Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK"

Transkript

1 Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK vom 17. Juli 01 (Dauer: 90 Minuten) Übersicht über die in den einzelnen Teilaufgaben erreichbaren Punkte: Aufgabe 1 (10 P) Aufgabe (1 P) Aufgabe 3 (9 P) a b c d a b c d e a b c d Aufgabe 4 (10 P) Aufgabe 5 (9 P) a b c d e a b c d 3 50 Aufgabe 1 (10 Punkte) Gegeben sei eine Urliste mit den Paaren (x 1, y 1 ),..., (x 9, y 9 ) j x j y j a) Berechnen Sie die Stichprobenmittel x, ȳ, die Stichproben-Standardabweichungen s x, s y und den empirischen Korrelationskoeffizienten r xy. Hinweis: 9 x j = 45, 9 x j = 85, 9 y j = 3.80, 9 yj = 14.30, 9 x j y j = b) Bestimmen Sie die zugehörige Regressionsgerade y = a + b x von y auf x. c) Berechnen Sie das 0.-getrimmte Stichprobenmittel ȳ 0. von (y 1,..., y 9 ). d) Bestimmen Sie das Stichproben- -Quantil ỹ 3 3 von (y 1,..., y 9 ).

2 Lösung: a) Direkt aus den Daten ergeben sich nach den Abschnitten 1.4 und 1.5 im Skript mit Hilfe der Beziehung (x j x) (y j ȳ) = x j y j n x ȳ die Ergebnisse ( ( )) 1 1 x = 5 s x = x i n x n 1 ȳ = s y = r xy = i=1 =.739 b) Nach Abschnitt 1.5 des Skripts ist b = r xy sy s x und a = ȳ b x, also b = 0.68 a =.30 und die Regressionsgerade y = x. c) Für die Lösung der nächsten drei Aufgabenteile benötigen wir die aufsteigend sortierten y-werte. Es ist y () = (.6,.9,.9, 3., 3.8, 3.9, 4.3, 4.5, 4.7). Mit k = [9 0.] = [1.8] = 1 ergibt sich d) Da 9 3 ȳ 0. = = 6 ganzzahlig ist, ergibt sich (y () y (8) ) = ỹ 3 = 1 (y (6) + y (7) ) = 4.1.

3 Aufgabe (1 Punkte) Die gemeinsame Zähldichte f X,Y (i, j) zweier Zufallsvariablen X und Y sei durch die folgende Tabelle gegeben: j 0 1 i a) Bestimmen Sie die Zähldichte f X von X. 0 1/16 0 1/ /8 1/4 1/8 1/4 1/16 b) Berechnen Sie P(Y 1) und P(Y = X = 0). c) Bestimmen Sie die Erwartungswerte EX, E(X + Y ) und E(X Y ). d) Bestimmen Sie den Korrelationskoeffizienten ρ(x, Y ) von X und Y. Sind X und Y stochastisch unabhängig? Begründen Sie. e) Für eine Zufallsvariable Z mit Wertebereich {0, 1} sei P(Z = 0 X = 0) = 1, P(Z = 1 X = 1) = 3 4 und P(Z = 0 X = ) = 1 7. Berechnen Sie die gemeinsame Verteilung von X und Z, d.h. P(X = i, Z = k) für alle i {0, 1, } und k {0, 1}. Lösung: a) Für i {0, 1, } gilt f X (i) = j=0 f X,Y (i, j). f X (i) ist also durch Summation der Einträge der i-ten Zeile der Tabelle gegeben: f X (0) = = 3 16, f X(1) = = 3 8, f X() = = b) Aus Symmetriegründen (k-te Zeile gleich k-te Spalte) gilt f Y = f X. Damit folgt direkt P(Y 1) = 1 P(Y < 1) = 1 P(Y = 0) = 1 f Y (0) = = und nach Definition der bedingten Wahrscheinlichkeit c) Es gilt P(Y = X = 0) = P(Y =, X = 0) P(X = 0) = f X,Y (0, ) f X (0) = = 3. E(X) = 3 i f X (i) = = 5 4, i=0 und, da wegen f Y = f X auch E(Y ) = E(X) gilt, folgt mit der Additivität des Erwartungswertes E(X + Y ) = E(X) + E(Y ) = E(X) = 5. 3

4 Weiterhin ist E(X Y ) = i j f X,Y (i, j) i,j=0 = 1 1 f X,Y (1, 1) + 1 f X,Y (1, ) + 1 f X,Y (, 1) + f X,Y (, ) = = d) Da wegen f Y = f X neben E(Y ) = E(X) auch V (Y ) = V (X) gilt, folgt für den Korrelationskoeffizienten ρ(x, Y ) nach Satz 1.3 des Skripts zunächst Wegen ρ(x, Y ) = C(X, Y ) V (X) V (Y ) = E(X ) = i=0 E(X Y ) E(X) E(Y ) V (X) = E(X Y ) (EX). V (X) i f X (i) = 1 f X (1) + f X () = = 17 8 erhalten wir für die Varianz von X (nach Satz 1.11 b) des Skripts) V (X) = E(X ) (EX) = 17 ( ) = = Oben eingesetzt ergibt sich ρ(x, Y ) = 11 ( ) = 5 9 = 3 9 = 1 3. X und Y sind somit negativ korreliert. Da stochastische Unabhängigkeit nach Satz 1.3 e) Unkorreliertheit implizieren würde, können X und Y nicht stochastisch unabhängig sein. e) Nach dem Skript ist P( X = 0) eine Wahrscheinlichkeitsverteilung, also gilt Wir erhalten hiermit P(Z = 0 X = 0) + P(Z = 1 X = 0) = P(Z {0, 1} X = 0) = 1. P(Z = 1 X = 0) = 1 P(Z = 0 X = 0) = 1 1 = 1, und analog P(Z = 0 X = 1) = 1 P(Z = 1 X = 1) = = 1 4, P(Z = 1 X = ) = 1 P(Z = 0 X = ) = = 6 7. Mit Hilfe der Formel P(X = i, Z = k) = P(Z = k X = i) P(X = i) (Definition der bedingten Wahrscheinlichkeit) lässt sich nun direkt die gemeinsame Verteilung f X,Z von X und Z bestimmen: Wir erhalten P(X = 0, Z = 0) = P(Z = 0 X = 0) P(X = 0) = = 3 3 und mit analoger Rechnung P(X = 0, Z = 1) = 3 3, P(X = 1, Z = 0) = 3 3, P(X = 1, Z = 1) = 9 3, P(X =, Z = 0) = 1 16, P(X =, Z = 1) =

5 Aufgabe 3 (9 Punkte) Die in regelmäßigen Abständen von einer Woche auszuführenden Kontrollen von 4 Maschinen M i, i = 1,... 4, erfordern folgenden Zeitaufwand t i (in Stunden): i t i Um Überstunden innerhalb eines Arbeitstages von 8 Stunden möglichst zu vermeiden, entschließt man sich, jedes Mal nur Maschinen zu untersuchen, welche zur Vermeidung von Manipulationen zufällig ausgewählt werden. Sei Ω die Menge aller -Kombinationen ohne Wiederholung aus der Menge {M 1, M, M 3, M 4 } und P die Gleichverteilung auf Ω. a) Wieviele Elemente enthält die Menge Ω? b) Die Zufallsvariable X beschreibe die zufällige Dauer der Kontrolle der Maschinen. Geben Sie X(ω) für ω Ω in Form einer Tabelle an und bestimmen Sie die Zähldichte f X von X. c) Die Zufallsvariable K, welche die zufälligen Kontrollkosten beschreibt, sei gegeben durch { 50 X, falls X 8, K := (X 8), falls X > 8. Ergänzen Sie die Tabelle aus b) um die Kosten K(ω) und bestimmen Sie die zu erwartenden Kontrollkosten. d) Die zwei jeweils zu kontrollierenden Maschinen werden in aufeinanderfolgenden Wochen unabhängig voneinander ausgewählt. Berechnen Sie die Wahrscheinlichkeit, dass in zwei aufeinanderfolgenden Wochen alle 4 Maschinen kontrolliert werden. Lösung: a) Es gilt Ω = ( ) 4 = = 6. Die Elemente von Ω sind in der Tabelle in b) angegeben. b) Für i, j {1,, 3, 4} ist X({M i, M j }) = t i + t j. Die Zufallsvariable X ist also durch die Werte in der folgenden Tabelle bestimmt: ω Ω {M 1, M } {M 1, M 3 } {M 1, M 4 } {M, M 3 } {M, M 4 } {M 3, M 4 } X(ω) K(ω) Der Wertebereich von X ist W X = {5, 6, 7, 8, 9}. Aufgrund der Gleichverteilungsannahme hat jedes ω Ω die Wahrscheinlichkeit 1. Da jeder Wert von X außer 7 nur für ein ω Ω 6 angenommen wird (und 7 für ), gilt für die Zähldichte von X: { 1 für k = 5, 6, 8, 9 6 f X (k) = P(X = k) = für k = 7 6 5

6 c) Die Werte der Zufallsvariable K sind in der letzten Zeile der Tabelle in b) angegeben. Zur Bestimmung des Erwartungswertes von K genügt es, die Werte dieser Tabellenzeile mit den Gewichten 1 6 aufzusummieren: E(K) = 1 6 ( ) = 14 6 = 354. d) Wegen der Unabhängigkeitsannahmen ist die Menge der möglichen Auswahlen von je zwei Maschinen an aufeinanderfolgenden Wochen durch Ω beschrieben. Die günstigen Auswahlen des Ereignisses alle 4 Maschinen kontrolliert lassen sich folgendermaßen charakterisieren: In der ersten Woche kann jede beliebige Auswahl (der sechs möglichen) getroffen werden, in der zweiten Woche müssen dann die in der ersten Woche nicht gewählten Maschinen ausgewählt werden (eine Möglichkeit). Es gilt also P( in Wochen alle 4 Maschinen kontrolliert ) = Ω Ω = Ω Ω = 1 Ω =

7 Aufgabe 4 (10 Punkte) Eine Maschine dreht zylinderförmige Kolben mit Solldurchmesser d = 0 und Sollhöhe h = 5. Tatsächlich sind der Durchmesser X und die Höhe Y Zufallsvariablen mit den Verteilungen N (0, 1/4) bzw. N (5, 1/9), die als unabhängig angenommen seien. Der zufällige Kolbenumfang sei U := π X und der zufällige Materialverbrauch sei M := π 4 X Y. a) Berechnen Sie den den Erwartungswert E(U) und die Varianz V (U) von U. b) Drücken Sie die Wahrscheinlichkeit P(6 U 64) mit Hilfe der Verteilungsfunktion Φ der Standardnormalverteilung N (0, 1) aus. c) Berechnen Sie den mittleren Materialverbrauch E(M). d) Berechnen Sie das Quantil t (X) von X. e) Ein Kolben muss nachbearbeitet werden, wenn X > 0.5 oder wenn Y > 5.6 gilt. Berechnen Sie die Wahrscheinlichkeit, dass ein Kolben nachbearbeitet werden muss. Lösung: a) Da X N (0, 1 ), hat die Zufallsvariable U = πx nach Satz 9.7 im Skript die Verteilung 4 N (0π, π ). Somit folgt 4 E(U) = 0 π V (U) = π 4. b) Für die normalverteilte Zufallsvariable U ist die Standardisierung Ũ = U EU V (U) = U 0π π/ standardnormalverteilt. Deshalb gilt: = π (U 0π) = π U 40 P(6 U 64) = P( π 6 40 π U ) π = P( 14 π = Φ( 18 π c) Wegen der Unabhängigkeit von X und Y gilt 40 Ũ 18 π 40) 40) Φ(14 π 40). E(M) = E( π 4 X Y ) = π 4 E(X ) E(Y ). Dabei folgt aus der Gleichung V (X) = E(X ) (EX) (vgl. Satz 1.11 im Skript) und somit E(X ) = V (X) + (EX) = = E(M) = π 4 E(X ) E(Y ) = π = π = , 89. 7

8 d) Da X normalverteilt ist, ist die Standardisierung X = 1 (X EX) = (X 0) standardnormalverteilt. Wegen X = 1 X +0 gilt nach Bemerkung 1.0 im Skript für das Quantil σ von X: t (X) = t ( 1 X + 0) = 1 t 0.975( X) + 0 = 1 F 1 X (0.975) + 0 = 1 Φ 1 (0.975) + 0. Nach der Tabelle auf S.130 im Skript (bzw. Anh. A1) ergibt sich t (X) = e) Es gilt P( Kolben muss nachbearbeitet werden ) = P(X > 1 oder Y > 5.6) wegen der Unabhängigkeit von X und Y. Da = 1 P(X 0.5 und Y 5.6) = 1 P(X 0.5) P(Y 5.6) P(X 0.5) = P( X (0.5 0)) = P( X 1) = Φ(1) P(Y 5.6) = P(Ỹ 3(5.6 5)) = P(Ỹ 1.8) = Φ(1.8), ergibt sich mit der Tabelle A1 im Skript eine Wahrscheinlichkeit von P(X > 1 oder Y > 5.6) = 1 Φ(1) Φ(1.8) , d.h. etwa 18.9 Prozent der Kolben müssen nachbearbeitet werden. und 8

9 Aufgabe 5 (9 Punkte) Es soll der unbekannte Parameter ϑ R für die Verteilung mit der Dichte 1 e 1 (log t ϑ), t > 0, f ϑ (t) = π t 0, t 0 bestimmt werden. a) Geben Sie die zur Stichprobe x = (x 1,..., x n ) gehörende Loglikelihood-Funktion M x (ϑ) an. Sie dürfen dabei voraussetzen, dass x i > 0 für i = 1,..., n. b) Berechnen Sie die Ableitung M x(ϑ). c) Bestimmen Sie einen Maximum-Likelihood-Schätzer ˆϑ(x) für ϑ zur Stichprobe x. d) Ist ˆϑ ein erwartungstreuer Schätzer für ϑ? Begründen Sie! Hinweis: Für eine Zufallsvariable X mit Dichte f ϑ gilt: log X N (ϑ, 1). Lösung: a) Für t > 0 ist also ist die Loglikelihoodfunktion M x (ϑ) = = = log(f ϑ (t)) = log( π t) 1 (log t ϑ), log(f ϑ (x j )) = [ log( π x j ) 1 ] (log x j ϑ) [ log( π x j ) 1 ( (log xj ) log x j ϑ + ϑ )] log( π x j ) 1 b) Für die Ableitung nach ϑ gilt somit (log x j ) + ϑ log x j 1 nϑ M x(ϑ) = log x j n ϑ. c) Offenbar gilt M x(ϑ) = 0 genau dann, wenn ϑ = 1 n n log x j. Außerdem gilt { > M x(ϑ) < } { < 0 ϑ > } ˆϑ(x) := 1 n log x j. Daher ist ˆϑ(x) die einzige Maximumstelle von ϑ M x (ϑ) und somit ein Maximum- Likelihood-Schätzer für ϑ zur Stichprobe x. 9

10 d) Für die Erwartungstreue von ˆϑ(x) = ˆϑ(x 1,..., x n ) ist zu zeigen, dass für alle ϑ R gilt: E ϑ ˆϑ(X1,..., X n ) = ϑ, wobei X 1,..., X n unabhängige, identisch verteilte Zufallsvariablen mit der Dichte f ϑ sind. Da X i die Dichte f ϑ hat, folgt mit dem Hinweis, dass die Zufallsvariable Y i := log X i die Verteilung N (ϑ, 1) hat und somit E ϑ Y i = ϑ gilt. Damit folgt für alle ϑ R: ( ) 1 E ϑ ˆϑ(X1,..., X n ) = E ϑ log X i = 1 E ϑ (log X i ) = 1 ϑ = ϑ. n n n i=1 Also ist ˆϑ(x) ein erwartungstreuer Schätzer für ϑ. i=1 i=1 10

Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK)

Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) für Studierende des Maschinenbaus vom 7. Juli (Dauer: 8 Minuten) Übersicht über die

Mehr

Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK. für Studierende der INFORMATIK

Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK. für Studierende der INFORMATIK Institut für Stochastik Prof. Dr. Daniel Hug Name: Vorname: Matr.-Nr.: Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK Datum: 08. Februar 0 Dauer:

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR STOCHASTIK SS 2007 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Dipl.-Math. oec. W. Lao Klausur (Maschineningenieure) Wahrscheinlichkeitstheorie und Statistik vom 2.9.2007 Musterlösungen

Mehr

Wahrscheinlichkeitstheorie und Statistik für Studierende des Maschinenbaus vom

Wahrscheinlichkeitstheorie und Statistik für Studierende des Maschinenbaus vom Institut für Stochastik WS 009/10 Karlsruher Institut für Technologie (KIT) Dr. B. Klar Klausur Wahrscheinlichkeitstheorie und Statistik für Studierende des Maschinenbaus vom 08.0.010 Musterlösungen Aufgabe

Mehr

Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik

Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik INSTITUT FÜR STOCHASTIK WS 2007/08 UNIVERSITÄT KARLSRUHE Blatt 1 Dr. B. Klar Übungen zur Vorlesung Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik Musterlösungen

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Klausur zur Vorlesung

Klausur zur Vorlesung Institut für Mathematische Stochastik WS 2006/2007 Universität Karlsruhe 12. Februar 2007 Priv.-Doz. Dr. D. Kadelka Dipl.-Math. W. Lao Aufgabe 1 (15 Punkte) Klausur zur Vorlesung Statistik für Biologen

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Wahrscheinlichkeitstheorie:, Kenngrößen Prof. Dr. Achim Klenke http://www.aklenke.de 7. Vorlesung: 09.12.2011 1/58 Inhalt 1 2 Kenngrößen von Lagemaße 2/58 mit Dichte Normalverteilung

Mehr

6. Schätzverfahren für Parameter

6. Schätzverfahren für Parameter 6. Schätzverfahren für Parameter Ausgangssituation: Ein interessierender Zufallsvorgang werde durch die ZV X repräsentiert X habe eine unbekannte Verteilungsfunktion F X (x) Wir interessieren uns für einen

Mehr

Mathematik für Naturwissenschaften, Teil 2

Mathematik für Naturwissenschaften, Teil 2 Lösungsvorschläge für die Aufgaben zur Vorlesung Mathematik für Naturwissenschaften, Teil Zusatzblatt SS 09 Dr. J. Schürmann keine Abgabe Aufgabe : Eine Familie habe fünf Kinder. Wir nehmen an, dass die

Mehr

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen David Geier und Sven Middelberg RWTH Aachen, Sommersemester 27 Inhaltsverzeichnis Information 2 Aufgabe 4 Aufgabe 2 6 4 Aufgabe

Mehr

Kapitel 3 Schließende Statistik

Kapitel 3 Schließende Statistik Motivation Grundgesamtheit mit unbekannter Verteilung F Stichprobe X 1,...,X n mit Verteilung F Realisation x 1,...,x n der Stichprobe Rückschluss auf F Dr. Karsten Webel 160 Motivation (Fortsetzung) Kapitel

Mehr

Übungsblatt 9 (25. bis 29. Juni)

Übungsblatt 9 (25. bis 29. Juni) Statistik 2 Dr. Andrea Beccarini Dipl.-Vw. Dipl.-Kffr. Heike Bornewasser-Hermes Sommersemester 2012 Übungsblatt 9 (25. bis 29. Juni) Stetiges Verteilungsmodell und Gemeinsame Verteilung Stetiges Verteilungsmodell

Mehr

Biostatistik, Sommer 2017

Biostatistik, Sommer 2017 1/39 Biostatistik, Sommer 2017 Wahrscheinlichkeitstheorie: Gesetz der großen Zahl, Zentraler Grenzwertsatz Schließende Statistik: Grundlagen Prof. Dr. Achim Klenke http://www.aklenke.de 9. Vorlesung: 16.06.2017

Mehr

70 Wichtige kontinuierliche Verteilungen

70 Wichtige kontinuierliche Verteilungen 70 Wichtige kontinuierliche Verteilungen 70. Motivation Zufallsvariablen sind nicht immer diskret, sie können oft auch jede beliebige reelle Zahl in einem Intervall [c, d] einnehmen. Beispiele für solche

Mehr

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung 2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung Die einfachste Verteilung ist die Gleichverteilung, bei der P(X = x i ) = 1/N gilt, wenn N die Anzahl möglicher Realisierungen von

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR MATHEMATISCHE STOCHASTIK WS 005/06 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Klausur Wahrscheilichkeitstheorie ud Statistik vom 9..006 Musterlösuge Aufgabe A: Gegebe sei eie Urliste

Mehr

Parameterschätzung. Kapitel 14. Modell Es sei {P θ θ Θ}, Θ R m eine Familie von Verteilungen auf χ (sog. Stichprobenraum),

Parameterschätzung. Kapitel 14. Modell Es sei {P θ θ Θ}, Θ R m eine Familie von Verteilungen auf χ (sog. Stichprobenraum), Kapitel 14 Parameterschätzung Modell Es sei {P θ θ Θ}, Θ R m eine Familie von Verteilungen auf χ (sog. Stichprobenraum), = ( 1,..., n ) sei eine Realisierung der Zufallsstichprobe X = (X 1,..., X n ) zu

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

2.3 Intervallschätzung

2.3 Intervallschätzung 2.3.1 Motivation und Hinführung Bsp. 2.11. [Wahlumfrage] Der wahre Anteil der rot-grün Wähler 2009 war genau 33.7%. Wie groß ist die Wahrscheinlichkeit, in einer Zufallsstichprobe von 1000 Personen genau

Mehr

WS 2014/15. (d) Bestimmen Sie die Wahrscheinlichkeitsfunktion von X. (e) Bestimmen Sie nun den Erwartungswert und die Varianz von X.

WS 2014/15. (d) Bestimmen Sie die Wahrscheinlichkeitsfunktion von X. (e) Bestimmen Sie nun den Erwartungswert und die Varianz von X. Fragenkatalog zur Übung Methoden der empirischen Sozialforschung WS 2014/15 Hier finden Sie die denkbaren Fragen zum ersten Teil der Übung. Das bedeutet, dass Sie zu diesem Teil keine anderen Fragen im

Mehr

Aufgabe Punkte

Aufgabe Punkte Institut für Mathematik Freie Universität Berlin Carsten Hartmann, Stefanie Winkelmann Musterlösung für die Nachklausur zur Vorlesung Stochastik I im WiSe 20/202 Name: Matr.-Nr.: Studiengang: Mathematik

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 15.0.009 Fachbereich Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

0 sonst. a) Wie lautet die Randwahrscheinlichkeitsfunktion von Y? 0.5 y = 1

0 sonst. a) Wie lautet die Randwahrscheinlichkeitsfunktion von Y? 0.5 y = 1 Aufgabe 1 (2 + 2 + 2 + 1 Punkte) Gegeben sei folgende gemeinsame Wahrscheinlichkeitsfunktion f(x, y) = P (X = x, Y = y) der Zufallsvariablen X und Y : 0.2 x = 1, y = 1 0.3 x = 2, y = 1 f(x, y) = 0.45 x

Mehr

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38 Dynamische Systeme und Zeitreihenanalyse Multivariate Normalverteilung und ML Schätzung Kapitel 11 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Multivariate

Mehr

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme Binomialverteilung Wahrscheinlichkeitsfunktion Konstruktionsprinzip: Ein Zufallsexperiment wird n mal unabhängig durchgeführt. Wir interessieren uns jeweils nur, ob ein bestimmtes Ereignis A eintritt oder

Mehr

Kapitel 9. Schätzverfahren und Konfidenzintervalle. 9.1 Grundlagen zu Schätzverfahren

Kapitel 9. Schätzverfahren und Konfidenzintervalle. 9.1 Grundlagen zu Schätzverfahren Kapitel 9 Schätzverfahren und Konfidenzintervalle 9.1 Grundlagen zu Schätzverfahren Für eine Messreihe x 1,...,x n wird im Folgenden angenommen, dass sie durch n gleiche Zufallsexperimente unabhängig voneinander

Mehr

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig) ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels

Mehr

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11.

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11. Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11 Namensschild Dr. Martin Becker Hinweise für die Klausurteilnehmer

Mehr

Unabhängige Zufallsvariablen

Unabhängige Zufallsvariablen Kapitel 9 Unabhängige Zufallsvariablen Die Unabhängigkeit von Zufallsvariablen wird auf die Unabhängigkeit von Ereignissen zurückgeführt. Im Folgenden sei Ω, A, P ) ein Wahrscheinlichkeitsraum. Definition

Mehr

Theorie Parameterschätzung Ausblick. Schätzung. Raimar Sandner. Studentenseminar "Statistische Methoden in der Physik"

Theorie Parameterschätzung Ausblick. Schätzung. Raimar Sandner. Studentenseminar Statistische Methoden in der Physik Studentenseminar "Statistische Methoden in der Physik" Gliederung 1 2 3 Worum geht es hier? Gliederung 1 2 3 Stichproben Gegeben eine Beobachtungsreihe x = (x 1, x 2,..., x n ): Realisierung der n-dimensionalen

Mehr

Klausur vom

Klausur vom UNIVERSITÄT KOBLENZ LANDAU INSTITUT FÜR MATHEMATIK Dr. Dominik Faas Stochastik Wintersemester 00/0 Klausur vom 09.06.0 Aufgabe (++4=9 Punkte) Bei einer Umfrage wurden n Personen befragt, an wievielen Tagen

Mehr

DWT 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen 330/467 Ernst W. Mayr

DWT 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen 330/467 Ernst W. Mayr 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen Wir betrachten nun ein Verfahren zur Konstruktion von Schätzvariablen für Parameter von Verteilungen. Sei X = (X 1,..., X n ). Bei X

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

Zusammenfassung: diskrete und stetige Verteilungen. Woche 4: Gemeinsame Verteilungen. Zusammenfassung: diskrete und stetige Verteilungen

Zusammenfassung: diskrete und stetige Verteilungen. Woche 4: Gemeinsame Verteilungen. Zusammenfassung: diskrete und stetige Verteilungen Zusammenfassung: e und e Verteilungen Woche 4: Gemeinsame Verteilungen Wahrscheinlichkeitsverteilung p() Wahrscheinlichkeitsdichte f () WBL 15/17, 11.05.2015 Alain Hauser P(X = k

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Kapitel VII - Funktion und Transformation von Zufallsvariablen

Kapitel VII - Funktion und Transformation von Zufallsvariablen Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VII - Funktion und Transformation von Zufallsvariablen Markus Höchstötter Lehrstuhl

Mehr

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13 Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13 Aufgabenstellung und Ergebnisse Dr. Martin Becker Hinweise für die

Mehr

Fit for Abi & Study Stochastik

Fit for Abi & Study Stochastik Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen

Mehr

Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007

Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007 Mathematik IV für Maschinenbau und Informatik Stochastik Universität Rostock, Institut für Mathematik Sommersemester 007 Prof. Dr. F. Liese Dipl.-Math. M. Helwich Serie Termin: 9. Juni 007 Aufgabe 3 Punkte

Mehr

Suffizienz und Vollständigkeit

Suffizienz und Vollständigkeit KAPITEL 7 Suffizienz und Vollständigkeit 7.1. Definition der Suffizienz im diskreten Fall Beispiel 7.1.1. Betrachten wir eine unfaire Münze, wobei die Wahrscheinlichkeit θ, dass die Münze Kopf zeigt, geschätzt

Mehr

Einführung in die Maximum Likelihood Methodik

Einführung in die Maximum Likelihood Methodik in die Maximum Likelihood Methodik Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Gliederung 1 2 3 4 2 / 31 Maximum Likelihood

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Streuungsparameter Varianz Var(X) bzw. σ 2 : [x i E(X)] 2 f(x i ), wenn X diskret Var(X)

Mehr

Mathematik 2 Probeprüfung 1

Mathematik 2 Probeprüfung 1 WWZ Wirtschaftswissenschaftliche Fakultät der Universität Basel Dr. Thomas Zehrt Bitte in Druckbuchstaben ausfüllen: Name Vorname Mathematik 2 Probeprüfung 1 Zeit: 90 Minuten, Maximale Punktzahl: 72 Zur

Mehr

Probeklausur Statistik II

Probeklausur Statistik II Prof. Dr. Chr. Müller PROBE-KLAUSUR 1 1 2 3 4 5 6 7 8 Gesamt: 15 8 16 16 7 8 15 15 100 Probeklausur Statistik II Name: Vorname: Fachrichtung: Matrikel-Nummer: Bitte beachten Sie folgendes: 1) Die Klausur

Mehr

Bestimmte Zufallsvariablen sind von Natur aus normalverteilt. - naturwissenschaftliche Variablen: originär z.b. Intelligenz, Körpergröße, Messfehler

Bestimmte Zufallsvariablen sind von Natur aus normalverteilt. - naturwissenschaftliche Variablen: originär z.b. Intelligenz, Körpergröße, Messfehler 6.6 Normalverteilung Die Normalverteilung kann als das wichtigste Verteilungsmodell der Statistik angesehen werden. Sie wird nach ihrem Entdecker auch Gaußsche Glockenkurve genannt. Die herausragende Stellung

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

Stetige Standardverteilungen

Stetige Standardverteilungen Universität Basel Wirtschaftswissenschaftliches Zentrum Stetige Standardverteilungen Dr. Thomas Zehrt Inhalt: 1. Die stetige Gleichverteilung 2. Die Normalverteilung (a) Einstimmung (b) Standardisierung

Mehr

4. Verteilungen von Funktionen von Zufallsvariablen

4. Verteilungen von Funktionen von Zufallsvariablen 4. Verteilungen von Funktionen von Zufallsvariablen Allgemeine Problemstellung: Gegeben sei die gemeinsame Verteilung der ZV en X 1,..., X n (d.h. bekannt seien f X1,...,X n bzw. F X1,...,X n ) Wir betrachten

Mehr

Klausur zur Vorlesung

Klausur zur Vorlesung Institut für Mathematische Stochastik WS 2004/2005 Universität Karlsruhe 14. Februar 2005 Dr. Bernhard Klar Sebastian Müller Aufgabe 1: (15 Punkte) Klausur zur Vorlesung Statistik für Biologen Musterlösungen

Mehr

Nachklausur zur Vorlesung. Statistik für Studierende der Biologie

Nachklausur zur Vorlesung. Statistik für Studierende der Biologie Institut für Mathematische Stochastik WS 1999/2000 Universität Karlsruhe 11. Mai 2000 Dr. Bernhard Klar Nachklausur zur Vorlesung Statistik für Studierende der Biologie Bearbeitungszeit: 90 Minuten Name:

Mehr

Institut für Stochastik, SoSe K L A U S U R , 13:

Institut für Stochastik, SoSe K L A U S U R , 13: Institut für Stochastik, SoSe 2014 Mathematische Statistik Paravicini/Heusel 1. K L A U S U R 12.7.2014, 13:00-16.00 Name: Geburtsdatum: Vorname: Matrikelnummer: Übungsgruppe bei: Studiengang & angestrebter

Mehr

Varianz und Kovarianz

Varianz und Kovarianz KAPITEL 9 Varianz und Kovarianz 9.1. Varianz Definition 9.1.1. Sei (Ω, F, P) ein Wahrscheinlichkeitsraum und X : Ω eine Zufallsvariable. Wir benutzen die Notation (1) X L 1, falls E[ X ]

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Karin Waldherr & Pantelis Christodoulides 11. Mai 2011 Waldherr / Christodoulides Einführung in Quantitative Methoden- 8.VO 1/40 Poisson-Verteilung Diese Verteilung

Mehr

67 Zufallsvariable, Erwartungswert, Varianz

67 Zufallsvariable, Erwartungswert, Varianz 67 Zufallsvariable, Erwartungswert, Varianz 67.1 Motivation Oft möchte man dem Resultat eines Zufallsexperiments eine reelle Zahl zuordnen. Der Gewinn bei einem Glücksspiel ist ein Beispiel hierfür. In

Mehr

Stochastik. 1. Wahrscheinlichkeitsräume

Stochastik. 1. Wahrscheinlichkeitsräume Stochastik 1. Wahrscheinlichkeitsräume Ein Zufallsexperiment ist ein beliebig oft und gleichartig wiederholbarer Vorgang mit mindestens zwei verschiedenen Ergebnissen, bei dem der Ausgang ungewiß ist.

Mehr

2 Aufgaben aus [Teschl, Band 2]

2 Aufgaben aus [Teschl, Band 2] 20 2 Aufgaben aus [Teschl, Band 2] 2.1 Kap. 25: Beschreibende Statistik 25.3 Übungsaufgabe 25.3 a i. Arithmetisches Mittel: 10.5 ii. Median: 10.4 iii. Quartile: x 0.25 Y 4 10.1, x 0.75 Y 12 11.1 iv. Varianz:

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am von 10:00 bis 11:00 Uhr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am von 10:00 bis 11:00 Uhr Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am 5..201 von 10:00 bis 11:00 Uhr Bearbeiten Sie zwei der drei folgenden Aufgaben! Sätze aus der Vorlesung und den Übungen dürfen Sie ohne

Mehr

Zeigen Sie mittles vollständiger Induktion, dass für jede natürliche Zahl n 1 gilt: k = n (n + 1) 2

Zeigen Sie mittles vollständiger Induktion, dass für jede natürliche Zahl n 1 gilt: k = n (n + 1) 2 Aufgabe 1. (5 Punkte) Zeigen Sie mittles vollständiger Induktion, dass für jede natürliche Zahl n 1 gilt: n k = k=1 n (n + 1). 2 Aufgabe 2. (5 Punkte) Bestimmen Sie das folgende Integral mithilfe partieller

Mehr

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s X. Zufallsgrößen ================================================================= 10.1 Zufallsgrößen und ihr Erwartungswert --------------------------------------------------------------------------------------------------------------

Mehr

Klausur Statistik Lösungshinweise

Klausur Statistik Lösungshinweise Klausur Statistik Lösungshinweise Prüfungsdatum: 21. Januar 2016 Prüfer: Etschberger, Heiden, Jansen Studiengang: IM und BW Punkte: 15, 15, 12, 14, 16, 18 ; Summe der Punkte: 90 Aufgabe 1 15 Punkte Bei

Mehr

Teil VI. Gemeinsame Verteilungen. Lernziele. Beispiel: Zwei Würfel. Gemeinsame Verteilung

Teil VI. Gemeinsame Verteilungen. Lernziele. Beispiel: Zwei Würfel. Gemeinsame Verteilung Zusammenfassung: diskrete und stetige Verteilungen Woche 4: Verteilungen Patric Müller diskret Wahrscheinlichkeitsverteilung p() stetig Wahrscheinlichkeitsdichte f ()

Mehr

Mathematische Statistik Aufgaben zum Üben. Schätzer

Mathematische Statistik Aufgaben zum Üben. Schätzer Prof. Dr. Z. Kabluchko Wintersemester 2016/17 Philipp Godland 14. November 2016 Mathematische Statistik Aufgaben zum Üben Keine Abgabe Aufgabe 1 Schätzer Es seien X 1,..., X n unabhängige und identisch

Mehr

Klausur zur Vorlesung Stochastik II

Klausur zur Vorlesung Stochastik II Institut für Stochastik WS 007/008 Universität Karlsruhe. 0. 008 r. B. Klar Klausur zur Vorlesung Stochastik II Muster-Lösung auer: 90 Minuten Name: Vorname: Matrikelnummer: iese Klausur hat bestanden,

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 12.02.2010 Fakultät für Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Klausur Stochastik und Statistik 31. Juli 2012

Klausur Stochastik und Statistik 31. Juli 2012 Klausur Stochastik und Statistik 31. Juli 2012 Prof. Dr. Matthias Schmid Institut für Statistik, LMU München Wichtig: ˆ Überprüfen Sie, ob Ihr Klausurexemplar vollständig ist. Die Klausur besteht aus fünf

Mehr

Beispiel 6 (Einige Aufgaben zur Gleichverteilung)

Beispiel 6 (Einige Aufgaben zur Gleichverteilung) Beispiel 6 (Einige Aufgaben zur Gleichverteilung) Aufgabe (Anwendung der Chebyshev-Ungleichung) Sei X eine Zufallsvariable mit E(X) = µ und var(x) = σ a) Schätzen Sie die Wahrscheinlichkeit dafür, daß

Mehr

1 Erwartungswert und Kovarianzmatrix von Zufallsvektoren

1 Erwartungswert und Kovarianzmatrix von Zufallsvektoren Erwartungswert und Kovarianzmatrix von Zufallsvektoren Erwartungswert und Kovarianzmatrix von Zufallsvektoren. Definition Ist X X,...,X p ein p-dimensionaler Zufallsvektor mit E X j < für alle j, so heißt

Mehr

Probeklausur zu Mathematik 3 für Informatik Lösungshinweise (ohne Garantie auf Fehlefreiheit)

Probeklausur zu Mathematik 3 für Informatik Lösungshinweise (ohne Garantie auf Fehlefreiheit) Gunter Ochs 9. Juni 05 Probeklausur zu Mathematik für Informatik Lösungshinweise ohne Garantie auf Fehlefreiheit. Sei fx x x. a Bestimmen Sie den Grenzwert lim x fx. Da an der Stelle x Zähler Nenner Null

Mehr

1.5 Erwartungswert und Varianz

1.5 Erwartungswert und Varianz Ziel: Charakterisiere Verteilungen von Zufallsvariablen (Bildbereich also reelle Zahlen, metrische Skala) durch Kenngrößen (in Analogie zu Lage- und Streuungsmaßen der deskriptiven Statistik). Insbesondere:

Mehr

Technische Universität Berlin

Technische Universität Berlin Technische Universität Berlin Fakultät II Institut für Mathematik SS 06 Prof. Dr. J-D Deuschel 0. Juli 006 Juli Klausur Stochastik für Informatiker Name:... Vorname:... Matr. Nr.:... Studiengang:... Als

Mehr

Chi-Quadrat-Verteilung

Chi-Quadrat-Verteilung Chi-Quadrat-Verteilung Wikipedia http://de.wikipedia.org/wiki/chi-quadrat-verteilung 1 von 7 6/18/2009 6:13 PM Chi-Quadrat-Verteilung aus Wikipedia, der freien Enzyklopädie Die Chi-Quadrat-Verteilung ist

Mehr

Zufallsvariable: Verteilungen & Kennzahlen

Zufallsvariable: Verteilungen & Kennzahlen Mathematik II für Biologen 12. Juni 2015 Zufallsvariable Kennzahlen: Erwartungswert Kennzahlen: Varianz Kennzahlen: Erwartungstreue Verteilungsfunktion Beispiel: Exponentialverteilung Kennzahlen: Erwartungswert

Mehr

Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler

Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler Philipp Sibbertsen Hartmut Lehne Statistik Einführung für Wirtschafts- und Sozialwissenschaftler 2., überarbeitete Auflage 4^ Springer Gabler Inhaltsverzeichnis Teil I Deskriptive Statistik 1 Einführung

Mehr

(8 + 2 Punkte) = = 0.75

(8 + 2 Punkte) = = 0.75 Aufgabe 1 (8 + 2 Punkte) Von 20 Teilnehmern einer Bergwanderung geben 8 Personen an Knieschmerzen zu haben. 6 Teilnehmer leiden an Sonnenbrand. 8 Teilnehmer blieben unversehrt. a) Wie groß ist die Wahrscheinlichkeit,

Mehr

Woche 2: Zufallsvariablen

Woche 2: Zufallsvariablen Woche 2: Zufallsvariablen Patric Müller ETHZ WBL 17/19, 24.04.2017 Wahrscheinlichkeit und Statistik Patric Müller WBL 2017 Teil III Zufallsvariablen Wahrscheinlichkeit

Mehr

Institut für Stochastik, SoSe K L A U S U R , 8:00-11:00. Aufgabe Punkte erreichte Punkte Korrektur

Institut für Stochastik, SoSe K L A U S U R , 8:00-11:00. Aufgabe Punkte erreichte Punkte Korrektur Institut für Stochastik, SoSe 2014 Mathematische Statistik Paravicini/Heusel 2. K L A U S U R 29.9.2014, 8:00-11:00 Name: Geburtsdatum: Vorname: Matrikelnummer: Übungsgruppe bei: Studiengang & angestrebter

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 9. Dezember 2010 1 Konfidenzintervalle Idee Schätzung eines Konfidenzintervalls mit der 3-sigma-Regel Grundlagen

Mehr

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Intervallschätzung

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Intervallschätzung 0 Einführung 1 Wahrscheinlichkeitsrechnung Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Intervallschätzung Motivation und Hinführung Der wahre Anteil der rot-grün Wähler 009 war genau

Mehr

Musterlösung zur Klausur im Fach Fortgeschrittene Statistik am Gesamtpunktzahl: 60

Musterlösung zur Klausur im Fach Fortgeschrittene Statistik am Gesamtpunktzahl: 60 WESTFÄLISCHE WILHELMS - UNIVERSITÄT MÜNSTER Wirtschaftswissenschaftliche Faktultät Prof. Dr. Bernd Wilfling Professur für VWL, insbesondere Empirische Wirtschaftsforschung Musterlösung zur Klausur im Fach

Mehr

Modellanpassung und Parameterschätzung. A: Übungsaufgaben

Modellanpassung und Parameterschätzung. A: Übungsaufgaben 7 Modellanpassung und Parameterschätzung 1 Kapitel 7: Modellanpassung und Parameterschätzung A: Übungsaufgaben [ 1 ] Bei n unabhängigen Wiederholungen eines Bernoulli-Experiments sei π die Wahrscheinlichkeit

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Stochastik Marco Boßle Jörg Hörner Mathematik Online Frühjahr 2011 PV-Kurs HM 3 Stochastik 1-1 Zusammenfassung Wahrscheinlichkeitsraum (WR): Menge der Elementarereignisse

Mehr

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit 3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit Lernziele dieses Kapitels: Mehrdimensionale Zufallsvariablen (Zufallsvektoren) (Verteilung, Kenngrößen) Abhängigkeitsstrukturen Multivariate

Mehr

Zweitklausur. b p b. q a. c 1. p a

Zweitklausur. b p b. q a. c 1. p a Elementare Stochastik SoSe 27 Zweitklausur Lösungen. Berechnen Sie für die angegebenen Übergangswahrscheinlichkeiten (mit p a,p b >, q a := p a, q b := p b ) die erwartete Anzahl von Schritten bis zum

Mehr

1.5 Erwartungswert und Varianz

1.5 Erwartungswert und Varianz Ziel: Charakterisiere Verteilungen von Zufallsvariablen durch Kenngrößen (in Analogie zu Lage- und Streuungsmaßen der deskriptiven Statistik). Insbesondere: a) durchschnittlicher Wert Erwartungswert, z.b.

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Lageparameter: Erwartungswert d) Erwartungswert

Mehr

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009 Übung zu Empirische Ökonomie für Fortgeschrittene Steen Elstner, Klaus Wohlrabe, Steen Henzel SS 9 1 Wichtige Verteilungen Die Normalverteilung Eine stetige Zufallsvariable mit der Wahrscheinlichkeitsdichte

Mehr

Klausur zur Einführung in die Wahrscheinlichkeitstheorie und Statistik

Klausur zur Einführung in die Wahrscheinlichkeitstheorie und Statistik Klausur zur Einführung in die Wahrscheinlichkeitstheorie und Statistik Prof. Dr. C. Löh/M. Blank 27. Juli 2012 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 1. Dezember 21 1 Integralrechnung Flächeninhalt Stammfunktion Rechenregeln 2 Dichten von Erwartungswert und Varianz

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

WTheorie: Verteilungen. Aufgabe 54

WTheorie: Verteilungen. Aufgabe 54 Aufgabe 54 WTheorie: Verteilungen Die Gesamtdauer X eines Projektes wird als normalverteilt mit dem Parameter D 10 (Wochen) angenommen. Ferner wird für die Wahrscheinlichkeit P.8 X 12/ der Wert 0;8 geschätzt.

Mehr

Schätzer und Konfidenzintervalle

Schätzer und Konfidenzintervalle Kapitel 2 Schätzer und Konfidenzintervalle Bisher haben wir eine mathematische Theorie entwickelt, die es uns erlaubt, gewisse zufällige Phänomene zu modellieren. Zum Beispiel modellieren wir die Anzahl

Mehr

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2002

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2002 Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2002 1. Ein Chemiestudent hat ein Set von 10 Gefäßen vor sich stehen, von denen vier mit Salpetersäure Stoff A), vier mit Glyzerin Stoff

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 23. Dezember 2011 1 Stetige Zufallsvariable, Normalverteilungen Der zentrale Grenzwertsatz und die 3-Sigma Regel

Mehr

Schriftliche Prüfung (2 Stunden)

Schriftliche Prüfung (2 Stunden) Dr. L. Meier Statistik und Wahrscheinlichkeitsrechnung Sommer 2015 Schriftliche Prüfung (2 Stunden) Bemerkungen: Erlaubte Hilfsmittel: 10 hand- oder maschinengeschriebene A4 Seiten (=5 Blätter). Taschenrechner

Mehr

Mathematik für Informatiker III im WS 05/06 Musterlösung zur 4. Übung

Mathematik für Informatiker III im WS 05/06 Musterlösung zur 4. Übung Mathematik für Informatiker III im WS 5/6 Musterlösung zur. Übung erstellt von K. Kriegel Aufgabe : Wir betrachten den Wahrscheinlichkeitsraum der Punkte P =(a, b) aus dem Einheitsquadrat [, ] [, ] mit

Mehr

KAPITEL 5. Erwartungswert

KAPITEL 5. Erwartungswert KAPITEL 5 Erwartungswert Wir betrachten einen diskreten Wahrscheinlichkeitsraum (Ω, P) und eine Zufallsvariable X : Ω R auf diesem Wahrscheinlichkeitsraum. Die Grundmenge Ω hat also nur endlich oder abzählbar

Mehr