Exzentrischer Stoß. Der genaue zeitliche Verlauf der Kraft ist nicht bekannt. Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik 2 4-1

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Exzentrischer Stoß. Der genaue zeitliche Verlauf der Kraft ist nicht bekannt. Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik 2 4-1"

Transkript

1 Exzentrischer Stoß Allgemeine Stoßvorgänge zwischen zwei Körpern in der Ebene können mit Hilfe des integrierten Impulssatzes und des integrierten Drallsatzes behandelt werden. Während des Stoßes treten kurzzeitig große Kräfte auf, die zu einer Änderung der Geschwindigkeiten führen. Bekannt sind die Geschwindigkeiten und Winkelgeschwindigkeiten vor dem Stoß. Gesucht sind die Geschwindigkeiten und Winkelgeschwindigkeiten nach dem Stoß. Der genaue zeitliche Verlauf der Kraft ist nicht bekannt. Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik 2 4-1

2 Exzentrischer Stoß 1. Idealisierungen 2. Definitionen 3. Integrierter Impuls- und Drallsatz 4. Stoß zwischen freien Körpern 5. Stoß auf gelagerten Körper 6. Rauer Stoß Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik 2 4-2

3 1. Idealisierungen Idealisierungen sind vereinfachende Annahmen, die getroffen werden, damit ein Problem rechnerisch untersucht werden kann. Bei Stoßvorgängen werden folgende Annahmen getroffen: Die Stoßdauer t S ist so klein, dass Lageänderungen der beiden Körper während der Stoßdauer vernachlässigt werden können. Die an der Berührstelle der Körper auftretenden Kräfte sind so groß, dass während der Stoßdauer alle anderen Kräfte vernachlässigt werden können. Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik 2 4-3

4 1. Idealisierungen Die Verformungen der beiden Körper sind so klein, dass die Bewegungsgesetze für starre Körper angewendet werden können. Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik 2 4-4

5 2. Definitionen Die Berührungsebene liegt tangential zu den beiden Körpern. Der Stoßpunkt P liegt in der Berührungsebene. Die Stoßnormale geht durch den Stoßpunkt P und steht senkrecht auf der Berührungsebene. S 1 P Berührungsebene S 2 Stoßnormale Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik 2 4-5

6 2. Definitionen Gerader Stoß: Schiefer Stoß: v 1 Stoßnormale v 1 Stoßnormale S 1 S 1 P P S 2 S 2 v 2 v 2 Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik 2 4-6

7 2. Definitionen Beim geraden Stoß haben die Geschwindigkeiten unmittelbar vor dem Stoß die Richtung der Stoßnormalen. Beim schiefen Stoß stimmen die Richtungen der Geschwindigkeiten unmittelbar vor dem Stoß nicht mit der Stoßnormalen überein. Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik 2 4-7

8 2. Definitionen Zentrischer Stoß: Exzentrischer Stoß: S 1 S 1 P P S 2 S 2 Stoßnormale Stoßnormale Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik 2 4-8

9 2. Definitionen Beim zentrischen Stoß geht die Stoßnormale durch die beiden Schwerpunkte. Beim exzentrischen Stoß geht die Stoßnormale nicht durch die beiden Schwerpunkte. Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik 2 4-9

10 2. Definitionen Glatter Stoß: Reibungskräfte werden vernachlässigt. Die Stoßkräfte wirken in Richtung der Stoßnormalen. Rauer Stoß: Reibungskräfte werden berücksichtigt. Es wirken auch Kräfte in der Berührungsebene. Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik

11 3. Integrierter Impuls- und Drallsatz Integrierter Impulssatz: Die Bewegung des Schwerpunktes eines starren Körpers wird durch den Impulssatz beschrieben: m v S =F t Integration bezüglich der Zeit liefert: 2 t 2 m v S dt= F dt t 1 t 1 t 2 Mit dem Kraftstoß F= F dt t 1 lautet der integrierte Impulssatz: m v S t 2 v S t 1 = F Für ebene Probleme folgen daraus die beiden Gleichungen: m v Sx t 2 v Sx t 1 = F x, m v Sy t 2 v Sy t 1 = F y Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik

12 3. Integrierter Impuls- und Drallsatz Integrierter Drallsatz: Die Drehung eines starren Körpers um seinen Schwerpunkt wird durch den Drallsatz beschrieben: L S =M S Integration bezüglich der Zeit liefert: Für einen Stoß ist die Zeit t S = t 2 t 1 so klein, dass die Lageänderung des Körpers während dieser Zeit vernachlässigt werden kann. t 2 t 1 t 2 L S dt= t 1 M S dt Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik

13 3. Integrierter Impuls- und Drallsatz Daher gilt: t 2 t 1 Mit t 2 t M S dt= r P F dt=r 2 P F dt=r P F t 2 t 1 t 1 L S dt=l S t 2 L S t 1 =J S t 2 t 1 lautet der integrierte Drallsatz: t 1 F P r P S J S t 2 t 1 =r P F Für eine Drehung um die z-achse folgt daraus: J Sz t 2 t 1 =x P F y y P F x Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik

14 4. Stoß zwischen freien Körpern Aufgabenstellung: Zwei glatte Körper stoßen aufeinander. Bekannt sind die Massen m 1 und m 2, die Massenträgheitsmomente J S1 und J S2, die Schwerpunktsgeschwindigkeiten v 1 und v 2 sowie die Winkelgeschwindigkeiten ω 1 und ω 2 vor dem Stoß. Gesucht sind die Schwerpunktsgeschwindigkeiten V 1 und V 2 sowie die Winkelgeschwindigkeiten Ω 1 und Ω 2 nach dem Stoß. Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik

15 4. Stoß zwischen freien Körpern Koordinatensystem: Die x-achse zeigt entlang der Stoßnormalen. Die y-achse liegt in der Berührungsebene. y P S 1 S 2 x Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik

16 4. Stoß zwischen freien Körpern Aufstellen der Gleichungen: F(t) a 1 a F(t) S 2 2 S 1 y x Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik

17 4. Stoß zwischen freien Körpern Integrierter Impulssatz für Körper 1: Integrierter Impulssatz für Körper 2: m 1 V 1 x v 1 x = F x m 1 V 1 y v 1 y = 0 Integrierter Drallsatz für Körper 1: J S =a 1 F x m 2 V 2 x v 2 x = F x m 2 V 2 y v 2 y = 0 Integrierter Drallsatz für Körper 2: J S = a 2 F x Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik

18 4. Stoß zwischen freien Körpern Damit stehen sechs Gleichungen zur Ermittlung der sieben unbekannten Größen V 1x, V 1y, V 2x, V 2y, Ω 1, Ω 2 und F x zur Verfügung. Die fehlende Gleichung folgt aus der Stoßbedingung, die zwischen den Geschwindigkeiten im Punkt P besteht: k= V P1x V P2x v P1x v P2x Dabei ist k die Stoßzahl. Für die Geschwindigkeiten im Punkt P gelten die kinematischen Beziehungen v P1x = v 1 x a 1 1 v P2x = v 2 x a 2 2 V P1x = V 1 x a 1 1 V P2x = V 2 x a 2 2 Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik

19 4. Stoß zwischen freien Körpern Auflösen der Gleichungen: Aus dem integrierten Impulssatz in y-richtung folgt: V 1 y =v 1 y, V 2 y =v 2 y Aus dem integrierten Impulssatz in x-richtung folgt: F V 1 x =v 1 x x F, V m 2 x =v 2 x x 1 m 2 Aus dem integrierten Drallsatz folgt: 1 = 1 a 1 F x J S 1, 2 = 2 a 2 F x J S 2 Damit lassen sich die gesuchten Geschwindigkeiten und Winkelgeschwindigkeiten berechnen, wenn der Kraftstoß bekannt ist. Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik

20 4. Stoß zwischen freien Körpern Aus der Stoßbedingung folgt: k v P1x v P2x V P1x V P2x =0 Mit den kinematischen Beziehungen ergibt sich: k v 1 x a 1 1 v 2 x a 2 2 V 1 x a 1 1 V 2 x a 2 2 =0 V 1 x V 2 x a 1 1 a 2 2 = k v 1 x v 2 x a 1 1 a 2 2 Einsetzen der Beziehungen zwischen den Geschwindigkeiten und dem Kraftstoß führt auf: v 1 x v 2 x F 1 x 1 m 1 m a 1 1 a 2 2 F a 2 1 x a J S 1 J S 2 = k v 1 x v 2 x a 1 1 a 2 2 Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik

21 Daraus folgt: 4. Stoß zwischen freien Körpern 1 k v 1 x v 2 x a 1 1 a 2 2 = F x 1 1 a 2 1 m 1 m 2 a 2 2 J S 1 J S 2 Ergebnis: F x = 1 k v 1 x v 2 x a 1 1 a a 2 1 a 2 2 m 1 m 2 J S 1 J S 2 V 1 x =v 1 x F x m 1, V 1 y =v 1 y, 1 = 1 a 1 F x J S 1 V 2 x =v 2 x F x m 2, V 2 y =v 2 y, 2 = 2 a 2 F x J S 2 Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik

22 Beispiel: 4. Stoß zwischen freien Körpern Ein Fahrzeug fährt seitlich versetzt auf ein langsameres Fahrzeug auf. y a 1 a 2 S 2 S 1 P x Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik

23 4. Stoß zwischen freien Körpern Daten für Fahrzeug 1: Masse m 1 = 2000kg Massenträgheitsmoment J S1 = 1500kgm 2 Geschwindigkeit v 1 = 180km/h Winkelgeschwindigkeit ω 1 = 0s -1 Abstand a 1 = 0,5m Daten für Fahrzeug 2: Masse m 2 = 1000kg Massenträgheitsmoment J S2 = 500kgm 2 Geschwindigkeit v 2 = 140km/h Winkelgeschwindigkeit ω 2 = 0s -1 Abstand a 2 = -0,3m Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik

24 4. Stoß zwischen freien Körpern Stoßzahl: k = 0,4 Bemerkung: Der Wert des Abstandes a 2 ist negativ, da sich der Stoßpunkt P unterhalb des Schwerpunktes S 2 befindet. Ergebnisse: Kraftstoß: F x =8423,6 Ns Geschwindigkeiten: V 1 =164,84 km/h, V 2 =170,32km/h Winkelgeschwindigkeiten: 1 =2,81 s 1, 2 =5,05s 1 Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik

25 5. Stoß auf gelagerten Körper Beim Stoß auf einen gelagerten Körper treten auch am Lager Stoßkräfte auf. Die Stoßkräfte am Lager haben die gleiche Größenordnung wie die Stoßkräfte am Stoßpunkt. Alle anderen Kräfte können gegenüber den Stoßkräften vernachlässigt werden. Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik

26 Aufgabenstellung: 5. Stoß auf gelagerten Körper Auf einen gelenkig gelagerten Körper wirkt ein Stoß. Der gestoßene Körper ist vor dem Stoß in Ruhe. F Bekannt ist der Kraftstoß, die Masse m und das Massenträgheitsmoment J A des gestoßenen Körpers. Gesucht sind die Lagerkräfte während des Stoßes und die Winkelgeschwindigkeit des Körpers nach dem Stoß. Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik

27 Koordinatensystem: 5. Stoß auf gelagerten Körper Die x-achse wird so gewählt, dass sie in Richtung des Kraftstoßes zeigt. A S F(t) y x Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik

28 5. Stoß auf gelagerten Körper Aufstellen der Gleichungen: A y (t) d A A x (t) c y x b S F(t) Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik

29 5. Stoß auf gelagerten Körper Integrierter Impulssatz: mv x = F A x mv y = A y Integrierter Drallsatz bezüglich des ortsfesten Punktes A: J A z =b F = b F J A z Kinematik: V x =c, V y = d Damit lassen sich die Lagerkräfte aus dem integrierten Impulssatz berechnen: A x = F mv x = F mc A y = mv y =md A x = F 1 mcb J A z A y = F mdb J A z Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik

30 5. Stoß auf gelagerten Körper Stoßmittelpunkt Π: Der Stoßmittelpunkt ist der Punkt, in dem der Körper gelagert werden muss, damit im Lager keine Kräfte auftreten. Damit die x-komponente der Lagerkraft verschwindet, muss gelten: 1 mcb =0 c= J A z J A z mb Mit dem Trägheitsradius folgt: c= i A 2 b i A = J A z m Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik

31 5. Stoß auf gelagerten Körper Damit die y-komponente der Lagerkraft verschwindet, muss der Abstand d gleich Null sein. Π c Der Stoßmittelpunkt liegt auf der zur Stoßkraft senkrechten Geraden durch den Schwerpunkt und hat vom Schwerpunkt den Abstand F b S c= i A 2 b Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik

32 5. Stoß auf gelagerten Körper Bei Körpern, auf die Stöße wirken, wird versucht, den Lagerpunkt in den Stoßmittelpunkt zu legen: Hammer Tennisschläger Ein Körper, der nicht gelagert ist, dreht sich unmittelbar nach dem Stoß um den Stoßmittelpunkt. Der Stoßmittelpunkt ist der Momentanpol der freien Bewegung unmittelbar nach dem Stoß. Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik

33 5. Stoß auf gelagerten Körper Beispiel: In welcher Höhe h muss eine homogene Billardkugel horizontal angestoßen werden, damit sie auf glatter Ebene nach dem Stoß rollt? h Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik

34 5. Stoß auf gelagerten Körper Freigeschnittene Billardkugel: F S y h A r x A y Da die Ebene glatt ist, muss die Horizontalkraft verschwinden. Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik

35 5. Stoß auf gelagerten Körper Die Horizontalkraft verschwindet, wenn Punkt A der Stoßmittelpunkt ist. Dann muss gelten: r= J A z mh h= J A z mr Massenträgheitsmoment bezüglich Punkt A: J A z =J S z m r 2 = 2 5 m r2 mr 2 = 7 5 m r2 Ergebnis: h= 7 5 r Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik

36 6. Rauer Stoß Beim Stoß zwischen rauen Körpern wird angenommen, dass die Körper während des Stoßes aneinander haften. Die Geschwindigkeitskomponenten am Berührungspunkt P in der Berührungsebene sind während des Stoßes und damit auch unmittelbar nach dem Stoß gleich: V P1y =V P2y Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik

37 6. Rauer Stoß Aufgabenstellung: Eine homogene Kugel stößt schief gegen eine raue Wand. Bekannt ist die Masse m, das Massenträgheitsmoment J S sowie die Schwerpunktsgeschwindigkeit v und die Winkelgeschwindigkeit ω vor dem Stoß. Gesucht ist die Schwerpunktsgeschwindigkeit V und die Winkelgeschwindigkeit Ω nach dem Stoß. Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik

38 6. Rauer Stoß Koordinatensystem: Die x-achse steht senkrecht auf der Wand. Die y-achse ist parallel zur Wand. v y P x ω Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik

39 6. Rauer Stoß Aufstellen der Gleichungen: F y Integrierter Impulssatz: r m V x v x = F x m V y v y = F y y S P F x Integrierter Drallsatz bezüglich des Schwerpunkts: J S = r F y x Stoßbedingung: k= V Px v Px = V x v x V x = k v x Haftbedingung: V Py =0 V y r =0 V y = r Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik

40 6. Rauer Stoß Aus dem integrierten Impulssatz in y-richtung folgt: F y = m V y v y =m r v y Damit folgt aus dem integrierten Drallsatz: J S = r m r v y J S mr 2 =J S m r v y = J S m r v y J S m r 2 Mit J S = 2 folgt: 5 m r2 2 5 m r2 mr v y 2 = = 2 5 m r2 m r v y r Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik

41 6. Rauer Stoß Ergebnis: = v y r, V x= k v x, V y = 5 7 v y 2 7 r Fall 1: 5 2 v y r V y 0, 0 Die Kugel prallt nach unten zurück und behält dabei ihre Drehrichtung bei. Fall 2: 5 2 v y r V y 0, 0 Die Kugel prallt nach oben zurück und ändert dabei ihre Drehrichtung. Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik

2. Exzentrischer Stoß

2. Exzentrischer Stoß 2. Exzentrischer Stoß 2.1 Ebener Stoß zwischen freien Körpern 2.2 Ebener Stoß auf gelagerten Körper 3.2-1 2.1 Ebener Stoß zwischen freien Körpern Aufgabenstellung: Zwei glatte Körper stoßen aufeinander.

Mehr

4. Stoßvorgänge. Stoßvorgänge sind Vorgänge von sehr kurzer Dauer, bei denen zwischen den beteiligten Körpern große Kräfte auftreten.

4. Stoßvorgänge. Stoßvorgänge sind Vorgänge von sehr kurzer Dauer, bei denen zwischen den beteiligten Körpern große Kräfte auftreten. 4. Stoßvorgänge Stoßvorgänge sind Vorgänge von sehr kurzer Dauer, bei denen zwischen den beteiligten Körpern große Kräfte auftreten. Gesucht wird ein Zusammenhang zwischen den Geschwindigkeiten vor dem

Mehr

4. Stoßvorgänge. Stoßvorgänge sind Vorgänge von sehr kurzer Dauer, bei denen zwischen den beteiligten Körpern große Kräfte auftreten.

4. Stoßvorgänge. Stoßvorgänge sind Vorgänge von sehr kurzer Dauer, bei denen zwischen den beteiligten Körpern große Kräfte auftreten. 4. Stoßvorgänge Stoßvorgänge sind Vorgänge von sehr kurzer Dauer, bei denen zwischen den beteiligten Körpern große Kräfte auftreten. Gesucht wird ein Zusammenhang zwischen den Geschwindigkeiten vor dem

Mehr

12 Stoßprobleme. Bezeichnung

12 Stoßprobleme. Bezeichnung 8 Stoßprobleme Stöße sind kurzzeitige Körperkontakte mit großen Kontaktkräften, die zu sprungförmiger Änderung des Geschwindigkeitszustands führen. Theoretisch könnte man ein solches Stoßproblem mit den

Mehr

3. Impuls und Drall. Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik 2.3-1

3. Impuls und Drall. Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik 2.3-1 3. Impuls und Drall Die Integration der Bewegungsgleichung entlang der Bahn führte auf die Begriffe Arbeit und Energie. Die Integration der Bewegungsgleichung bezüglich der Zeit führt auf die Begriffe

Mehr

5. Zustandsgleichung des starren Körpers

5. Zustandsgleichung des starren Körpers 5. Zustandsgleichung des starren Körpers 5.1 Zustandsgleichung 5.2 Körper im Schwerefeld 5.3 Stabilität freier Rotationen 2.5-1 5.1 Zustandsgleichung Zustand: Der Zustand eines starren Körpers ist durch

Mehr

3. Systeme von starren Körpern

3. Systeme von starren Körpern Systeme von starren Körpern lassen sich folgendermaßen berechnen: Die einzelnen starren Körper werden freigeschnitten. Für jeden einzelnen Körper werden die Bewegungsgleichungen aufgestellt. Die kinematischen

Mehr

2.4 Stoßvorgänge. Lösungen

2.4 Stoßvorgänge. Lösungen .4 Stoßvorgänge Lösungen Aufgabe 1: a) Geschwindigkeit und Winkel: Für die Wurfhöhe gilt: H = v 0 g sin Die zugehörige x-koordinate ist: x 1 = v 0 g sincos Aus diesen beiden Gleichungen lässt sich die

Mehr

1. Impuls- und Drallsatz

1. Impuls- und Drallsatz 1. Impuls- und Drallsatz Impulssatz Bewegung des Schwerpunkts des örpers aufgrund vorgegebener räfte Drallsatz Drehung des örpers aufgrund vorgegebener Momente Prof. Dr. Wandinger 3. inetik des starren

Mehr

ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern

ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern WS 12/13, 13.02.2013 1. Aufgabe: (TM III) Um vom Boden aufzustehen, rutscht ein Mensch mit konstanter Geschwindigkeitv

Mehr

Naturwissenschaftliches Praktikum. Rotation. Versuch 1.1

Naturwissenschaftliches Praktikum. Rotation. Versuch 1.1 Naturwissenschaftliches Praktikum Rotation Versuch 1.1 Inhaltsverzeichnis 1 Versuchsziel 3 2 Grundlagen 3 2.1 Messprinzip............................. 3 2.2 Energiesatz............................. 3 2.3

Mehr

5. Kritische Drehzahl

5. Kritische Drehzahl Aufgabenstellung: 5. Kritische Drehzahl y y Ω c/4 c/4 m c/4 e z O O S c/4 x Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.5-1 Der starre Körper mit der Masse m dreht sich mit der konstanten Winkelgeschwindigkeit

Mehr

2. Momentanpol. Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: y A ), v Py. =v Ay

2. Momentanpol. Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: y A ), v Py. =v Ay ufgabenstellung: Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: Gesucht ist der Punkt П, dessen momentane Geschwindigkeit null ist. Lösung: v Px =x ( y P y ), v Py =y +

Mehr

Physikalisches Praktikum M 7 Kreisel

Physikalisches Praktikum M 7 Kreisel 1 Physikalisches Praktikum M 7 Kreisel Versuchsziel Quantitative Untersuchung des Zusammenhangs von Präzessionsfrequenz, Rotationsfrequenz und dem auf die Kreiselachse ausgeübten Kippmoment Literatur /1/

Mehr

2.1 Kinematik 2.2 Momentensatz 2.3 Arbeit und Energie. 2. Kreisbewegung. Prof. Dr. Wandinger 3. Kinematik und Kinetik TM 3.2-1

2.1 Kinematik 2.2 Momentensatz 2.3 Arbeit und Energie. 2. Kreisbewegung. Prof. Dr. Wandinger 3. Kinematik und Kinetik TM 3.2-1 2.1 inematik 2.2 Momentensatz 2.3 Arbeit und Energie 2. reisbewegung Prof. Dr. Wandinger 3. inematik und inetik TM 3.2-1 2.1 inematik Bahngeschwindigkeit und Winkelgeschwindigkeit: Für den auf einer reisbahn

Mehr

Übung zu Mechanik 3 Seite 48

Übung zu Mechanik 3 Seite 48 Übung zu Mechanik 3 Seite 48 Aufgabe 81 Vor einer um das Maß f zusammengedrückten und verriegelten Feder mit der Federkonstanten c liegt ein Massenpunkt der Masse m. a) Welchen Wert muß f mindestens haben,

Mehr

2. Translation und Rotation

2. Translation und Rotation 2. Translation und Rotation 2.1 Rotation eines Vektors 2.2 Rotierendes ezugssystem 2.3 Kinetik Prof. Dr. Wandinger 2. Relativbewegungen Dynamik 2 2.2-1 2.1 Rotation eines Vektors Gesucht wird die zeitliche

Mehr

Drehbewegungen (Rotation)

Drehbewegungen (Rotation) Drehbewegungen (Rotation) Drehungen (Rotation) Die allgemeine Bewegung eines Systems von Massepunkten lässt sich immer zerlegen in: und Translation Rotation Drehungen - Rotation Die kinematischen Variablen

Mehr

6. Knappstein Kinematik und Kinetik

6. Knappstein Kinematik und Kinetik 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. 6. Knappstein Kinematik und Kinetik Inhaltsverzeichnis 0 Einleitung

Mehr

M1 Maxwellsches Rad. 1. Grundlagen

M1 Maxwellsches Rad. 1. Grundlagen M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten

Mehr

5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 203. Abbildung 5.12: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text)

5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 203. Abbildung 5.12: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text) 5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 03 ρ α r α R Abbildung 5.1: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text) 5.4 Kinetische Energie eines Starren Körpers In diesem

Mehr

Technische Mechanik Dynamik

Technische Mechanik Dynamik Hans Albert Richard Manuela Sander Technische Mechanik Dynamik Grundlagen - effektiv und anwendungsnah Mit 135 Abbildungen Viewegs Fachbiicher der Technik vieweg VII VII 1 Fragestellungen der Dynamik 1

Mehr

Ebene & räumliche Bewegungen. Eine starre ebene Bewegung ist entweder eine. Translation: alle Punkte haben parallele Geschwindigk.

Ebene & räumliche Bewegungen. Eine starre ebene Bewegung ist entweder eine. Translation: alle Punkte haben parallele Geschwindigk. TechMech Zusammenfassung Ebene & räumliche Bewegungen Drehmoment M [Nm] Andreas Biri, D-ITET 31.07.13 1. Grundlagen Eine starre ebene Bewegung ist entweder eine Translation: alle Punkte haben parallele

Mehr

Massenträgheitsmomente homogener Körper

Massenträgheitsmomente homogener Körper http://www.youtube.com/watch?v=naocmb7jsxe&feature=playlist&p=d30d6966531d5daf&playnext=1&playnext_from=pl&index=8 Massenträgheitsmomente homogener Körper 1 Ma 1 Lubov Vassilevskaya Drehbewegung um c eine

Mehr

1. Eindimensionale Bewegung

1. Eindimensionale Bewegung 1. Eindimensionale Bewegung Die Gesamtheit aller Orte, die ein Punkt während seiner Bewegung einnimmt, wird als Bahnkurve oder Bahn bezeichnet. Bei einer eindimensionalen Bewegung bewegt sich der Punkt

Mehr

1. Einfache ebene Tragwerke

1. Einfache ebene Tragwerke Die Ermittlung der Lagerreaktionen einfacher Tragwerke erfolgt in drei Schritten: Freischneiden Aufstellen der Gleichgewichtsbedingungen Auflösen der Gleichungen Prof. Dr. Wandinger 3. Tragwerksanalyse

Mehr

4.9 Der starre Körper

4.9 Der starre Körper 4.9 Der starre Körper Unter einem starren Körper versteht man ein physikalische Modell von einem Körper der nicht verformbar ist. Es erfolgt eine Idealisierung durch die Annahme, das zwei beliebig Punkte

Mehr

a) Stellen Sie den Drallsatz für die Wirbelstrombremse auf. b) Bestimmen Sie ω(t) für den Fall, dass ω(t = 0)=ω 0 ist.

a) Stellen Sie den Drallsatz für die Wirbelstrombremse auf. b) Bestimmen Sie ω(t) für den Fall, dass ω(t = 0)=ω 0 ist. und Experimentelle Mechani Technische Mechani III aer, ee ZÜ 8. Aufgabe 8. B ω Bei einer Wirbelstrombremse wird das chwungrad Masse m, adius r durch einen Bremsmagnet B verzögert. Das hierbei wirende Bremsmoment

Mehr

2. Physikalisches Pendel

2. Physikalisches Pendel 2. Physikalisches Pendel Ein physikalisches Pendel besteht aus einem starren Körper, der um eine Achse drehbar gelagert ist. A L S φ S z G Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.2-1 2.1 Bewegungsgleichung

Mehr

Grundlagen der Physik 1 Lösung zu Übungsblatt 6

Grundlagen der Physik 1 Lösung zu Übungsblatt 6 Grundlagen der Physik 1 Lösung zu Übungsblatt 6 Daniel Weiss 20. November 2009 Inhaltsverzeichnis Aufgabe 1 - Massen auf schiefer Ebene 1 Aufgabe 2 - Gleiten und Rollen 2 a) Gleitender Block..................................

Mehr

06/02/12. Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise:

06/02/12. Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: Prof Dr-Ing Ams Klausur Technische Mechanik C 06/0/1 Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: - Die Prüfungszeit beträgt zwei Stunden - Erlaubte Hilfsmittel

Mehr

1. Rotation um eine feste Achse

1. Rotation um eine feste Achse 1. Rotation um eine feste Achse Betrachtet wird ein starrer Körper, der sich um eine raumfeste Achse dreht. z ω Das Koordinatensystem wird so gewählt, dass die Drehachse mit der z-achse zusammenfällt.

Mehr

Spezialfall m 1 = m 2 und v 2 = 0

Spezialfall m 1 = m 2 und v 2 = 0 Spezialfall m 1 = m 2 und v 2 = 0 Impulserhaltung: Quadrieren ergibt Energieerhaltung: Deshalb muss gelten m v 1 = m ( u 1 + u 2 ) m 2 v 1 2 = m 2 ( u 2 1 + 2 u 1 u 2 + u 2 ) 2 m 2 v2 1 = m 2 ( u 2 1 +

Mehr

1. Prinzip von d'alembert

1. Prinzip von d'alembert 1. Prinzip von d'alembert 1.1 Freiheitsgrade 1.2 Zwangsbedingungen 1.3 Virtuelle Geschwindigkeiten 1.4 Prinzip der virtuellen Leistung Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik 2 5.1-1 1.1

Mehr

Mehmet Maraz. MechanikNachhilfe

Mehmet Maraz. MechanikNachhilfe Mehmet Maraz MechanikNachhilfe 1. Auflage 015 Inhaltsverzeichnis 1 Statik 1 1.1 Lagerungen und Lagerreaktionen................. 1. Kräftegleichgewichte......................... 5 1..1 Drehmoment.........................

Mehr

3. Seilhaftung und Seilreibung

3. Seilhaftung und Seilreibung 3. Seilhaftung und Seilreibung Prof. Dr. Wandinger 5. Haftung und Reibung TM 1 5.3-1 3. Seilhaftung und Seilreibung 3.1 Haften 3.2 Gleiten Prof. Dr. Wandinger 5. Haftung und Reibung TM 1 5.3-2 Bei einer

Mehr

Technische Mechanik Kinematik und Kinetik

Technische Mechanik Kinematik und Kinetik Günther Holzmann Heinz Meyer Georg Schumpich Technische Mechanik Kinematik und Kinetik 10., überarbeitete Auflage Mit 315 Abbildungen, 138 Beispielen und 172 Aufgaben Von Prof. Dr.-Ing. Heinz Meyer unter

Mehr

1. Kinematik. 1.1 Lage 1.2 Geschwindigkeit. Starrkörperdynamik Prof. Dr. Wandinger. 2. Der starre Körper

1. Kinematik. 1.1 Lage 1.2 Geschwindigkeit. Starrkörperdynamik Prof. Dr. Wandinger. 2. Der starre Körper 1. Kinematik 1.1 Lage 1.2 Geschwindigkeit 2.1-1 Aus den Eigenschaften des starren Körpers folgt: Wird an einem beliebigen Punkt B des starren Körpers ein kartesisches Koordinatensystem Bξηζ aufgetragen,

Mehr

Technische Mechanik Kinematik und Kinetik

Technische Mechanik Kinematik und Kinetik Technische Mechanik Kinematik und Kinetik Bearbeitet von Hans-Joachim Dreyer, Conrad Eller, Günther Holzmann, Heinz Meyer, Georg Schumpich 1. Auflage 2012. Taschenbuch. xii, 363 S. Paperback ISBN 978 3

Mehr

8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels

8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 8. Drehbewegungen 8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 85 8.5 Kinetische Energie der Rotation ti 8.6 Berechnung

Mehr

Klausur Technische Mechanik C

Klausur Technische Mechanik C Klausur Technische Mechanik C 1/2/14 Matrikel: Studiengang: Hinweise: - Die Prüfungszeit beträgt zwei Stunden - Erlaubte Hilfsmittel sind: Formelsammlungen, Deckblätter der Übungsaufgaben und Taschenrechner

Mehr

1. Bewegungsgleichung

1. Bewegungsgleichung 1. Bewegungsgleichung 1.1 Das Newtonsche Grundgesetz 1.2 Dynamisches Gleichgewicht 1.3 Geführte Bewegung 1.4 Massenpunktsysteme 1.5 Schwerpunktsatz Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik

Mehr

2. Kontinuierliche Massenänderung

2. Kontinuierliche Massenänderung Untersucht wird ein Körper, der kontinuierlich Masse ausstößt. Es sollen zunächst keine äußeren Kräfte auf den Körper wirken. Bezeichnungen: Masse des ausstoßenden Körpers: m(t) Pro Zeiteinheit ausgestoßene

Mehr

Aufgabensammlung. Experimentalphysik für ET. 2. Erhaltungsgrößen

Aufgabensammlung. Experimentalphysik für ET. 2. Erhaltungsgrößen Experimentalphysik für ET Aufgabensammlung 1. Erhaltungsgrößen An einem massenlosen Faden der Länge L = 1 m hängt ein Holzklotz mit der Masse m 2 = 1 kg. Eine Kugel der Masse m 1 = 15 g wird mit der Geschwindigkeit

Mehr

Welche der Darstellungen hat das oberflächlichste Niveau? ( ) A) ( ) B) ( ) C) ( ) D)

Welche der Darstellungen hat das oberflächlichste Niveau? ( ) A) ( ) B) ( ) C) ( ) D) Welche der Größen ist extensiv? ( ) Lautstärke eines Kopfhörers ( ) Rasenfläche eines Fußballplatzes ( ) Farbe der Wand in Ihrer Küche ( ) Geschmack eines Kuchens Welche der Darstellungen hat das oberflächlichste

Mehr

1 Technische Mechanik 3 Dynamik

1 Technische Mechanik 3 Dynamik Russell C. Hibbeler 1 Technische Mechanik 3 Dynamik 10., überarbeitete und erweiterte Auflage Übersetzung aus dem Amerikanischen: Georgia Mais Fachliche Betreuung und Erweiterungen: Jörg Wauer, Wolfgang

Mehr

Inhaltsverzeichnis. 0 Einleitung 1. 1 Kinematik der geradlinigen Bewegung eines Punktes Grundbegriffe und Formeln... 1

Inhaltsverzeichnis. 0 Einleitung 1. 1 Kinematik der geradlinigen Bewegung eines Punktes Grundbegriffe und Formeln... 1 Inhaltsverzeichnis 0 Einleitung 1 1 Kinematik der geradlinigen Bewegung eines Punktes 1 1.1 Grundbegriffe und Formeln... 1 1.1.1 Ort, Geschwindigkeit, Beschleunigung... 1 1.1.2 Kinematische Diagramme...

Mehr

I.6.3 Potentielle Energie eines Teilchensystems. m i. N z i. i=1. = gmz M. i=1. I.6.4 Kinetische Energie eines Teilchensystems

I.6.3 Potentielle Energie eines Teilchensystems. m i. N z i. i=1. = gmz M. i=1. I.6.4 Kinetische Energie eines Teilchensystems I.6.3 Potentielle Energie eines Teilchensystems Beispiel: Einzelmassen im Schwerefeld U i = m i gz i jetzt viele Massen im Schwerefeld: Gesamtenergie U = m i gz i m i z i = gm m i = gmz M Man muss also

Mehr

3.2 Das physikalische Pendel (Körperpendel)

3.2 Das physikalische Pendel (Körperpendel) 18 3 Pendelschwingungen 32 Das physikalische Pendel (Körperpendel) Ein starrer Körper (Masse m, Schwerpunkt S, Massenträgheitsmoment J 0 ) ist um eine horizontale Achse durch 0 frei drehbar gelagert (Bild

Mehr

Spezialfall m 1 = m 2 und v 2 = 0

Spezialfall m 1 = m 2 und v 2 = 0 Spezialfall m 1 = m 2 und v 2 = 0 Impulserhaltung: Quadrieren ergibt Energieerhaltung: Deshalb muss gelten m v 1 = m( u 1 + u 2 ) m 2 v 1 2 = m 2 ( u 2 1 + 2 u 1 u 2 + u 2 ) 2 m 2 v2 1 = m 2 ( u 2 1 +

Mehr

Kinematik des starren Körpers

Kinematik des starren Körpers Technische Mechanik II Kinematik des starren Körpers Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes

Mehr

Ludwig Maximilians Universität München Fakultät für Physik. Lösungsblatt 8. Übungen E1 Mechanik WS 2017/2018

Ludwig Maximilians Universität München Fakultät für Physik. Lösungsblatt 8. Übungen E1 Mechanik WS 2017/2018 Ludwig Maximilians Universität München Fakultät für Physik Lösungsblatt 8 Übungen E Mechanik WS 27/28 Dozent: Prof. Dr. Hermann Gaub Übungsleitung: Dr. Martin Benoit und Dr. Res Jöhr Verständnisfragen

Mehr

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Massenpunkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf

Mehr

τ 30 N/mm bekannt. N mm N mm Aufgabe 1 (7 Punkte)

τ 30 N/mm bekannt. N mm N mm Aufgabe 1 (7 Punkte) Institut für Technische und Num. Mechanik Technische Mechanik IIIII Profs. P. Eberhard, M. Hanss WS 114 P 1. Februar 14 Bachelor-Prüfung in Technischer Mechanik IIIII Nachname, Vorname Matr.-Nummer Fachrichtung

Mehr

3. Erhaltungsgrößen und die Newton schen Axiome

3. Erhaltungsgrößen und die Newton schen Axiome Übungen zur T1: Theoretische Mechanik, SoSe13 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray James.Gray@physik.uni-muenchen.de 3. Erhaltungsgrößen und die Newton schen Axiome Übung 3.1:

Mehr

Technische Mechanik. Dynamik. Peter Hagedorn. Band 3. Verlag Harri Deutsch

Technische Mechanik. Dynamik. Peter Hagedorn. Band 3. Verlag Harri Deutsch Peter Hagedorn 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Technische Mechanik Band 3 Dynamik Verlag Harri Deutsch

Mehr

Peter Hagedorn. Technische Mechanik. Band 3. Dynamik. 2., überarbeitete und erweiterte Auflage. Verlag Harri Deutsch

Peter Hagedorn. Technische Mechanik. Band 3. Dynamik. 2., überarbeitete und erweiterte Auflage. Verlag Harri Deutsch Peter Hagedorn Technische Mechanik Band 3 Dynamik 2., überarbeitete und erweiterte Auflage Verlag Harri Deutsch Inhaltsverzeichnis 1 Einleitung 1 2 Kinematik 3 2.1 Kinematik des Punktes 3 2.1.1 Die geradlinige

Mehr

Wiederholung Physik I - Mechanik

Wiederholung Physik I - Mechanik Universität Siegen Wintersemester 2011/12 Naturwissenschaftlich-Technische Fakultät Prof. Dr. M. Risse, M. Niechciol Department Physik 9. Übungsblatt zur Vorlesung Physik II für Elektrotechnik-Ingenieure

Mehr

1. Eindimensionale Bewegung

1. Eindimensionale Bewegung 1. Eindimensionale Bewegung Die Gesamtheit aller Orte, die ein Massenpunkt während seiner Bewegung einnimmt, wird als Bahnkurve oder Bahn bezeichnet. Bei einer eindimensionalen Bewegung ist die Bahn vorgegeben:

Mehr

6 Dynamik der Translation

6 Dynamik der Translation 6 Dynamik der Translation Die Newton sche Axiome besagen, nach welchen Geseten sich Massenpunkte im Raum bewegen. 6.1.1 Erstes Newton sches Axiom (Trägheitsgeset = law of inertia) Das erste Newton sche

Mehr

Experimentalphysik für ET. Aufgabensammlung

Experimentalphysik für ET. Aufgabensammlung Experimentalphysik für ET Aufgabensammlung 1. Drehbewegung Ein dünner Stab der Masse m = 5 kg mit der Querschnittsfläche A und der Länge L = 25 cm dreht sich um eine Achse durch seinen Schwerpunkt (siehe

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

Physik 1 Zusammenfassung

Physik 1 Zusammenfassung Physik 1 Zusammenfassung Lukas Wilhelm 31. August 009 Inhaltsverzeichnis 1 Grundlagen 3 1.1 Mathe...................................... 3 1.1.1 Einheiten................................ 3 1. Trigonometrie..................................

Mehr

Rotierende Bezugssysteme

Rotierende Bezugssysteme Rotierende Bezugssysteme David Graß 13.1.1 1 Problematik Fährt ein Auto in eine Kurve, so werden die Innsassen nach außen gedrückt, denn scheinbar wirkt eine Kraft auf die Personen im Innern des Fahrzeuges.

Mehr

Bewegung in Systemen mit mehreren Massenpunkten

Bewegung in Systemen mit mehreren Massenpunkten Bewegung in Systemen mit mehreren Massenpunkten Wir betrachten ein System mit mehreren Massenpunkten. Für jeden Massenpunkt i einzeln gilt nach Newton 2: F i = d p i dt. Für n Massenpunkte muss also ein

Mehr

Technische Mechanik III Übung WS 2002 / Klausur Teil 1. Linz, 29. November Name: Vorname: Matrikelnummer: Studienkennzahl: Unterschrift:

Technische Mechanik III Übung WS 2002 / Klausur Teil 1. Linz, 29. November Name: Vorname: Matrikelnummer: Studienkennzahl: Unterschrift: echnische Mechanik III Übung WS 2002 / 2003 Klausur eil 1 Abteilung für obotik o. Univ.-Prof. Dr.-Ing. Hartmut Bremer el.: +43/732/2468-9786 Fax: +43/732/2468-9792 bremer@mechatronik.uni-linz.ac.at Sekretariat:

Mehr

2. Trägheitstensor. Prof. Dr. Wandinger 3. Kinetik des starren Körpers Dynamik

2. Trägheitstensor. Prof. Dr. Wandinger 3. Kinetik des starren Körpers Dynamik 2. Trägheitstensor Der Drall hängt ab von der Verteilung der Masse und der Geschwindigkeit über den örper. Die Geschwindigkeitsverteilung ergibt sich aus der Überlagerung einer Translation und einer Rotation.

Mehr

Energie und Energieerhaltung

Energie und Energieerhaltung Arbeit und Energie Energie und Energieerhaltung Es gibt keine Evidenz irgendwelcher Art dafür, dass Energieerhaltung in irgendeinem System nicht erfüllt ist. Energie im Austausch In mechanischen und biologischen

Mehr

2. Klausur zur Theoretischen Physik I (Mechanik)

2. Klausur zur Theoretischen Physik I (Mechanik) 2. Klausur zur Theoretischen Physik I (echanik) 09.07.2004 Aufgabe 1 Physikalisches Pendel 4 Punkte Eine homogene, kreisförmige, dünne Platte mit Radius R und asse ist am Punkt P so aufgehängt, daß sie

Mehr

+m 2. r 2. v 2. = p 1

+m 2. r 2. v 2. = p 1 Allgemein am besten im System mit assenmittelpunkt (centre of mass frame) oder Schwerpunktsystem (=m 1 +m ) r = r 1 - r =m 1 +m Position vom Schwerpunkt: r r 1 +m r v =m 1 v 1 +m v = p 1 + p ist die Geschwindigkeit

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Wenn die Bahn des Massenpunkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort im Raum zu bestimmen. Es muss ein Ortsvektor angegeben werden. Prof.

Mehr

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Punkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf einem

Mehr

Ferienkurs Experimentalphysik Übung 2 - Lösungsvorschlag

Ferienkurs Experimentalphysik Übung 2 - Lösungsvorschlag Ferienkurs Experimentalphysik 1 2011 Übung 2 - Lösungsvorschlag 1. Elastischer Stoß a) Ein Teilchen der Masse m 1 stößt zentral und elastisch mit einem im Laborsystem ruhenden Teilchen der Masse m 2. Wie

Mehr

Biegelinie

Biegelinie 3. Biegelinie Die Biegemomente führen zu einer Verformung der Balkenachse, die als Biegelinie bezeichnet wird. Die Biegelinie wird beschrieben durch die Verschiebung v in y-richtung und die Verschiebung

Mehr

6 Mechanik des Starren Körpers

6 Mechanik des Starren Körpers 6 Mechanik des Starren Körpers Ein Starrer Körper läßt sich als System von N Massenpunkten m (mit = 1,...,N) auffassen, die durch starre, masselose Stangen miteinander verbunden sind. Dabei ist N M :=

Mehr

m 1 und E kin, 2 = 1 2 m v 2 Die Gesamtenergie des Systems Zwei Wagen vor dem Stoß ist dann:

m 1 und E kin, 2 = 1 2 m v 2 Die Gesamtenergie des Systems Zwei Wagen vor dem Stoß ist dann: Wenn zwei Körper vollkommen elastisch, d.h. ohne Energieverluste, zusammenstoßen, reicht der Energieerhaltungssatz nicht aus, um die Situation nach dem Stoß zu beschreiben. Wenn wir als Beispiel zwei Wagen

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 6: Drehimpuls, Verformung Dr. Daniel Bick 18. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 18. November 2016 1 / 27 Stoß auf Luftkissenschiene

Mehr

Biegelinie

Biegelinie 3. Biegelinie Die Biegemomente führen zu einer Verformung der Balkenachse, die als Biegelinie bezeichnet wird. Die Biegelinie wird beschrieben durch die Verschiebung v in y-richtung und die Verschiebung

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 6: Drehimpuls, Verformung Dr. Daniel Bick 18. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 18. November 2016 1 / 27 Stoß auf Luftkissenschiene

Mehr

v 1 vor m 1 v 1 nach

v 1 vor m 1 v 1 nach Aufgaben Aufgabe 1 Ein Gleiter mit der Masse = 500g stößt elastisch auf einen zweiten Gleiter (Masse ist unbekannt). Die Geschwindigkeit des 1. Gleiters vor dem Stoß beträgt v 1 vor = 1,5 m/s, und nach

Mehr

KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 17. März 2012 Die Bearbeitungszeit für alle drei Aufgaben beträgt 90 Minuten.

KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 17. März 2012 Die Bearbeitungszeit für alle drei Aufgaben beträgt 90 Minuten. KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 7. März Die Bearbeitungszeit für alle drei Aufgaben beträgt 9 Minuten. AUFGABE (6 Punkte) Der Stab in Abb. mit l =,5 m ist in gelenkig gelagert und in abgestützt.

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 6: Drehimpuls, Verformung Dr. Daniel Bick 24. November 2017 Daniel Bick Physik für Biologen und Zahnmediziner 24. November 2017 1 / 28 Versuch: Newton Pendel

Mehr

9 Teilchensysteme. 9.1 Schwerpunkt

9 Teilchensysteme. 9.1 Schwerpunkt der Impuls unter ganz allgemeinen Bedingungen erhalten bleibt. Obwohl der Impulserhaltungssatz, wie wir gesehen haben, aus dem zweiten Newton schen Axiom folgt, ist er tatsächlich allgemeiner als die Newton

Mehr

1. Kinematik. Untersucht wird die Bewegung eines Punktes P in Bezug auf zwei Bezugssysteme: Bezugssystem Oxyz ist ruhend:

1. Kinematik. Untersucht wird die Bewegung eines Punktes P in Bezug auf zwei Bezugssysteme: Bezugssystem Oxyz ist ruhend: Untersucht wird die ewegung eines Punktes P in ezug auf zwei ezugssysteme: ezugssystem Oxyz ist ruhend: Ursprung O Einheitsvektoren e x, e y, e z Koordinaten x, y, z ezugssystem ξηζ bewegt sich: Ursprung

Mehr

2. Kinematik. Inhalt. 2. Kinematik

2. Kinematik. Inhalt. 2. Kinematik 2. Kinematik Inhalt 2. Kinematik 2.1 Arten der Bewegung 2.2 Mittlere Geschwindigkeit (1-dimensional) 2.3 Momentane Geschwindigkeit (1-dimensional) 2.4 Beschleunigung (1-dimensional) 2.5 Bahnkurve 2.6 Bewegung

Mehr

3. Allgemeine Kraftsysteme

3. Allgemeine Kraftsysteme 3. Allgemeine Kraftsysteme 3.1 Parallele Kräfte 3.2 Kräftepaar und Moment 3.3 Gleichgewicht in der Ebene Prof. Dr. Wandinger 1. Statik TM 1.3-1 3.1 Parallele Kräfte Bei parallelen Kräften in der Ebene

Mehr

2. Kinematik. Inhalt. 2. Kinematik

2. Kinematik. Inhalt. 2. Kinematik 2. Kinematik Inhalt 2. Kinematik 2.1 Grundsätzliche Bewegungsarten 2.2 Modell Punktmasse 2.3 Mittlere Geschwindigkeit (1-dimensional) 2.4 Momentane Geschwindigkeit (1-dimensional) 2.5 Beschleunigung (1-dimensional)

Mehr

() = Aufgabe 1 ( Punkte) Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 2012 P 2

() = Aufgabe 1 ( Punkte) Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 2012 P 2 Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 212 P 2 BachelorPrüfung in Technischer Mechanik II/III Nachname, Vorname Matr.Nummer Fachrichtung 28.

Mehr

Lineare Funktion Eigenschaften von linearen Funktionen Übungen Bearbeite zu jeder der gegebenen Funktionen die Fragen:

Lineare Funktion Eigenschaften von linearen Funktionen Übungen Bearbeite zu jeder der gegebenen Funktionen die Fragen: Lineare Funktion Eigenschaften von linearen Funktionen Übungen - 3 2.0 Bearbeite zu jeder der gegebenen Funktionen die Fragen: steigt oder fällt der Graph der Funktion? schneidet der Graph die y-achse

Mehr

Hinweis: Geben Sie für den Winkel α keinen konkreten Wert, sondern nur für sin α und/oder cos α an.

Hinweis: Geben Sie für den Winkel α keinen konkreten Wert, sondern nur für sin α und/oder cos α an. 1. Geschwindigkeiten (8 Punkte) Ein Schwimmer, der sich mit konstanter Geschwindigkeit v s = 1.25 m/s im Wasser vorwärts bewegen kann, möchte einen mit Geschwindigkeit v f = 0.75 m/s fließenden Fluß der

Mehr

Dynamik der Atmosphäre. Einige Phänomene

Dynamik der Atmosphäre. Einige Phänomene Dynamik der Atmosphäre Einige Phänomene Extratropische Zyklone L L L = 1000 km U = 10 m/sec Tropische Zyklon, Hurrikan, Taifun L L = 500 km U = 50 m/sec Cumulonimbuswolke L L = 10-50 km U = 10-20 m/sec

Mehr

Wie muss x gewählt werden, so dass K 1 anschließend einen geraden Stoß mit K 3 ausführt?

Wie muss x gewählt werden, so dass K 1 anschließend einen geraden Stoß mit K 3 ausführt? ZÜ 2.1 Aufgbe 2.1 Drei Kugeln K 1, K 2 und K 3 Mssen, m 2 und m 3 befinden sich in einer Rille und berühren sich nicht. Die erste Kugel gleitet mit der Geschwindigkeit v1 und stößt vollkommen elstisch

Mehr

Versuch dp : Drehpendel

Versuch dp : Drehpendel U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Physikpraktikum für Chemiker Versuch dp : Drehpendel Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung

Mehr

1. Grundlagen: t r (t): r = Ortsvektor, v = Schnelligkeit

1. Grundlagen: t r (t): r = Ortsvektor, v = Schnelligkeit 1. Grundlagen: Freiheitsgrad = mindestens benötigte Anzahl Lagekoordinaten: f = n b Starrer Körper hat Freiheitsgrad 6 in 3D resp. 3 in D: FG aller Körper - # unabh. indungsgl. t r (t): r = Ortsvektor,

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Prof. Dr. Wandinger 1. Kinematik des Punktes TM 3 1.2-1 2. Räumliche Bewegung Wenn die Bahn des Punkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort

Mehr

Impuls/Kraft als Vektor, Impulsbilanz/Grundgesetz, Reibung

Impuls/Kraft als Vektor, Impulsbilanz/Grundgesetz, Reibung TBM, Physik, T. Borer Übung 1-006/07 Übung 1 Mechanik Impuls/Kraft als Vektor, Impulsbilanz/Grundgesetz, Reibung Lernziele - die vektorielle Addition bzw. Zerlegung von Impuls, Impulsstrom und Kraft zur

Mehr

2.4 Stoßprozesse. entweder nicht interessiert o- der keine Möglichkeit hat, sie zu untersuchen oder zu beeinflussen.

2.4 Stoßprozesse. entweder nicht interessiert o- der keine Möglichkeit hat, sie zu untersuchen oder zu beeinflussen. - 52-2.4 Stoßprozesse 2.4.1 Definition und Motivation Unter einem Stoß versteht man eine zeitlich begrenzte Wechselwirkung zwischen zwei oder mehr Systemen, wobei man sich für die Einzelheiten der Wechselwirkung

Mehr

3. Erzwungene Schwingungen

3. Erzwungene Schwingungen 3. Erzwungene Schwingungen 3.1 Grundlagen 3.2 Tilger 3.3 Kragbalken 3.4 Fahrbahnanregung 3.3-1 3.1 Grundlagen Untersucht wird die Antwort des Systems auf eine Anregung mit harmonischem Zeitverlauf. Bewegungsgleichung:

Mehr

2. Kinematik. Inhalt. 2. Kinematik

2. Kinematik. Inhalt. 2. Kinematik 2. Kinematik Inhalt 2. Kinematik 2.1 Modell Punktmasse 2.2 Mittlere Geschwindigkeit (1-dimensional) 2.3 Momentane Geschwindigkeit (1-dimensional) 2.4 Beschleunigung (1-dimensional) 2.5 Bahnkurve 2.6 Bewegung

Mehr