3 Prädikatenlogik der 1. Stufe (PL1) Teil I

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "3 Prädikatenlogik der 1. Stufe (PL1) Teil I"

Transkript

1 3 Prädikatenlogik der 1. Stufe (PL1) Teil I 3.3 Quantoren [ Gamut McCawley Chierchia ]? Sind folgende Sätze jeweils synonym? (1) (a) Hans ist verheiratet oder nicht verheiratet. (b) Hans ist verheiratet oder Hans ist nicht verheiratet. (2) (a) Jeder ist verheiratet oder nicht verheiratet. (b) Jeder ist verheiratet oder jeder ist nicht verheiratet. Allquantor (Generalisator) Existenzquantor (Partikularisator) Symbol (alternativ: ) (alternativ: ) Natürlichsprachlicher Ausdruck jeder alle ein einige manche Allquantifizierung (Generalisierung) wird gelesen als Für jedes x gilt: Px (). x : ein mit der Variablen x besetzter Allquantor (3) Jedes Ding ist vergänglich. (4) Alle Dinge sind vergänglich. (5) Alles ist vergänglich. Logische Struktur von (3)-(5): Für jedes Ding gilt: es ist vergänglich. EF (Explizitform): Für jedes x gilt: x ist vergänglich. LF (Logische Form): xv( x) Existenzquantifizierung (Partikularisierung) wird gelesen als Für mindestens ein x gilt: Px (). ( Es gibt mindestens ein x für das Px () gilt. ) x : ein mit der Variablen x besetzter Existenzquantor Johannes Dölling: Formale Methoden. Institut für Linguistik Universität Leipzig 1

2 3.3 Quantoren (6) Ein Ding ist vergänglich. (7) Einige Dinge sind vergänglich. (8) Einiges ist vergänglich. Logische Struktur von (6)-(8): Für mindestens ein Ding gilt: es ist vergänglich. EF: Für mindestens ein x gilt: x ist vergänglich. LF: xv( x) Ausdrücke der Form sind Allaussagen Ausdrücke der Form sind Existenzaussagen. Allaussagen und Existenzaussagen sind quantifizierende Aussagen. Wie wird der natürlichsprachliche Quantorausdruck kein symbolisiert? (9) Kein Ding ist vergänglich. (10) Nichts ist vergänglich. Logische Struktur von (9) und (10): Für kein Ding gilt: es ist vergänglich. EF: Es ist nicht der Fall dass für mindestens ein x gilt: x ist vergänglich. LF: xv( x) Wahrheitsbedingungen von quantifizierenden Aussagen Die Quantifizierung einer Aussageform erfolgt immer bezüglich eines bestimmten Bereichs der Individuenvariablen. Das ist die Menge derjenigen Individuen die Gegenstand von Aussagen im jeweiligen Diskurs sind. Die betreffende Menge von Individuen ist die Diskursdomäne (der Diskursbereich das Diskursuniversum)D. : Für jedes x der Diskursdomäne D gilt: Px (). : Für mindestens ein x der Diskursdomäne D gilt: Px (). P D Falls keine explizite Angabe einer Diskursdomäne erfolgt wird die Menge aller Individuen ( das Universum ) als D vorausgesetzt. Johannes Dölling: Formale Methoden. Institut für Linguistik Universität Leipzig 2

3 3 Prädikatenlogik der 1. Stufe (PL1) Teil I ist wahr bzgl. D gdw jedes Individuum d von D Element der Menge der Individuen ist die die mit P bezeichnete Eigenschaft haben. = 1 bzgl. D gdw für jedes d D gilt: d P. ist wahr bzgl. D gdw mindestens ein Individuum d von D Element der Menge der Individuen ist die die mit P bezeichnete Eigenschaft haben. = 1 bzgl. D gdw für mindestens ein d D gilt: d P. In der folgenden geometrischen Darstellung der Wahrheitsbedingungen ist durch Schraffur kenntlich gemacht dass kein Individuum von D Element der betreffenden Menge ist. Durch + ist dargestellt dass die betreffende Menge mindestens ein Element enthält. wahr falsch P P + P + P? Gib die Bedingungen an unter denen Aussagen der Form und falsch sind. Johannes Dölling: Formale Methoden. Institut für Linguistik Universität Leipzig 3

4 3.4 Syntax von PL1 3.4 Syntax von PL1 [ Gamut Partee Chierchia ] Vokabular von PL1 Individuenvariablen (IV): xyz... Individuenkonstanten abc... } Individuenterme (IT) (IK): Prädikatskonstanten (PK): n n n P Q R... ( n 1) Konnektoren: Quantoren: Technische Hilfszeichen: ()[ ] IV IK und PK sind nicht-logische Konnektoren und Quantoren sind logische Grundausdrücke von PL1. Beliebige endliche Folgen von Grundausdrücken sind Ausdrücke von PL1. Wohlgeformte Ausdrücke von PL1 sind Formeln von PL1. Syntaktische Regeln von PL1 D3.1 Formeln von PL1 n (1) Wenn π eine n -stellige PK ist und... n τ τ 1 n IT sind dann ist π ( τ... τ ) 1 n eine Formel. (2) Wenn φ eine Formel ist dann ist φ eine Formel. (3) Wenn φ und ψ Formeln sind dann sind ( φ ψ)( φ ψ)( φ ψ) und ( φ ψ) Formeln. (4) Wenn φ eine Formel und γ eine IV ist dann sind γφ [ ] und γφ [ ] Formeln. Formeln nach (1) sind atomare (elementare) Formeln von PL1. Formeln nach (2)-(4) sind komplexe Formeln von PL1. Konventionen zur Klammereinsparung (1) Außenklammern können weggelassen werden. (2) Die Bindungsstärke der Konnektoren nimmt in folgender Reihenfolge ab:. (3) γ und γ haben dieselbe Bindungsstärke wie. (4) Formeln γ[ ( φ )] oder γ[ ( φ )] werden ersetzt durch γ [ φ ] bzw. γ [ φ ] Q ( a b) x P ( x) yq ( a y) x [ P ( x) R ( x)] z [ R ( z b) Q ( c )]? Sind folgende Ausdrücke Formeln von PL1? xq ( a b) xp ( x) R ( x) x[ P ( x y)] R ( a x) x y[ R ( x y) zp ( z)] Johannes Dölling: Formale Methoden. Institut für Linguistik Universität Leipzig 4

5 3 Prädikatenlogik der 1. Stufe (PL1) Teil I? Ergänze eingesparte Klammern. D3.2 Der Skopus eines Vorkommens von γ oder γ in einer Formel φ ist die unmittelbar auf dieses Vorkommen folgende Formel ψ. xp( x) Qy ( ) x [ Q( x) P( x)] x yr( x y) D3.3 Ein Vorkommen einer Variablen γ in einer Formel φ ist gebunden gdw γ in φ Teil eines Quantors γ oder γ ist oder in φ im Skopus eines Quantors γ oder γ steht. Ansonsten ist das Vorkommen von γ frei. geb. geb. xpx [ ( ) Qy ( )] geb. geb. frei x [ Q( x) P( x)]] geb. geb. geb. x yr( x y) geb. geb. geb. geb. D3.4 Eine Formel φ ist geschlossen (eine Aussage) gdw φ kein freies Vorkommen einer Variablen enthält. Ansonsten ist die Formel φ offen (eine Aussageform).? Welche der folgenden Formeln ist offen welche geschlossen? (i) x y[ P( y) P( x)] (ii) z[ yq( y z) R( y z)] (iii) xpa ( x) (iv) Qa () x[ Rax ( ) yryx ( )]? Überführe offene in geschlossene Formeln durch minimale Veränderungen. D3.5 Eine Variable γ ist in einer Formel φ frei für die Variable δ gdw kein freies Vorkommen von γ in φ im Skopus eines Quantors δ oder δ steht. xp( x) Qy ( ) x ist frei für y y ist frei für x x und y sind frei für z xpx [ ( ) Qy ( )] x ist frei für y y ist nicht frei für x x und y sind frei für z zpx [ ( ) Qy ( )] x ist frei für y y ist frei für x x und y sind nicht frei für z Px () Qy () x und y sind frei für beliebige Variablen Johannes Dölling: Formale Methoden. Institut für Linguistik Universität Leipzig 5

6 3.4 Syntax von PL1 D3.6 Eine Formel φ ' geht aus einer Formel φ durch Substitution eines Terms τ für die Variable γ hervor gdw φ ' aus φ dadurch entsteht dass alle freien Vorkommen von γ in φ durch τ ersetzt werden. Für den Fall dass τ eine Variable δ ist sei dabei γ in φ frei für δ. Notationen: φγ [ ]: eine Formel in der die Variable γ frei vorkommen kann φτ [ / γ ]: eine Formel die aus φ durch Substitution von τ für γ hervorgegangen ist (d.h. φ' = φ[ τ/ γ] ) Enthält φγ [ ] die Variable γ nicht frei so gilt: φτ [ / γ] = φγ [ ]. φγ [ ] τ φτ [ / γ ] Px ( ) a Pa () Px ( ) y Py () y xp( x) Q( x) y xp( x) Qy ( ) xpx [ ( ) Qy ( )] a xp( x) Qa ( ) xpx [ ( ) Qy ( )] x nicht erlaubt weil y nicht frei für x ist D3.7 Eine Formel Q δφ'[ δ ] geht aus einer Formel Q γφγ [ ] durch gebundene Umbenennung der Variablen γ in die Variable δ hervor gdw γ in φ frei für δ ist δ in φ nicht frei vorkommt und φ'[ δ ] die Formel φ'[ δ/ γ ] ist. Q γφγ [ ] δ Q δφ'[ δ ] y yp() y x yr( x y) z z yr( z y) x yr( x y) y nicht erlaubt weil x in yr( x y) nicht frei für y ist xrx ( y) z zrz ( y) xrx ( y) y nicht erlaubt weil y frei in Rxy ( ) vorkommt Johannes Dölling: Formale Methoden. Institut für Linguistik Universität Leipzig 6

7 Übungen Übungen Ü3.2 Sind folgende Folgen von Grundsymbolen Formeln von PL1? (3 P.) (a) x yr() y (b) bp( b x) (c) Px ( yhy ()) Zusatz: (d) ( xp( x) x P( x)) (e) y xq( x y) Ü3.3 Welche der folgenden Sätze sind synonym? Gib jeweils die LF an. (6 P.) (a) (b) (c) (d) Nicht jedes Ding ist vergänglich. Mindestens ein Ding ist nicht vergänglich. Nichts ist nicht vergänglich. Nicht alles ist vergänglich. Ü3.4 Was sind jeweils adäquate Negationen von Satz (1) und (2)? Gib für jeden Satz die LF an. ( D = die Menge der Menschen) (1) Jemand ist zu Hause. (4 P.) (a) Jemand ist nicht zu Hause. (b) Niemand ist zu Hause. Zusatz: (2) Alle fahren nach Rom. (a) Nicht jeder fährt nach Rom. (b) Keiner fährt nach Rom. (c) Jemand fährt nicht nach Rom. (d) Alle fahren nicht nach Rom. Ü3.5 Gib jeweils zwei Aussagen an die mit Bezug auf die gegebene Situation wahr bzw. falsch sind. (4 P.) P Johannes Dölling: Formale Methoden. Institut für Linguistik Universität Leipzig 7

8 Übungen Ü3.6 Welchen Wahrheitswert haben jeweils die Aussagen (a) (b) (c) (d) (e) x P( x) (f) x P( x) (g) x P( x) und (h) x P( x) mit Bezug auf folgende Situation? (8 P.) D = {} (= die Menge bestehend aus den Elementen und ) P = { } (= die Menge bestehend aus den Elementen und ) Ü3.7 Gib für die folgenden Formeln jeweils an: (a) den Skopus der Quantoren (b) welche Variablenvorkommen frei und welche gebunden sind und durch welche Quantoren sie gebunden werden (c) ob die Formeln offen oder geschlossen sind (4 P.) (i) x y R( x y) (ii) ypa [ ( ) zqyz ( )] (iii) xq [ ( x y) z x[ yp( y x) Ry ( z)]] (iv) x [ P( x) y zq( x y z)] Zusatz: (v) xq( x y) R( b x) (vi) y[ xq( x) zp( y z)] (vii) xpx [ ( ) yqy [ ( ) zryz ( )]] (viii) x P( x) zq( x y) yp( y) (d) Überführe die offenen Formeln durch kleine Änderungen in geschlossene. Johannes Dölling: Formale Methoden. Institut für Linguistik Universität Leipzig 8

9 Übungen Ü3.8 Besagen die paarweise angegebenen Formeln jeweils dasselbe oder nicht? (8 P.) (a) Px ( ) Qx ( ) Py () Qy () (b) Px () Qx () Px () Qy () (c) xp( x) Q( x) xp( x) Q( y) (d) xp() x xq() x xp() x yq() y (e) xp() y Q() x Py () Qx () (f) x yr( x y) y xr( x y) (g) x yr( x y) y xr( x y) (h) x yr( x y) x yr( y x) Zusatz: (i) Pb () Qx () Pa () Qz () (j) x xp( x) (k) xp( x) Q( y) yp() y Q() x (l) xp( x) Q( x) yp() y Q() x Zusatzaufgabe: Ü3.9 Gib für die folgenden Formeln die Resultate (a) der gebundenen Umbenennung von x in y (b) der Substitution von x für z an. (i) xq() x z (ii) xpx [ ( ) zqxz ( )] (iii) ( xp( x) Rx ( z)) Qy ( z) Johannes Dölling: Formale Methoden. Institut für Linguistik Universität Leipzig 9

(1) (a) Hans ist verheiratet oder nicht verheiratet. (b) Hans ist verheiratet oder Hans ist nicht verheiratet.

(1) (a) Hans ist verheiratet oder nicht verheiratet. (b) Hans ist verheiratet oder Hans ist nicht verheiratet. 3.3 Quantoren? Sind folgende Sätze jeweils synonym? (1) (a) Hans ist verheiratet oder nicht verheiratet. (b) Hans ist verheiratet oder Hans ist nicht verheiratet. (2) (a) Jeder ist verheiratet oder nicht

Mehr

5.2 Logische Gültigkeit, Folgerung, Äquivalenz

5.2 Logische Gültigkeit, Folgerung, Äquivalenz 5.2 Logische Gültigkeit, Folgerung, Äquivalenz Durch Einsetzung von PL1-Formeln für die Metavariablen in AL-Gesetzen erhält man PL1-Instanzen von AL-Gesetzen. Beispiele: φ φ AL PL1-Instanzen: Pa () Pa

Mehr

Aussagen (und damit indirekt auch Aussagesätze) können wahr oder falsch sein. Wahr und falsch sind Wahrheitswerte von Aussagen.

Aussagen (und damit indirekt auch Aussagesätze) können wahr oder falsch sein. Wahr und falsch sind Wahrheitswerte von Aussagen. 2 Aussagenlogik (AL) 2 Aussagenlogik (AL) 2. Wahrheitsfunktionale Konnektoren [ Gamut 28-35, Partee -6 ] Nur Aussagesätze, d.h. Deklarativ-, nicht aber Frage- oder Aufforderungssätze bringen das Zutreffen

Mehr

Nur Aussagesätze, d.h. Deklarativ-, nicht aber Frage- oder Aufforderungs-sätze bringen das Zutreffen einer Aussage (oder Proposition) zum Ausdruck.

Nur Aussagesätze, d.h. Deklarativ-, nicht aber Frage- oder Aufforderungs-sätze bringen das Zutreffen einer Aussage (oder Proposition) zum Ausdruck. 2 Aussagenlogik (AL) 2. Wahrheitsfunktionale Konnektoren Nur Aussagesätze, d.h. Deklarativ-, nicht aber Frage- oder Aufforderungs-sätze bringen das Zutreffen einer Aussage (oder Proposition) zum Ausdruck.

Mehr

3.1 Die Grenzen von AL

3.1 Die Grenzen von AL 3 Prädikatenlogik der. Stufe (PL) Teil I 3 Prädikatenlogik der. Stufe (PL) Teil I 3. Die Grenzen von AL [ Partee 95-97 ] Schluss AL- Schema Prädikatenlogische Struktur Alle Logiker sind Pedanten. φ x [

Mehr

Die Sprache der Prädikatenlogik, Überlegungen zu Modellen

Die Sprache der Prädikatenlogik, Überlegungen zu Modellen Die Sprache der Prädikatenlogik, Überlegungen zu Modellen Dr. Uwe Scheffler [Technische Universität Dresden] November 2011 Die Formeldefinition der Prädikatenlogik 1. Wenn f n eine n-stellige Prädikatenkonstante

Mehr

Prädikatenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Normalformen und Grenzen der Prädikatenlogik 1. Stufe

Prädikatenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Normalformen und Grenzen der Prädikatenlogik 1. Stufe Prädikatenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Normalformen und Grenzen der Prädikatenlogik 1. Stufe 3 Teil 3: Modellierung und Beweise 4 Teil 4: Substitution, Unifikation und Resolution

Mehr

1.1 Formale Semantik: Grundannahmen und Prinzipien. Was soll eine semantische Analyse der natürlichen Sprache leisten?

1.1 Formale Semantik: Grundannahmen und Prinzipien. Was soll eine semantische Analyse der natürlichen Sprache leisten? . Formale Semantik: Grundannahmen und Prinzipien Einführung [ Chierchia 7-52] Was soll eine semantische Analyse der natürlichen Sprache leisten? Erfassen der Bedeutung von sprachlichen Ausdrücken durch

Mehr

3.5 Semantische Repräsentation mit PL1

3.5 Semantische Repräsentation mit PL1 3 Prädikatenlogik der 1. Stufe (PL1) Teil I 3.5 Semantische Repräsentation mit PL1 [ Gamut 78-83 ] PL1 kann man als Formalismus zur Darstellung der Bedeutung natürlichsprachlicher Sätze verwenden. Solche

Mehr

Ein und derselbe Satz kann in Bezug auf unterschiedliche Situationen s 1. und s 2 unterschiedliche Wahrheitswerte haben.

Ein und derselbe Satz kann in Bezug auf unterschiedliche Situationen s 1. und s 2 unterschiedliche Wahrheitswerte haben. 2 Aussagenlogik () 2.3 Semantik von [ Gamut 4-58, Partee 7-4 ] Ein und derselbe Satz kann in Bezug auf unterschiedliche Situationen s und s 2 unterschiedliche Wahrheitswerte haben. Beispiel: Es regnet.

Mehr

Die Logik der Sprache PL

Die Logik der Sprache PL II Die Logik der Sprache PL 16 Der Aufbau der Sprache PL Ein Beispiel Problem (1) Alle Menschen sind sterblich. Sokrates ist ein Mensch. Also: Sokrates ist sterblich. Intuitiv ist dieses Argument gültig.

Mehr

Die Prädikatenlogik erster Stufe: Syntax und Semantik

Die Prädikatenlogik erster Stufe: Syntax und Semantik Die Prädikatenlogik erster Stufe: Syntax und Semantik 1 Mathematische Strukturen und deren Typen Definition 1.1 Eine Struktur A ist ein 4-Tupel A = (A; (R A i i I); (f A j j J); (c A k k K)) wobei I, J,

Mehr

Prädikatenlogik. Quantoren. Quantoren. Quantoren. Quantoren erlauben Aussagen über Mengen von Objekten des Diskursbereichs, für die ein Prädikat gilt

Prädikatenlogik. Quantoren. Quantoren. Quantoren. Quantoren erlauben Aussagen über Mengen von Objekten des Diskursbereichs, für die ein Prädikat gilt Prädikatenlogik Aussagen wie Die Sonne scheint. die in der Aussagenlogik atomar sind, werden in der Prädikatenlogik in Terme (sonne) und Prädikate (scheint) aufgelöst und dann dargestellt als z.b. scheint(sonne)

Mehr

Namen von Objekten des Diskursbereichs (z. B. Substantive des natürlichsprachlichen Satzes)

Namen von Objekten des Diskursbereichs (z. B. Substantive des natürlichsprachlichen Satzes) Prädikatenlogik Aussagen wie Die Sonne scheint. die in der Aussagenlogik atomar sind, werden in der Prädikatenlogik in Terme (sonne) und Prädikate (scheint) aufgelöst und dann dargestellt als z.b. Terme

Mehr

Prädikatenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Normalformen und Grenzen der Prädikatenlogik 1. Stufe

Prädikatenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Normalformen und Grenzen der Prädikatenlogik 1. Stufe Prädikatenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Normalformen und Grenzen der Prädikatenlogik 1. Stufe 3 Teil 3: Modellierung und Beweise 4 Teil 4: Substitution, Unifikation und Resolution

Mehr

Logik für Informatiker Logic for computer scientists

Logik für Informatiker Logic for computer scientists Logik für Informatiker Logic for computer scientists Till Mossakowski Wintersemester 2014/15 Till Mossakowski Logik 1/ 22 Quantoren Till Mossakowski Logik 2/ 22 Quantoren: Motivierende Beispiele x Cube(x)

Mehr

Metasprache und Sprache

Metasprache und Sprache Metasprache und Sprache Womit und worüber wir reden Prädikatenlogik Uwe Scheffler [Technische Universität Dresden] Oktober 2012 Theorien als sprachliche Objekte Eine Theorie ist eine Menge von Sätzen.

Mehr

Formale Grundlagen der Informatik 1 Kapitel 19. Syntax & Semantik

Formale Grundlagen der Informatik 1 Kapitel 19. Syntax & Semantik Formale Grundlagen der Informatik 1 Kapitel 19 & Frank Heitmann heitmann@informatik.uni-hamburg.de 23. Juni 2015 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/25 Motivation Die ist eine Erweiterung

Mehr

2.2.2 Semantik von TL. Menge der Domänen. Zu jedem Typ gibt es eine Menge von möglichen Denotationen der Ausdrücke dieses Typs.

2.2.2 Semantik von TL. Menge der Domänen. Zu jedem Typ gibt es eine Menge von möglichen Denotationen der Ausdrücke dieses Typs. 2.2.2 Semantik von TL Menge der Domänen Zu jedem Typ gibt es eine Menge von möglichen Denotationen der Ausdrücke dieses Typs. Diese Menge wird Domäne des betreffenden Typs genannt. Johannes Dölling: Formale

Mehr

Formale Methoden II. Gerhard Jäger. SS 2008 Universität Bielefeld. Teil 8, 11. Juni 2008. Formale Methoden II p.1/30

Formale Methoden II. Gerhard Jäger. SS 2008 Universität Bielefeld. Teil 8, 11. Juni 2008. Formale Methoden II p.1/30 Formale Methoden II SS 2008 Universität Bielefeld Teil 8, 11. Juni 2008 Gerhard Jäger Formale Methoden II p.1/30 Beispiele Anmerkung: wenn der Wahrheitswert einer Formel in einem Modell nicht von der Belegungsfunktion

Mehr

Terme. Dann ist auch f(t 1. Terme. Dann ist P (t 1

Terme. Dann ist auch f(t 1. Terme. Dann ist P (t 1 Prädikatenlogik 1. Syntax und Semantik Man kann die Prädikatenlogik unter einem syntaktischen und einem semantischen Gesichtspunkt sehen. Bei der Behandlung syntaktischer Aspekte macht man sich Gedanken

Mehr

Logik I. Symbole, Terme, Formeln

Logik I. Symbole, Terme, Formeln Logik I Symbole, Terme, Formeln Wie jede geschriebene Sprache basiert die Prädikatenlogik erster Stufe auf einem Alphabet, welches aus den folgenden Symbolen besteht: (a) Variabeln wie zum Beispiel v 0,v

Mehr

Nichtklassische Logiken

Nichtklassische Logiken Nichtklassische Logiken Peter H. Schmitt pschmitt@ira.uka.de UNIVERSITÄT KARLSRUHE Sommersemester 2004 P. H. Schmitt: Nichtklassische Logiken p.1 Inhalt Wiederholung P. H. Schmitt: Nichtklassische Logiken

Mehr

Wissensbasierte Systeme 7. Prädikatenlogik

Wissensbasierte Systeme 7. Prädikatenlogik Wissensbasierte Systeme 7. Prädikatenlogik Syntax und Semantik, Normalformen, Herbrandexpansion Michael Beetz Plan-based Robot Control 1 Inhalt 7.1 Motivation 7.2 Syntax und Semantik 7.3 Normalformen 7.4

Mehr

4.1 Motivation. Theorie der Informatik. Theorie der Informatik. 4.1 Motivation. 4.2 Syntax der Prädikatenlogik. 4.3 Semantik der Prädikatenlogik

4.1 Motivation. Theorie der Informatik. Theorie der Informatik. 4.1 Motivation. 4.2 Syntax der Prädikatenlogik. 4.3 Semantik der Prädikatenlogik Theorie der Informatik 3. März 2014 4. Prädikatenlogik I Theorie der Informatik 4. Prädikatenlogik I 4.1 Motivation Malte Helmert Gabriele Röger 4.2 Syntax der Prädikatenlogik Universität Basel 3. März

Mehr

Formale Grundlagen der Informatik 1 Kapitel 17. Syntax & Semantik

Formale Grundlagen der Informatik 1 Kapitel 17. Syntax & Semantik Formale Grundlagen der Informatik 1 Kapitel 17 & Frank Heitmann heitmann@informatik.uni-hamburg.de 6. & 7. Juni 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/43 Motivation Die ist eine Erweiterung

Mehr

Formale Systeme, WS 2013/2014. Lösungen zu Übungsblatt 5

Formale Systeme, WS 2013/2014. Lösungen zu Übungsblatt 5 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter H. Schmitt Dr. V. Klebanov, Dr. M. Ulbrich, C. Scheben Formale Systeme, WS 2013/2014 Lösungen zu Übungsblatt 5 Dieses

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 3. Prädikatenlogik Teil 1 5.06.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Rückblick: Vor- und Nachteile von Aussagenlogik + Aussagenlogik

Mehr

7. Prädikatenlogik. Aussagenlogik hat wünschenswerte Eigenschaften wie Korrektheit, Vollständigkeit, Entscheidbarkeit.

7. Prädikatenlogik. Aussagenlogik hat wünschenswerte Eigenschaften wie Korrektheit, Vollständigkeit, Entscheidbarkeit. 7. Prädikatenlogik Aussagenlogik hat wünschenswerte Eigenschaften wie Korrektheit, Vollständigkeit, Entscheidbarkeit. Aber: Aussagenlogik ist sehr beschränkt in der Ausdrucksmächtigkeit. Wissen kann nur

Mehr

3.2 Prädikatenlogik. WS 06/07 mod 321

3.2 Prädikatenlogik. WS 06/07 mod 321 3.2 Prädikatenlogik WS 06/07 mod 321 Prädikatenlogik umfasst Aussagenlogik mit atomaren Aussagen, Variablen, Junktoren. Zusätzliche Konzepte: A = (τ, Σ) sei die so genannte Termalgebra (mit Variablen,

Mehr

Proseminar Logik für Informatiker Thema: Prädikatenlogik (1.Teil)

Proseminar Logik für Informatiker Thema: Prädikatenlogik (1.Teil) Proseminar Logik für Informatiker Thema: Prädikatenlogik (1.Teil) Inhaltsverzeichnis 1. Warum eine mächtigere Sprache? 1.1. Einleitung 1.2. Definitionen 2. Prädikatenlogik als formale Sprache 2.1. Terme

Mehr

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 14.

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 14. Formale Logik PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg Wintersemester 16/17 Sitzung vom 14. Dezember 2016 Die formale Sprache der Prädikatenlogik: Zeichen Benutzt werden

Mehr

Grundlagen der Logik

Grundlagen der Logik Grundlagen der Logik Denken Menschen logisch? Selektionsaufgabe nach Watson (1966): Gegeben sind vier Karten von denen jede auf der einen Seite mit einem Buchstaben, auf der anderen Seite mit einer Zahl

Mehr

Motivation. Formale Grundlagen der Informatik 1 Kapitel 17. Syntax & Semantik. Motivation - Beispiel. Motivation - Beispiel

Motivation. Formale Grundlagen der Informatik 1 Kapitel 17. Syntax & Semantik. Motivation - Beispiel. Motivation - Beispiel Motivation Formale Grundlagen der Informatik 1 Kapitel 17 & Frank Heitmann heitmann@informatik.uni-hamburg.de 6. & 7. Juni 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/43 Die ist eine Erweiterung

Mehr

Semantik. Uwe Scheffler. November [Technische Universität Dresden]

Semantik. Uwe Scheffler. November [Technische Universität Dresden] Semantik Uwe Scheffler [Technische Universität Dresden] November 2013 Modelle Ein Modell für eine Sprache L (bei uns: die Sprache der Prädikatenlogik) ist ein Paar aus einer Trägermenge (die Gegenstände

Mehr

Syntax der Prädikatenlogik: Variablen, Terme. Formeln. Freie und gebundene Variablen, Aussagen. Aufgabe

Syntax der Prädikatenlogik: Variablen, Terme. Formeln. Freie und gebundene Variablen, Aussagen. Aufgabe Syntax der Prädikatenlogik: Variablen, Terme Formeln Eine Variable hat die Form x i mit i = 1, 2, 3.... Ein Prädikatensymbol hat die Form Pi k und ein Funktionssymbol hat die Form fi k mit i = 1, 2, 3...

Mehr

Logik Vorlesung 8: Modelle und Äquivalenz

Logik Vorlesung 8: Modelle und Äquivalenz Logik Vorlesung 8: Modelle und Äquivalenz Andreas Maletti 12. Dezember 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen Weitere

Mehr

Prädikate sind Funktionen. Prädikatenlogik. Quantoren. n stellige Prädikate. n stellige Prädikate:

Prädikate sind Funktionen. Prädikatenlogik. Quantoren. n stellige Prädikate. n stellige Prädikate: Aussagenlogik: Aussagen Ausssageformen Prädikatenlogik beschäftigt sich mit Aussagen sind Sätze die entweder wahr oder falsch sind sind Sätze mit Variablen, die beim Ersetzen dieser Variablen durch Elemente

Mehr

Normalformen der Prädikatenlogik

Normalformen der Prädikatenlogik Normalformen der Prädikatenlogik prädikatenlogische Ausdrücke können in äquivalente Ausdrücke umgeformt werden Beispiel "X (mensch(x) Æ sterblich(x)) "X (ÿ mensch(x) sterblich(x)) "X (ÿ (mensch(x) Ÿ ÿ

Mehr

Logik und modelltheoretische Semantik. Prädikatenlogik (PL)

Logik und modelltheoretische Semantik. Prädikatenlogik (PL) Logik und modelltheoretische Semantik Prädikatenlogik (PL) Robert Zangenfeind Centrum für Informations- und Sprachverarbeitung, LMU München 9.5.2017 Zangenfeind: Prädikatenlogik 1 / 14 Einführendes baut

Mehr

Kapitel L:III. III. Prädikatenlogik

Kapitel L:III. III. Prädikatenlogik Kapitel L:III III. Prädikatenlogik Syntax der Prädikatenlogik Semantik der Prädikatenlogik Wichtige Äquivalenzen Einfache Normalformen Substitution Skolem-Normalformen Standard-Erfüllbarkeit Prädikatenlogische

Mehr

Formale Methoden II. Gerhard Jäger. SS 2008 Universität Bielefeld. Teil 6, 21. Mai Formale Methoden II p.1/25

Formale Methoden II. Gerhard Jäger. SS 2008 Universität Bielefeld. Teil 6, 21. Mai Formale Methoden II p.1/25 Formale Methoden II SS 2008 Universität Bielefeld Teil 6, 21. Mai 2008 Gerhard Jäger Formale Methoden II p.1/25 Prädikatenlogik: Einführung Erweiterung der Aussagenlogik syntaktische Struktur der PL ist

Mehr

ÜBUNG ZUM GRUNDKURS LOGIK SS 2016 GÜNTHER EDER

ÜBUNG ZUM GRUNDKURS LOGIK SS 2016 GÜNTHER EDER ÜBUNG ZUM GRUNDKURS LOGIK SS 2016 GÜNTHER EDER WOZU PRÄDIKATENLOGIK (PL)? Aussagenlogik (AL) betrachtet Sätze / Argumente immer nur bezüglich ihrer aussagenlogischen Struktur. Ein Satz wie (1) Jaime mag

Mehr

3.4 Direkte vs. indirekte Interpretation

3.4 Direkte vs. indirekte Interpretation 3 Theorie der λ -Repräsentation 3.4 Direkte vs. indirekte Interpretation In unserer semantischen Analyse natürlichsprachlicher Ausdrücke haben wir bisher die Methode der indirekten Interpretation zugrunde

Mehr

Der Sequenzenkalkül. Charakterisierung der logischen Schlussfolgerung: Sequenzenkalkül für die Prädikatenlogik

Der Sequenzenkalkül. Charakterisierung der logischen Schlussfolgerung: Sequenzenkalkül für die Prädikatenlogik Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 4.6 Prädikatenlogik ohne Gleichheit Der Sequenzenkalkül 138 Der Sequenzenkalkül Charakterisierung der logischen Schlussfolgerung: Sequenzenkalkül

Mehr

Modellierungsmethoden der Informatik Kapitel 2: Logikkalküle

Modellierungsmethoden der Informatik Kapitel 2: Logikkalküle smethoden der Informatik Kapitel 2: Logikkalküle Prädikatenlogik 1. Stufe Norbert Fuhr Gudrun Fischer 29.11.2005 Organisatorisches Organisatorisches Klausur Termin: 20.2.2006, 13-15 Uhr, Audimax Anmeldung

Mehr

Aussagen- und Prädikatenlogik

Aussagen- und Prädikatenlogik Universität Bielefeld Formale Methoden der Linguistik Prof. Dr. Walther Kindt, Mirco Hilbert Fakultät für Linguistik und Literaturwissenschaft Kurz-Zusammenstellung Aussagen- und Prädikatenlogik Mirco

Mehr

Motivation. Formale Grundlagen der Informatik 1 Kapitel 19. Syntax & Semantik. Motivation - Beispiel. Motivation - Beispiel

Motivation. Formale Grundlagen der Informatik 1 Kapitel 19. Syntax & Semantik. Motivation - Beispiel. Motivation - Beispiel Motivation Formale Grundlagen der Informatik 1 Kapitel 19 & Die ist eine Erweiterung der Aussagenlogik. Sie hat eine größere Ausdrucksstärke und erlaub eine feinere Differenzierung. Ferner sind Beziehungen/Relationen

Mehr

Semantik und Pragmatik

Semantik und Pragmatik Semantik und Pragmatik SS 2005 Universität Bielefeld Teil 9, 17. Juni 2005 Gerhard Jäger Semantik und Pragmatik p.1/31 Adverbien bisher kein wirklicher Fortschritt durch Übergang zu Typentheorie den selben

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 10. Prädikatenlogik Substitutionen und Unifikation Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Substitutionen Definition:

Mehr

Modellierungsmethoden der Informatik Kapitel 2: Logikkalküle

Modellierungsmethoden der Informatik Kapitel 2: Logikkalküle smethoden der Informatik Kapitel 2: Logikkalküle Prädikatenlogik 1. Stufe Norbert Fuhr Gudrun Fischer 29.11.2005 Organisatorisches Organisatorisches Klausur Termin: 20.2.2006, 13-15 Uhr, Audimax Anmeldung

Mehr

Formale Systeme, WS 2012/2013. Lösungen zu Übungsblatt 7

Formale Systeme, WS 2012/2013. Lösungen zu Übungsblatt 7 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter H. Schmitt David Faragó, Christoph Scheben, Mattias Ulbrich Formale Systeme, WS 2012/2013 Lösungen zu Übungsblatt

Mehr

y(p F x) gebunden und in den Formeln F xy

y(p F x) gebunden und in den Formeln F xy Wirkungsbereich (Skopus) eines Quantors i bzw. i nennen wir die unmittelbar auf i bzw. i folgende Formel. Wir sagen, eine IV i kommt in einer Formel A gebunden vor, wenn sie unmittelbar auf oder folgt

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 9. Prädikatenlogik Syntax und Semantik der Prädikatenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Syntax der

Mehr

Die Wahrheit eines Satzes kann davon abhängen, zu welcher Zeit der Satz geäußert wird.

Die Wahrheit eines Satzes kann davon abhängen, zu welcher Zeit der Satz geäußert wird. 5 Temporalsemantik 5.1 Zeitbezug Die Wahrheit eines Satzes kann davon abhängen, zu welcher Zeit der Satz geäußert wird. So kann Peter ist Student oder Peter schläft geäußert über ein und dieselbe Person

Mehr

Terme stehen für Namen von Objekten des Diskursbereichs (Subjekte, Objekte des natürlichsprachlichen Satzes)

Terme stehen für Namen von Objekten des Diskursbereichs (Subjekte, Objekte des natürlichsprachlichen Satzes) Prädikatenlogik Man kann den natürlichsprachlichen Satz Die Sonne scheint. in der Prädikatenlogik beispielsweise als logisches Atom scheint(sonne) darstellen. In der Sprache der Prädikatenlogik werden

Mehr

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 7.

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 7. Formale Logik PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg Wintersemester 16/17 Sitzung vom 7. Dezember 2016 Ein klassischer Mathematikerwitz Ein Soziologe, ein Physiker

Mehr

Klausur Formale Systeme Fakultät für Informatik 2. Klausur zum WS 2010/2011

Klausur Formale Systeme Fakultät für Informatik 2. Klausur zum WS 2010/2011 Fakultät für Informatik 2. Klausur zum WS 2010/2011 Prof. Dr. Bernhard Beckert 08. April 2011 Vorname: Matrikel-Nr.: Platz: Klausur-ID: **Platz** **Id** Die Bearbeitungszeit beträgt 60 Minuten. A1 (17)

Mehr

Prädikatenlogik. Einführende Beispiele Geschwister x y ( u v (Eltern(u, v, x) Eltern(u, v, y) Geschwister(x, y)))

Prädikatenlogik. Einführende Beispiele Geschwister x y ( u v (Eltern(u, v, x) Eltern(u, v, y) Geschwister(x, y))) Prädikatenlogik Einführende Beispiele Geschwister x y ( u v (Eltern(u, v, x) Eltern(u, v, y) Geschwister(x, y))) symmetrische Relation x y (R(x, y) R(y, x)) Das Zeichen bezeichnen wir als Existenzquantor

Mehr

Grundkurs Logik - 6. Einheit

Grundkurs Logik - 6. Einheit 18. Januar 2013 Prädikatenlogik erster Stufe - Motivation Bis jetzt haben wir uns (bis auf unseren historischen Ausflug in die Syllogistik) hauptsächlich mit aussagenlogischen Argumenten beschäftigt. Dabei

Mehr

Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen. notwendig: Existenz- und Allaussagen

Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen. notwendig: Existenz- und Allaussagen Prädikatenlogik 1. Stufe (kurz: PL1) Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen notwendig: Existenz- und Allaussagen Beispiel: 54 Syntax der Prädikatenlogik erster Stufe (in der

Mehr

f(1, 1) = 1, f(x, y) = 0 sonst üblicherweise Konjunktion, manchmal auch

f(1, 1) = 1, f(x, y) = 0 sonst üblicherweise Konjunktion, manchmal auch Belegungen, Wahrheitsfunktionen 1. Wie viele binäre Funktionen gibt es auf der Menge {0, 1} (d.h., Funktionen von {0, 1} 2 nach {0, 1})? Geben Sie alle diese Funktionen an, und finden Sie sinnvolle Namen

Mehr

Normalform. 2.1 Äquivalenz und Folgerung. 2.2 Die pränexe Normalform

Normalform. 2.1 Äquivalenz und Folgerung. 2.2 Die pränexe Normalform 2 Normalformen 2.1 Äquivalenz und Folgerung Definition 2.1 Äquivalenz, Folgerung). Seien ϕ, ψ FO[σ]. a) ϕ und ψ heißen äquivalent kurz: ϕ ψ, bzw. ϕ = ψ), wenn für alle zu ϕ und ψ äquivalent passenden σ-interpretationen

Mehr

Grundbegriffe aus Logik und Mengenlehre. Prädikatenlogik

Grundbegriffe aus Logik und Mengenlehre. Prädikatenlogik Grundbegriffe aus Logik und Mengenlehre Prädikatenlogik wohlverstandene Grundlagen, eine formale Sprache zur Beschreibung statischer und dynamischer Gesichtspunkte eines Unternehmens syntaktisch und semantisch

Mehr

Syntax der Prädikatenlogik: Komplexe Formeln

Syntax der Prädikatenlogik: Komplexe Formeln Syntax der Prädikatenlogik: Komplexe Formeln Σ = P, F eine prädikatenlogische Signatur Var eine Menge von Variablen Definition: Menge For Σ der Formeln über Σ Logik für Informatiker, SS 06 p.10 Syntax

Mehr

Boolesche Algebra. Hans Joachim Oberle. Vorlesung an der TUHH im Wintersemester 2006/07 Montags, 9:45-11:15 Uhr, 14täglich TUHH, DE 22, Audimax 2

Boolesche Algebra. Hans Joachim Oberle. Vorlesung an der TUHH im Wintersemester 2006/07 Montags, 9:45-11:15 Uhr, 14täglich TUHH, DE 22, Audimax 2 Universität Hamburg Department Mathematik Boolesche Algebra Hans Joachim Oberle Vorlesung an der TUHH im Wintersemester 2006/07 Montags, 9:45-11:15 Uhr, 14täglich TUHH, DE 22, Audimax 2 http://www.math.uni-hamburg.de/home/oberle/vorlesungen.html

Mehr

Verwendung von Methoden der formalen Logik in der Linguistik

Verwendung von Methoden der formalen Logik in der Linguistik 1.1 Logik und Linguistik 1 Einführung 1.1 Logik und Linguistik [ Gamut 9-27, Partee 93-95, Chierchia 17-52 ] Natürliche Sprachen sind durch Ambiguitäten und Vagheiten beim Ausdruck von Denkinhalten charakterisiert.

Mehr

11. Prädikatenlogik (2): Quantoren

11. Prädikatenlogik (2): Quantoren LÖBNER Logikkurs 53 11.1 Syntax der Quantoren Motivation für den Allquantor: 11. Prädikatenlogik (2): Quantoren Verallgemeinerung jede Person ist genau dann männlich, wenn sie nicht weiblich ist (M(a)ōŏW(a))

Mehr

Ein Teddybär für Philosophen

Ein Teddybär für Philosophen Geo Siegwart Ein Teddybär für Philosophen Grammatik, Logik, Definitorik Break every rule! Tina Turner 1. Grammatik für Standardsprachen erster Stufe Sprachliche Gegebenheiten lassen sich im Lichte verschiedener

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 18: Logik Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/35 Überblick Formeln in Prädikatenlogik erster Stufe Theorien und

Mehr

4 Elementare Mengentheorie

4 Elementare Mengentheorie 4 Elementare Mengentheorie 4 Elementare Mengentheorie 4.1 Mengen [ Partee 3-11, McCawley 135-140, Chierchia 529-531 ] Die Mengentheorie ist entwickelt worden, um eine asis für den ufbau der gesamten Mathematik

Mehr

Beweisen mit Semantischen Tableaux

Beweisen mit Semantischen Tableaux Beweisen mit Semantischen Tableaux Semantische Tableaux geben ein Beweisverfahren, mit dem ähnlich wie mit Resolution eine Formel dadurch bewiesen wird, dass ihre Negation als widersprüchlich abgeleitet

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 1 25.04.2017 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Grundlegende Beweisstrategien Induktion über

Mehr

Tilman Bauer. 4. September 2007

Tilman Bauer. 4. September 2007 Universität Münster 4. September 2007 und Sätze nlogik von Organisatorisches Meine Koordinaten: Sprechstunden: Di 13:30-14:30 Do 9:00-10:00 tbauer@uni-muenster.de Zimmer 504, Einsteinstr. 62 (Hochhaus)

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik FH Wedel Prof. Dr. Sebastian Iwanowski GTI22 Folie 1 Grundlagen der Theoretischen Informatik Sebastian Iwanowski FH Wedel Kap. 2: Logik, Teil 2.2: Prädikatenlogik FH Wedel Prof. Dr. Sebastian Iwanowski

Mehr

Für die Charakterisierung der anderen, relativen Tempora muss eine dritte Zeit berücksichtigt werden.

Für die Charakterisierung der anderen, relativen Tempora muss eine dritte Zeit berücksichtigt werden. 5 Temporalsemantik 5.1 Zeitbezug Die Wahrheit eines Satzes kann davon abhängen zu welcher Zeit der Satz geäußert wird. So kann Peter ist Student oder Peter schläft geäußert über ein und dieselbe Person

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 9. Prädikatenlogik Syntax und Semantik der Prädikatenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Syntax der

Mehr

Prädikatenlogiken. Mathematische Logik. Vorlesung 6. Alexander Bors. 30. März & 6. April A. Bors Logik

Prädikatenlogiken. Mathematische Logik. Vorlesung 6. Alexander Bors. 30. März & 6. April A. Bors Logik Mathematische Logik Vorlesung 6 Alexander Bors 30. März & 6. April 2017 1 Überblick 1 Formale Prädikatenlogiken erster Stufe (Quelle: Ziegler, pp. 3 24) 2 Erinnerung Letztes Mal haben wir begonnen, ein

Mehr

Unvollständigkeit der Arithmetik

Unvollständigkeit der Arithmetik Unvollständigkeit der Arithmetik Slide 1 Unvollständigkeit der Arithmetik Hans U. Simon (RUB) Email: simon@lmi.rub.de Homepage: http://www.ruhr-uni-bochum.de/lmi Unvollständigkeit der Arithmetik Slide

Mehr

Logik Vorlesung 10: Herbrand-Theorie

Logik Vorlesung 10: Herbrand-Theorie Logik Vorlesung 10: Herbrand-Theorie Andreas Maletti 9. Januar 2015 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen Weitere Eigenschaften

Mehr

Deklarative Semantik

Deklarative Semantik 7. Deklarative Semantik 7-1 Deklarative Semantik Bisher: Prolog als Programmiersprache. Operationale Semantik : Wie wird ein Programm ausgeführt? Welche Antworten werden berechnet? Jetzt: Prolog als logischer

Mehr

THEORETISCHE INFORMATIK UND LOGIK

THEORETISCHE INFORMATIK UND LOGIK THEORETISCHE INFORMATIK UND LOGIK 13. Vorlesung: Prädikatenlogik: Syntax und Semantik Markus Krötzsch Lehrstuhl Wissensbasierte Systeme TU Dresden, 26. Mai 2017 Komplexität und Spiele NP ist eine typische

Mehr

Was bisher geschah. wahr 0 t 1 falsch 0 f 0 Konjunktion 2 min Disjunktion 2 max Negation 1 x 1 x Implikation 2 Äquivalenz 2 =

Was bisher geschah. wahr 0 t 1 falsch 0 f 0 Konjunktion 2 min Disjunktion 2 max Negation 1 x 1 x Implikation 2 Äquivalenz 2 = Was bisher geschah (Klassische) Aussagenlogik: Aussage Wahrheitswerte 0 (falsch) und 1 (wahr) Junktoren Syntax Semantik Stelligkeit Symbol Wahrheitswertfunktion wahr 0 t 1 falsch 0 f 0 Konjunktion 2 min

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 6 Musterlösungen

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 6 Musterlösungen Dr. Theo Lettmann Paderborn, den 21. November 2003 Abgabe 1. Dezember 2003 Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 6 Musterlösungen AUFGAB 38 : s seien folgende Prädikate gegeben: Person()

Mehr

Formale Systeme. Prädikatenlogik 2. Stufe. Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Formale Systeme. Prädikatenlogik 2. Stufe. Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 3. Prädikatenlogik Teil 6 25.06.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Letzte Vorlesungen Prädikatenlogik: Syntax Semantik

Mehr

Klausur zur Vorlesung Mathematische Logik

Klausur zur Vorlesung Mathematische Logik Universität Heidelberg 13. Februar 2014 Institut für Informatik Prof. Dr. Klaus Ambos-Spies Dipl.-Math. Thorsten Kräling Klausur zur Vorlesung Mathematische Logik Musterlösung Aufgabe 1 (Aussagenlogik

Mehr

TU7 Aussagenlogik II und Prädikatenlogik

TU7 Aussagenlogik II und Prädikatenlogik TU7 Aussagenlogik II und Prädikatenlogik Daniela Andrade daniela.andrade@tum.de 5.12.2016 1 / 32 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds

Mehr

THEORETISCHE INFORMATIK UND LOGIK

THEORETISCHE INFORMATIK UND LOGIK Komplexität und Spiele NP ist eine typische Klasse für Solitaire-Spiele: Sudoku, Minesweeper, Tetris,... THEORETISCHE INFORMATIK UND LOGIK 13. Vorlesung: Prädikatenlogik: Syntax und Semantik Markus Krötzsch

Mehr

Mathematische und logische Grundlagen der Linguistik. Kapitel 3: Grundbegriffe der Aussagenlogik

Mathematische und logische Grundlagen der Linguistik. Kapitel 3: Grundbegriffe der Aussagenlogik Mathematische und logische Grundlagen der Linguistik Kapitel 3: Grundbegriffe der Aussagenlogik Grundbegriffe der Aussagenlogik 1 Die Aussagenlogik ist ein Zweig der formalen Logik, der die Beziehungen

Mehr

6 Semantik von Modalausdrücken

6 Semantik von Modalausdrücken 6 Semantik von odalausdrücken 6 Semantik von odalausdrücken 6. odalitäten Natürliche Sprachen verfügen über ittel, die es erlauben, etwas über die odalität, d.h. die Art und Weise des Bestehens von Situationen

Mehr

Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen

Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume Barbara König Logik 1 Motivation: Wir beschäftigen uns nun im folgenden mit der, die gegenüber

Mehr

SS Juli Übungen zur Vorlesung Logik Blatt 11

SS Juli Übungen zur Vorlesung Logik Blatt 11 SS 2011 06. Juli 2011 Übungen zur Vorlesung Logik Blatt 11 Prof. Dr. Klaus Madlener Abgabe bis 13. Juli 2011 10:00 Uhr 1. Aufgabe: [Axiomatisierung, Übung] 1. Definieren Sie eine Formel A n der Prädikatenlogik

Mehr

Mathematik-Vorkurs für Informatiker Prädikatenlogik 1

Mathematik-Vorkurs für Informatiker Prädikatenlogik 1 Christian Eisentraut & Julia Krämer www.vorkurs-mathematik-informatik.de Mathematik-Vorkurs für Informatiker Prädikatenlogik 1 Aufgabe 1. (Wiederholung wichtiger Begriffe) Notieren Sie die Definitionen

Mehr

Grundwissen Sprachphilosophie

Grundwissen Sprachphilosophie Philipp Hübl Argumentationstheorie (UE Argumentation und Sprache ) WS 2010/11: Mittwochs, 12 14 h (I 110, 241) philipp.huebl@hu-berlin.de Grundwissen Sprachphilosophie 1. Grundfragen der Sprachphilosophie

Mehr

5.4 Die Prädikatenlogik 1.Stufe als Semantikformalismus

5.4 Die Prädikatenlogik 1.Stufe als Semantikformalismus 5.4 Die Prädikatenlogik 1.Stufe als Semantikformalismus 5.4.1 Einführung Einführung Verwendet wird die Sprache der Prädikatenlogik erster Stufe mit Identität (ohne Funktionskonstanten) mit dem folgenden

Mehr

Kapitel 1. Aussagenlogik

Kapitel 1. Aussagenlogik Kapitel 1 Aussagenlogik Einführung Mathematische Logik (WS 2012/13) Kapitel 1: Aussagenlogik 1/17 Übersicht Teil I: Syntax und Semantik der Aussagenlogik (1.0) Junktoren und Wahrheitsfunktionen (1.1) Syntax

Mehr

3. Prädikatenlogik. Im Sinne der Aussagenlogik sind das verschiedene Sätze, repräsentiert etwa durch A, B, C. Natürlich gilt nicht: A B = C

3. Prädikatenlogik. Im Sinne der Aussagenlogik sind das verschiedene Sätze, repräsentiert etwa durch A, B, C. Natürlich gilt nicht: A B = C 3. Prädikatenlogik 3.1 Motivation In der Aussagenlogik interessiert Struktur der Sätze nur, insofern sie durch "und", "oder", "wenn... dann", "nicht", "genau dann... wenn" entsteht. Für viele logische

Mehr

Logik-Grundlagen. Syntax der Prädikatenlogik

Logik-Grundlagen. Syntax der Prädikatenlogik Logik-Grundlagen X 1 :...: X k : ( A 1 A 2... A m B 1 B 2... B n ) Logische und funktionale Programmierung - Universität Potsdam - M. Thomas - Prädikatenlogik III.1 Syntax der Prädikatenlogik Prädikat:

Mehr