Einführung (1) In der Praxis finden Sie viele Anwendungsfelder für Zufallszahlen. Beispiele

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Einführung (1) In der Praxis finden Sie viele Anwendungsfelder für Zufallszahlen. Beispiele"

Transkript

1 11. Zufallszahlen 1

2 Einführung (1) In der Praxis finden Sie viele Anwendungsfelder für Zufallszahlen. Beispiele sind 1. Computersimulationen 2. Optimierungsprobleme und 3. Hochdimensionale Integrale. Problemstellung: Erzeuge gleichverteilte Zufallszahlen im Intervall (0;1) ( uniform deviaters ), meist mit 0 und ohne 1. Aus solchen UD können Zufallszahlen anderer Verteilungen, wie z.b. der Gauß-Verteilung gemacht werden. Praxis: Kaufe z.b. CDs mit Zufallszahlen aus radioaktiven Zerfällen oder anderen zufälligen Naturereignissen (meist überflüssig und speicherintensiv). 2

3 Einführung (2) Benutze ein Rekursionsformel zur Erzeugung der Zufallszahlen, ( deterministische Zufallszahlen ): Pseudo-Zufallszahlen. Pseudo-Zufallszahlen müssen auf ihre Qualität hin untersucht werden! Pseudo-Zufallszahlen sind zu unterscheiden von Quasi-Zufallszahlen: Quasi-Zufallszahlengeneratoren erzeugen nicht eine zufällige Folge von Zahlen, sondern Zahlen, die möglichst gut gleichverteilt sind (wenige Anwendungen und hier nicht behandelt). Zwei Definition von Zufallszahlen 1. Eine Folge von Zahlen ist zufällig, wenn ihre Komplexität nicht kleiner als die Folge selbst ist. 2. Eine Folge von Zahlen ist zufällig, wenn kein Algorithmus das nächste Element in polynomialer Zeit vorhersagen kann (chaotische Systeme). 3

4 Einführung (3) Praxis: Eine Folge von Zahlen ist zufällig, 1. wenn die nächste Zahl nicht vorhersagbar ist für den, der den Algorithmus nicht kennt, 2. wenn die Folge eine bestimmte Anzahl von Tests erfüllt. Wirkliche Zufallszahlen gibt es auf einem Computer nicht, da es sich immer um einen deterministischen Algorithmus handelt und es damit immer eine Anwendung bzw. einen Test gibt, bei dem der Zufallszahlengenerator versagt. 4

5 Einführung (4) Gute Generatoren sollten folgende Kriterien erfüllen: große Periode, geringe Korrelation, gleichmäßige Verteilung, Portierbarkeit, Wiederholbarkeit und lange sich nicht überschneidende Teilfolgen (Parallelrechner). 5

6 Einführung (5) Typischerweise gibt es auf Computern Funktionen wie rand(). Ein Programm wie #include <stdlib.h>... for (i=0;i<100,i++) a[i]= rand(); erzeugt 100 Zufallszahlen zwischen 0 und RAND MAX. Hinzu kommt eine Funktion, um den Startwert einer Folge von Zufallszahlen festzulegen, z.b. void srand(unsigned seed) 6

7 Einführung (6) Warum ist hier nicht die Vorlesung über Zufallszahlen zu Ende? Computer werden immer leistungsfähiger und können damit auch immer präzisere numerische Berechnungen durchgeführt werden. Einfache Zufallszahlen-Generatoren wie in den meisten Bibliotheksfunktionen liefern z.b. bei einigen Computersimulationen FALSCHE Ergebnisse! Zufallszahlen-Generatoren sind deshalb seit Jahrzehnten aktuelles Forschungsgebiet. 7

8 Zufallszahlen-Generatoren (1) Es existieren zwei wesentliche Arten von Generatoren: Multiplikative lineare kongruente Generatoren (Integer Arithmetik) x n = a 1 x n 1 +a 2 x n 2 +a j x n j +a 0 (mod m) Rückkoppel-Schieberegister-Methode (Shift Register) oder Tausworth Generatoren (Bit Arithmetik) a k = c 1 a k 1 +c 2 a k 2 + +c j a k j +c 0 (mod 2) Diese werden abhängig von der Wahl der Integer-Konstanten a i bzw. Bit-Konstanten c i in verschiedene Klassen unterteilt. 8

9 Zufallszahlen-Generatoren (2) 1. Ein einfacher Zufallszahlen-Generator Der einfachste Zufallszahlen-Generator ist ein linear kongruenter Zufallszah Generator x n = (ax n 1 +b) mod(m) Dieses ist der älteste Zufallszahlen-Generator (D.H.Lehmer, 1948) mit der maximalen Periode m. Der Generator in C: iseed = (iseed*a+b)%m; ran = (float)iseed/(float)m; Es sollten alle ganzen Zahlen 0...(m 1) vorkommen, also eine volle Periode. Dies ist durch geeignete Parameter a,b und m zu erreichen. z. B. iseed = (69069 iseed+1) (mod 2 32 ) Die meisten als Bibliothek vorhandenen Zufallszahlen-Generatoren sind einfache linear kongruente Generator. 9

10 Zufallszahlen-Generatoren (3) 2. Fibonacci Zufallszahlen-Generatoren Ein Fibonacci Zufallszahlen-Generator ist eine einfache Abwandlung der multiplikativen linear kongruenten Generatoren, bei der neben der Addition auch andere arithmetische Operationen verwendet werden. x n = x n p x n q (mod m) Maximale Periode: (2 p 1)(2 q 1). Er erfordert nur eine Rechenoperation und wird deshalb häufig für aufwendige Berechnungen verwendet. 3. Rückkoppel-Schieberegister-Methode (Tausworth) Methode: Benutze die Zahlendarstellung im Rechner, um Zufallszahlensequenzen {a i } von Bits zu erzeugen, die anschließend wieder als Zahlen interpretiert werden. 10

11 Zufallszahlen-Generatoren (4) Gegeben sei eine einmal festgelegte Sequenz von p Bits c p,...,c 1 Berechne aus einer vorliegenden Bitfolge a k p,...,a k 1 ein neues Bit a k mit a k = (c p a k p +c p 1 a k p 1 + +c 1 a k 1 +c 0 ) (mod 2). Ein Beispiel mit (c 0 = 1): c 4 c 3 c 2 c a k 4 a k 3 a k 2 a k 1 a k Anfang

12 Zufallszahlen-Generatoren (5) Maximale Periode: 2 p 1. Die Zufallszahlen ergeben sich aus y 1 = a 1...a L (dual) Günstigen Sätze von c i sind: y i = a (i 1)L+1 a (i 1)L+2...a il c i = δ i,35 +δ i,2 c i = δ i,23 +δ i,2 c i = δ i,35 +δ i,3 (Tausworth) (Canavos) (Whitlesey) Die Gleichförmigkeit der Verteilung der Punkte, die aus den konsekutiven n-tupeln des Zufallszahlen-Generators gewonnen werden, ist in R n im allgemeinen nicht gewährleistet. 12

13 Zufallszahlen-Generatoren (6) In der Praxis werden auch häufig nicht-optimale c i in Kombination mit anderen Zufallszahlengeneratoren genutzt. Ein Beispiel ist a k = a k 32 +a k 17 (mod 2) Für diesen Generator lässt sich ein sehr einfacher Algorithmus schreiben: bzw. in C: a = a ishft(a,17); a = a ishft(a, 15) a = a_0 ^ (a_0 << 17); a = a ^ (a_0 >> 15); a a<<17 ^ 0 a^(k<<17) a>>15 ^ a a^(a<<17) a a = a a

14 Zufallszahlen-Generatoren (7) 4. Eine Variation von S.Kirkpatrick und E.P.Stoll Betrachte zwei Integer Zahlen x i als Spalten einer Bit-Matrix. Die nächste Zufallszahl wird durch die Bit-Operation XOR aus 2 vorher berechneten Zufallszahlen erzeugt. x n = x n p x n q (mod m) Das ist äquivalent zu dem Fibonacci Generator. Eine gute Wahl für p und q ist z.b. p = 103 und q = 250. Vorsicht bei der Initialisierung der Generators: Verwendet werden z.b. gute multiplikative linear kongruenten Generatoren. 5. Korrelation und shuffle Aufeinanderfolgende Zufallszahlen sind korreliert. Mische die Sequenz der Zufallszahlen ( shuffle ) zur Unterdrückung von Korrelationen von aufeinander folgende Zufallszahlen. 14

15 Zufallszahlen-Generatoren (8) Beispiel: Bays Durham Shuffle Algorithmus double rano(int idun) {... static double y; // Speichere zuerst 97 Zufallszahlen ab if (idun < 0) { iseed = abs(idun); srand(iseed); for (i=0;i<97;i++) // Abstand zum letzten Set rand(); // bzw. Einschwingen for (i=0;i<97;i++) // v auffüllen v[i] = ranf(); y = rand()*1.0/rand_max; // nutze die rand() fuer shuffle } j = (int) (97.*y); // Zufallsindex y = v(j)*1.0/rand_max; // Zufallszahl sichern v(j) = rand(); // Element neu belegen return y; } 15

16 Zufallszahlen-Generatoren (9) 6. Inverser kongruenter Generator Ende der 80er Jahre wurde eine einfache Variante des linear kongruenten Zufallszahlen-Generator entwickelt, mit besseren Eigenschaften. x n = (a x n 1 +b) mod(m) Dabei ist x definiert über xx = 1 mod m. 7. ACARRY-Zufallszahlengenerator Von Marsaglier wurde in den 90er Jahren eine neue Klasse von Zufallszahlen Generatoren entwickelt: die add-and-carry, ACARRY Generatoren. Der Algorithmus gleicht dem Fibonacci Generator, jedoch mit der Addition eines zusätzlichen Bits, wenn die Fibonacci Summe größer als eine Integer-Basis m ist: x n = (x n r ±x n s ±c) (mod m) mit r > s 1 16

17 Zufallszahlen-Generatoren (10) Eine spezielle Version ist der Generator subtract-and-borrow oder RCAR- RY. n = (x n r x n s c n 1 ) (mod m) und x n = n, c n = 0 für n 0 x n = n +b, c n = 1 für n < 0 Hier wird r und s wie beim Fibonacci Generator aus einem Satz magischer Zahlen gewählt. Eine häufige Wahl ist m = 2 24, und r = 24,s = 10 mit der Periode Zusammengesetzte Zufallszahlengenerator In der Mitte der 70er Jahre entwickelten Marsaglia und Zaman den ersten zusammengesetzten Zufallszahlen-Generator aus einem einfachen linear kongruenten Generator und ein shift-register Generator mit dem Namen Super Duper, der heute noch eingesetzt wird. 17

18 Zufallszahlen-Generatoren (11) Eine Kombination mit dem Namen KISS (Keep It Simple and Stupid) verbindet einem einfachen linear kongruenten Generator mit eine 32-Bit und einem 31-Bit shift-register-generator, die jeder 2 Stifts verwenden. Er hat eine Periode von i = i j = (j ishft(j,17); j = j ishft(j, 15) 3. k = k ishft(k,18); k = iand(k,2 31 1); k = k ishft(k, 13) 4. kiss = i+j +k. Diese Verfahren sind fast beliebig steigerbar. Der Zufallszahlen-Generator ULTRA von Marsaglia und Zaman verbindet RCARRY mit I = I und hat eine Periode von , der Mersenne Twister Generator hat eine Periode von

19 Test von Generatoren (1) Einige Tests auf notwendige Eigenschaften von Zufallszahlen-Generatoren, die einer Verteilung P(x) = const für x (0;1) folgen, müssen experimentell getestet werden, wenn eine Berechnung nicht möglich ist (Normalfall). 1. Test auf Gleichverteilung Es wird auf Gleichverteilung im Intervall (0;m) (mit 0 und ohne m) getestet. Es ist folgendes zu erwarten. Der Mittelwert und die Varianz muss lauten: x = 1 m m 1 i=0 i = m 1 2 ; x2 = 1 m m 1 i=0 i 2 = 2m2 3m+2 6 δx 2 = x 2 x 2 = m Wird die Verteilung auf das Intervall (0; 1) reduziert, so folgt 19

20 Test von Generatoren (2) z = x m = m ; δz2 = m 2 Kommentar: Die Terme 1 m i ergeben sich aus der Diskretheit der Zahlenmenge. 2. Test auf gleichmäßige Verteilung konsekutiver 2-Tupel im 2-Kubus. Der Test wird hier nur am Beispiel illustriert. Der Zufallszahlen-Generator x i+1 = 3x i (mod 64), erzeugt aus dem seed x 0 = 1 die Folge {1;3;9;27;17;51;25;11;33;35;41;59;49;19;57;43;1;3;...} Wenn wir diese Zahlen nun x i gegen x i+1 plotten, so erhalten wir einen Streifenplot und keine Gleichverteilung. Der Grund hierfür ist, dass aufeinanderfolgende Zahlen miteinander korreliert sind. 20

21 Test von Generatoren (3) 3. Serieller Autokorrelationstest zwischen n aufeinanderfolgenden Zufallszahlen Zu festem j und n berechnet man die Korrelation zwischen x i und x i+j Der Ausdruck für die Korrelation lautet c j = 1 n n i=1 x i x i+j Bei perfekten Zufallszahlen, also für gleichverteilte und voneinander unabhängige x i ist zu erwarten (siehe Formeln für Gleichverteilung): c j = 1 4 für j > 0; c 0 = 1 3 ; δc2 j = 1 12(n 1) 21

22 Test von Generatoren (3) Für die Observable z z = (c j 1 4 ) 12(n 1) ist dann bei N-facher Wiederholung des,,experiments eine Normalverteilung der z-werte mit der Varianz 1 zu erwarten: N(z) e z2 /2 4. Gap Test aufeinanderfolgender Ziffern Man betrachtet hier die Größe der Zwischenräume zwischen je zwei gleichen Ziffern in den aneinander geketteten Zufallszahlen, so z. B. den Sechserabstand in der Ziffernfolge }{{} }{{} 1 66 }{{} }{{}

23 Test von Generatoren (4) und vergleicht die Gapverteilung wieder mit den Erwartungen für eine Gleichverteilung: P(0) = 1 (, P(1) = 1 1 ) ( 1, P(2) = 1 1 ) Daneben gibt es noch zahlreiche weitere theoretische Tests, die sorgfältig durchgeführt werden müssen. 5. Der Test in einer konkreten Anwendung Es haben sich 2 Tests für Zufallszahlen in konkreten Anwendungen etabliert. Die Idee beruht auf dem Vergleich von Monte-Carlo Simulationen mit exakten Ergebnissen: Self avoiding random walks in 3 Dimensionen, Ising Modell in 2 Dimensionen. Wie zu erwarten werden Abweichungen in Abhängigkeit der Qualität des RNGs von den exakten Ergebnissen gefunden. 23

24 Nicht-gleichverteilte Zufallszahlen (1) Bis jetzt waren die Pseudo-Zufallszahlen stets gleichverteilt. Frage: Wie aber erzeugen wir Pseudo-Zufallszahlen, die nach irgendeiner anderen Wahrscheinlichkeitsverteilung P(y) verteilt sind? Verwendet werden meist entweder sogenannte Rejektionsverfahren oder Abbildungsverfahren der Pseudo-Zufallszahlen auf andere Funktionen. Hier nur ein Beispiel: Das Rejektionsverfahren nach von Neumann Es dient zur Erzeugung von Pseudo-Zufallszahlen aus dem Intervall (a; b) gemäß der Wahrscheinlichkeitsverteilung P(y) = e f(y) 1 f(y) 0 f(y) < 0 24

25 Nicht-gleichverteilte Zufallszahlen (2) Algorithmus: 1. erzeuge gleichverteilte Pseudo-Zufallszahl z aus (0; 1) 2. abbilde z z = a+z(b a) 3. berechne u = f(z) 4. akzeptiere z, falls u < 0 und fahre bei 1. fort, sonst: 5. berechne v = exp( u) 6. erzeuge gleichverteilte Pseudo-Zufallszahl z aus (0;1) 7. akzeptiere z, falls z < v und fahre bei 1. fort. Viele weitere Tests von Zufallszahlen und Verfahren zur Erzeugung nicht-gleichverteilter Zufallszahlen sind in der Literatur z.b. in Knuth zu finden. 25

Statistics, Data Analysis, and Simulation SS 2015

Statistics, Data Analysis, and Simulation SS 2015 Mainz, May 12, 2015 Statistics, Data Analysis, and Simulation SS 2015 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Dr. Michael O. Distler

Mehr

Zufallszahlenerzeugung

Zufallszahlenerzeugung Zufallszahlenerzeugung Anwendunsgebiete: z.b.: - Computerspiele - Kryptographie - Monte-Carlo-Methoden - Simulation Melanie Kaspar, Prof. Dr. B. Grabowski 1 Wie erzeuge ich Zufallszahlen, die sich so verhalten,

Mehr

Erzeugung von Pseudozufallszahlen mit Computern

Erzeugung von Pseudozufallszahlen mit Computern Erzeugung von Pseudozufallszahlen mit Computern Basisgeneratoren und deren Einfluss auf die Qualität der Ergebnisse Lorenz Hauswald IKTP, TU Dresden 7 Dezember 2011 1 / 26 Gliederung Grundlagen 1 Grundlagen

Mehr

Monte Carlo-Simulation

Monte Carlo-Simulation Monte Carlo-Simulation Sehr häufig hängen wichtige Ergebnisse von unbekannten Werten wesentlich ab, für die man allerhöchstens statistische Daten hat oder für die man ein Modell der Wahrscheinlichkeitsrechnung

Mehr

Nr. 4: Pseudo-Zufallszahlengeneratoren

Nr. 4: Pseudo-Zufallszahlengeneratoren Proseminar: Finanzmathematische Modelle und Simulationen Martin Dieckmann WS 09/0 Nr. 4: Pseudo-Zufallszahlengeneratoren Begriff Pseudo-Zufallszahl Zufallszahlen im Rechner entstehen letztlich immer durch

Mehr

Simulation von Zufallszahlen. Grundlage: zufällige Quelle von Zufallszahlen, durch einfachen rekursiven Algorithmus am Computer erzeugt

Simulation von Zufallszahlen. Grundlage: zufällige Quelle von Zufallszahlen, durch einfachen rekursiven Algorithmus am Computer erzeugt Simulation von Zufallszahlen Grundlage: zufällige Quelle von Zufallszahlen, durch einfachen rekursiven Algorithmus am Computer erzeugt Definition: Eine Folge von Pseudo-Zufallszahlen U i ist eine deterministische

Mehr

Zufallszahlen. Diskrete Simulation. Zufallszahlengeneratoren - Zufallszahlen

Zufallszahlen. Diskrete Simulation. Zufallszahlengeneratoren - Zufallszahlen Zufallszahlen Zufallszahlengeneratoren Transformation von Zufallszahlen Test von Zufallszahlengeneratoren Otto-von-Guericke-Universität Magdeburg Thomas Schulze Zufallszahlengeneratoren - Zufallszahlen

Mehr

Modellbildung und Simulation

Modellbildung und Simulation Modellbildung und Simulation 6. Vorlesung Wintersemester 2007/2008 Klaus Kasper Value at Risk (VaR) Gaußdichte Gaußdichte der Normalverteilung: f ( x) = 1 2π σ x e 2 2 x ( x µ ) / 2σ x Gaußdichte der Standardnormalverteilung:

Mehr

UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1. Übung 8. Zufallszahlen Generatoren Anwendungen

UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1. Übung 8. Zufallszahlen Generatoren Anwendungen UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1 Übung 8 Zufallszahlen Generatoren Anwendungen Institut für Pervasive Computing Johannes Kepler Universität Linz Altenberger Straße 69, A-4040

Mehr

Computergestütztes wissenschaftliches Rechnen SoSe 2004

Computergestütztes wissenschaftliches Rechnen SoSe 2004 Computergestütztes wissenschaftliches Rechnen SoSe 2004 Alexander K. Hartmann, Universität Göttingen 28. April 2004 2.4 Numerik 2.4.1 Zahlendarstellung Analogrechner (Rechenschieber, Op-Amp): Zahlen entsprechen

Mehr

Rechnernutzung in der Physik Teil 3 Statistische Methoden der Datenanalyse

Rechnernutzung in der Physik Teil 3 Statistische Methoden der Datenanalyse Rechnernutzung in der Physik Teil 3 Statistische Methoden der Datenanalyse Karlsruher Institut für Technologie Ulrich Husemann Institut für Experimentelle Kernphysik, Karlsruher Institut für Technologie

Mehr

7 Zufallszahlen, Simulation

7 Zufallszahlen, Simulation 7 Zufallszahlen, Simulation Es ist nützlich, Folgen von i.i.d. R[0, 1]-verteilten Zufallszahlen auf einem Rechner erzeugen zu können vgl. Simulation, Monte-Carlo-Verfahren). Letztere sind i.a. keine echten

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 8. Vorlesung Pseudozufallszahlen sind, wie der Name schon sagt, keine echten Zufallszahlen, sondern werden durch Generatoren erzeugt. Als Pseudozufallszahlen bezeichnet man Zahlenfolgen die durch einen

Mehr

Monte Carlo Simulationen

Monte Carlo Simulationen Monte Carlo Simulationen Erkenntnisse durch die Erschaffung einer virtuellen Welt Stefan Wunsch 31. Mai 2014 INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK (IEKP) KIT Universität des Landes Baden-Württemberg und

Mehr

Pseudozufallsgeneratoren

Pseudozufallsgeneratoren Pseudozufallsgeneratoren In welchen kryptographischen Verfahren werden keine Zufallszahlen benötigt? Wie generiert man Zufallszahlen in einer deterministischen Maschine wie dem Computer? Wenn man eine

Mehr

Monte-Carlo Simulation

Monte-Carlo Simulation Monte-Carlo Simulation Sehr häufig hängen wichtige Ergebnisse von unbekannten Werten wesentlich ab, für die man allerhöchstens statistische Daten hat oder für die man ein Modell der Wahrscheinlichkeitsrechnung

Mehr

Einführung in die Simulation. Dr. Christoph Laroque Wintersemester 11/12. Dresden,

Einführung in die Simulation. Dr. Christoph Laroque Wintersemester 11/12. Dresden, Fakultät Informatik, Institut für Angewandte Informatik, Professur Modellierung und Simulation Einführung in die Simulation Dr. Christoph Laroque Wintersemester 11/12 Dresden, 11.10.2011 01.11.2011 Einführung

Mehr

Probabilistische Algorithmen

Probabilistische Algorithmen Probabilistische Algorithmen Michal Švancar Gerardo Balderas Hochschule Zittau/Görlitz 21. Dezember 2014 Michal Švancar, Gerardo Balderas (HSZG) Probabilistische Algorithmen 21. Dezember 2014 1 / 40 Inhaltsverzeichnis

Mehr

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Mainz, 11. Mai 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Dr. Michael O. Distler

Mehr

Zufallszahlen in AntBrain

Zufallszahlen in AntBrain Zufallszahlen SEP 291 Zufallszahlen in AntBrain Spezifikation, Teil II: Zum Beispiel könnte ein Objekt vom Typ Match die Spielfelder nach jeweils 1000 Spielrunden speichern; bei einer Anfrage nach den

Mehr

Practical Numerical Training UKNum

Practical Numerical Training UKNum Practical Numerical Training UKNum Zufallszahlen, Monte Carlo Methoden PD. Dr. C. Mordasini Max Planck Institute for Astronomy, Heidelberg Programm: 1) Zufallszahlen 2) Transformations Methode 3) Monte

Mehr

Lineare Kongruenzgeneratoren und Quicksort

Lineare Kongruenzgeneratoren und Quicksort Seminar Perlen der theoretischen Informatik Dozenten: Prof. Johannes Köbler und Olaf Beyersdorff Lineare Kongruenzgeneratoren und Quicksort Ausarbeitung zum Vortrag Mia Viktoria Meyer 12. November 2002

Mehr

Zufallszahlen erzeugen

Zufallszahlen erzeugen Informationsblatt fÿr die Lehrkraft Zufallszahlen erzeugen Informationsblatt fÿr die Lehrkraft Thema: Schultyp: Vorkenntnisse: Bearbeitungsdauer: Zufallszahlen erzeugen - Methode der linearen Kongruenz

Mehr

Einsatz von Varianzreduktionstechniken II

Einsatz von Varianzreduktionstechniken II Einsatz von Varianzreduktionstechniken II Stratified Sampling und Common Random Numbers Bastian Bluhm Betreuer: Christiane Barz Ausgewählte technische, rechtliche und ökonomische Aspekte des Entwurfs von

Mehr

Programmiertechnik II

Programmiertechnik II Zufallszahlen Motivation Simulation Frisörbeispiel Stichprobenauswahl Telefonumfragen Numerische Algorithmen naives Beispiel: Berechnung von Pi Automatisiertes Testen Beispiel aus Übungsaufgabe "Faire"

Mehr

Teil VI. Gemeinsame Verteilungen. Lernziele. Beispiel: Zwei Würfel. Gemeinsame Verteilung

Teil VI. Gemeinsame Verteilungen. Lernziele. Beispiel: Zwei Würfel. Gemeinsame Verteilung Zusammenfassung: diskrete und stetige Verteilungen Woche 4: Verteilungen Patric Müller diskret Wahrscheinlichkeitsverteilung p() stetig Wahrscheinlichkeitsdichte f ()

Mehr

Informationssicherheit III

Informationssicherheit III Zufall im Rechner Präsentation im Rahmen der Lehrveranstaltung Informationssicherheit III WS 2001/2002 Jochen Rondorf 17.01.2002 Zufall im Rechner WS 2001/02 1 Agenda Arten von Zufall Anwendungsgebiete

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 5. Vorlesung Verteilungsfunktion (VF) Definition 9 Die Verteilungsfunktion (VF) einer Zufallsgröße X ist F : R R definiert als F (x) := P({ω Ω : X (ω) x}) = P( X x ) für jedes x R. Satz 9 - Eigenschaften

Mehr

Monte Carlo Simulationen

Monte Carlo Simulationen Monte Carlo Simulationen Zahlreiche Vorgänge in der Natur werden durch stochastische Prozesse bestimmt. Beispiele: Diffusion Spin-Spin-Wechselwirkung (Magnetisierung eines Ferromagneten, Ising-Modell)

Mehr

Vorab : Von dem indischen Mathematiker D. R. Kaprekar stammt folgender Zusammenhang :

Vorab : Von dem indischen Mathematiker D. R. Kaprekar stammt folgender Zusammenhang : Seite 1 Algorithmen zur Erzeugung von Kaprekar- Konstanten Autor : Dipl.- Ing. Josef Meiler ; Datum : März 015 Vorab : Von dem indischen Mathematiker D. R. Kaprekar stammt folgender Zusammenhang : a) man

Mehr

Monte-Carlo-Methode. mit Pseudo- und Quasizufallszahlen

Monte-Carlo-Methode. mit Pseudo- und Quasizufallszahlen Gott würfelt nicht Monte-Carlo-Methode mit Pseudo- und Quasizufallszahlen Inhaltsverzeichnis Pseudo- und Quasizufallszahlen Monte-Carlo- Monte-Carlo- Monte-Carlo-Methode Bekannt nach Stadt Monte Carlo

Mehr

Copula Funktionen. Eine Einführung. Nils Friewald

Copula Funktionen. Eine Einführung. Nils Friewald Copula Funktionen Eine Einführung Nils Friewald Institut für Managementwissenschaften Abteilung Finanzwirtschaft und Controlling Favoritenstraße 9-11, 1040 Wien friewald@imw.tuwien.ac.at 13. Juni 2005

Mehr

Zusammenfassung: diskrete und stetige Verteilungen. Woche 4: Gemeinsame Verteilungen. Zusammenfassung: diskrete und stetige Verteilungen

Zusammenfassung: diskrete und stetige Verteilungen. Woche 4: Gemeinsame Verteilungen. Zusammenfassung: diskrete und stetige Verteilungen Zusammenfassung: e und e Verteilungen Woche 4: Gemeinsame Verteilungen Wahrscheinlichkeitsverteilung p() Wahrscheinlichkeitsdichte f () WBL 15/17, 11.05.2015 Alain Hauser P(X = k

Mehr

5 Interpolation und Approximation

5 Interpolation und Approximation 5 Interpolation und Approximation Problemstellung: Es soll eine Funktion f(x) approximiert werden, von der die Funktionswerte nur an diskreten Stellen bekannt sind. 5. Das Interpolationspolynom y y = P(x)

Mehr

Inhaltsverzeichnis. 4 Statistik Einleitung Wahrscheinlichkeit Verteilungen Grundbegriffe 98

Inhaltsverzeichnis. 4 Statistik Einleitung Wahrscheinlichkeit Verteilungen Grundbegriffe 98 Inhaltsverzeichnis 1 Datenbehandlung und Programmierung 11 1.1 Information 11 1.2 Codierung 13 1.3 Informationsübertragung 17 1.4 Analogsignale - Abtasttheorem 18 1.5 Repräsentation numerischer Daten 20

Mehr

Faktorisierung ganzer Zahlen mittels Pollards ρ-methode (1975)

Faktorisierung ganzer Zahlen mittels Pollards ρ-methode (1975) Dass das Problem, die Primzahlen von den zusammengesetzten zu unterscheiden und letztere in ihre Primfaktoren zu zerlegen zu den wichtigsten und nützlichsten der ganzen Arithmetik gehört und den Fleiss

Mehr

Musterlösung zur 6. Übung

Musterlösung zur 6. Übung Universität des Saarlandes FR 6.2 Informatik Prof. Dr. Hans-Peter Lenhof Dipl. Inform. Andreas Hildebrandt Programmierung II, SS 2003 Musterlösung zur 6. Übung Aufgabe 1: Faire Münzen (10 Punkte) Offensichtlich

Mehr

Erzeugung von Pseudozufallszahlen

Erzeugung von Pseudozufallszahlen Erzeugung von Pseudozufallszahlen Proseminar Kryptografie und Datensicherheit Sommersemester 2009 Mario Frank Übersicht 1. Allgemeines 2. Anwendungen von PRBG 3. (k,l)-bit Generatoren 4. Unterscheidbarkeit

Mehr

Kryptographische Systeme (M, C, K, e, d) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln):

Kryptographische Systeme (M, C, K, e, d) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln): Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln): Substitutions-Chiffren (Permutationschiffren): Ersetzung jedes

Mehr

Analytische Lösung algebraischer Gleichungen dritten und vierten Grades

Analytische Lösung algebraischer Gleichungen dritten und vierten Grades Analytische Lösung algebraischer Gleichungen dritten und vierten Grades Inhaltsverzeichnis 1 Einführung 1 2 Gleichungen dritten Grades 3 3 Gleichungen vierten Grades 7 1 Einführung In diesem Skript werden

Mehr

Statistische Auswertung von Meß- und Versuchsdaten mit Taschenrechner und Tischcomputer

Statistische Auswertung von Meß- und Versuchsdaten mit Taschenrechner und Tischcomputer Siegfried Noack Statistische Auswertung von Meß- und Versuchsdaten mit Taschenrechner und Tischcomputer Anleitungen und Beispiele aus dem Laborbereich W DE G Walter de Gruyter Berlin New York 1980 Inhaltsverzeichnis

Mehr

1 Zufallszahlen jede Zahl gleichen Wahrscheinlichkeit Zufallszahlenfolge unabhängiger, identisch ver- teilter

1 Zufallszahlen jede Zahl gleichen Wahrscheinlichkeit Zufallszahlenfolge unabhängiger, identisch ver- teilter Zufallszahlen Zufallszahlen werden für viele Anwendungen im Computer benötigt. Hauptanwendungsgebiete sind die Simulation und die Statistik. Besonders bei der Programmierung von Spielen werden Zufallszahlen

Mehr

Monte Carlo Simulationen Erkenntnisse durch die Erschaffung einer virtuellen Welt

Monte Carlo Simulationen Erkenntnisse durch die Erschaffung einer virtuellen Welt Monte Carlo Simulationen Erkenntnisse durch die Erschaffung einer virtuellen Welt Stefan Wunsch 31. Mai 014 Inhaltsverzeichnis Inhaltsverzeichnis 1 Was sind Monte Carlo Simulationen? 3 Zufallszahlen 3

Mehr

1.8 Shift-And-Algorithmus

1.8 Shift-And-Algorithmus .8 Shift-And-Algorithmus nutzt durch Bitoperationen mögliche Parallelisierung Theoretischer Hintergrund: Nichtdeterministischer endlicher Automat Laufzeit: Θ(n), falls die Länge des Suchwortes nicht größer

Mehr

Grundlagen Kondition Demo. Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang

Grundlagen Kondition Demo. Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

Mehr

Die Monte-Carlo-Methode zur Simulation von Teilchenreaktionen

Die Monte-Carlo-Methode zur Simulation von Teilchenreaktionen Die Monte-Carlo-Methode zur Simulation von Teilchenreaktionen Michael Rauch 7. Mai 2 H AUPTSEMINAR E XPERIMENTELLE UND T HEORETISCHE M ETHODEN KIT University of the State of Baden-Wuerttemberg and National

Mehr

Pseudo-Zufallsgeneratoren basierend auf dem DLP

Pseudo-Zufallsgeneratoren basierend auf dem DLP Seminar Codes und Kryptografie SS 2004 Struktur des Vortrags Struktur des Vortrags Ziel Motivation 1 Einleitung Ziel Motivation 2 Grundlegende Definitionen Zufallsgeneratoren 3 Generator Sicherheit 4 Generator

Mehr

Aufgabenblatt: Methoden - rekursiv

Aufgabenblatt: Methoden - rekursiv Aufgabenblatt: Methoden - rekursiv- Seite 1 Aufgabenblatt: Methoden - rekursiv (1.) Wird noch erstellt! Lösen Sie die folgenden Aufgaben indem Sie: - Basis und Rekursive Bedingung formulieren! - die vorgegebene

Mehr

Spezielle Verteilungen einer Variablen

Spezielle Verteilungen einer Variablen Kapitel 2 Spezielle Verteilungen einer Variablen In diesem Kapitel werden wir einige häufig benutzte Verteilungen, die von einer Variablen abhängen, vorstellen. 2.1 Binomial-Verteilung Binomial-Verteilungen

Mehr

5. Numerische Differentiation. und Integration

5. Numerische Differentiation. und Integration 5. Numerische Differentiation und Integration 1 Numerische Differentiation Problemstellung: Gegeben ist eine differenzierbare Funktion f : [a,b] R und x (a,b). Gesucht sind Näherungen für die Ableitungen

Mehr

Stetige Verteilungen Rechteckverteilung

Stetige Verteilungen Rechteckverteilung Stetige Verteilungen Rechteckverteilung Die Längenabweichungen X produzierter Werkstücke von der Norm seien gleichmäßig verteilt zwischen a = mm und b = 4mm. Die Dichtefunktion lautet also f(x) = für a

Mehr

Zufallsgeneratoren. von Tobias Litte. Anwendungen der statistischen Physik WS 2004/05

Zufallsgeneratoren. von Tobias Litte. Anwendungen der statistischen Physik WS 2004/05 Zufallsgeneratoren von Tobias Litte Anwendungen der statistischen Physik WS 004/05 Inhaltsverzeichnis. Einleitung...3. Linear kongruente Zufallsgeneratoren...3. Bekannte Probleme von linear kongruenten

Mehr

C++ Teil 4. Sven Groß. 30. Apr IGPM, RWTH Aachen. Sven Groß (IGPM, RWTH Aachen) C++ Teil Apr / 16

C++ Teil 4. Sven Groß. 30. Apr IGPM, RWTH Aachen. Sven Groß (IGPM, RWTH Aachen) C++ Teil Apr / 16 C++ Teil 4 Sven Groß IGPM, RWTH Aachen 30. Apr 2015 Sven Groß (IGPM, RWTH Aachen) C++ Teil 4 30. Apr 2015 1 / 16 Themen der letzten Vorlesung Funktionen: Definition und Aufruf Wert- und Referenzparameter,

Mehr

Assembler Integer-Arithmetik

Assembler Integer-Arithmetik Assembler Integer-Arithmetik Dr.-Ing. Volkmar Sieh Department Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2008 Assembler Integer-Arithmetik 1/23 2008-04-01 Arithmetik

Mehr

Pollards Rho-Methode zur Faktorisierung

Pollards Rho-Methode zur Faktorisierung C A R L V O N O S S I E T Z K Y Pollards Rho-Methode zur Faktorisierung Abschlusspräsentation Bachelorarbeit Janosch Döcker Carl von Ossietzky Universität Oldenburg Department für Informatik Abteilung

Mehr

Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen

Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen Induktive Statistik Prof. Dr. W.-D. Heller

Mehr

JAVA - Zufallszahlen

JAVA - Zufallszahlen Übungen Informatik I JAVA - http://www.fbi-lkt.fh-karlsruhe.de/lab/info01/tutorial Übungen Informatik 1 1 5. JAVA werden beim Programmieren erstaunlich oft gebraucht: Simulationen Spiele Aufbau von Testszenarien...

Mehr

Inhalt. Zahlendarstellungen

Inhalt. Zahlendarstellungen Inhalt 1 Motivation 2 Integer- und Festkomma-Arithmetik Zahlendarstellungen Algorithmen für Integer-Operationen Integer-Rechenwerke Rechnen bei eingeschränkter Präzision 3 Gleitkomma-Arithmetik Zahlendarstellungen

Mehr

Lösung Test 2 (Nachprüfung)

Lösung Test 2 (Nachprüfung) MLAE Mathematik: Lineare Algebra für ngenieure Herbstsemester Dr Christoph Kirsch ZHAW Winterthur Aufgabe : Lösung Test (Nachprüfung a Wir verwenden den Gauss-Jordan-Algorithmus, um die erweiterte Koeffizientenmatrix

Mehr

Kryptographische Zufallszahlen. Schieberegister, Output-Feedback

Kryptographische Zufallszahlen. Schieberegister, Output-Feedback Kryptographische Zufallszahlen Schieberegister, Output-Feedback Stromchiffren Bei Stromchiffren wird die Eingabe zeichenweise bzw. blockweise mit einer parallel dazu erzeugten Schlüsselfolge meist mit

Mehr

9. Eine einfache Warteschlangen-Simulation.

9. Eine einfache Warteschlangen-Simulation. SS 2006 Arbeitsblatt 4 / S. 1 von 9 9. Eine einfache Warteschlangen-Simulation. A) Allgemeine Bemerkungen. Die Warteschlange aus 8., wie auch solche mit nur endlich grossem Warteraum, können auf einfache

Mehr

6. Multivariate Verfahren Zufallszahlen

6. Multivariate Verfahren Zufallszahlen 4. Zufallszahlen 6. Multivariate Verfahren Zufallszahlen - werden nach einem determinist. Algorithmus erzeugt Pseudozufallszahlen - wirken wie zufäll. Zahlen (sollen sie jedenfalls) Algorithmus: Startwert

Mehr

Kapitel VIII - Tests zum Niveau α

Kapitel VIII - Tests zum Niveau α Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel VIII - Tests zum Niveau α Induktive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh Testsituationen

Mehr

Vorwort zur fünften Auflage. Liste der Beispiele. Häufig benutzte Symbole und Bezeichnungen

Vorwort zur fünften Auflage. Liste der Beispiele. Häufig benutzte Symbole und Bezeichnungen Vorwort zur fünften Auflage Liste der Beispiele Häufig benutzte Symbole und Bezeichnungen v xiv xvii 1 Einleitung 1 1.1 Typische Aufgaben der Datenanalyse 1 1.2 Zum Aufbau dieses Buches 2 1.3 Zu den Programmen

Mehr

Randomisierte Algorithmen 2. Erste Beispiele

Randomisierte Algorithmen 2. Erste Beispiele Randomisierte Algorithmen Randomisierte Algorithmen 2. Erste Beispiele Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2016/2017 1 / 35 Randomisierter Identitätstest

Mehr

( ) ( ). Dann heißt die Zahl

( ) ( ). Dann heißt die Zahl Der Euklidische Abstand Seite 1 von 6 Der Euklidische Abstand Der Abstand zweier Punkte P und Q in der Modellebene ist eine Zahl, die von den Koordinaten der Punkte abhängt. Der Term, mit dem die Berechnung

Mehr

Finanzmathematische Modelle und Simulation

Finanzmathematische Modelle und Simulation Finanzmathematische Modelle und Simulation WS 9/1 Rebecca Henkelmann In meiner Ausarbeitung Grundbegriffe der Stochastik I, geht es darum die folgenden Begriffe für die nächsten Kapitel einzuführen. Auf

Mehr

Messprotokoll: Aufnahme der Quantenzufallszahl

Messprotokoll: Aufnahme der Quantenzufallszahl Messprotokoll: Aufnahme der Quantenzufallszahl Am 19. Juni 2009 wurden für Max Mustermann um 8:35 Uhr mit Hilfe von einzelnen Photonen 993.097 Zufallszahlen generiert. Der Zufallsgenerator steht im Quantenoptiklabor

Mehr

Wertebereich und Genauigkeit der Zahlendarstellung

Wertebereich und Genauigkeit der Zahlendarstellung Wertebereich und Genauigkeit der Zahlendarstellung Sowohl F als auch C kennen bei ganzen und Floating Point-Zahlen Datentypen verschiedener Genauigkeit. Bei ganzen Zahlen, die stets exakt dargestellt werden

Mehr

Einstieg in die Informatik mit Java

Einstieg in die Informatik mit Java 1 / 32 Einstieg in die Informatik mit Java Effizienz Gerd Bohlender Institut für Angewandte und Numerische Mathematik Gliederung 2 / 32 1 Überblick: was ist Effizienz? 2 Landau-Symbole 3 Eier im Korb 4

Mehr

Multivariate Verteilungen

Multivariate Verteilungen Multivariate Verteilungen Zufallsvektoren und Modellierung der Abhängigkeiten Ziel: Modellierung der Veränderungen der Risikofaktoren X n = (X n,1, X n,2,..., X n,d ) Annahme: X n,i und X n,j sind abhängig

Mehr

Der Weg eines Betrunkenen

Der Weg eines Betrunkenen Der Weg eines Betrunkenen 2 Hätte es damals schon Computer gegeben, wäre es für unseren Mathematiker um einiges leichter gewesen, den Weg des Betrunkenen zu bestimmen. Er hätte nicht nur eine beliebige

Mehr

1 Grundprinzipien statistischer Schlußweisen

1 Grundprinzipien statistischer Schlußweisen Grundprinzipien statistischer Schlußweisen - - Grundprinzipien statistischer Schlußweisen Für die Analyse zufallsbehafteter Eingabegrößen und Leistungsparameter in diskreten Systemen durch Computersimulation

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

Integrierte Schaltungen

Integrierte Schaltungen Integrierte Schaltungen Klassen von Chips: SSI (Small Scale Integrated) circuit: 1 bis 10 Gatter MSI (Medium Scale Integrated) circuit: 10 bis 100 Gatter LSI (Large Scale Integrated) circuit: 100 bis 100

Mehr

Anleitung: Standardabweichung

Anleitung: Standardabweichung Anleitung: Standardabweichung So kann man mit dem V200 Erwartungswert und Varianz bzw. Standardabweichung bei Binomialverteilungen für bestimmte Werte von n, aber für allgemeines p nach der allgemeinen

Mehr

3: Zahlentheorie / Primzahlen

3: Zahlentheorie / Primzahlen Stefan Lucks Diskrete Strukturen (WS 2009/10) 96 3: Zahlentheorie / Primzahlen 3: Zahlentheorie / Primzahlen Stefan Lucks Diskrete Strukturen (WS 2009/10) 97 Definition 37 (Teiler, Vielfache, Primzahlen,

Mehr

Inhaltsverzeichnis. Vorwort zur fünften Auflage. Liste der Beispiele. Häufig benutzte Symbole und Bezeichnungen

Inhaltsverzeichnis. Vorwort zur fünften Auflage. Liste der Beispiele. Häufig benutzte Symbole und Bezeichnungen Vorwort zur fünften Auflage Liste der Beispiele Häufig benutzte Symbole und Bezeichnungen v xiv xvii 1 Einleitung 1 Typische Aufgaben der Datenanalyse 1 1.2 Zum Aufbau dieses Buches 2 Zu den Programmen

Mehr

Lösungsskizze zur Hauptklausur Lineare Algebra I

Lösungsskizze zur Hauptklausur Lineare Algebra I Lösungsskizze zur Hauptklausur Lineare Algebra I Aufgabe Seien V und W zwei K-Vektorräume für einen Körper K. a) Wann heißt eine Abbildung f : V W linear? b) Wann heißt eine Abbildung f : V W injektiv?

Mehr

ZUFALLSZAHLEN. WPG Informatik / Mathematik. BG/BRG Bad Ischl. A. Lindner

ZUFALLSZAHLEN. WPG Informatik / Mathematik. BG/BRG Bad Ischl. A. Lindner ZUFALLSZAHLEN WPG Informatik / Mathematik BG/BRG Bad Ischl A. Lindner 1 BEDEUTUNG VON ZUFALLSZAHLEN Beispiel: Computertip für Lotto in einer Trafik. Wie kann ein (elektronisches) Gerät, das nach einem

Mehr

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung Programm Wiederholung Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung Binomialverteilung Hypergeometrische Verteilung Wiederholung verschiedene Mittelwerte für verschiedene Skalenniveaus

Mehr

Student: Alexander Carls Matrikelnummer: Aufgabe: Beschreibung des euklidischen Algorithmus Datum:

Student: Alexander Carls Matrikelnummer: Aufgabe: Beschreibung des euklidischen Algorithmus Datum: Berufsakademie Stuttgart / Außenstelle Horb Studienbereich Technik Studiengang Informationstechnik Kurs IT2006, 2.Semester Dozent: Olaf Herden Student: Alexander Carls Matrikelnummer: 166270 Aufgabe: Beschreibung

Mehr

Regression und Korrelation

Regression und Korrelation Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandeltdie VerteilungeinerVariablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem dagegen

Mehr

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandelt die Verteilung einer Variablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem

Mehr

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik Kapitel 11 Diskrete Zufallsvariablen 11.1. Wahrscheinlichkeits- und diskret Wahrscheinlichkeitsverteilungen Wahrscheinlichkeitsfunktion von X Nimmt abzählbare Anzahl von Ausprägungen an (z.b. Zählvariablen)

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Bestimmte Zufallsvariablen sind von Natur aus normalverteilt. - naturwissenschaftliche Variablen: originär z.b. Intelligenz, Körpergröße, Messfehler

Bestimmte Zufallsvariablen sind von Natur aus normalverteilt. - naturwissenschaftliche Variablen: originär z.b. Intelligenz, Körpergröße, Messfehler 6.6 Normalverteilung Die Normalverteilung kann als das wichtigste Verteilungsmodell der Statistik angesehen werden. Sie wird nach ihrem Entdecker auch Gaußsche Glockenkurve genannt. Die herausragende Stellung

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2010

Mehr

Objektorientierte Programmierung VL: Prof. Dr. Marco Block-Berlitz - Freie Universität Berlin Proinformatik III

Objektorientierte Programmierung VL: Prof. Dr. Marco Block-Berlitz - Freie Universität Berlin Proinformatik III Objektorientierte Programmierung VL: Prof. Dr. Marco Block-Berlitz - Freie Universität Berlin Proinformatik III Text: Hinnerk van Bruinehsen - Grafiken: Jens Fischer powered by SDS.mint SoSe 2011 1 Teil

Mehr

Vortrag 20: Kurze Vektoren in Gittern

Vortrag 20: Kurze Vektoren in Gittern Seminar: Wie genau ist ungefähr Vortrag 20: Kurze Vektoren in Gittern Kerstin Bauer Sommerakademie Görlitz, 2007 Definition und Problembeschreibung Definition: Gitter Seien b 1,,b k Q n. Dann heißt die

Mehr

2. Entsprechende Listen P i von Vorgängern von i 3. for i := 1 to n do. (ii) S i = Knoten 2 + 1}

2. Entsprechende Listen P i von Vorgängern von i 3. for i := 1 to n do. (ii) S i = Knoten 2 + 1} 1. Berechne für jeden Knoten i in BFS-Art eine Liste S i von von i aus erreichbaren Knoten, so dass (i) oder (ii) gilt: (i) S i < n 2 + 1 und Si enthält alle von i aus erreichbaren Knoten (ii) S i = n

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 4.2 Primzahltests 1. Deterministische Primzahltests 2. Der Primzahltest von Solovay-Strassen 3. Der Milner-Rabin Test Wozu Primzahltests? RSA Schlüssel benötigen sehr

Mehr

Recommender Systeme mit Collaborative Filtering

Recommender Systeme mit Collaborative Filtering Fakultät für Informatik Technische Universität München Email: rene.romen@tum.de 6. Juni 2017 Recommender Systeme Definition Ziel eines Recommender Systems ist es Benutzern Items vorzuschlagen die diesem

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P. Grohs T. Welti F. Weber Herbstsemester 215 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 5 Aufgabe 5.1 Kommutierende Matrizen In der Vorlesung und vergangenen

Mehr

LR Zerlegung. Michael Sagraloff

LR Zerlegung. Michael Sagraloff LR Zerlegung Michael Sagraloff Beispiel eines linearen Gleichungssystems in der Ökonomie (Input-Output Analyse Wir nehmen an, dass es 3 Güter G, G, und G 3 gibt Dann entspricht der Eintrag a i,j der sogenannten

Mehr

KV Logik als Arbeitssprache. Christoph Hörtenhuemer LVA-Nummer: LVA-Leiterin: Wolfgang Windsteiger. Agnes Schoßleitner

KV Logik als Arbeitssprache. Christoph Hörtenhuemer LVA-Nummer: LVA-Leiterin: Wolfgang Windsteiger. Agnes Schoßleitner KV Logik als Arbeitssprache LVA-Nummer: 326.014 LVA-Leiterin: Wolfgang Windsteiger Abgabedatum: 02. 06. 2004 Christoph Hörtenhuemer 0355958 Agnes Schoßleitner 0355468 Inhaltsverzeichnis Kurzbeschreibung...

Mehr

Moderne Methoden der Datenverarbeitung in der Physik I

Moderne Methoden der Datenverarbeitung in der Physik I Moderne Methoden der Datenverarbeitung in der Physik I Prof. Dr. Stefan Schael / Dr. Thomas Kirn I. Physikalisches Institut MAPLE II, Krypthographie Wahrscheinlichkeit Zufallszahlen, Wahrscheinlichkeitsdichten,

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Dr. Hanjo Täubig Tobias Lieber Sommersemester 2011 Übungsblatt 1 16. September 2011 Grundlagen: Algorithmen und

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Einführung in die Matrizenrechnung

TECHNISCHE UNIVERSITÄT MÜNCHEN. Einführung in die Matrizenrechnung TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Lineare Algebra WS 006/07 en Blatt 3.0.006 Einführung in die Matrizenrechnung Zentralübungsaufgaben

Mehr

Algorithmen mit konstantem Platzbedarf: Die Klasse REG

Algorithmen mit konstantem Platzbedarf: Die Klasse REG Algorithmen mit konstantem Platzbedarf: Die Klasse REG Sommerakademie Rot an der Rot AG 1 Wieviel Platz brauchen Algorithmen wirklich? Daniel Alm Institut für Numerische Simulation Universität Bonn August

Mehr