Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben"

Transkript

1 Seite Einführung in die Integrlrechnung Lösungen und Ergenisse Gr Stefn Gärtner Grundkurs Mthemtik Einführung in die Integrlrechnung Lösungen und Ergenisse zu den Aufgen Von llen Wissenschftlern können vielleicht die Mthemtiker m schlechtesten rechnen. Der Grund hierfür ist und ds ist einzigrtig in den Nturwissenschften -, dss gerde in der Mthemtik prktisch nie irgendeine Berechnung nfällt. Nicht, dss die Mthemtiker lle ihre Berechnungen von ihren Computern erledigen ließen in der modernen Mthemtik kommen einfch so gut wie keine Rechnungen vor. Keith Devlin, Ds Mthe-Gen, dtv, München, S. 66f Gro gesgt ist jedes Prolem, ds mit Hilfe eines Tschenrechners gelöst werden knn, kein mthemtisches Prolem. Keith Devlin, Ds Mthe-Gen, dtv, München, S. 6 Alle Angen ohne Gewähr! Stefn Gärtner 996-

2 Seite Einführung in die Integrlrechnung Lösungen und Ergenisse Gr ) Ws ändert sich in der oigen Zeichnung, wenn der Grph der Stmmfunktion nicht durch den Punkt /), sondern durch /) [zw. /-)] verläuft? Ändert sich uch der Term von F? Gilt in jedem Fll F ) f)? Der Grph von F leit jeweils eine Gerde mit der Steigung, die lediglich in y- Richtung prllel verschoen ist. Also F: zw. F:. In jedem Fll gilt F ) f). Auf ds Wssermengen-Zufluss-Modell ezogen edeutet dies lediglich, dss zur Zeit jeweils eine ndere Menge im Wssertnk enthlten ist. Die Mengenänderung im Zeitluf leit er gleich. ) Erläutern Sie, wrum der Grph von F für negtive -Werte uch negtive Funktionswerte ht. D der Grph der Rndfunktion f die Änderung Zufluss) der Stmmfunktion F ngit und F zu Zeit den Wert Wssermenge) ht, er uch vorher schon eine positive Änderung Zufluss) durch f) eschrieen ist, muss der Wert Wssermenge) von F links von kleiner ls sein. ) Zeichnen Sie jeweils f) und den zugehörigen Grph F) für ) f) ) f) - c) f) edeutet, dss F üerll die Steigung ht. D F) folgt F). In llen Fällen estätigt sich der Zusmmenhng zwischen Grph und Fläche. In Beispiel ) ist zu echten, dss die Fläche unterhl der -Achse liegt, lso Gefälle zw. Afluss) repräsentiert. Entsprechend sind die Wertveränderungen der zugehörigen Stmmfunktion negtiv. ) Begründen Sie: Wenn nicht festgelegt wird, dss der Grph der Stmmfunktion durch den Ursprung verläuft, so git es unendlich viele verschiedene mögliche Stmmfunktionsgrphen. Diese unterscheiden sich jedoch nur um eine Verschieung in y-richtung.. D eim Aleiten konstnte Glieder wegfllen, sind unendlich viele verschiedene Funktionen Stmmfunktionen zu einer gegeenen Rndfunktion. Nämlich mindestens lle in y-richtung verschoenen Funktionen. Dies wird möglich, wenn nicht F) gefordert wird. Alle Angen ohne Gewähr! Stefn Gärtner 996-

3 Seite Einführung in die Integrlrechnung Lösungen und Ergenisse Gr. Ds sind uch schon lle möglichen Stmmfunktionen, denn es gilt: Flls F und G zwei Stmmfunktionen von f sind, dnn gilt [F) G)] F ) - G ) f) f). Die Aleitung der Differenz von F und G ht üerll die Steigung, dmit muss ihr Grph wgerecht sein, lso ein eine Konstnte c R. Also gilt: F) G) c F) G) c. F und G unterscheiden sich lso höchstens um eine Verschieung in y- Richtung. ) ) f)> im Intervll [; ] edeutet positive Steigung Zufluss), lso dss die Stmmfunktion Wssermenge) im gesmten Intervll steigt. Die Gesmtsteigung entspricht der Flächenmßzhl zwischen dem Grph der Rndfunktion f und der -Achse und diese knn m Grph der Stmmfunktion Wssermengenfunktion) ls Differenz der Funktionswerte Wssermengen) zu Beginn [F)] und m Ende des Intervlls [F)] gelesen werden F F) - F). ) f)< im Intervll [; ] edeutet negtive Steigung Afluss), lso dss die Stmmfunktion Wssermenge) im gesmten Intervll fällt. Ds Gesmtgefälle entspricht der Flächenmßzhl zwischen dem Grph der Rndfunktion f und der -Achse und diese knn m Grph der Stmmfunktion Wssermengenfunktion) ls Differenz der Funktionswerte Wssermengen) zu Beginn [F)] und m Ende des Intervlls [F)] gelesen werden. Die Flächenmßzhl ist in diesem Fll lso die Gegenzhl der Differenz der Funktionswerte F -F) - F)). 6) ) f) ) f) c) f) 7) Skizze für c und d größer ls. Berechnet mn die Fläche zwischen der Rndfunktion f: c, c R und der -Achse im Intervll [; ], so ist die Flächenmßzhl c-c. Diesen Wert erhält mn, wenn mn ei einer elieigen Funktion F: c d F)-F) erechnet. ) ) Fläche unterhl der -Achse im Intervll [-; ] F, Fläche oerhl der -Achse im Intervll [; ] F, Stmmfunktion: F) ; Wertedifferenz im Intervll [-;]: F) - F-),, ) Fläche unterhl der -Achse im Intervll [-; ] F, Fläche oerhl der -Achse im Intervll [; ] F Stmmfunktion: F) ; Wertedifferenz im Intervll [-;]: F) - F-),, Bildet mn die Differenz Fläche oerhl der -Achse Zufluss) Fläche unterhl der -Achse Afluss) im Intervll, so ist dies gleich der Wertänderung der Stmmfunktion in diesem Intervll. c) Fläche unterhl der -Achse im Intervll [-; ] F, Fläche oerhl der -Achse im Intervll [; ] F, Alle Angen ohne Gewähr! Stefn Gärtner 996-

4 Seite Einführung in die Integrlrechnung Lösungen und Ergenisse Gr Alle Angen ohne Gewähr! Stefn Gärtner 996- Stmmfunktion: F) ; Wertedifferenz im Intervll [-;]: F) - F-), -, In llen Fällen gilt: Bildet mn die Differenz Fläche oerhl der -Achse Zufluss) Fläche unterhl der -Achse Afluss) im Intervll, so ist dies gleich der Wertänderung der Stmmfunktion Wssermengenänderung) in diesem Intervll. 9) Bestimmen Sie die Stmmfunktion G zur Rndfunktion g: : -, indem Sie die Üerlegungen von der Rndfunktion f: üertrgen. ) Berechnen Sie für diesen Fll noch einml konkret O und U. Bechten Sie dei die Regel für ds Aufstellen der Oer- und Untersummen Wir erechnen nun die Oer- und Untersumme für <, und n : O [ ] Breite [größtes f) größtes f) ] usgeklmmert usgerechnet. U [ ] 7 Breite [kleinstes f) kleinstes f) ] usgeklmmert usgerechnet. ) Berechnen Sie für > und für < noch einml konkret O und U. Bechten Sie dei die Regel für ds Aufstellen der Oer- und Untersummen! Wir erechnen nun die Oer- und Untersumme für n : U [ ] 6 Breite [größtes f) größtes f) ] usgeklmmert usgerechnet.

5 Seite Einführung in die Integrlrechnung Lösungen und Ergenisse Gr O [ ] Breite [kleinstes f) kleinstes f) ] usgeklmmert usgerechnet. Im Vergleich zur Rndfunktion f: sind hier Oer- und Untersumme jeweils negtive Werte wegen der negtiven Funktionswerte!). Außerdem erscheinen Oer- und Untersumme vertuscht, weil im negtiven Bereich größer den kleineren Betrg edeutet. Oersumme edeutet lso nicht, dss die Fläche gnz gedeckt sein muss, sondern lediglich, dss die größten f)-werte zur Berechnung herngezogen werden. ) Führen Sie die schnittsweisen Untersuchungen ) is ) us ) uch für durch! ) < < Der Anschuung entnimmt mn, dss die Fläche ls Differenz zweier Flächen ufgefsst werden knn: F F F - F ) < Weil <, gilt us Symmetriegründen: F ) < < Mn entnimmt der Anschuung: F F ) < < F F F - F ) Alle Angen ohne Gewähr! Stefn Gärtner 996-

6 Seite 6 Einführung in die Integrlrechnung Lösungen und Ergenisse Gr ) Die Flächen sind ei eiden Funktionen gleichgroß ) F 6 ) F c) F ) 9 d) F ) ) 6 6 e) ) ) F ) c) F 9 ) F ) ) d F c) d e) d , ), 6 ) d d) d ) 6,,7 6 6 ), -,7 Alle Angen ohne Gewähr! Stefn Gärtner 996-

7 Seite 7 Einführung in die Integrlrechnung Lösungen und Ergenisse Gr 6) Fertigen Sie zu jeder Regel eine Skizze n, die diese Regel vernschulicht!.regel: O ist Oersumme für f) Ô ist Oersumme für f) O [ ] Ô Dssele gilt für die Untersummen. D ds Integrl üer die Oer- und Untersummen geildet wird, üerträgt sich ds Ausklmmern uch uf ds Integrl.. Regel: Mit der Addition der Funktionswerte werden uch die mimlen minimlen) Funktionswerte in den Intervllen ddiert. Dmit ist der Grenzwert der Summe von zwei Funktionen gleich der Summe der Grenzwerte der einzelnen Summnden, us denen die Funktion zusmmengesetzt wurde und umgekehrt.. Regel: D die Intervlllänge eträgt, muss uch ds Integrl den Wert hen siehe Regel zum Bilden der Oer- und Untersumme!).Regel: f ) d f ) d f ) d. Regel siehe. Regel!) Alle Angen ohne Gewähr! Stefn Gärtner 996-

8 Seite Einführung in die Integrlrechnung Lösungen und Ergenisse Gr 7) Formulieren Sie die Regeln in Worten.. Regel: Ein konstnter Fktor leit eim Integrieren erhlten.. Regel: Ds Integrl einer Summe ist gleich der Summe der Integrle der Summnden.. Regel: Ds Integrl mit der Intervlllänge ht den Wert.. Regel: Addiert mn zwei Integrle derselen Funktion mit direkt neinnder nschließenden Intervllen, so knn ds Integrl vom Beginn des ersten zum Ende des zweiten Intervlls geildet werden. 6. Regel: Ds Integrl ändert ds Vorzeichen, wenn mn die Intervllgrenzen vertuscht. ) Begründen Sie, wrum für die Berechnung der Fläche F nicht zwischen negtiven und positiven Funktionswerten der Rndfunktionen f und g unterschieden werden muss. Weil die Differenz der Funktionswerte entscheidend ist und diese ist nch Whl der Differenz in diesem Intervll positiv. 9) ) )d ) ) 7 ) ) ) ), )d 7 6 ) 6 )d ,6 6 6 )d 6,6 c) 6 )d ) ) 6 )d 6 Alle Angen ohne Gewähr! Stefn Gärtner 996-

9 Seite 9 Einführung in die Integrlrechnung Lösungen und Ergenisse Gr Alle Angen ohne Gewähr! Stefn Gärtner 996- ) ) F F F F ) )d )d ) ) ) ) ) 9 ) - 6 ) ) F F F )d )d [ ] ) ) ) [ ],, c) F F F )d )d )d )d )) ) ) )) ) ) )) ) ) )) ) ) ) ) ) 6 ),,

10 Seite Einführung in die Integrlrechnung Lösungen und Ergenisse Gr d) Ergenis: F,7 e) F )d,7 f) F F F 6)d - 6)d 6 6 6) ) ) 6) 6 g) Ergenis: F Alle Angen ohne Gewähr! Stefn Gärtner 996-

11 Seite Einführung in die Integrlrechnung Lösungen und Ergenisse Gr Alle Angen ohne Gewähr! Stefn Gärtner 996- h) F F F F )d )d )d ) ) ) ) Es sind jeweils die Schnittstellen durch Lösen von f)g) zu erechnen und es ist eine qulittive Skizze nzufertigen. ) F F f ))d g) ))d ) )d [ ] ) Ergenis: c) Ergenis: d) Ergenis: e) Ergenis: F,6 F, F F f) Ergenis: g) Ergenis: F, F,

12 Seite Einführung in die Integrlrechnung Lösungen und Ergenisse Gr ) Ws ändert sich in der Beweiskette des Huptstzes, wenn < gilt? Die Division durch - ) mit < ) ergit: I ) I ) f min[, y] ) f m[, y] ) Die Ungleichungskette wird wegen der Division durch eine negtive Zhl umgedreht. Beim Üergng zum Grenzwert entsteht wieder diesele Gleichung. I ) I ) ) Jemnd sgt der Term sei uf zwei Arten interpretierr:. Art: Die durchschnittliche Steigung der Integrlfunktion im Intervll [ ; ].. Art: Der Durchschnitt der f) -Werte der Rndfunktion im Intervll [ ; ]. Nehmen Sie Stellung! zu: Ds ist richtig, denn der Zuwchs der Funktionswerte steht im Zähler und wird durch die zugehörige Intervlllänge dividiert. Also erhält mn die Durchschnittssteigung der Integrlfunktion. I ) I ) zu: Gilt für eine Funktion g im gesmten Intervll g) c eine Konstnte), so ergit sich für die Fläche F zwischen dem Grph von g und der -Achse: F c ) I ) - I ). Mn erhält lso diesele Änderung der Integrlfunktion wie ei f. Der Wert c knn lso ls Mittelwert der Funktionswerte interpretiert werden. ) Wrum könnte der Huptstz ohne die Stetigkeit der Rndfunktion nicht ewiesen werden? ) Ohne die Vorussetzung der Stetigkeit könnte nicht gefolgert werden, dss lim f min[, y] ) f ) gilt. Wenn der Grph von f etw n der Stelle eine Sprung hätte, dnn wäre dieses nicht korrekt. ) Wo steckt im Beweis die Idee der Oer- und Untersummen? In der Flächenschätzung nch oen und unten findet mn die Idee der Oer- und Untersumme wieder. 6) Fertigen Sie zu den folgenden Rndfunktionen die entsprechende Beweisskizze für den Huptstz n. Integrlfunktion, Beschriftungen etc.) Alle Angen ohne Gewähr! Stefn Gärtner 996-

13 Seite Einführung in die Integrlrechnung Lösungen und Ergenisse Gr 7) Der Grph der Funktion f: und eine Prllele zur - Achse egrenzen eine Fläche. Bestimmen Sie die Prllele so, dss der Flächeninhlt ) ) 6 c) eträgt. ) F ) d ) ) c) ) Wie ist zu wählen, dmit die eiden Flächen F und F gleichgroß sind? ) d Alle Angen ohne Gewähr! Stefn Gärtner 996-

14 Seite Einführung in die Integrlrechnung Lösungen und Ergenisse Gr 9) Auf dem Grph der Funktion f: - liegt der Punkt P/). ) Bestimmen Sie die Tngente im Punkt P n den Grph von f. ) Berechnen Sie den Inhlt der Fläche, die von dem Grph von f, der Tngente und der y-achse eingeschlossen wird. ) Ergenis m f ); P/) einsetzen ergit): t) ) F ))d )d ) Bestimmen Sie den Inhlt der Fläche, die zwischen dem Grph der Funktion f: - und der Tngente im Hochpunkt liegt. Ergenisse: - HP ist H/) - Die Tngentengleichung im HP ist y - Die Schnittstellen von Tngente und Grph sind ±. F ))d )d,6 ) Welche Steigung muss die Gerde g: m hen, dmit sie mit dem Grph von f: eine Fläche mit dem Inhlt einschließt?. Berechnung des Schnittstelle s ergit: m m m m m. F m m m m ) d m m m 6 Alle Angen ohne Gewähr! Stefn Gärtner 996-

ARBEITSBLATT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-ACHSE

ARBEITSBLATT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-ACHSE Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-CHSE Wie wir die Fläche zwischen einer Funktion und der -chse erechnen, hen wir rechentechnische ereits geklärt.

Mehr

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( )

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( ) 4. Der Huptstz der Infinitesimlrechnung Huptstz (. orm) I. Newton (64-77), G.. Leiniz (646-76) ür jede im Intervll [,] stetige unktion f sei ( ) = f ( t) dt sogennnte Integrlfunktion dnn gilt: Die Integrlfunktion

Mehr

Flächenberechnung. Aufgabe 1:

Flächenberechnung. Aufgabe 1: Flächenerechnung Aufge : Berechnen Sie den Flächeninhlt zwischen dem Funktionsgrphen und der -Achse in den Grenzen von is von: ) f() = ) f() = - Skizzieren Sie die Funktionsgrphen und schrffieren Sie die

Mehr

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-6 FLÄHENBEREHNUNG MITTELS INTEGRLREHNUNG Geschichtlich entwickelte sich die Integrlrechnug us folgender Frgestellung: Wie knn mn den Flächeninhlt

Mehr

Die Geschwindigkeit v ist die lokale Änderungsrate des Ortes x d.h. v = lim. Zeit 3s 7s Entfernung vom Bezugspunkt. 3s 2 m = 6 m 6 m + 1 Bezugspunkt s

Die Geschwindigkeit v ist die lokale Änderungsrate des Ortes x d.h. v = lim. Zeit 3s 7s Entfernung vom Bezugspunkt. 3s 2 m = 6 m 6 m + 1 Bezugspunkt s 6 Integrlrechnung ================================================================== 6.1 Lokle Änderungsrte und Gesmtänderung ------------------------------------------------------------------------------------------------------------------

Mehr

Berechnung von Flächen unter Kurven

Berechnung von Flächen unter Kurven Berechnung von Flächen unter Kurven Es soll die Fläche unter einer elieigen (stetigen) Kurve erechnet werden. Dzu etrchten wir die (sog.) Flächenfunktion, mit der die zu erechnende Fläche qusi ngenähert

Mehr

5.5. Integralrechnung

5.5. Integralrechnung .. Integrlrechnung... Berechnung von Integrlen mit der Streifenmethode Definition: Gegeen seien, R mit < und eine uf [; ] stetige Funktion f. Der orientierte Inhlt der Fläche, die durch die -Achse, ds

Mehr

Der Begriff der Stammfunktion

Der Begriff der Stammfunktion Lernunterlgen Integrlrehnung Der Begriff der Stmmfunktion Wir gehen von folgender Frgestellung us: welhe Funktion F x liefert ls Aleitung eine gegeene Funktion f x. Wir suhen lso eine Umkehrung der Aleitung

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Mthemtik: Mg. Schmid Wolfgng Areitsltt. Semester ARBEITSBLATT MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Zunächst einml müssen wir den Begriff Sklr klären. Definition: Unter einem Sklr ersteht mn eine

Mehr

4.5 Integralrechnung II. Inhaltsverzeichnis

4.5 Integralrechnung II. Inhaltsverzeichnis 4.5 Integrlrechnung II Inhltsverzeichnis 1 Integrlrechnung 22.02.2010 Theorie und Übungen 2 Wir hben im ersten Skript beobchtet, dss ein Zusmmenhng besteht zwischen der Formel für die Fläche A 0b und der

Mehr

Es berechnet die Fläche zwischen Kurve und x-achse.

Es berechnet die Fläche zwischen Kurve und x-achse. 1. Welche Idee steckt hinter dem Integrl? 2. Welche geometrische Bedeutung ht ds Integrl? 3. Wie erechnet mn ein Integrl? Aufsummieren unendlich vieler infinitesiml kleiner Beiträge, die lle die Form eines

Mehr

10 Anwendungen der Integralrechnung

10 Anwendungen der Integralrechnung 9 nwendungen der Integrlrechnung Der Inhlt von 9 wren die verschiedenen Verfhren zur Berechnung eines Integrls Der Inhlt von sind die verschiedenen Bedeutungen, die ein Integrl hen knn Die Integrlrechnung

Mehr

Bestimmtes (Riemannsches) Integral / Integral als Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhalb bestimmter Grenzen

Bestimmtes (Riemannsches) Integral / Integral als Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhalb bestimmter Grenzen III. Integrlrechnung : Bestimmtes (Riemnnsches Integrl / Integrl ls Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhl estimmter Grenzen yf( y n y n ( Δ Berechnung der Fläche A unter

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Aufge 69. Quizz Integrle. Es sei Höhere Mthemtik für Informtiker II (Sommersemester

Mehr

Die Keplersche Fassregel

Die Keplersche Fassregel Die Keplersche Fssregel K. Gerer Bei vielen Aufgen, z.b. ei der Lösung von Differentilgleichungen, tucht die Schwierigkeit uf, dss Integrtionen nicht durchgeführt werden können. So können z.b. die folgenden

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

6. Grundbegriffe der Analysis (II)

6. Grundbegriffe der Analysis (II) 7 Mthemtik für Biologen, Biotechnologen und Biochemiker 6 Grundegriffe der Anlsis (II) 6 Integrle: Flächeninhlte Seien < reelle Zhlen, sei I = [, ] = { R } ds Intervll der Zhlen zwischen und Wir etrchten

Mehr

Lernkarten. Analysis. 11 Seiten

Lernkarten. Analysis. 11 Seiten Lernkrten Anlysis Seiten Zum Ausdrucken muss mn jeweils eine Vorderseite drucken, dnn ds Bltt wenden, nochmls einlegen und die Rückseite drucken. Am esten druckt mn die Krten uf festem Ppier oder uf Visitenkrten-

Mehr

Einführung in die Integralrechnung

Einführung in die Integralrechnung Einführung in die Integrlrechnung Einführung in die Integrlrechnung Einführung in die Integrlrechnung In der Differentilrechung estnd die ufge u drin, zu einer gegeenen Funktion f deren leitungsfunktion

Mehr

MC-Serie 12 - Integrationstechniken

MC-Serie 12 - Integrationstechniken Anlysis D-BAUG Dr. Meike Akveld HS 15 MC-Serie 1 - Integrtionstechniken 1. Die Formel f(x) dx = xf(x) xf (x) dx i) ist im Allgemeinen flsch. ii) folgt us der Sustitutionsregel. iii) folgt us dem Huptstz

Mehr

9.5. Uneigentliche Integrale

9.5. Uneigentliche Integrale 9.5. Uneigentliche Integrle Bestimmte und unestimmte Integrle hängen zwr eng zusmmen, er die Existenz des einen grntiert nicht immer die des nderen: Eine integrierre Funktion muß keine Stmmfunktion esitzen,

Mehr

Integralrechnung. 1. Stammfunktionen

Integralrechnung. 1. Stammfunktionen Integrlrechnung. Stmmfunktionen In der Differentilrechnung hen wir gelernt, durch Aleiten einer Funktion f eine neue Funktion f zu finden, die uns hilft, Eigenschften von f zu estimmen (z.b. Hoch- oder

Mehr

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m. Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn

Mehr

Wir wollen den Inhalt A der Fläche bestimmen, den der Graph von f mit der x-achse und den zu a und b gehörendenden Ordinaten einschließt.

Wir wollen den Inhalt A der Fläche bestimmen, den der Graph von f mit der x-achse und den zu a und b gehörendenden Ordinaten einschließt. I. Integrlrechnung 1 ================================================================= 1.1 Oer- und Untersumme -------------------------------------------------------------------------------------------------------------

Mehr

Beispiele: cos(x) dx = sin(x) + c (1) e t dt = e t + c (2)

Beispiele: cos(x) dx = sin(x) + c (1) e t dt = e t + c (2) . Stmmfunktion Definition Stmmfunktion: Gegeen sei eine Funktion f(). Gesucht ist eine Funktion F (), so dss d = f(). Die Funktion F() heisst Stmmfunktion. Schreiweise: F () = f()d. Mn spricht uch vom

Mehr

f(x) = x F(x) = f(x) dx b n x dx = x a b ( ) n 1 b a +

f(x) = x F(x) = f(x) dx b n x dx = x a b ( ) n 1 b a + Mthemtik 7 Integrlrechnung Prolemstellung: Lösungsidee: Die Berechnung einer Fläche unter einer Funktion zwischen zwei äußeren Grenzen. Zerlegung der Gesmtfläche in rechteckige Bänder (Ausschöpfungsmethode),

Mehr

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 www.mthe-ufgben.com Abiturprüfung Mthemtik 013 (Bden-Württemberg) Berufliche Gymnsien Anlysis, Aufgbe 1 1.1 Die Funktion f ist gegeben durch π f( x) = + sin x ; x. Ds Schubild von f ist K. 1.1.1 (8 Punkte)

Mehr

Mathematik Bruchrechnung Grundwissen und Übungen

Mathematik Bruchrechnung Grundwissen und Übungen Mthemtik Bruchrechnung Grundwissen und Übungen von Stefn Gärtner (Gr) Stefn Gärtner -00 Gr Mthemtik Bruchrechnung Seite Inhlt Inhltsverzeichnis Seite Grundwissen Ws ist ein Bruch? Rtionle Zhlen Q Erweitern

Mehr

Differenzial- und Integralrechnung III

Differenzial- und Integralrechnung III Differenzil- und Integrlrechnung III Riner Huser April 2012 1 Einleitung 1.1 Polynome und Potenzfunktionen Die Polynome oder Polynomfunktionen lssen sich durch die endliche Anzhl von n+1 Prmetern i R in

Mehr

Mathematik fu r Ingenieure (Maschinenbau und Sicherheitstechnik) 2. Semester Apl. Prof. Dr. G. Herbort Dr. T. Pawlaschyk. SoSe16 Arbeitsheft Blatt 3

Mathematik fu r Ingenieure (Maschinenbau und Sicherheitstechnik) 2. Semester Apl. Prof. Dr. G. Herbort Dr. T. Pawlaschyk. SoSe16 Arbeitsheft Blatt 3 Mthemtik fu r Ingenieure (Mschinenu und Sicherheitstechnik). Semester Apl. Prof. Dr. G. Herort Dr. T. Pwlschyk SoSe6 Areitsheft Bltt Hinweis: Besuchen Sie die Vorlesung und vervollst ndigen Sie Areitsheft.

Mehr

18. Algorithmus der Woche Der Euklidische Algorithmus

18. Algorithmus der Woche Der Euklidische Algorithmus 18. Algorithmus der Woche Der Euklidische Algorithmus Autor Friedrich Eisenrnd, Universität Dortmund Heute ehndeln wir den ältesten ereits us Aufzeichnungen us der Antike eknnten Algorithmus. Er wurde

Mehr

Quadratische Funktionen

Quadratische Funktionen Qudrtische Funktionen Definition: Eine Funktion mit der Gleichung y = c (,, c R; 0) heißt qudrtische Funktion oder Funktion. Grdes. qudrtisches Glied;...lineres Glied; c...solutes Glied Der Grph einer

Mehr

Ober- und Untersummen, Riemann Integrale

Ober- und Untersummen, Riemann Integrale Oer- und Untersummen, Riemnn Integrle 1. Ds Prolem des Fläheninhlts Ausgngspunkt für die Entwiklung des Integrlegriffs wren vershiedene Frgestellungen, u.. ds Prolem der Messung des Fläheninhltes eines

Mehr

Abiturvorbereitung Mathematik Analysis. Copyright 2013 Ralph Werner

Abiturvorbereitung Mathematik Analysis. Copyright 2013 Ralph Werner Aiturvorereitung Mthemtik Anlysis Copyright 2013 Rlph Werner 1 Aleitung einer Funktion Geometrische Entsprechung: Aleitung Die Aleitung einer Funktion f (2) = 4 y = 4 x - 4 n der Stelle x 0 f (x 0 ) git

Mehr

G2.3 Produkte von Vektoren

G2.3 Produkte von Vektoren G Grundlgen der Vektorrechnung G. Produkte von Vektoren Ds Sklrprodukt Beispiel: Ein Schienenfhrzeug soll von einem Triler ein Stück s gezogen werden, der neen den Schienen fährt (vgl. Skizze). Wir wollen

Mehr

kann man das Riemannsche Unter- bzw. Oberintegral auch wie folgt definieren: xk+1 x k

kann man das Riemannsche Unter- bzw. Oberintegral auch wie folgt definieren: xk+1 x k Integrlrechnung Definition 1 (Treppenfunktion, Zerlegung eines Intervlls): Sei [, b] R ein Intervll. Eine Funktion g : [, b] R heißt Treppenfunktion, flls es eine Zerlegung := { =: 0 < 1

Mehr

1.7 Inneres Produkt (Skalarprodukt)

1.7 Inneres Produkt (Skalarprodukt) Inneres Produkt (Sklrprodukt) 17 1.7 Inneres Produkt (Sklrprodukt) Montg, 27. Okt. 2003 7.1 Wir erinnern zunächst n die Winkelfunktionen sin und cos, deren Wirkung wir m Einheitskreis vernschulichen: ϕ

Mehr

Das Bogenintegral einer gestauchten Normalparabel

Das Bogenintegral einer gestauchten Normalparabel Ds Bogenintegrl einer gestuchten Normlprbel Jn Günther und Luks Vrnhorst Im Mthemtikleistungskurs der Jhrgngsstufe sind wir uf folgende Aufgbe gestoÿen: Bestimmen Sie eine Stmmfunktion von f(x) + x mit

Mehr

Integralrechnung. www.mathe-total.de. Aufgabe 1

Integralrechnung. www.mathe-total.de. Aufgabe 1 Integrlrechnung Aufgbe Bestimme die Fläche zwischen der Kurve der Funktion f() = und -Achse über dem Intervll I = [; 3] näherungsweise. Bestimme die Obersumme und Teile ds Intervll I in drei gleich große

Mehr

/LQHDUH*OHLFKXQJVV\VWHPH

/LQHDUH*OHLFKXQJVV\VWHPH /LQHDUH*OHLFKXQJVV\VWHPH (für Grund- und Leistungskurse Mthemtik) 6W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP Nch dem Studium dieses Skripts sollten folgende Begriffe eknnt sein: Linere Gleichung; homogene

Mehr

KOMPETENZHEFT ZUM INTEGRIEREN, II. Erkläre elementar, insbesondere ohne den Hauptsatz zu verwenden, weshalb das Ergebnis die quadratische Funktion

KOMPETENZHEFT ZUM INTEGRIEREN, II. Erkläre elementar, insbesondere ohne den Hauptsatz zu verwenden, weshalb das Ergebnis die quadratische Funktion KOMPETENZHEFT ZUM INTEGRIEREN, II. Aufgbenstellungen Aufgbe.. Wir untersuchen den Flächeninhlt unter der lineren Funktion f(t) = t + im Intervll [; x]. Kurz: F (x) = x f(t) dt Erkläre elementr, insbesondere

Mehr

SBP Mathe Grundkurs 2. Differentialquotient. Namen und Schreibweisen für Differentialquotienten. Ableitung von f(x) = c.

SBP Mathe Grundkurs 2. Differentialquotient. Namen und Schreibweisen für Differentialquotienten. Ableitung von f(x) = c. SBP Mthe Grundkurs 2 # 0 by Clifford Wolf # 0 Antwort Diese Lernkrten sind sorgfältig erstellt worden, erheben ber weder Anspruch uf Richtigkeit noch uf Vollständigkeit. Ds Lernen mit Lernkrten funktioniert

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Mthemtik: Mg. Schmid Wolfgng Areitsltt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Wir wollen eine Gerde drstellen, welche durch die Punkte A(/) und B(5/) verläuft. Die Idee ist folgende:

Mehr

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1.

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1. Modul : Grundlgen der Wirtschftsmthemtik und Sttistik Kurs 46, Einheit, Einsendeufge Die Regelungen zu den Einsendeufgen (Einsendeschluss, Klusurzulssung) finden Sie in den Studien- und Prüfungsinformtionen

Mehr

1 Folgen von Funktionen

1 Folgen von Funktionen Folgen von Funktionen Wir etrchten Folgen von reell-wertigen Funktionen f n U R mit Definitionsereicht U R und interessieren uns für ntürliche Konvergenzegriffe. Genuer setzen wir uns mit folgenden Frgen

Mehr

12. STAMMFUNKTIONEN UND DAS UNBESTIMMTE INTEGRAL

12. STAMMFUNKTIONEN UND DAS UNBESTIMMTE INTEGRAL 98 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

Ungleichungen. Jan Pöschko. 28. Mai Einführung

Ungleichungen. Jan Pöschko. 28. Mai Einführung Ungleichungen Jn Pöschko 8. Mi 009 Inhltsverzeichnis Einführung. Ws sind Ungleichungen?................................. Äquivlenzumformungen..................................3 Rechnen mit Ungleichungen...............................

Mehr

2. Flächenberechnungen

2. Flächenberechnungen Anlysis Integrlrechnung. Flächenberechnungen.. Die Flächenfunktion ) Flächenfunktionen ufzeichnen Skizziere zur gegebenen Funktion diejenige Funktion, welche die Fläche unterhlb der Funktionskurve misst.

Mehr

BINOMISCHE FORMELN FRANZ LEMMERMEYER

BINOMISCHE FORMELN FRANZ LEMMERMEYER BINOMISCHE FORMELN FRANZ LEMMERMEYER Ds Distributivgesetz. Die binomischen Formeln sind im wesentlichen Vrinten des Distributivgesetzes. Dieses kennen wir schon; es besgt, dss () (b + = b + c und ( + b)c

Mehr

Übungen mit dem Applet Grundfunktionen und ihre Integrale

Übungen mit dem Applet Grundfunktionen und ihre Integrale Grundfunktionen und ihre Integrle 1 Übungen mit dem Applet Grundfunktionen und ihre Integrle 1 Ziele des Applets... 2 2 Begriffe und ihre Drstellung mit dem Applet... 2 b 2.1 Bestimmtes Integrl I (b) =

Mehr

10 Das Riemannsche Integral

10 Das Riemannsche Integral 10 Ds Riemnnsche Integrl 50 10 Ds Riemnnsche Integrl Ziel dieses Prgrphen ist es, den Inhlt einer Fläche, die vom Grphen einer Funktion berndet wird, exkt zu definieren. f(b) f() = t 0 t1 t2 t3 t4 t5 t

Mehr

1 Kurvendiskussion /40

1 Kurvendiskussion /40 009 Herbst, (Mthemtik) Aufgbenvorschlg B Kurvendiskussion /0 Gegeben ist eine Funktion f mit der Funktionsgleichung: f ( ) 0 6 = ; mit.. Untersuchen Sie ds Verhlten der Funktionswerte von f im Unendlichen.

Mehr

Eine Relation R in einer Menge M ist transitiv, wenn für alle x, y, z M gilt: (x R y y R z) x R z

Eine Relation R in einer Menge M ist transitiv, wenn für alle x, y, z M gilt: (x R y y R z) x R z Reltionen, 11 Reltionen Reltion ist einfch gesgt eine Beziehung zwischen Elementen von Mengen. In der Geometrie sind z.b. die Reltionen "ist gleich", "ist senkrecht zu", "ist prllel zu" eknnt. Die letzten

Mehr

Mathematik I ITB. Integralrechnung. Prof. Dr. Karin Melzer

Mathematik I ITB. Integralrechnung. Prof. Dr. Karin Melzer Integrlrechnung 20.05.09 Ds unbestimmte Integrl/Stmmfunktion Ds bestimmte Integrl/Flächenberechnung Integrl ls Umkehrung der Ableitung Idee: kehre den Prozess des Dierenzierens um. f sei eine reelle Funktion

Mehr

3.3 Extrema I: Winkel Ebene/Gerade

3.3 Extrema I: Winkel Ebene/Gerade 3 3 ANALYSIS 3.3 Extrem I: Winkel Eene/Gerde In diesem Aschnitt gehen wir von einer Gerde g und einer g nicht enthltenden Eene ε us und wollen unter llen möglichen spitzen Schnittwinkeln zwischen g und

Mehr

Orientierungstest Mathematische Grundlagen

Orientierungstest Mathematische Grundlagen Orientierungstest Mthemtische Grundlgen Lösungen:. Welche Zhlenmengen git es? Beispiele? Menge der ntürlichen Zhlen N {,,, } Menge der gnzen Zhlen Z {,, 0,,, } Menge der rtionlen Zhlen Q Menge ller ls

Mehr

Ich kann LGS mit drei Gleichungen und drei Unbekannten mit dem Gauß-Verfahren lösen.

Ich kann LGS mit drei Gleichungen und drei Unbekannten mit dem Gauß-Verfahren lösen. Klsse 9c Mthemtik Vorbereitung zur Klssenrbeit Nr. m.1.017 Themen: Reelle Zhlen, Qudrtwurzeln LGS mit drei Unbeknnten Checkliste Ws ich lles können soll Ich knn LGS mit drei Gleichungen und drei Unbeknnten

Mehr

Grenzwerte von Funktionen

Grenzwerte von Funktionen Grenzwert und Stetigkeit von Funktionen Methodische Bemerkungen H Hinweise und didktisch-methodische Anmerkungen zum Einstz der Areitslätter und Folien für den Themenkreis Grenzwert und Stetigkeit von

Mehr

π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x

π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x Wir substituieren x x(t) r sin(t), t [ π, π ]. Dnn ist x (t) r cos(t), lso r x dx π π r π r r sin (t)r cos(t) dt π cos (t) cos(t) dt r π π cos (t) dt Wir integrieren cos mittels prtieller Integrtion: Sei

Mehr

8.4 Integrationsmethoden

8.4 Integrationsmethoden 8.4 Integrtionsmethoden 33 8.4 Integrtionsmethoden Die Integrtion von Funktionen erweist sich in prktischen Fällen oftmls schwieriger ls die Differenzition. Während sich ds Differenzieren durch Anwendung

Mehr

Mündliche Prüfung LK. Fragen zur differentialrechnung

Mündliche Prüfung LK. Fragen zur differentialrechnung Mündliche Prüfung LK Diese Seite enthält Frgen zu : Differentilrechnung Integrlrechnung Exponentil und Logrithmusfunktionen Linere Alger Prozessmtrizen Frgen zur differentilrechnung Ws sind Nullstellen?

Mehr

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner WS 015/16 Bltt 4 09.11.015 Übungen zur Vorlesung Differentil und Integrlrechnung I Lösungsvorschlg 13. Zu betrchten ist die durch 0 = 1 und

Mehr

8 Integralrechnung. 8.1 Das Riemann-Integral

8 Integralrechnung. 8.1 Das Riemann-Integral 8 Integrlrechnung Der Integrlbegriff ist wie der Ableitungsbegriff motiviert durch die physiklische Beschreibung von Bewegungsbläufen (Geschwindigkeit, Beschleunigung). Er ist u.. uch von Bedeutung bei

Mehr

2. Das Rechnen mit ganzen Zahlen (Rechnen in )

2. Das Rechnen mit ganzen Zahlen (Rechnen in ) . Ds Rechnen mit gnzen Zhlen (Rechnen in ).1 Addition und Subtrktion 5 + = 7 Summnd Summnd Summe 5 - = 3 Minuend Subtrhend Differenz In Aussgen mit Vriblen lssen sich nur gleiche Vriblen ddieren bzw. subtrhieren.

Mehr

12. STAMMFUNKTIONEN UND DAS UNBESTIMMTE INTEGRAL

12. STAMMFUNKTIONEN UND DAS UNBESTIMMTE INTEGRAL 98 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

definiert ist, heißt an der Stelle x0

definiert ist, heißt an der Stelle x0 1 Stetigkeit 1 Stetigkeit Bei der Behndlung der bschnittsweise deinierten Funktionen km es vor, dss der Grph dieser Funktion n der Nhtstelle einen Sprung ht. Andere dgegen hben keine Sprungstelle! Doch

Mehr

Übungsblatt Gleichungssysteme Klasse 8

Übungsblatt Gleichungssysteme Klasse 8 Üungsltt Gleichungsssteme Klsse 8 Auge : Berechne die Lösungen des Gleichungspres: I II 7 Kontrolliere durch Einseten. Auge : Löse dem Additionsverhren: I 7-6 II 9 Auge : Gegeen ist olgendes linere Gleichungssstem

Mehr

Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2

Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2 Zum Stz von Tylor Klus-R. Loeffler Inhltsverzeichnis 1 Der verllgemeinerte Stz von Rolle 1 2 Der Stz von Tylor 2 3 Folgerungen, Anwendungen und Gegenbeispiele 4 3.1 Jede gnzrtionle Funktion ist ihr eigenes

Mehr

Orientierungstest Mathematische Grundlagen

Orientierungstest Mathematische Grundlagen Orientierungstest Mthemtische Grundlgen Lösungen:. Welche Zhlenmengen git es? Beispiele? Menge der ntürlichen Zhlen N {,,, } Menge der gnzen Zhlen Z {,, 0,,, } Menge der rtionlen Zhlen Q Menge ller ls

Mehr

ARBEITSBLATT 14 ARBEITSBLATT 14

ARBEITSBLATT 14 ARBEITSBLATT 14 Mthemtik: Mg. Schmid Wolfgng reitsltt. Semester RBEITSBLTT RBEITSBLTT RBEITSBLTT RBEITSBLTT DS VEKTORPRODUKT Definition: Ds vektorielle Produkt (oder Kreuprodukt) weier Vektoren und ist ein Vektor mit

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Schufchprinzip (Folie 144) Automten und formle Sprchen Notizen zu den Folien Im Block Ds Schufchprinzip für endliche Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl

Mehr

Simulation von Störungen mit zeitlichen Schranken

Simulation von Störungen mit zeitlichen Schranken Simultion von Störungen mit zeitlichen Schrnken Die geräuchlichen sttistischen Verteilungen können elieig große Werte hervorringen, ws ei der Simultion von Störungen oft nicht erwünscht ist. Verwendet

Mehr

Integralrechnung 29. f(x) dx = F (x) + C

Integralrechnung 29. f(x) dx = F (x) + C Integrlrechnung 9 5 Integrlrechnung 5. Ds unbestimmte Integrl Wird eine Funktion f bgeleitet, so erhält mn die Ableitungsfunktion f. Nun knn mn sich frgen, ob es einen Weg zurück gibt, d.h. ob mn us der

Mehr

Vektoren. b b. R heißt der Vektor. des. und b. . a b

Vektoren. b b. R heißt der Vektor. des. und b. . a b 6 Vektoren 66 Ds Vektorprodukt Definition des Vektorprodukts Wir etrchten im dreidimensionlen Rum zwei nicht kollinere Vektoren R, \{0} Gesucht ist ein Vektor x R, der uf jedem der eiden Vektoren und senkrecht

Mehr

1 Metrische Räume. Sei X eine nichtleere Menge. Definition 1.1. Eine Abbildung: d : X X R heißt Metrik auf X, falls für alle x, y, z X gilt

1 Metrische Räume. Sei X eine nichtleere Menge. Definition 1.1. Eine Abbildung: d : X X R heißt Metrik auf X, falls für alle x, y, z X gilt Metrische Räume Sei X eine nichtleere Menge. Definition.. Eine Abbildung: d : X X R heißt Metrik uf X, flls für lle x, y, z X gilt (i) d(x, y) 0, (ii) d(x, y) = d(y, x), (iii) d(x, y) d(x, z) + d(z, y)

Mehr

wertyuiopasdfghjklzxcvbnmqwertyui

wertyuiopasdfghjklzxcvbnmqwertyui qwertyuiopsdfghjklzxcvnmqwerty uiopsdfghjklzxcvnmqwertyuiopsd fghjklzxcvnmqwertyuiopsdfghjklzx Aufgen M-Beispielen cvnmqwertyuiopsdfghjklzxcvnmq Vorereitung uf die. Schulreit wertyuiopsdfghjklzxcvnmqwertyui

Mehr

Erkundungen. Terme vergleichen. Rechteck Fläche als Produkt der Seitenlängen Fläche als Summe der Teilflächen A B

Erkundungen. Terme vergleichen. Rechteck Fläche als Produkt der Seitenlängen Fläche als Summe der Teilflächen A B Erkundungen Terme vergleihen Forshungsuftrg : Fläheninhlte von Rehteken uf vershiedene Arten erehnen Die Terme () is (6) eshreien jeweils den Fläheninhlt von einem der drei Rehteke. Ordnet die Terme den

Mehr

3. Das Rechnen mit Brüchen (Rechnen in )

3. Das Rechnen mit Brüchen (Rechnen in ) . Ds Rechnen mit Brüchen (Rechnen in ) Brüche sind Teile von gnzen Zhlen. Zwischen zwei unterschiedlichen gnzen Zhlen ht es immer unendlich viele Brüche. Brüche entstehen us einer Division; eine gnze Zhl

Mehr

Grundlagen der Integralrechnung

Grundlagen der Integralrechnung Grundlgen der Integrlrechnung W. Kippels 0. April 2014 Inhltsverzeichnis 1 Ds unbestimmte Integrl 2 2 Ds bestimmte Integrl 4 Beispielufgben 7.1 Beispielufgbe 1............................... 7.2 Beispielufgbe

Mehr

Integration. Kapitel 8: Integration Informationen zur Vorlesung: wengenroth/ J. Wengenroth () 17.

Integration. Kapitel 8: Integration Informationen zur Vorlesung:  wengenroth/ J. Wengenroth () 17. Integrtion Kpitel 8: Integrtion Informtionen zur Vorlesung: http://www.mthemtik.uni-trier.de/ wengenroth/ J. Wengenroth () 17. Juli 2009 1 / 22 8.1 Motivtion Kpitel 8: Integrtion 8.1 Motivtion Ist die

Mehr

2.2. Aufgaben zu Figuren

2.2. Aufgaben zu Figuren 2.2. Aufgen zu Figuren Aufge 1 Zeichne ds Dreieck ABC in ein Koordintensystem. Bestimme die Innenwinkel, und und erechne ihre Summe. Ws stellst Du fest? ) A(1 2), B(8 3) und C(3 7) ) A(0 3), B(10 1) und

Mehr

Hyperbeln INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. FRIEDRICH W. BUCKEL. Text Nr Stand 29. Mai 2016

Hyperbeln INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.  FRIEDRICH W. BUCKEL. Text Nr Stand 29. Mai 2016 Hpereln Tet Nr. 54070 Stnd 9. Mi 06 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mthe-cd.schule 54070 Hpereln ls lgerische Kurven Vorwort Um 980 herum wren Hpereln und Ellipsen ls sogennnte

Mehr

Beispiel-Abiturprüfung

Beispiel-Abiturprüfung Mthemtik BeispielAbiturprüfung Prüfungsteile A und B Bewertungsschlüssel und Lösungshinweise (nicht für den Prüfling bestimmt) Die Bewertung der erbrchten Prüfungsleistungen ht sich für jede Aufgbe nch

Mehr

Beispiellösungen zu Blatt 24

Beispiellösungen zu Blatt 24 µthemtischer κorrespondenz- zirkel Mthemtisches Institut Georg-August-Universität Göttingen Aufge Beispiellösungen zu Bltt Mn eweise, dss mn ein Qudrt für jede Zhl n 6 in genu n kleinere Qudrte zerlegen

Mehr

Grundwissen Mathematik 8

Grundwissen Mathematik 8 Grundwissen Mthemtik 8 Proportionle Zuordnung Gehört bei einer Zuordnung zweier Größen zu einem Vielfchen der einen Größe ds gleiche Vielfche der nderen Größe, so heißt sie proportionle Zuordnung. Die

Mehr

Crashkurs - Integration

Crashkurs - Integration Crshkurs - Integrtion emerkung. Wir setzen hier elementre Kenntnisse des Differenzierens sowie der Produktregel, Quotientenregel und Kettenregel vorus (diese werden später in der VO noch usführlich erklärt).

Mehr

Volumen von Rotationskörpern

Volumen von Rotationskörpern Volumen von Rottionskörpern Beispiele: [ Es stellt sich die Frge: Wie entstehen solche Rottionskörper bzw wie lssen sich solche Rottionskörper er zeugen? Rotiert eine Fläche z.b. um die x-achse, so entsteht

Mehr

Quadratische Gleichungen und Funktionen

Quadratische Gleichungen und Funktionen Qudrtische Gleichungen und Funktionen Bei einer udrtischen Gleichung kommt die Unbeknnte Vrible mindestens einml in der.potenz vor, ber in keiner höheren Potenz. b c udrtischer Anteil linerer Anteil konstnter

Mehr

2 Berechnung von Flächeninhalten unter Kurvenstücken

2 Berechnung von Flächeninhalten unter Kurvenstücken Übungsmteril 1 Berechnung von Flächeninhlten unter Kurvenstücken.1 Annäherung durch Rechtecke Um die Fläche zu berechnen, die zwischen dem Funktionsgrphen einer Funktion und der -Achse eingeschlossen wird,

Mehr

3 Uneigentliche Integrale

3 Uneigentliche Integrale Mthemtik für Ingenieure II, SS 29 Dienstg 9.5 $Id: uneigentlich.te,v.5 29/5/9 6:23:8 hk Ep $ $Id: prmeter.te,v.2 29/5/9 6:8:3 hk Ep $ 3 Uneigentliche Integrle Mn knn die eben nchgerechnete Aussge e d =,

Mehr

Aufgabe 30: Periheldrehung

Aufgabe 30: Periheldrehung Aufge 30: Periheldrehung Auf einen Plneten soll zusätzlich zum Grvittionspotentil ds folgende Potentil einwirken U z = η r. (1 Im Folgenden sollen eene Polrkoordinten verwendet werden. Ds können wir mchen,

Mehr

Ausschreibungstext. Geometrie in der Analysis. Prof. Dr. Peter Gallin Universität Zürich

Ausschreibungstext. Geometrie in der Analysis. Prof. Dr. Peter Gallin Universität Zürich Geometrie in der Anlysis Prof. Dr. Peter Gllin Universität Zürich 23. Schweizerischer Tg üer Mthemtik und Unterricht 12. Septemer 2012 I: 1:30 15.15 Uhr II: 15:5 16:30 Uhr Peter Gllin ehem. Gymnsillehrer

Mehr

Analysis I. Partielle Integration. f (t)g(t)dt =

Analysis I. Partielle Integration. f (t)g(t)dt = Prof. Dr. H. Brenner Osnbrück WS 3/4 Anlysis I Vorlesung 5 Wir besprechen nun die wesentlichen Rechenregeln, mit denen mn Stmmfunktionen finden bzw. bestimmte Integrle berechnen knn. Sie beruhen uf Ableitungsregeln.

Mehr

Uneigentliche Riemann-Integrale

Uneigentliche Riemann-Integrale Uneigentliche iemnn-integrle Zweck dieses Abschnitts ist es, die Vorussetzungen zu lockern, die wir n die Funktion f : [, b] bei der Einführung des iemnn-integrls gestellt hben. Diese Vorussetzungen wren:

Mehr

Vorkurs Mathematik DIFFERENTIATION

Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik 6 DIFFERENTIATION Beispiel (Ableitung von sin( )). Es seien f() = sin g() = h() =f(g()) = sin. (f () =cos) (g () =) Also ist die Ableitung von h: h () =f (g())g () =cos = cos. Mn nennt

Mehr

Resultat: Hauptsatz der Differential- und Integralrechnung

Resultat: Hauptsatz der Differential- und Integralrechnung 17 Der Huptstz der Differentil- und Integrlrechnung Lernziele: Konzept: Stmmfunktion Resultt: Huptstz der Differentil- und Integrlrechnung Methoden: prtielle Integrtion, Substitutionsregel Kompetenzen:

Mehr

Quadratische Funktionen

Quadratische Funktionen Qudrtische Funktionen Die Scheitelpunktform ist eine spezielle Drstellungsform von qudrtischen Funktionen, nhnd der viele geometrische Eigenschften des Funktionsgrphen bgelesen werden können. Abbildung

Mehr

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie -

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie - Für den Mthe GK, Henß - Linere Alger und nlytische Geometrie - Bis uf die Astände ist jetzt lles drin.. Ich h noch ne tolle Seite entdeckt mit vielen Beispielen und vor llem Aufgen zum Üen mit Lösungen..

Mehr

Mathematik 1 für Bauwesen 14. Übungsblatt

Mathematik 1 für Bauwesen 14. Übungsblatt Mthemtik für Buwesen Übungsbltt Fchbereich Mthemtik Wintersemester 0/0 Dr Ivn Izmestiev 8/900 Dr Vince Bárány, M Sc Juli Plehnert Gruppenübung Aufgbe G () Berechnen Sie ds Volumen des Rottionskörpers,

Mehr

Analysis I. Vorlesung 24. Der Mittelwertsatz der Integralrechnung. b a

Analysis I. Vorlesung 24. Der Mittelwertsatz der Integralrechnung. b a Prof. Dr. H. Brenner Osnbrück WS 203/204 Anlysis I Vorlesung 24 Der Mittelwertstz der Integrlrechnung Zu einer Riemnn-integrierbren Funktion f: [, b] R knn mn f(t)dt b ls die Durchschnittshöhe der Funktion

Mehr