wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:"

Transkript

1 Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab metrschem Messnveau ) Standardabwechung (s) ab metrschem Messnveau 6) Varatonskoeffzent (Vk) ab ratoskalertem Messnveau 1) Range (R): wrd auch Spannwete bzw. Varatonsbrete genannt st defnert als de Dfferenz zwschen dem größten und klensten Messwert ener Vertelung: R = x max - x mn Vortel des Streuungsmaßes: R st sehr enfach zu berechnen Nachtel des Streuungsmaßes: R gbt kene Auskunft über de Streuung der übrgen Messwerte, de zwschen den Extremwerten legen R wrd von Extremwerten beenflusst Bespel: Vertelung A x Vertelung B x R = 16 - = 14 R = 99 - = 97

2 ) Der Quartlabstand (QA) und der mttlere Quartlabstand (MQA): Es gbt zwe wetere Streuungsmaße, de erheblch stabler snd als der Range, wel se ncht von Extremwerten der Vertelung abhängen. Das erste Maß st der Quartlabstand (QA), defnert als: Quartlabstand (QA) = Q 3 - Q 1 Das zwete Maß st der mttlere Quartlabstand (MQA), defnert als: Q 3 Q MQA = 1 wobe Q 1 und Q 3 Quartle snd, nämlch das erste und drtte Quartl, de Schnttpunkte zwschen Verteln der Vertelung blden. De Quartle trennen de unteren und oberen % der Fälle ener Vertelung von den mttleren 0% der Fälle. Enen weteren Schnttpunkt bldet das zwete Quartl (Q ), das de Vertelung halbert und mt dem Medan dentsch st. Der Quartlabstand st demnach de Länge des Intervalls, das de mttleren 0% Fälle ener Beobachtungsrehe umfasst. Illustraton der Quartle und des Quartlabstandes: % der Fälle % der Fälle % der Fälle % der Fälle Q 1 Q = x Q 3 Quartlabstand (QA) Mttleren 0% der Fälle 3

3 Berechnung der Quartle: Man ermttelt de Quartle n drekter Analoge zur Bestmmung des Medans. Vorgehenswese: 1) Man ermttelt ¼ N bzw. ¾ N, d.h. de Anzahl der Fälle, de unterhalb Q 1 bzw. Q 3 legen. Q 1 = Messwert, unterhalb dessen genau ¼ und oberhalb dessen ¾ der Messwerte ener geordneten Rehe legt. Q 1 = ¼ N Q 3 = Messwert, unterhalb dessen genau ¾ und oberhalb dessen genau ¼ der Messwerte ener geordneten Rehe legt. Q 3 = ¾ N ) Man bestmmt anhand der kumulerten Häufgketsvertelung de (Klassen-) Intervalle, n de de Quartle Q 1 bzw. Q 3 fallen (Quartlntervalle). Das snd de Messwerte bzw. Intervalle mt ener kumulerten Häufgket glech oder (nächst) größer als ¼ N bzw. ¾ N. Ist de kumulerte Häufgket enes Intervalls genau glech ¼ N, dann st de exakte obere Grenze deses Intervalls der Wert des Quartls Q 1 ; st se genau glech ¾ N, dann st de exakte obere Grenze deses Intervalls der Wert des Quartls Q 3. 3) Man vergewssert sch der exakten unteren und oberen Grenzen der Quartlntervalle. 4) Man berechnet de Quartle nun nach der Formel: ¼ N Fu ¾ N Fu Q1 = U + h Fm und Q3 = U + h Fm U = exakte untere Grenze des Quartlntervalls N = Anzahl der Fälle Fu = kumulerte Häufgket unterhalb des Quartlntervalls Fm = Häufgket m Quartlntervall h bzw. Kb = Brete des Quartlntervalls De Quartle werden ncht durch Extremwerte beenflusst. Ene möglche graphsche Darstellung der Quartle st der Boxplot. 4

4 Konstrukton enes Boxplots: Gegeben se: Q 1 = Q = x ~ = 3 Q 3 = 4 x mn = 1 x max = 7 x 7 x max Q 3 Q Q 1 x mn

5 ) De durchschnttlche Abwechung (AD): Statstsches Streuungsmaß (we de Varanz und Standardabwechung (sehe unten)), das de Vertelung der Messwerten um hr arthmetsche Mttel charaktersert. Da de Summe der Abwechungen der Messwerte von hrem arthmetschen Mttel mmer glech Null st, müssen de negatven Vorzechen ausgeschaltet werden. De Durchschnttlche Abwechung, Standardabwechung und Varanz stellen verschedene Versonen dar, de anfallenden negatven Vorzechen be der Errechnung der Abwechungen (x - x ) zu umgehen. De Dfferenzen der Messwerte zu hrem arthmetschen Mttel werden her mt Betragsklammern absolut gesetzt. AD = f x N x Bespel: Varable Alter x f f x x - x f x - x = = = 1 = = = = 1 = = = 3 N = 1 1 x = = 1 AD = =,4 Interpretaton: En AD-Wert von,4 besagt, dass de Messwerte m Durchschntt,4 Enheten von hrem arthmetschen Mttel abwechen. Auf de Varable Alter bezogen bedeutet des: De Messwerte wechen durchschnttlch um,4 Jahre vom Altersdurchschntt ( x = Jahre) ab. 6

6 6) Varanz ( s ): st de Summe der quadrerten Abwechungen aller Messwerte von hrem arthmetschen Mttel, getelt durch hre Anzahl: f ( x x) s = N Bespel: Varable Alter x f f x (x - x ) (x - x ) f (x - x ) = = = = = = = = = = 9 N = x = = s = 34 = 6,8 Interpretaton: En s -Wert von 6,8 besagt, dass de Messwerte m Durchschntt 6,8 Quadrat-Enheten von hrem arthmetschen Mttel abwechen. Auf de Varable Alter bezogen bedeutet des: De Messwerte wechen durchschnttlch um 6,8 Quadrat-Jahre vom Altersdurchschntt ( x = Jahre) ab. 7

7 7) Standardabwechung (s): st de Wurzel aus der Varanz: s = s bzw. s = f ( x N x) Bespel: s = 6,8. Demnach beträgt de Standardabwechung s = 6,8 =, 61 Interpretaton: En s-wert von,61 besagt, dass de Messwerte m Durchschntt,61 Enheten von hrem arthmetschen Mttel abwechen. Auf de Varable Alter bezogen bedeutet des: De Messwerte wechen durchschnttlch um,61 Jahre vom Altersdurchschntt ( x = Jahre) ab. Allgemen: Standardabwechung und Varanz snd grundsätzlch als glechwertge Streuungsmaße anzusehen, denn wenn de Varanz groß (klen) st, st auch de Standardabwechung groß (klen). Für deskrptve Zwecke st allerdngs de Standardabwechung vorzuzehen, wel se en Kennwert n der Enhet der zugrunde legenden Messwerte st (n dem her vorlegenden Rechenbespel Jahre, ncht Quadrat-Jahre ) 8

8 Varatonskoeffzent (Vk, V) bzw. Unglechhetsmaß: Formel: s Vk =, wobe x > 0 x Der Varanzkoeffzent relatvert de Standardabwechung am Mttelwert. Der Varatonskoeffzent drückt de Standardabwechung n Mttelwertsenheten aus. Deses Maß wrd gelegentlch engesetzt, wenn Streuungen von Vertelungen mt unterschedlchen Mttelwerten zu verglechen snd und Mttelwert und Streuung vonenander abhängen. Bespel: Haushaltjahresenkommen n den Ländern A und B Land A: Land B: x A = xb = 0.000, da = Land A Land B x (x - x ) (x - x ) f (x - x ) x (x - x ) (x - x ) f (x - x ) s A = = 0 = 0 und s B = = = De Standardabwechung s bezeht sch auf de Dmensonen der Messwerte, z.b. auf das Enkommen n Euro Der Varatonskoeffzent st ene dmensonslose Größe und unempfndlch gegenüber lnearen Transformatonen (z.b. Wechselkursumrechnung) Vk A = = 0 und Vk B = = 1, Interpretaton: In beden Ländern streut, gemessen am Durchschntt, das Haushaltsenkommen unglech. De relatve Streuung st für das Land B größer als für das Land A. 9

Streuungs-, Schiefe und Wölbungsmaße

Streuungs-, Schiefe und Wölbungsmaße aptel IV Streuungs-, Schefe und Wölbungsmaße B... Lagemaße von äufgketsvertelungen geben allen weng Auskunft über ene äufgketsvertelung. Se beschreben zwar en Zentrum deser Vertelung, geben aber kenen

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

Grundlagen sportwissenschaftlicher Forschung Deskriptive Statistik

Grundlagen sportwissenschaftlicher Forschung Deskriptive Statistik Grundlagen sportwssenschaftlcher Forschung Deskrptve Statstk Dr. Jan-Peter Brückner jpbrueckner@emal.un-kel.de R.6 Tel. 880 77 Deskrptve Statstk - Zele Beschreben der Daten Zusammenfassen der Daten Überblck

Mehr

Maße der zentralen Tendenz (10)

Maße der zentralen Tendenz (10) Maße der zentralen Tendenz (10) - De Berechnung der zentralen Tendenz be ategorserten Daten mt offenen Endlassen I - Bespel 1: offene Endlasse Alter x f x f p x p p cum bs 20 1? 3? 6? 6 21-25 2 23 20 460

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

Grundgedanke der Regressionsanalyse

Grundgedanke der Regressionsanalyse Grundgedanke der Regressonsanalse Bsher wurden durch Koeffzenten de Stärke von Zusammenhängen beschreben Mt der Regressonsrechnung können für ntervallskalerte Varablen darüber hnaus Modelle geschätzt werden

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

FORMELSAMMLUNG STATISTIK (I)

FORMELSAMMLUNG STATISTIK (I) Statst I / B. Zegler Formelsammlng FORMELSAMMLUG STATISTIK (I) Statstsche Formeln, Defntonen nd Erläterngen A a X n qaltatves Mermal Mermalsasprägng qanttatves Mermal Mermalswert Anzahl der statstschen

Mehr

Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte: Itemschwierigkeit P i

Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte: Itemschwierigkeit P i Itemanalyse und Itemkennwerte De Methoden der Analyse der Itemegenschaften st ncht m engeren Snne Bestandtel der Klassschen Testtheore Im Rahmen ener auf der KTT baserenden Testkonstrukton und -revson

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen Übungsklausur Wahrschenlchket und Regresson De Lösungen. Welche der folgenden Aussagen treffen auf en Zufallsexperment zu? a) En Zufallsexperment st en emprsches Phänomen, das n stochastschen Modellen

Mehr

6. Modelle mit binären abhängigen Variablen

6. Modelle mit binären abhängigen Variablen 6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch

Mehr

Lösungen zum 3. Aufgabenblock

Lösungen zum 3. Aufgabenblock Lösungen zum 3. Aufgabenblock 3. Aufgabenblock ewerber haben n enem Test zur sozalen Kompetenz folgende ntervallskalerte Werte erhalten: 96 131 11 1 85 113 91 73 7 a) Zegen Se für desen Datensatz, dass

Mehr

Beschreibung des Zusammenhangs zweier metrischer Merkmale. Streudiagramme Korrelationskoeffizienten Regression

Beschreibung des Zusammenhangs zweier metrischer Merkmale. Streudiagramme Korrelationskoeffizienten Regression Beschrebung des Zusammenhangs zweer metrscher Merkmale Streudagramme Korrelatonskoeffzenten Regresson Alter und Gewcht be Kndern bs 36 Monaten Knd Monate Gewcht 9 9 5 8 3 4 7.5 4 3 6 5 3 6 4 3.5 7 35 5

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - deskrptv Egenschaften des arthmetschen Mttels Enfache Streuungsmaße Spannwete Quartlabstand Das Dagramm enes Boplots Prof. Kück / Dr. Rcabal Lage- und Streuungsparameter

Mehr

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden.

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden. Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt werden. Menüleste Symbolleste Bearbetungszele aktve

Mehr

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree

Mehr

WS 2016/17 Prof. Dr. Horst Peters , Seite 1 von 9

WS 2016/17 Prof. Dr. Horst Peters , Seite 1 von 9 WS 2016/17 Prof. Dr. Horst Peters 06.12.2016, Sete 1 von 9 Lehrveranstaltung Statstk m Modul Quanttatve Methoden des Studengangs Internatonal Management (Korrelaton, Regresson) 1. Überprüfen Se durch Bestmmung

Mehr

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

Hausübung 1 Lösungsvorschlag

Hausübung 1 Lösungsvorschlag Hydrologe und Wasserwrtschaft Hausübung Lösungsvorschlag NIDRSCHLAG Hnwes: Be dem vorlegenden Dokument handelt es sch ledglch um enen Lösungsvorschlag und ncht um ene Musterlösung. s besteht ken Anspruch

Mehr

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2 ETH Arbetsgruppe Radocheme Radochemsches Praktkum P 06 Enführung n de Statstk INHALTSVERZEICHNIS Sete 1. Zählung von radoaktven Zerfällen und Statstk 2 2. Mttelwert und Varanz 2 3. Momente ener Vertelung

Mehr

-70- Anhang: -Lineare Regression-

-70- Anhang: -Lineare Regression- -70- Anhang: -Lneare Regressn- Für ene Messgröße y f(x) gelte flgender mathematsche Zusammenhang: y a+ b x () In der Regel läßt sch durch enen Satz vn Messwerten (x, y ) aber kene Gerade zechnen, da de

Mehr

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung am Bespel enes Modells der chadenverscherung Für das Modell ener chadenverscherung se gegeben: s w s. n 4 chaden enes Verscherungsnehmers, wenn der chadenfall entrtt Wahrschenlchket dafür, dass der chadenfall

Mehr

Beschreibende Statistik Mittelwert

Beschreibende Statistik Mittelwert Beschrebende Statstk Mttelwert Unter dem arthmetschen Mttel (Mttelwert) x von n Zahlen verstehen wr: x = n = x = n (x +x +...+x n ) Desen Mttelwert untersuchen wr etwas genauer.. Zege für n = 3: (x x )

Mehr

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n Regressonsgerade x x x x 3... x n y y y y 3... y n Bem Auswerten von Messrehen wrd häufg ene durch theoretsche Überlegungen nahegelegte lneare Bezehung zwschen den x- und y- Werten gesucht, d.h. ene Gerade

Mehr

In der beschreibenden Statistik werden Daten erhoben, aufbereitet und analysiert. Beispiel einer Datenerhebung mit Begriffserklärungen (Vokabel)

In der beschreibenden Statistik werden Daten erhoben, aufbereitet und analysiert. Beispiel einer Datenerhebung mit Begriffserklärungen (Vokabel) Rudolf Brnkmann http://brnkmann-du.de Sete.. Datenerhebung, Datenaufberetung und Darstellung. In der beschrebenden Statstk werden Daten erhoben, aufberetet und analysert. Bespel ener Datenerhebung mt Begrffserklärungen

Mehr

Konkave und Konvexe Funktionen

Konkave und Konvexe Funktionen Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage

Mehr

Analyse von Querschnittsdaten. Bivariate Regression

Analyse von Querschnittsdaten. Bivariate Regression Analse von Querschnttsdaten Bvarate Regresson Warum geht es n den folgenden Stzungen? Kontnuerlche Varablen Deskrptve Modelle kategorale Varablen Datum 3.0.2004 20.0.2004 27.0.2004 03..2004 0..2004 7..2004

Mehr

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de

Mehr

Mathematik für MolekularbiologInnen. Vorlesung VII Block III: Wahrscheinlichkeit und Statistik Verteilungen und Lagemaßzahlen

Mathematik für MolekularbiologInnen. Vorlesung VII Block III: Wahrscheinlichkeit und Statistik Verteilungen und Lagemaßzahlen Mathematk für MolekularbologInnen Vorlesung VII Block III: Wahrschenlchket und Statstk Vertelungen und Lagemaßzahlen Überscht Allgemene Defntonen Bezehung und Vsualserung von Daten Regresson, Fehlerbetrachtung

Mehr

5. ZWEI ODER MEHRERE METRISCHE MERKMALE

5. ZWEI ODER MEHRERE METRISCHE MERKMALE 5. ZWEI ODER MEHRERE METRISCHE MERKMALE wenn an ener Beobachtungsenhet zwe (oder mehr) metrsche Varablen erhoben wurden wesentlche Problemstellungen: Frage nach Zusammenhang: Bsp.: Duxbury Press (sehe

Mehr

Nomenklatur - Übersicht

Nomenklatur - Übersicht Nomenklatur - Überscht Name der synthetschen Varable Wert der synthetschen Varable durch synth. Varable erklärte Gesamt- Streuung durch synth. Varable erkl. Streuung der enzelnen Varablen Korrelaton zwschen

Mehr

Prof. Dr. Roland Füss Statistik II SS 2008

Prof. Dr. Roland Füss Statistik II SS 2008 5. Spezelle Testverfahren Zahlreche parametrsche und nchtparametrsche Testverfahren, de nach Testvertelung (Bnomal, t-test etc.), Analysezel (Anpassungs- und Unabhänggketstest) oder Konstrukton der Prüfgröße

Mehr

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher.

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher. PV - Hausaugabe Nr. 7.. Berechnen Se eakt und verglechen Se de Werte ür de Nullstelle, de mttels dem Verahren von Newton, der Regula als und ener Mttelung zu erhalten snd von der! Funkton: ( ) Lösungs

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 5 Mehrdmensonale Zufallsvarablen Be velen Problemstellungen st ene solerte Betrachtung enzelnen

Mehr

Erwartungswert, Varianz, Standardabweichung

Erwartungswert, Varianz, Standardabweichung RS 24.2.2005 Erwartungswert_Varanz_.mcd 4) Erwartungswert Erwartungswert, Varanz, Standardabwechung Be jedem Glücksspel nteresseren den Speler vor allem de Gewnnchancen. 1. Bespel: Setzen auf 1. Dutzend

Mehr

Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel

Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel ultlneare Algebra und hre Anwendungen Nr. : Normalformen Verfasser: Yee Song Ko Adran Jenn Rebecca Huber Daman Hodel 9.5.7 - - ultlneare Algebra und hre Anwendungen Jordan sche Normalform Allgemene heore

Mehr

Klasse : Name1 : Name 2 : Datum : Nachweis des Hookeschen Gesetzes und Bestimmung der Federkonstanten

Klasse : Name1 : Name 2 : Datum : Nachweis des Hookeschen Gesetzes und Bestimmung der Federkonstanten Versuch r. 1: achwes des Hook schen Gesetzes und Bestmmung der Federkonstanten achwes des Hookeschen Gesetzes und Bestmmung der Federkonstanten Klasse : ame1 : ame 2 : Versuchszel: In der Technk erfüllen

Mehr

Verdichtete Informationen

Verdichtete Informationen Verdchtete Iormatoe Maßzahle Statstke be Stchprobe Parameter be Grudgesamthete Maßzahle zur Beschrebug uvarater Verteluge Maßzahle der zetrale Tedez (Mttelwerte) Maßzahle der Varabltät (Streuugswerte)

Mehr

Konzept der Chartanalyse bei Chart-Trend.de

Konzept der Chartanalyse bei Chart-Trend.de Dpl.-Phys.,Dpl.-Math. Jürgen Brandes Konzept der Chartanalyse be Chart-Trend.de Konzept der Chartanalyse be Chart-Trend.de... Bewertungsgrundlagen.... Skala und Symbole.... Trendkanalbewertung.... Bewertung

Mehr

Schätzfehler in der linearen Regression (1) Einführung

Schätzfehler in der linearen Regression (1) Einführung Schätzfehler ( Reduum: Schätzfehler n der lnearen Regreon ( e Enführung Zel der Regreontattk t e, Schätzglechungen nach dem Krterum der klenten Quadrate aufzutellen und anzugeben, we groß der jewelge Schätzfehler

Mehr

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07 Auswertung von Umfragen und Expermenten Umgang mt Statstken n Maturaarbeten Realserung der Auswertung mt Excel 07 3.Auflage Dese Broschüre hlft bem Verfassen und Betreuen von Maturaarbeten. De 3.Auflage

Mehr

ANOVA (Analysis of Variance) Varianzanalyse. Statistik Methoden. Ausgangssituation ANOVA. Ao.Prof.DI.Dr Josef Haas

ANOVA (Analysis of Variance) Varianzanalyse. Statistik Methoden. Ausgangssituation ANOVA. Ao.Prof.DI.Dr Josef Haas Ao.Prof.DI.Dr Josef Haas josef.haas@medungraz.at ANOVA (Analyss of Varance) Varanzanalyse Statstk Methoden Verglech von Mttelwerten Ao.Unv.Prof.DI.Dr. Josef Haas josef.haas@medungraz.at Ausgangsstuaton

Mehr

Standardnormalverteilung / z-transformation

Standardnormalverteilung / z-transformation Standardnormalvertelung / -Transformaton Unter den unendlch velen Normalvertelungen gbt es ene Normalvertelung, de sch dadurch ausgeechnet st, dass se enen Erwartungswert von µ 0 und ene Streuung von σ

Mehr

Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum

Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum Abgabe: Aufgabentext und Lösungen schrftlch bs zum 15. 6. 2012 I. Thema: Zehen mt und ohne Zurücklegen Lesen Se sch zunächst folgenden Text durch! Wr haben bsher Stchprobenzehungen aus Grundgesamtheten

Mehr

Weitere NP-vollständige Probleme

Weitere NP-vollständige Probleme Wetere NP-vollständge Probleme Prosemnar Theoretsche Informatk Marten Tlgner December 10, 2014 Wr haben letzte Woche gesehen, dass 3SAT NP-vollständg st. Heute werden wr für enge wetere Probleme n NP zegen,

Mehr

ÜbungsaufgabeN mit Lösungen

ÜbungsaufgabeN mit Lösungen ÜbngsafgabeN mt Lösngen Statstk / Grndstdm Statstk I G - 3. Fachhochschle der Detschen Bndesbank Dr. Detmar Hbrch Dr. Detmar Hbrch Statstk I Afgaben nd Lösngen Fachhochschle der G 3. Detschen Bndesbank

Mehr

Übung zur Vorlesung - Theorien Psychometrischer Tests II

Übung zur Vorlesung - Theorien Psychometrischer Tests II Übung zur Vorlesung - Theoren Psychometrscher Tests II N. Rose 9. Übung (15.01.2009) Agenda Agenda 3-parametrsches logstsches Modell nach Brnbaum Lnkfunktonen 3PL-Modell nach Brnbaum Modellglechung ( =

Mehr

4. Indexzahlen. 5.1 Grundlagen 5.2 Preisindizes 5.3 Indexzahlenumrechnungen. Dr. Rebecca Schmitt, WS 2013/2014

4. Indexzahlen. 5.1 Grundlagen 5.2 Preisindizes 5.3 Indexzahlenumrechnungen. Dr. Rebecca Schmitt, WS 2013/2014 4. ndexzahlen 5.1 Grundlagen 5.2 Presndzes 5.3 ndexzahlenumrechnungen 1 4.1 Grundlagen Als Messzahlen werden de Quotenten bezechnet, de aus den Beobachtungswerten bzw. den Maßzahlen zweer Telmengen derselben

Mehr

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen 196 6.5. Rückgewnnung des Zetvorgangs: Rolle der Pole und Nullstellen We n 6.2. und 6.. gezegt wurde, st de Übertragungsfunkton G( enes lnearen zetnvaranten Systems mt n unabhänggen Spechern ene gebrochen

Mehr

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm):

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm): Aufgabe 1 (4 + 2 + 3 Punkte) Bem Wegen von 0 Respaketen ergaben sch folgende Gewchte X(n Gramm): 1 2 3 4 K = (x u, x o ] (98,99] (99, 1000] (1000,100] (100,1020] n 1 20 10 a) Erstellen Se das Hstogramm.

Mehr

Methoden der innerbetrieblichen Leistungsverrechnung

Methoden der innerbetrieblichen Leistungsverrechnung Methoden der nnerbetreblchen Lestungsverrechnung In der nnerbetreblchen Lestungsverrechnung werden de Gemenosten der Hlfsostenstellen auf de Hauptostenstellen übertragen. Grundlage dafür snd de von den

Mehr

3. Lineare Algebra (Teil 2)

3. Lineare Algebra (Teil 2) Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw

Mehr

Prof. Dr. P. Kischka WS 2012/13 Lehrstuhl für Wirtschafts- und Sozialstatistik. Klausur Statistische Inferenz

Prof. Dr. P. Kischka WS 2012/13 Lehrstuhl für Wirtschafts- und Sozialstatistik. Klausur Statistische Inferenz Prof. Dr. P. Kschka WS 2012/13 Lehrstuhl für Wrtschafts- und Sozalstatstk Klausur Statstsche Inferenz 15.02.2013 Name: Matrkelnummer: Studengang: Aufgabe 1 2 3 4 5 6 7 8 Summe Punkte 6 5 5 5 5 4 4 6 40

Mehr

Einführung in die Finanzmathematik

Einführung in die Finanzmathematik 1 Themen Enführung n de Fnanzmathematk 1. Znsen- und Znsesznsrechnung 2. Rentenrechnung 3. Schuldentlgung 2 Defntonen Kaptal Betrag n ener bestmmten Währungsenhet, der zu enem gegebenen Zetpunkt fällg

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenengen - deskrptv Bblografe Prof. Dr. Kück; Statstk, Vorlesungsskrpt Abschntt 6.., 6..4, 6..5 Bleyüller/Gehlert/Gülcher; Statstk für Wrtschaftswssenschaftler Verlag Vahlen Bleyüller/Gehlert;

Mehr

Hydrologie und Flussgebietsmanagement

Hydrologie und Flussgebietsmanagement 13.11.010 Hydrologe und Flussgebetsmanagement o.unv.prof. DI Dr. H.P. Nachtnebel Insttut für Wasserwrtschaft, Hydrologe und konstruktver Wasserbau Glederung der Vorlesung Statstsche Grundlagen Extremwertstatstk

Mehr

Gruppe. Lineare Block-Codes

Gruppe. Lineare Block-Codes Thema: Lneare Block-Codes Lneare Block-Codes Zele Mt desen rechnerschen und expermentellen Übungen wrd de prnzpelle Vorgehenswese zur Kanalcoderung mt lnearen Block-Codes erarbetet. De konkrete Anwendung

Mehr

Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)).

Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)). 44 n n F F a) b) Abbldung 3.: Besetzungszahlen enes Fermgases m Grundzustand (a)) und für ene angeregte Konfguraton (b)). 3.3 Ferm Drac Statstk In desem Abschntt wollen wr de thermodynamschen Egenschaften

Mehr

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1. Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.

Mehr

Klausuren zum Üben. Gesamtdauer der Anrufe in [Min]: bis 20 bis 40 bis 60 bis 90 bis 120 Anzahl der Schüler/innen:

Klausuren zum Üben. Gesamtdauer der Anrufe in [Min]: bis 20 bis 40 bis 60 bis 90 bis 120 Anzahl der Schüler/innen: Klausuren zum Üben Aufgabentyp I. Unter den Schülernnen und Schülern der Klassenstufe 5 ener Realschule bestzen 40 en Handy. Unter desen wurde ene Erhebung durchgeführt über de Anzahl von Anrufen (Merkmal

Mehr

Statistik. 1. Vorbereitung / Planung - präzise Formulierung der Ziele - detaillierte Definition des Untersuchungsgegenstandes

Statistik. 1. Vorbereitung / Planung - präzise Formulierung der Ziele - detaillierte Definition des Untersuchungsgegenstandes Statstk Defnton: Entwcklung und Anwendung von Methoden zur Erhebung, Aufberetung, Analyse und Interpretaton von Daten. Telgebete der Statstk: - Beschrebende (deskrptve) Statstk - Wahrschenlchketsrechnung

Mehr

Validierung der Software LaborValidate Testbericht

Validierung der Software LaborValidate Testbericht Valderung der Software LaborValdate Tetbercht De Software LaborValdate dent dazu Labormethoden zu Valderen. Dazu mu nachgeween en, da de engeetzten Funktonen dokumentert und nachvollzehbar nd. De Dokumentaton

Mehr

1 BWL 4 Tutorium V vom 15.05.02

1 BWL 4 Tutorium V vom 15.05.02 1 BWL 4 Tutorum V vom 15.05.02 1.1 Der Tlgungsfaktor Der Tlgungsfaktor st der Kehrwert des Endwertfaktors (EWF). EW F (n; ) = (1 + )n 1 T F (n; ) = 1 BWL 4 TUTORIUM V VOM 15.05.02 (1 ) n 1 Mt dem Tlgungsfaktor(TF)

Mehr

Statistik und Wahrscheinlichkeit

Statistik und Wahrscheinlichkeit Regeln der Wahrschenlchketsrechnung tatstk und Wahrschenlchket Regeln der Wahrschenlchketsrechnung Relatve Häufgket n nt := Eregnsalgebra Eregnsraum oder scheres Eregns und n := 00 Wahrschenlchket Eregnsse

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

Verteilungen, sondern nur, wenn ein. Eignet sich nicht bei flachen. Bei starker Streuung wenig. Wert eindeutig dominiert.

Verteilungen, sondern nur, wenn ein. Eignet sich nicht bei flachen. Bei starker Streuung wenig. Wert eindeutig dominiert. Auswertung von Umfragen und Expermenten Umgang mt Statstken n Maturaarbeten Realserung der Auswertung mt Excel 07 Kenngrössen der Statstk Für de Auswertung von Datenrehen werden verschedene Kenngrössen

Mehr

Grundpraktikum M5 Oberflächenspannung

Grundpraktikum M5 Oberflächenspannung Grundpraktkum M5 Oberflächenspannung Julen Kluge 21. Ma 2015 Student: Julen Kluge (564513) Partner: Emly Albert (564536) Betreuer: Dr. Mykhaylo Semtsv Raum: 314 Messplatz: 2 INHALTSVERZEICHNIS 1 ABSTRACT

Mehr

Verteilungen eindimensionaler diskreter Zufallsvariablen

Verteilungen eindimensionaler diskreter Zufallsvariablen Vertelungen endmensonaler dskreter Zufallsvarablen Enführung Dskrete Vertelungen Dskrete Glechvertelung Bernoull-Vertelung Bnomalvertelung Bblografe: Prof. Dr. Kück Unverstät Rostock Statstk, Vorlesungsskrpt,

Mehr

Lineare Regression - Mathematische Grundlagen

Lineare Regression - Mathematische Grundlagen FKULTÄT FÜR MTHEMTIK U TURWISSESCHFTE ISTITUT FÜR PHYSIK FCHGEBIET EXPERIMETLPHYSIK I r. rer. nat. orbert Sten, pl.-ing (FH) Helmut Barth Lneare Regresson - Mathematsche Grundlagen. llgemene Gerade Wr

Mehr

2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar.

2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar. . Nullstellensuche Enes der ältesten numerschen Probleme stellt de Bestmmung der Nullstellen ener Funkton = dar. =c +c =c +c +c =Σc =c - sn 3 Für ene Gerade st das Problem trval, de Wurzel ener quadratschen

Mehr

-2 Das einfache Regressionsmodell 2.1 Ein ökonomisches Modell

-2 Das einfache Regressionsmodell 2.1 Ein ökonomisches Modell Kaptel : Das enfache Regressonsmodell - Das enfache Regressonsmodell. En ökonomsches Modell Bespel: De Bezehung zwschen Haushaltsenkommen und Leensmttelausgaen Befragung zufällg ausgewählter Haushalte

Mehr

Protokoll zum Grundversuch Mechanik

Protokoll zum Grundversuch Mechanik Protokoll zum Grundversuch Mechank 3.6. In desem Grundversuch zur Mechank werden dre verschedene Arten von Pendeln untersucht. Das Reversonspendel, das Torsonspendel und gekoppelte Pendel. A. Das Reversonspendel

Mehr

2.1 Einfache lineare Regression 31

2.1 Einfache lineare Regression 31 .1 Enfache lneare Regresson 31 Regressonsanalyse De Regressonsanalyse gehört zu den am häufgsten engesetzten multvaraten statstschen Auswertungsverfahren. Besonders de multple Regressonsanalyse hat große

Mehr

Ionenselektive Elektroden (Potentiometrie)

Ionenselektive Elektroden (Potentiometrie) III.4.1 Ionenselektve Elektroden (otentometre) Zelstellung des Versuches Ionenselektve Elektroden gestatten ene verhältnsmäßg enfache und schnelle Bestmmung von Ionenkonzentratonen n verschedenen Meden,

Mehr

Datenaufbereitung und -darstellung III

Datenaufbereitung und -darstellung III Datenafberetng nd Darstellng 1 Glederng: Zel der Datenafberetng nd Darstellng Datenverdchtng Tabellen nd grafsche Darstellngen Darstellng nvarater Datenmengen (Abschntt 4.4 Darstellng mltvarater Daten

Mehr

H I HEIZUNG I 1 GRUNDLAGEN 1.1 ANFORDERUNGEN. 1 GRUNDLAGEN 1.1 Anforderungen H 5

H I HEIZUNG I 1 GRUNDLAGEN 1.1 ANFORDERUNGEN. 1 GRUNDLAGEN 1.1 Anforderungen H 5 1 GRUNDLAGEN 1.1 Anforderungen 1.1.1 Raumklma und Behaglchket Snn der Wärmeversorgung von Gebäuden st es, de Raumtemperatur n der kälteren Jahreszet, das snd n unseren Breten etwa 250 bs 0 Tage m Jahr,

Mehr

Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung

Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung Fallstude 4 Qualtätsregelkarten (SPC) und Versuchsplanung Abgabe: Lösen Se de Aufgabe 1 aus Abschntt I und ene der beden Aufgaben aus Abschntt II! Aufgabentext und Lösungen schrftlch bs zum 31.10.2012

Mehr

Ordered Response Models (ORM)

Ordered Response Models (ORM) Handout: Mkroökonometre Ordered Response Models Domnk Hanglberger - SS 28 Ordered Response Models (ORM) Ist de abhängge Varable ordnal skalert (d.h. hre Kategoren lassen sch n ene Rangrehenfolge brngen,

Mehr

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6 Praktkum Physkalsche Cheme I (C-2) Versuch Nr. 6 Konduktometrsche Ttratonen von Säuren und Basen sowe Fällungsttratonen Praktkumsaufgaben 1. Ttreren Se konduktometrsch Schwefelsäure mt Natronlauge und

Mehr

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com.

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com. Verfahren für de Polygonalserung ener Kugel Eldar Sultanow, Unverstät Potsdam, sultanow@gmal.com Abstract Ene Kugel kann durch mathematsche Funktonen beschreben werden. Man sprcht n desem Falle von ener

Mehr

Der Erweiterungsfaktor k

Der Erweiterungsfaktor k Der Erweterungsfaktor k Wahl des rchtgen Faktors S. Meke, PTB-Berln, 8.40 Inhalt: 1. Was macht der k-faktor? 2. Welche Parameter legen den Wert des k-faktors fest? 3. Wo trtt der k-faktor auf? 4. Zusammenhang

Mehr

18. Dynamisches Programmieren

18. Dynamisches Programmieren 8. Dynamsches Programmeren Dynamsche Programmerung we gerge Algorthmen ene Algorthmenmethode, um Optmerungsprobleme zu lösen. We Dvde&Conquer berechnet Dynamsche Programmerung Lösung enes Problems aus

Mehr

Institut für Technische Chemie Technische Universität Clausthal

Institut für Technische Chemie Technische Universität Clausthal Insttut für Technsche Cheme Technsche Unverstät Clusthl Technsch-chemsches Prktkum TCB Versuch: Wärmeübertrgung: Doppelrohrwärmeustuscher m Glechstrom- und Gegenstrombetreb Enletung ür de Auslegung von

Mehr

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale 3. De Kennzechnung von Patkeln 3..1 Patkelmekmale De Kennzechnung von Patkeln efolgt duch bestmmte, an dem Patkel mess bae und deses endeutg beschebende physka lsche Gößen (z.b. Masse, Volumen, chaaktestsche

Mehr

Aspekte zur Approximation von Quadratwurzeln

Aspekte zur Approximation von Quadratwurzeln Aspete zur Approxmaton von Quadratwurzeln Intervallschachtelung Intervallhalberungsverfahren Heron-Verfahren Rechnersche und anschaulche Herletung Zusammenhang mt Newtonverfahren Monotone und Beschränthet

Mehr

Ursache der Ungewissheit kann dabei z.b. unvollständige Information sein oder unbekannte bzw. nicht beeinflussbare Bedingungen.

Ursache der Ungewissheit kann dabei z.b. unvollständige Information sein oder unbekannte bzw. nicht beeinflussbare Bedingungen. SS 2013 Prof. Dr. J. Schütze/ J. Puhl/ FB GW Deskr.1 1 Warum Stochastk? Stochastk: Kunst des Mutmaßens (grech.) Mathematsche Stochastk beschäftgt sch mt der Beschrebung und Untersuchung von Erschenungen,

Mehr

Bildverarbeitung Herbstsemester 2012. Bildspeicherung

Bildverarbeitung Herbstsemester 2012. Bildspeicherung Bldverarbetung Herbstsemester 2012 Bldspecherung 1 Inhalt Bldformate n der Überscht Coderung m Überblck Huffman-Coderung Datenredukton m Überblck Unterabtastung Skalare Quantserung 2 Lernzele De wchtgsten

Mehr

Statistik. M. Kriener. 15. September 2017

Statistik. M. Kriener. 15. September 2017 Statstk M. Krener 15. September 2017 Inhaltsverzechns 1 Lage und Streuung von Daten 3 1.1 Der Mttelwert - das arthmetsche Mttel......................... 3 1.2 Noch en Mttelwert - der Medan.............................

Mehr

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung.

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung. Rudolf Brkma http://brkma-du.de Sete 06.0.008 Spawete, Meda Quartlsabstad, Varaz ud Stadardabwechug. Streuug um de Mttelwert. I de folgede Säuledagramme st de Notevertelug zweer Schülergruppe (Mädche,

Mehr

SS 2017 Torsten Schreiber

SS 2017 Torsten Schreiber SS Torsten Schreber e den Ebenen unterscheden wr de und de prmeterfree Drstellung. Wenn wr ene Ebenenglechung durch dre Punkte bestmmen wollen, so müssen de zugehörgen Vektoren sen, d es sonst nur ene

Mehr

6 Rechnen mit Zahlen beliebig hoher Stellenzahl 7 Intervall-Arithmetik 8 Umsetzung in aktuellen Prozessoren

6 Rechnen mit Zahlen beliebig hoher Stellenzahl 7 Intervall-Arithmetik 8 Umsetzung in aktuellen Prozessoren Inhalt 4 Realserung elementarer Funktonen Rehenentwcklung Konvergenzverfahren 5 Unkonventonelle Zahlenssteme redundante Zahlenssteme Restklassen-Zahlenssteme logarthmsche Zahlenssteme 6 Rechnen mt Zahlen

Mehr

8 Logistische Regressionsanalyse

8 Logistische Regressionsanalyse wwwstatstkpaketde 8 Logstsche Regressonsanalyse De logstsche Regressonsanalyse dent der Untersuchung des Enflusses ener quanttatven Varable auf ene qualtatve (n unserem Fall dchotomen Varable Wr gehen

Mehr

1 Mehrdimensionale Analysis

1 Mehrdimensionale Analysis 1 Mehrdmensonale Analyss Bespel: De Gesamtmasse der Erde st ene Funton der Erddchte ρ Erde und des Erdradus r Erde De Gesamtmasse der Erde st dann m Erde = V Erde ρ Erde Das Volumen ener Kugel mt Radus

Mehr

18. Vorlesung Sommersemester

18. Vorlesung Sommersemester 8. Vorlesung Sommersemester Der Drehmpuls des starren Körpers Der Drehmpuls des starren Körpers st etwas komplzerter. Wenn weder de Wnkelgeschwndgket um de feste Rotatonsachse st, so wrd mt Hlfe des doppelten

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 009 UNIVERSITÄT KARLSRUHE Blatt 4 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 16: (Success Run, Fortsetzung)

Mehr

Teil E: Qualitative abhängige Variable in Regressionsmodellen

Teil E: Qualitative abhängige Variable in Regressionsmodellen Tel E: Qualtatve abhängge Varable n Regressonsmodellen 1. Qualtatve abhängge Varable Grundlegendes Problem: In velen Fällen st de abhängge Varable nur über enen bestmmten Werteberech beobachtbar. Bsp.

Mehr

Einführung Fehlerrechnung

Einführung Fehlerrechnung IV Eführug Fehlerrechug Fehlerrechuge werde durchgeführt, um de Vertraueswürdgket vo Meßergebsse beurtele zu köe. Uter dem Fehler eer Messug versteht ma de Abwechug ees Meßergebsses vom (grudsätzlch ubekate

Mehr

ω 0 = Protokoll zu Versuch E6: Elektrische Resonanz

ω 0 = Protokoll zu Versuch E6: Elektrische Resonanz Protokoll zu Versuch E6: Elektrsche esonanz. Enletung En Schwngkres st ene elektrsche Schaltung, de aus Kapaztät, Induktvtät und ohmschen Wderstand besteht. Stmmt de Frequenz der anregenden Wechselspannung

Mehr

2πσ. e ax2 dx = x exp. 2πσ. 2σ 2. Die Varianz ergibt sich mit Hilfe eines weiteren bestimmten Integrals: x 2 e ax2 dx = 1 π.

2πσ. e ax2 dx = x exp. 2πσ. 2σ 2. Die Varianz ergibt sich mit Hilfe eines weiteren bestimmten Integrals: x 2 e ax2 dx = 1 π. 2.5. NORMALVERTEILUNG 27 2.5 Normalvertelung De n der Statstk am häufgsten benutzte Vertelung st de Gauss- oder Normalvertelung. Wr haben berets gesehen, dass dese Vertelung aus den Bnomal- und Posson-Vertelungen

Mehr

(2) i = 0) in Abhängigkeit des Zeitunterschieds x ZeitBus ZeitAuto für seinen Arbeitsweg.) i = 1) oder Bus ( y

(2) i = 0) in Abhängigkeit des Zeitunterschieds x ZeitBus ZeitAuto für seinen Arbeitsweg.) i = 1) oder Bus ( y 5. Probt-Modelle Ökonometre II - Peter Stalder "Bnar Choce"-Modelle - Der Probt-Ansatz Ene ncht drekt beobachtbare stochastsche Varable hängt von x ab: x u 2 u ~ N(0, ( Beobachtet wrd ene bnäre Varable

Mehr