4 Numerik von Anfangswertaufgaben

4 Numerik von Anfangswertaufgaben 4 Numerik von Anfangswertaufgaben Diese Einführung behandelt numerische Lösungsverfahren für gewöhnliche, explizite Differentialgleichungen. Ordnung. Im Folgenden wird die Variable t R die Zeit und x R

Mehr

Kap. 11: Anfangswertaufgaben: Mehrschrittverfahren

Kap. 11: Anfangswertaufgaben: Mehrschrittverfahren Kap 11: Anfangswertaufgaben: Mehrschrittverfahren 111 Grundlagen und Beispiele 112 Konsistenz von Mehrschrittverfahren 113 Null-Stabilität und Konvergenz von Mehrschrittverfahren 114 Absolute und A-Stabilität

Mehr

(x x j ) R m [x] (3) x x j x k x j. R m [x]. (4)

(x x j ) R m [x] (3) x x j x k x j. R m [x]. (4) 33 Interpolation 147 33 Interpolation In vielen praktischen Anwendungen der Mathematik treten Funktionen f auf, deren Werte nur näherungsweise berechnet werden können oder sogar nur auf gewissen endlichen

Mehr

Aufgabenstellung: Explizite gewöhnliche Differentialgleichung 1. Ordnung mit Anfangsbedingung Gesucht ist eine Funktion y = y(x).

Aufgabenstellung: Explizite gewöhnliche Differentialgleichung 1. Ordnung mit Anfangsbedingung Gesucht ist eine Funktion y = y(x). I Neunte Übungseinheit Inhalt der neunten Übungseinheit: Gewöhnliche Differentialgleichungen erster Ordnung I. Gewöhnliche Differentialgleichungen erster Ordnung Aufgabenstellung: Explizite gewöhnliche

Mehr

Numerisches Programmieren (IN0019)

Numerisches Programmieren (IN0019) Numerisches Programmieren (IN0019) Frank R. Schmidt Winter Semester 2016/2017 11. Gewöhnliche Differenzialgleichungen................................................................................. 2

Mehr

2. Gauß-Integration. Prof. Dr. Wandinger 4. Scheibenelemente FEM 4.2-1

2. Gauß-Integration. Prof. Dr. Wandinger 4. Scheibenelemente FEM 4.2-1 Die analytische Integration der Steifigkeitsmatrix für das Rechteckelement ist recht mühsam. Für Polynome gibt es eine einfachere Methode zur Berechnung von Integralen, ohne dass die Stammfunktion benötigt

Mehr

NUMERIK DER DIFFERENTIALGLEICHUNGEN. Inhaltsverzeichnis

NUMERIK DER DIFFERENTIALGLEICHUNGEN. Inhaltsverzeichnis NUMERIK DER DIFFERENTIALGLEICHUNGEN FABIAN LUKAS MÜLLER Inhaltsverzeichnis Einschrittverfahren für Anfangsprobleme Beispiele und Problemstellung 2 Ein Existenz- und Eindeutigkeitssatz 2 3 Einschrittverfahren

Mehr

Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan :00-14:00 (120 min)

Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan :00-14:00 (120 min) Lehrstuhl für Angewandte Mathematik Montanuniversität Leoben 70 004 Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan. 207 2:00-4:00 (20 min) Name Matrikelnummer Mündliche Prüfung: Bitte markieren

Mehr

Formelsammlung zur Numerischen Mathematik mit Turbo Pascal-Programmen

Formelsammlung zur Numerischen Mathematik mit Turbo Pascal-Programmen Formelsammlung zur Numerischen Mathematik mit Turbo Pascal-Programmen von Prof. Dr. Gisela Engeln-Müllges Fachhochschule Aachen und O. Prof. em. Dr. Fritz Reutter f Rheinisch-Westfälische Technische Hochschule

Mehr

Inhaltsverzeichnis. Kapitel 1: Rechnen mit Zahlen. Kapitel 2: Umformen von Ausdrücken. Kapitel 3: Gleichungen, Ungleichungen, Gleichungssysteme

Inhaltsverzeichnis. Kapitel 1: Rechnen mit Zahlen. Kapitel 2: Umformen von Ausdrücken. Kapitel 3: Gleichungen, Ungleichungen, Gleichungssysteme Kapitel 1: Rechnen mit Zahlen 1.1 Rechnen mit reellen Zahlen 1.2 Berechnen von Summen und Produkten 1.3 Primfaktorzerlegung 1.4 Größter gemeinsamer Teiler 1.5 Kleinstes gemeinsames Vielfaches 1.6 n-te

Mehr

Numerisches Programmieren (IN0019) 11. Gewöhnliche Differenzialgleichungen. Differenzialgleichungen. Differenzialgleichungen (Physik)

Numerisches Programmieren (IN0019) 11. Gewöhnliche Differenzialgleichungen. Differenzialgleichungen. Differenzialgleichungen (Physik) umerisches Programmieren (I19) Frank R. Schmidt 11. Gewöhnliche Differenzialgleichungen Winter Semester 16/17 Differenzialgleichungen (Phsik) Differenzialgleichungen Phsikalische Prozesse lassen sich mit

Mehr

Numerik-Algorithmen VERLA3. Entscheidungshilfe zur Auswahl und Nutzung. Prof. Dr.rer.nat. Gisela Engeln-Müllges Prof. Dr.rer.techn.

Numerik-Algorithmen VERLA3. Entscheidungshilfe zur Auswahl und Nutzung. Prof. Dr.rer.nat. Gisela Engeln-Müllges Prof. Dr.rer.techn. Numerik-Algorithmen Entscheidungshilfe zur Auswahl und Nutzung Prof. Dr.rer.nat. Gisela Engeln-Müllges Prof. Dr.rer.techn. Fritz Reutter t 8., neubearbeitete und erweiterte Auflage VERLA3 Inhaltsverzeichnis

Mehr

Unstetige Galerkin-Verfahren und die lineare Transportgleichung. Tobias G. Pfeiffer Freie Universität Berlin

Unstetige Galerkin-Verfahren und die lineare Transportgleichung. Tobias G. Pfeiffer Freie Universität Berlin Unstetige Galerkin-Verfahren und die lineare Transportgleichung Tobias G. Pfeiffer Freie Universität Berlin Seminar DG-Verfahren, 26. Mai 2009 , Voraussetzungen & Ziele Voraussetzungen Kenntnisse in Numerik

Mehr

Numerik für Ingenieure und Naturwissenschaftler

Numerik für Ingenieure und Naturwissenschaftler Springer-Lehrbuch Numerik für Ingenieure und Naturwissenschaftler Bearbeitet von Wolfgang Dahmen, Arnold Reusken überarbeitet 2008. Taschenbuch. XVIII, 633 S. Paperback ISBN 978 3 540 76492 2 Format (B

Mehr

11. Einschrittverfahren

11. Einschrittverfahren H.J. Oberle Differentialgleichungen I WiSe 2012/13 A. Allgemeines. 11. Einschrittverfahren Es geht in diesem Abschnitt um die numerische Lösung einer AWA y (t) = f(t, y(t)), y(t 0 ) = y 0. (11.1) Aufgabe

Mehr

Numerische Mathematik

Numerische Mathematik Hans Rudolf Schwarz I Norbert Köckler Numerische Mathematik 8., aktualisierte Auflage STUDIUM VIEWEG+, TEUBNER / Iahalt Einleitung 13 1 Fehlertheorie 15 1.1 Fehlerarten 15 1.2 Zahldarstellung 16 1.3 Rundungsfehler

Mehr

Inhaltsverzeichnis Kapitel 1: Rechnen mit Zahlen... 1 Kapitel 2: Umformen von Ausdrücken... 10

Inhaltsverzeichnis Kapitel 1: Rechnen mit Zahlen... 1 Kapitel 2: Umformen von Ausdrücken... 10 Kapitel 1: Rechnen mit Zahlen...1 1.1 Rechnen mit reellen Zahlen...2 1.2 Berechnen von Summen und Produkten...3 1.3 Primfaktorzerlegung...4 1.4 Größter gemeinsamer Teiler...4 1.5 Kleinstes gemeinsames

Mehr

ZWEITE KLAUSUR zur Numerik I mit Lösungen. Bitte folgende Angaben ergänzen und DEUTLICH LESBAR in Druckbuchstaben schreiben:

ZWEITE KLAUSUR zur Numerik I mit Lösungen. Bitte folgende Angaben ergänzen und DEUTLICH LESBAR in Druckbuchstaben schreiben: MATHEMATISCHES INSTITUT PROF. DR. ACHIM SCHÄDLE FELIX LIEDER DR. GEORG JANSING.9.7 ZWEITE KLAUSUR zur Numerik I mit Lösungen Bitte folgende Angaben ergänzen und DEUTLICH LESBAR in Druckbuchstaben schreiben:

Mehr

Numerische Mathematik I

Numerische Mathematik I Numerische Mathematik I Vorlesungsmitschrift Prof. Dr. Dr. h.c. H.G. Bock Interdisziplinäres Zentrum für Wissenschaftliches Rechnen Universität Heidelberg Sommersemester 2002 Stand: 3. November 2004 Korrekturen

Mehr

Stefan A. Funken Numerische Mathematik IV

Stefan A. Funken Numerische Mathematik IV Stefan A. Funken Numerische Mathematik IV SKRIPT, UNIVERSITÄT ULM, SOMMERSEMESTER 200 i Vorbemerkung. Copyright. Alle Rechte, insbesondere das Recht auf Vervielfältigung und Verbreitung sowie der Übersetzung,

Mehr

Numerische Mathematik

Numerische Mathematik Hans Rudolf Schwarz I Norbert Köckler Numerische Mathematik 8., aktualisierte Auflage STUDIUM 11 VIEWEG+ TEUBNER Inhalt Einleitung 13 1 1.1 1.2 1.3 1.4 1..5 1.6 1.7 2 2.1 2.1.1 2.1.2 2.1.3 2.2 2.2.1 2.2.2

Mehr