Einführung in LTL unter MAUDE. Maschine!es Beweisen Einführung in LTL Seit# 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Einführung in LTL unter MAUDE. Maschine!es Beweisen Einführung in LTL Seit# 1"

Transkript

1 Einführung in LTL unter MAUDE Mashine!es Beweisen Einführung in LTL Seit# 1

2 Verifikation eines Systems System- Verhalte% System- Spezifikatio% Mashine!es Beweisen Einführung in LTL Seit# 2

3 Verifikation eines Systems System- Verhalte% System- Spezifikatio% system enjoys property Theorem Proving: Systems formula implies property formula. Model Cheking: φ = f Systems semantis is model of property formula. M, s = f} Mashine!es Beweisen Einführung in LTL Seit# 3

4 Definition 5.29 Eine Kripke-Struktur ist ein Tupel M := (S, S 0, R, L), für das folgendes gilt: 1. S endlihe Zustandsmenge, 2. S 0 S Menge von Anfangszuständen, 3. R S S links totale 6 (Transitions-) Relation, 4. L : S 2 AP Abbildung, die jedem Zustand s eine Menge L(s) AP von aussagenlogishen atomaren Formeln zuordnet (die in diesem Zustand gelten). 5. Ein Pfad oder eine Rehnung aus s S ist eine Folge π = s 0, s 1, s 2,... mit s 0 = s und i : R(s i, s i+1 ) Mashine!es Beweisen Einführung in LTL Seit# 4

5 Mashine!es Beweisen Einführung in LTL Seit# 5

6 5.6 Temporale Logik Modallogik Predikatenlogik Temporallogik Aussagenlogik Mashine!es Beweisen Einführung in LTL Seit# 6

7 Beispiel 5.32 Spezifikation eines Aufzuges (Fragment) I. Jede Anforderung des Aufzugs wird auh erfüllt. II. Der Aufzug passiert keinen Stokwerk (SW) mit einer niht erfüllten Anforderung. Beispiel für physikalishes Bewegungsgesetz: z(t) = 1 2 gt2 (freier Fall des Aufzuges) Mashine!es Beweisen Einführung in LTL Seit# 7

8 ( ( I. Jede Anforderung des Aufzugs wird auh erfüllt. I. t, n(app(n, t) t > t. serv(n, t )) ( ( H(t) Position des Fahrstuhls zur Zeit t, app(n, t) offene Anforderung von Stokwerk n zur Zeit t, serv(n, t) Fahrstuhl bedient Stokwerk n Mashine!es Beweisen Einführung in LTL Seit# 8

9 Temporale Logik für die Informatik: Pnueli 1977: Temporale Logik für Informatik: Pnueli 1977 Linear Temporal Logi: LTL CT L : omputation tree logi, Emerson und Halpern 1986 p irgendwann einmal gilt p p t0 p von jetzt an gilt immer p t p p p p p p p p p t0 t t 2 t 1 n n+1 t Mashine!es Beweisen Einführung in LTL Seit# 9

10 p bedeutet? t0 p bedeutet? t0 Mashine!es Beweisen Einführung in LTL Seit# 10

11 Abwikeln der Kripke-Struktur. ab ab b b ab Abbildung 5.15: Abwiklung einer Kripke-Struktur Mashine!es Beweisen Einführung in LTL Seit# 11

12 CT L -Formeln ab Zustands- Zustandsquantoren Pfad-Quantoren: ab b A für alle Pfade, E es gibt ein Pfad, Pfadquantoren Pfadund temporale Quantoren: Xp next time : p gilt im zweitem Zustand ab des Pfades (vorher ), b ab Mashine!es Beweisen Einführung in LTL Seit# 12

13 Pfad- Pfadquantoren und temporale Quantoren: Xp next time : p gilt im zweitem Zustand des Pfades (vorher ), F p eventually, in the future : p gilt in einem Zustand des Pfades (vorher ), Gp always, globally : p gilt in allen Zuständen des Pfades (vorher ), puq until : es gibt einen Zustand auf dem Pfad, in dem q gilt und vor diesem Zustand gilt immer p. p p p p p p p p p q Mashine!es Beweisen Einführung in LTL Seit# 13

14 prq release : Dual zu puq. q gilt bis einshließlih des ersten Zustands, in dem p gilt oder q gilt immer. q q q q q q q q q p q q q q q q q q q Mashine!es Beweisen Einführung in LTL Seit# 14

15 Angenommen, dass f 1, f 2 Zustands- und g 1, g 2 Pfad- Formeln sind, so ist = definiert durh: M, π = g 1 M, π = g M, π = g 1 g 2 M, π = g 1 oder M, π = g M, π = g 1 g 2 M, π = g 1 und M, π = g M, π = Xg 1 M, π 1 = g M, π = F g 1 k 0. M, π k = g M, π = Gg 1 k 0. M, π k = g 1. k 14. M, π = g 1 Ug 2 k 0. M, π k = g 2 und für alle 0 j < k gilt M, π j = g M, π = g 1 Rg 2 j 0, wenn für jeden i < j M, π i = g 1 gilt, dann M, π j = g 2. Mashine!es Beweisen Einführung in LTL Seit# 15

16 4 Model Cheking Für eine gegebene Kripke-Struktur M = (S, R, L) und eine gegebene temporal-logishe Formel f ist zu berehnen: {s S M, s = f} M ist hier als Graph explizit gegeben. Mashine!es Beweisen Einführung in LTL Seit# 16

1. Einführung in Temporallogik CTL

1. Einführung in Temporallogik CTL 1. Einführung in Temporallogik CTL Temporallogik dient dazu, Aussagen über Abläufe über die Zeit auszudrücken und zu beweisen. Zeit wird in den hier zunächst behandelten Logiken als diskret angenommen

Mehr

4. Alternative Temporallogiken

4. Alternative Temporallogiken 4. Alternative Temporallogiken Benutzung unterschiedlicher Temporallogiken entsprechend den verschiedenen Zeitbegriffen LTL: Linear Time Logic Ähnlich der CTL, aber jetzt einem linearen Zeitbegriff entspechend

Mehr

Aussagenlogik. Spezifikation und Verifikation Kapitel 1. LTL und CTL Syntax & Semantik. Aussagenlogik: Syntax. Aussagenlogik: Syntax (Alternative)

Aussagenlogik. Spezifikation und Verifikation Kapitel 1. LTL und CTL Syntax & Semantik. Aussagenlogik: Syntax. Aussagenlogik: Syntax (Alternative) Spezifikation und Verifikation Kapitel 1 Aussagenlogik LTL und CTL & Frank Heitmann heitmann@informatik.uni-hamburg.de Wir haben Eine abzählbare Menge V = {x 1, x 2,...} von aussagenlogischen Variablen

Mehr

Automaten, Spiele und Logik

Automaten, Spiele und Logik Automaten, Spiele und Logik Woche 13 11. Juli 2014 Inhalt der heutigen Vorlesung Linearzeit Temporale Logik (LTL) Alternierende Büchi Automaten Nicht-Determinisierung (Miyano-Ayashi) Beschriftete Transitionssysteme

Mehr

Research Collection. Bounded Model Checking was kommt danach? Other Conference Item. ETH Library. Author(s): Biere, Armin. Publication Date: 2000

Research Collection. Bounded Model Checking was kommt danach? Other Conference Item. ETH Library. Author(s): Biere, Armin. Publication Date: 2000 Research Collection Other Conference Item Bounded Model Checking was kommt danach? Author(s): Biere, Armin Publication Date: 2000 Permanent Link: https://doi.org/10.3929/ethz-a-004242422 Rights / License:

Mehr

Bisher. Wiederholung NFA Modellierung durch NFA Kripke-Struktur

Bisher. Wiederholung NFA Modellierung durch NFA Kripke-Struktur Bisher Wiederholung NFA Modellierung durch NFA Kripke-Struktur Model-Checking Modell beschrieben durch Kripke-Struktur A Spezifikation ϕ in einer Temporallogik Verifikation: Nachweis, dass die Struktur

Mehr

tl Revision: 1.37 Lese [a] f als für alle a-nachfolger des momentanen Zustandes gilt f

tl Revision: 1.37 Lese [a] f als für alle a-nachfolger des momentanen Zustandes gilt f Temorale Logik Gebrauch in der Informatik geht auf A. Pnueli zurück 1 Vereinfachte Hennessy-Milner Logik (HML) zunächst betrachten wir HML als Bs. für Temorale Logik für LTS 2 Häufig zur Sezifikation von

Mehr

Aussagenlogische Testspezifikation

Aussagenlogische Testspezifikation Seminar Spezifikationsbasierter Softwaretest Aussagenlogische Testspezifikation Peer Hausding (10.06.2006) 1 Gliederung Einführung Begriffe Test Modellspezifikation AutoFocus Transformation Spezifikation

Mehr

Kapitel 2: Algorithmen für CTL und LTL

Kapitel 2: Algorithmen für CTL und LTL Kapitel 2: Algorithmen ür CTL und LTL Für eine gegebene Kripke-Struktur M = (S, R, L) und eine gegebene temporal-logische Formel ist zu berechnen: {s S M, s = } M ist hier als Graph explizit gegeben. Algorithmus

Mehr

1 K-Rahmen und K-Modelle

1 K-Rahmen und K-Modelle Seminar: Einführung in die Modallogik (WS 15/16) Lehrender: Daniel Milne-Plückebaum, M.A. E-Mail: dmilne@uni-bielefeld.de Handout: K-Rahmen, K-Modelle & K-Wahrheitsbedingungen Im Folgenden werden wir uns

Mehr

CTL Model Checking SE Systementwurf CTL Model Checking Alexander Grafe 1

CTL Model Checking SE Systementwurf CTL Model Checking Alexander Grafe 1 CTL Model Checking SE Systementwurf CTL Model Checking Alexander Grafe 1 Einführung/Historie Model Checking ist... nur reaktive Systeme werden betrachtet vor CTL Model Checking gab es... Queille, Sifakis,

Mehr

Software Engineering in der Praxis

Software Engineering in der Praxis Software Engineering in der Praxis Praktische Übungen Marc Spisländer Josef Adersberger Lehrstuhl für Software Engineering Friedrich-Alexander-Universität Erlangen-Nürnberg 10. November 2008 Inhalt Nachlese

Mehr

Model Checking mit SPIN

Model Checking mit SPIN Model Checking mit SPIN Sabine Daniela Bauer Seminar Formal Methods for Fun and Profit Institut für Informatik SS 05 1 Einleitung Programme sollen aus vielerlei Gründen fehlerfrei arbeiten. Entweder weil

Mehr

Software Engineering Praktikum

Software Engineering Praktikum Dipl-Inf Martin Jung Seite 1 Software Engineering Praktikum Formale Verifikation nebenläufiger Systeme mittels s 0 s 1 s 2 s 3 s 4 s 5 Dipl-Inf Martin Jung Seite 2 mit NuSMV Ziel: Frühe Fehlererkennung

Mehr

Grundlagen der Logik

Grundlagen der Logik Grundlagen der Logik Denken Menschen logisch? Selektionsaufgabe nach Watson (1966): Gegeben sind vier Karten von denen jede auf der einen Seite mit einem Buchstaben, auf der anderen Seite mit einer Zahl

Mehr

Logik. Vorlesung im Wintersemester 2010

Logik. Vorlesung im Wintersemester 2010 Logik Vorlesung im Wintersemester 2010 Organisatorisches Zeit und Ort: Di 14-16 MZH 5210 Do 16-18 MZH 5210 Prof. Carsten Lutz Raum MZH 3090 Tel. (218)-64431 clu@uni-bremen.de Position im Curriculum: Modulbereich

Mehr

Model Checking I. Lehrstuhl für Software Engineering Friedrich-Alexander-Universität Erlangen-Nürnberg

Model Checking I. Lehrstuhl für Software Engineering Friedrich-Alexander-Universität Erlangen-Nürnberg Model Checking I Yi Zhao Marc Spisländer Lehrstuhl für Software Engineering Friedrich-Alexander-Universität Erlangen-Nürnberg Zhao, Spisländer FAU Erlangen-Nürnberg Model Checking I 1 / 22 1 Inhalt 2 Model

Mehr

Nicht-Standard-Logiken. Intuitionistische Aussagenlogik Prädikatenlogik 2. Stufe Modallogik

Nicht-Standard-Logiken. Intuitionistische Aussagenlogik Prädikatenlogik 2. Stufe Modallogik Nicht-Standard-Logiken Intuitionistische Aussagenlogik Prädikatenlogik 2. Stufe Modallogik Logik für Informatiker, M. Lange & M. Latte, IFI/LMU: Nicht-Standard-Logiken Intuitionistische Aussagenlogik 238

Mehr

Foundations of Systems Development

Foundations of Systems Development Foundations of Systems Development Vergleich und Zusammenfassung Martin Wirsing in Zusammenarbeit mit Moritz Hammer und Axel Rauschmayer WS 2007/08 2 Ziele Wichtige Aspekte von algebraischen Spezikationen

Mehr

Kapitel 4: (Einige) Andere Logiken

Kapitel 4: (Einige) Andere Logiken Kapitel 4: (Einige) Andere Logiken 4.1: Modale Logiken Grundgedanke Nicht alles stimmt unabhängig vom Zeitpunkt es schneit unabhängig vom Ort man kann das Meer sehen unabhängig vom Sprecher ich bin müde

Mehr

Temporale Logiken: CTL und LTL

Temporale Logiken: CTL und LTL Westfälische Wilhelms-Universität Münster usarbeitung Temporale Logiken: CTL und LTL im Rahmen des Seminars Formale Spezifikation im WS 2005/06 Thorsten Bruns Themensteller: Prof. Dr. Herbert Kuchen Betreuer:

Mehr

Logic in a Nutshell. Christian Liguda

Logic in a Nutshell. Christian Liguda Logic in a Nutshell Christian Liguda Quelle: Kastens, Uwe und Büning, Hans K., Modellierung: Grundlagen und formale Methoden, 2009, Carl Hanser Verlag Übersicht Logik - Allgemein Aussagenlogik Modellierung

Mehr

Kurzeinführung in SAL

Kurzeinführung in SAL Kurzeinführung in SAL Holger Pfeifer Institut für Künstliche Intelligenz Fakultät für Ingenieurwissenschaften und Informatik Universität Ulm 2. Mai 2007 H. Pfeifer Comp.gest. Modellierung u. Verifikation

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 2 28.04.2015 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Organisatorisches Termine Donnerstags: 30.04.2015 nicht

Mehr

Formale Systeme. Organisatorisches. Prof. Dr. Bernhard Beckert, WS 2016/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Formale Systeme. Organisatorisches. Prof. Dr. Bernhard Beckert, WS 2016/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft Formale Systeme Prof. Dr. Bernhard Beckert, WS 2016/2017 Organisatorisches KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft Personen

Mehr

Formale Systeme. Organisatorisches. Prof. Dr. Bernhard Beckert, WS 2016/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Formale Systeme. Organisatorisches. Prof. Dr. Bernhard Beckert, WS 2016/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft Formale Systeme Prof. Dr. Bernhard Beckert, WS 2016/2017 Organisatorisches KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft Personen

Mehr

Nichtklassische Logiken

Nichtklassische Logiken Nichtklassische Logiken Peter H. Schmitt pschmitt@ira.uka.de UNIVERSITÄT KARLSRUHE Sommersemester 2004 P. H. Schmitt: Nichtklassische Logiken p.1 Inhalt Wiederholung P. H. Schmitt: Nichtklassische Logiken

Mehr

Requirements Engineering WS 11/12

Requirements Engineering WS 11/12 Requirements Engineering WS 11/12 9. Übung am 20.01.2012 Feedback & Organisatorisches Hospitation der Übung Feedback Zwischenpräsentation Feedback Evaluation Abgabe Deliverable 2 Ablauf am 27. Januar:

Mehr

Der Sequenzenkalkül. Charakterisierung der logischen Schlussfolgerung: Sequenzenkalkül für die Prädikatenlogik

Der Sequenzenkalkül. Charakterisierung der logischen Schlussfolgerung: Sequenzenkalkül für die Prädikatenlogik Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 4.6 Prädikatenlogik ohne Gleichheit Der Sequenzenkalkül 138 Der Sequenzenkalkül Charakterisierung der logischen Schlussfolgerung: Sequenzenkalkül

Mehr

Formale Modellierung Vorlesung 13 vom : Rückblick und Ausblick

Formale Modellierung Vorlesung 13 vom : Rückblick und Ausblick Rev. 2226 1 [19] Formale Modellierung Vorlesung 13 vom 01.07.13: Rückblick und Ausblick Serge Autexier & Christoph Lüth Universität Bremen Sommersemester 2013 2 [19] Fahrplan Teil I: Formale Logik Teil

Mehr

Weitere Beweistechniken und aussagenlogische Modellierung

Weitere Beweistechniken und aussagenlogische Modellierung Weitere Beweistechniken und aussagenlogische Modellierung Vorlesung Logik in der Informatik, HU Berlin 2. Übungsstunde Aussagenlogische Modellierung Die Mensa versucht ständig, ihr Angebot an die Wünsche

Mehr

3) Linearzeit-Eigenschaften

3) Linearzeit-Eigenschaften 3) Linearzeit-Eigenschaften GPS: Linearzeit-Eigenschaften Einführung 129 Linearzeit-Eigenschaften Erinnerung: endliche Trace-Fragmente = Wörter Def.: Σ ω bezeichnet Menge aller unendlichen Wörter (Sequenzen)

Mehr

MODEL CHECKING 2 - AUTOMATEN

MODEL CHECKING 2 - AUTOMATEN MODEL CHECKING 2 - AUTOMATEN Sommersemester 2009 Dr. Carsten Sinz, Universität Karlsruhe Model Checking 2 System (Hardware/ Software) Model Checking, Formalisierung, Beweis Übersetzung in Logik Gewünschte

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Automaten, Spiele, und Logik

Automaten, Spiele, und Logik Automten, Spiele, und Logik Wohe 7 19. Mi 2014 Inhlt der heutigen Vorlesung Alternierende Automten Definition Verindung zu regulären Sprhen Komplementtion Engel und Teufel Ws ist eine nihtdeterministishe

Mehr

Computergestützte Modellierung und Verifikation

Computergestützte Modellierung und Verifikation Computergestützte Modellierung und Verifikation Vorlesung mit Übungen SS 2007 Prof. F. von Henke mit Dr. H. Pfeifer Inst. für Künstliche Intelligenz Organisatorisches Vorlesung: Mi 14 16 Raum 3211 Do 14

Mehr

Bemerkungen zur Notation

Bemerkungen zur Notation Bemerkungen zur Notation Wir haben gerade die Symbole für alle und es gibt gebraucht. Dies sind so genannte logische Quantoren, und zwar der All- und der Existenzquantor. Die Formel {a A; ( b B)[(a, b)

Mehr

Automaten und Coinduktion

Automaten und Coinduktion Philipps-Univestität Marburg Fachbereich Mathematik und Informatik Seminar: Konzepte von Programmiersprachen Abgabedatum 02.12.03 Betreuer: Prof. Dr. H. P. Gumm Referentin: Olga Andriyenko Automaten und

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 3 06.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax (Formeln) Semantik Wertebelegungen/Valuationen/Modelle

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 3. Aussagenlogik Syntax und Semantik der Aussagenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.16 Syntax der Aussagenlogik:

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 4 07.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Gestern Normalformen Atome, Literale, Klauseln Konjunktive

Mehr

Logik. Logik. Vorkurs Informatik Theoretischer Teil WS 2013/ September Vorkurs Informatik - Theorie - WS2013/14

Logik. Logik. Vorkurs Informatik Theoretischer Teil WS 2013/ September Vorkurs Informatik - Theorie - WS2013/14 Logik Logik Vorkurs Informatik Theoretischer Teil WS 2013/14 30. September 2013 Logik > Logik > logische Aussagen Logik Logik > Logik > logische Aussagen Motivation Logik spielt in der Informatik eine

Mehr

Theorem Proving. Software Engineering in der Praxis. Prädikatenlogik. Software Engineering in der Praxis Wintersemester 2006/2007

Theorem Proving. Software Engineering in der Praxis. Prädikatenlogik. Software Engineering in der Praxis Wintersemester 2006/2007 Seite 1 Theorem Proving Prädikatenlogik Seite 2 Gliederung Warum Theorembeweisen? Wie funktioniert Theorembeweisen? Wie kann mir das Werkzeug KIV dabei helfen? Seite 3 Warum Theorembeweisen? Wie kann man

Mehr

Seminar über Software Model Checking Vortrag zum Thema Predicate Abstraction

Seminar über Software Model Checking Vortrag zum Thema Predicate Abstraction Seminar über Software Model Checking Vortrag zum Thema Predicate Abstraction Robert Mattmüller Betreuer: Prof. Dr. Stefan Leue Wintersemester 2003/2004 1. Dezember 2003 1 Software Model Checking Predicate

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 6: Formale Logik Einführung schulz@eprover.org Formale Logik Ziel Formalisierung und Automatisierung rationalen Denkens Rational richtige Ableitung von

Mehr

1.1 Motivation. Theorie der Informatik. Theorie der Informatik. 1.1 Motivation. 1.2 Syntax. 1.3 Semantik. 1.4 Formeleigenschaften. 1.

1.1 Motivation. Theorie der Informatik. Theorie der Informatik. 1.1 Motivation. 1.2 Syntax. 1.3 Semantik. 1.4 Formeleigenschaften. 1. Theorie der Informatik 19. Februar 2014 1. Aussagenlogik I Theorie der Informatik 1. Aussagenlogik I Malte Helmert Gabriele Röger Universität Basel 19. Februar 2014 1.1 Motivation 1.2 Syntax 1.3 Semantik

Mehr

Transformation von regulärer Linearzeit- Temporallogik zu Paritätsautomaten

Transformation von regulärer Linearzeit- Temporallogik zu Paritätsautomaten Transformation von regulärer Linearzeit- Temporallogik zu Paritätsautomaten Malte Schmitz, Lübeck im Januar 2012 korrigierte Fassung, Lübeck im März 2014 Diese Bachelorarbeit wurde ausgegeben und betreut

Mehr

Herzlich Willkommen zur Vorlesung Einführung in die Logik I (*)

Herzlich Willkommen zur Vorlesung Einführung in die Logik I (*) Herzlich Willkommen zur Vorlesung Einführung in die Logik I (*) Vorlesung: Professor Marcus Spies (Department Psychologie) www.psy.lmu.de/ffp/persons/prof--marcus-spies.html Tutorium : Philipp Etti (Institut

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 3. Prädikatenlogik Teil 1 9.06.2015 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Rückblick: Vor- und Nachteile von Aussagenlogik + Aussagenlogik

Mehr

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume)

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) WS 2016/17 Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Formale Grundlagen der Informatik 1 Kapitel 19. Syntax & Semantik

Formale Grundlagen der Informatik 1 Kapitel 19. Syntax & Semantik Formale Grundlagen der Informatik 1 Kapitel 19 & Frank Heitmann heitmann@informatik.uni-hamburg.de 23. Juni 2015 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/25 Motivation Die ist eine Erweiterung

Mehr

Berechenbarkeitstheorie 19. Vorlesung

Berechenbarkeitstheorie 19. Vorlesung 1 Berechenbarkeitstheorie Dr. Institut für Mathematische Logik und Grundlagenforschung WWU Münster WS 15/16 Alle Folien unter Creative Commons Attribution-NonCommercial 3.0 Unported Lizenz. Erinnerung:

Mehr

Können Computer programmieren? Bernd Finkbeiner, Universität des Saarlandes

Können Computer programmieren? Bernd Finkbeiner, Universität des Saarlandes Können Computer programmieren? Bernd Finkbeiner, Universität des Saarlandes Alonzo Church (1903-1995) Given a requirement which a circuit is to satisfy, we may suppose the requirement expressed in some

Mehr

Klausur Formale Systeme Fakultät für Informatik WS 2009/2010. Prof. Dr. Bernhard Beckert. 18. Februar 2010

Klausur Formale Systeme Fakultät für Informatik WS 2009/2010. Prof. Dr. Bernhard Beckert. 18. Februar 2010 Klausur Formale Systeme Fakultät für Informatik Name: Mustermann Vorname: Peter Matrikel-Nr.: 0000000 Klausur-ID: 0000 WS 2009/2010 Prof. Dr. Bernhard Beckert 18. Februar 2010 A1 (15) A2 (10) A3 (10) A4

Mehr

Kapitel 2 Partielle Ordnungen

Kapitel 2 Partielle Ordnungen Kapitel 2 Partielle Ordnungen 2 Partielle Ordnungen 2.1 Partielle und strikte Halordnung.......... 2.2 Logishe und vektorielle Zeitstempel........ Formale Grundlagen der Informatik II Kap 2: Partie!e Ordnungen

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 6 14.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge

Mehr

Musterlösung 11.Übung Mathematische Logik

Musterlösung 11.Übung Mathematische Logik Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik RWTH Aachen Prof. Dr. E. Grädel, F. Reinhardt SS 2015 Aufgabe 2 Musterlösung 11.Übung Mathematische Logik Geben Sie für die folgenden

Mehr

4.1 Motivation. Theorie der Informatik. Theorie der Informatik. 4.1 Motivation. 4.2 Syntax der Prädikatenlogik. 4.3 Semantik der Prädikatenlogik

4.1 Motivation. Theorie der Informatik. Theorie der Informatik. 4.1 Motivation. 4.2 Syntax der Prädikatenlogik. 4.3 Semantik der Prädikatenlogik Theorie der Informatik 3. März 2014 4. Prädikatenlogik I Theorie der Informatik 4. Prädikatenlogik I 4.1 Motivation Malte Helmert Gabriele Röger 4.2 Syntax der Prädikatenlogik Universität Basel 3. März

Mehr

Vorsemesterkurs Informatik

Vorsemesterkurs Informatik Vorsemesterkurs Informatik Vorsemesterkurs Informatik Mario Holldack WS2015/16 30. September 2015 Vorsemesterkurs Informatik 1 Einleitung 2 Aussagenlogik 3 Mengen Vorsemesterkurs Informatik > Einleitung

Mehr

Planen als Model Checking

Planen als Model Checking Otto-Friedrich-Universität Bamberg Lehrstuhl Angewandte Informatik Kognitive Systeme Seminararbeit Planen als Model Checking Svetlana Balinova Januar 2007 Inhaltsverzeichnis 1 Einführung 1 2 Explicit Model

Mehr

Mathematik für Informatiker I Mitschrift zur Vorlesung vom 14.12.2004

Mathematik für Informatiker I Mitschrift zur Vorlesung vom 14.12.2004 Mathematik für Informatiker I Mitschrift zur Vorlesung vom 14.12.2004 In der letzten Vorlesung haben wir gesehen, wie man die einzelnen Zahlenbereiche aufbaut. Uns fehlen nur noch die reellen Zahlen (siehe

Mehr

1 Syntax und Semantik der Logik erster Stufe

1 Syntax und Semantik der Logik erster Stufe 1 Syntax und Semantik der Logik erster Stufe Die Logik erster Stufe Prädikatenlogik) besitzt eine Syntax, die festlegt, welche Zeichenketten Formeln der Logik erster Stufe sind, und eine Semantik, die

Mehr

Thomas Schirrmann Nebenläufigkeit. Nebenläufigkeit. Vortrag Thomas Schirrmann. Seminar Systementwurf Dozentin Daniela Weinberg

Thomas Schirrmann Nebenläufigkeit. Nebenläufigkeit. Vortrag Thomas Schirrmann. Seminar Systementwurf Dozentin Daniela Weinberg Nebenläufigkeit Vortrag Seminar Systementwurf Dozentin Daniela Weinberg 1 Gliederung 1. Einführung 2. Modellierung 2.1. POMSET 2.2. Transitionssystem 2.3. Petrinetz 2.4. abstraktes nebenläufiges Programm

Mehr

Logik für Informatiker Logic for Computer Scientists

Logik für Informatiker Logic for Computer Scientists Logik für Informatiker Logic for Computer Scientists Till Mossakowski Wintersemester 2014/15 Till Mossakowski Logik 1/ 13 Vollständigkeit der Aussagenlogik Till Mossakowski Logik 2/ 13 Objekt- und Metatheorie

Mehr

Formalisierung von Sicherheitseigenschaften im µ-kalkül

Formalisierung von Sicherheitseigenschaften im µ-kalkül Formlisierung von Sicherheitseigenschften im µ-klkül Huptseminr: Nchweis von Sicherheitseigenschften für JvCrd durch pproximtive rogrmmuswertung Michel Whler (whler@in.tum.de) Überblick Einführungsbeispiel:

Mehr

Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 3.8 Aussagenlogik Der Sequenzen-Kalkül 99. Sequenzen

Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 3.8 Aussagenlogik Der Sequenzen-Kalkül 99. Sequenzen Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 3.8 Aussagenlogik Der Sequenzen-Kalkül 99 Sequenzen Zum Abschluss des Kapitels über Aussagenlogik behandeln wir noch Gentzens Sequenzenkalkül.

Mehr

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung Zusammenfassung Zusammenfassung der letzten LVA Einführung in die Theoretische Informatik Wenn das Kind schreit, hat es Hunger Das Kind schreit Also, hat das Kind Hunger Christina Kohl Alexander Maringele

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 1. Einführung Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Formale Logik Ziel Formalisierung und Automatisierung rationalen

Mehr

Informatik A. Prof. Dr. Norbert Fuhr auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser

Informatik A. Prof. Dr. Norbert Fuhr auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser Informatik A Prof. Dr. Norbert Fuhr fuhr@uni-duisburg.de auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser 1 Teil I Logik 2 Geschichte R. Descartes (17. Jhdt): klassische

Mehr

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/37

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/37 Aussagenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Modellierung und Beweise Aussagenlogik H. Kleine Büning 1/37 Modellierungsaufgabe Es gibt drei Tauben und zwei Löcher. Jede Taube soll in

Mehr

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung Zusammenfassung Zusammenfassung der letzten LVA Einführung in die Theoretische Informatik Christina Kohl Alexander Maringele Georg Moser Michael Schaper Manuel Schneckenreither Institut für Informatik

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 9. Prädikatenlogik Syntax und Semantik der Prädikatenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Syntax der

Mehr

Motivation. Formale Grundlagen der Informatik 1 Kapitel 19. Syntax & Semantik. Motivation - Beispiel. Motivation - Beispiel

Motivation. Formale Grundlagen der Informatik 1 Kapitel 19. Syntax & Semantik. Motivation - Beispiel. Motivation - Beispiel Motivation Formale Grundlagen der Informatik 1 Kapitel 19 & Die ist eine Erweiterung der Aussagenlogik. Sie hat eine größere Ausdrucksstärke und erlaub eine feinere Differenzierung. Ferner sind Beziehungen/Relationen

Mehr

Dank. Theoretische Informatik II. Teil II. Registermaschinen. Vorlesung

Dank. Theoretische Informatik II. Teil II. Registermaschinen. Vorlesung Dank Vorlesung Theoretische Informatik II Bernhard Beckert Institut für Informatik Diese Vorlesungsmaterialien basieren zum Teil auf den Folien zu den Vorlesungen von Katrin Erk (gehalten an der Universität

Mehr

Was ist Model Checking?

Was ist Model Checking? Was ist Model Checking? 1 Model checking is an automatic technique for verifying correctness properties of safety-critical reactive systems [Clarke, Schlingloff: Model Checking, in Handbook of Automated

Mehr

9 Pythagoras Tripel. Nach Pythagoras gilt: In einem rechtwinkligen Dreieck mit den Katheden a und b und der Hypothenuse c ist.

9 Pythagoras Tripel. Nach Pythagoras gilt: In einem rechtwinkligen Dreieck mit den Katheden a und b und der Hypothenuse c ist. 9 Pthagoras Tripel Nah Pthagoras gilt: In einem rehtwinkligen Dreiek mit den Katheden a und b und der Hpothenuse ist Speziell gilt die sogenannte a + b = Zimmermannsregel. Drei Latten der Länge 3, 4 und

Mehr

Theorie der Informatik. Theorie der Informatik. 2.1 Äquivalenzen. 2.2 Vereinfachte Schreibweise. 2.3 Normalformen. 2.

Theorie der Informatik. Theorie der Informatik. 2.1 Äquivalenzen. 2.2 Vereinfachte Schreibweise. 2.3 Normalformen. 2. Theorie der Informatik 24. Februar 2014 2. Aussagenlogik II Theorie der Informatik 2. Aussagenlogik II 2.1 Äquivalenzen Malte Helmert Gabriele Röger 2.2 Vereinfachte Schreibweise Universität Basel 24.

Mehr

Dieser Foliensatz darf frei verwendet werden unter der Bedingung, dass diese Titelfolie nicht entfernt wird.

Dieser Foliensatz darf frei verwendet werden unter der Bedingung, dass diese Titelfolie nicht entfernt wird. Thomas Studer Relationale Datenbanken: Von den theoretischen Grundlagen zu Anwendungen mit PostgreSQL Springer, 2016 ISBN 978-3-662-46570-7 Dieser Foliensatz darf frei verwendet werden unter der Bedingung,

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 3. Prädikatenlogik Teil 4 18.06.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Letzte Vorlesung Sematik: Σ-Strukturen = (U, (f : U

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Logik in der Informatik Was ist Logik? 2 Logik in der Informatik Was ist Logik? Mathematisch? 3 Logik in der Informatik

Mehr

Potenzen mit gleichen Grundzahlen werden multipliziert, indem man die Hochzahlen addiert und die Grundzahlen beibehält. a n a m = a m+n. a...

Potenzen mit gleichen Grundzahlen werden multipliziert, indem man die Hochzahlen addiert und die Grundzahlen beibehält. a n a m = a m+n. a... Mathematikskript: Steven Passmore Potenzgesetze Einleitung Einen Ausdruk mit einer Hohzahl nennt man Potenz Beispiele: 3 5,9 x, a n ). Zunähst ist eine Potenz eine vereinfahte Shreibweise für die vielfahe

Mehr

6. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 6 Saison 1966/1967 Aufgaben und Lösungen

6. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 6 Saison 1966/1967 Aufgaben und Lösungen 6. Mathematik Olympiade 1. Stufe (Shulolympiade) Saison 1966/1967 Aufgaben und Lösungen 1 OJM 6. Mathematik-Olympiade 1. Stufe (Shulolympiade) Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrehnungen

Mehr

8 Der Kompaktheitssatz und der Satz von Löwenheim und Skolem

8 Der Kompaktheitssatz und der Satz von Löwenheim und Skolem 8 Der Kompaktheitssatz und der Satz von Löwenheim und Skolem 8.1 Der Kompaktheitssatz Kompaktheitssatz Endlichkeitssatz Der Kompaktheitssatz ist auch unter dem Namen Endlichkeitssatz bekannt. Unter Verwendung

Mehr

Mathematik für Informatiker I

Mathematik für Informatiker I Mathematik für Informatiker I Mitschrift zur Vorlesung vom 19.10.2004 In diesem Kurs geht es um Mathematik und um Informatik. Es gibt sehr verschiedene Definitionen, aber für mich ist Mathematik die Wissenschaft

Mehr

Multivariate Kettenregel

Multivariate Kettenregel Multivariate Kettenregel Für die Hintereinanderschaltung h = g f : x y = f (x) z = g(y), stetig differenzierbarer Funktionen f : R m R l und g : R l R n gilt h (x) = g (y)f (x), d.h. die Jacobi-Matrix

Mehr

TU7 Aussagenlogik II und Prädikatenlogik

TU7 Aussagenlogik II und Prädikatenlogik TU7 Aussagenlogik II und Prädikatenlogik Daniela Andrade daniela.andrade@tum.de 5.12.2016 1 / 32 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds

Mehr

Fundamentale Sätze. versuche folgendes: gib eine Formelmenge Φ an, so dass Mod(Φ) = {(N, +, )}

Fundamentale Sätze. versuche folgendes: gib eine Formelmenge Φ an, so dass Mod(Φ) = {(N, +, )} Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 4.7 Prädikatenlogik Fundamentale Sätze 171 Fundamentale Sätze versuche folgendes: gib eine Formelmenge Φ an, so dass Mod(Φ) = {(R, +, )} gib

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 1 25.04.2017 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Grundlegende Beweisstrategien Induktion über

Mehr

Logik Vorlesung 8: Modelle und Äquivalenz

Logik Vorlesung 8: Modelle und Äquivalenz Logik Vorlesung 8: Modelle und Äquivalenz Andreas Maletti 12. Dezember 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen Weitere

Mehr

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 14.

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 14. Formale Logik PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg Wintersemester 16/17 Sitzung vom 14. Dezember 2016 Die formale Sprache der Prädikatenlogik: Zeichen Benutzt werden

Mehr

Grundlagen: 1. Logik. Aussagen und Aussagenformen Wahrheitstabellen; Tautologien und Kontradiktionen Logische Äquivalenz. Prädikate und Quantoren

Grundlagen: 1. Logik. Aussagen und Aussagenformen Wahrheitstabellen; Tautologien und Kontradiktionen Logische Äquivalenz. Prädikate und Quantoren Zusammenfassung Grundlagen Logik, Mengen, Relationen, Folgen & Mengenfamilien, Kardinalitäten Techniken Mathematisches Beweisen, Induktion, Kombinatorische Beweise Strukturen Graphen 1 Grundlagen: 1. Logik

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 3. Prädikatenlogik Teil 6 25.06.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Letzte Vorlesungen Prädikatenlogik: Syntax Semantik

Mehr

Klassische Aussagenlogik

Klassische Aussagenlogik Eine Einführung in die Logik Schon seit Jahrhunderten beschäftigen sich Menschen mit Logik. Die alten Griechen und nach ihnen mittelalterliche Gelehrte versuchten, Listen mit Regeln zu entwickeln, welche

Mehr

1 Transitionssysteme. 1.1 Motivation: Model-Checking

1 Transitionssysteme. 1.1 Motivation: Model-Checking 1 Transitionssysteme Thema dieser Vorlesung sind temporale und modale Logiken sowie damit zusammenhängende Verfahren aus der Automaten- und Spieltheorie. Die Motivation für viele der hier behandelten Methoden

Mehr

Seminar Automatentheorie der Presburger Arithmetik. Vorgetragen von Viktor Rach

Seminar Automatentheorie der Presburger Arithmetik. Vorgetragen von Viktor Rach Seminar Automatentheorie der Presburger Arithmetik Vorgetragen von Viktor Rach Vortragsgliederung: Kapitel 1 Presburger Arithmetik 1.1 Grundlagen der Presburger Arithmetik.... 3 1.2 Einführung in Presburger

Mehr

Lineare Algebra I 14. Tutorium Lineare Abbildungen und Matrizen

Lineare Algebra I 14. Tutorium Lineare Abbildungen und Matrizen Lineare Algebra I 4 Tutorium Lineare Abbildungen und Matrizen Fachbereich Mathematik WS / Prof Dr Kollross 7 Februar Dr Le Roux Dipl-Math Susanne Kürsten Aufgaben Aufgabe G (Bewegungen im ) Als Bewegung

Mehr

Formale Systeme. Prof. P.H. Schmitt. Winter 2007/2008. Fakultät für Informatik Universität Karlsruhe (TH) Voraussetzungen

Formale Systeme. Prof. P.H. Schmitt. Winter 2007/2008. Fakultät für Informatik Universität Karlsruhe (TH) Voraussetzungen Formale Systeme Prof. P.H. Schmitt Fakultät für Informatik Universität Karlsruhe (TH) Winter 2007/2008 Prof. P.H. Schmitt Formale Systeme Winter 2007/2008 1 / 12 Übungen und Tutorien Es gibt wöchentliche

Mehr