Mechanik I. Statik und Festigkeitslehre

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Mechanik I. Statik und Festigkeitslehre"

Transkript

1 Mechanik I Statik und Festigkeitslehre Bernd Binninger Aachen im Herbst 213 Institut für Technische Verbrennung RWTH Aachen

2 Inhaltsverzeichnis 1 Statik Kraft Zentrales Kräftesystem Zusammenfassung von zentralen Kräften Berechnung der Resultierenden eines zentralen Kräftesystems Zerlegen einer Kraft in der Ebene Gleichgewicht eines zentralen Kräftesystems Gleichgewicht von zwei Kräften Gleichgewicht haltende Kraft eines zentralen Kräftesystems Wechselwirkungsgesetz Schnittprinzip Aufgabenstellung und Abstraktion Nichtzentrale Kräftesysteme Zusammensetzen von ebenen Kräften mit verschiedenen Angriffspunkten Kräfte mit parallelen oder fast parallelen Wirkungslinien Gleichgewicht von drei Kräften in der Ebene: Dreikräftesatz Gleichgewicht von vier Kräften in der Ebene Räumliches Kräftesystem Moment einer Kraft bezüglich eines Punktes Das Kräftepaar Parallelverschieben einer Kraft Zusammenfassen von Momenten von Einzelkräften Zusammenfassen von Kräften und Momenten Gleichgewicht des starren Körpers Ebene Lagerungen Statische Bestimmtheit von Lagerungen Lagerungen im dreidimensionalen Raum Kräftemittelpunkt und Schwerpunkt Definition des Kräftemittelpunktes Berechnung des Schwerpunktes Reibung Haftreibung und Gleitreibung Seilreibung Schnittlasten Schnittlasten in ebenen Balken Verallgemeinerung für beliebig verteilte Lasten von ebenen Balken Schnittlasten in ebenen Rahmen Schnittlasten in Wellen Arbeit Arbeit von Kräften Arbeit von Momenten Arbeit der an einem starren Körper angreifenden Kräfte und Momente Prinzip der virtuellen Arbeit Gleichgewichtslage und Stabilität Festigkeitslehre Spannungsvektor Einachsiger Spannungszustand Ebener Spannungszustand Hauptspannungen und Hauptspannungsrichtungen

3 2.1.4 Räumlicher Spannungszustand Deformationzustand und Spannungs-Dehnungs-Beziehung Einachsiger Spannungszustand und Dehnung Reiner Schub und Scherung Superpositionsprinzip Räumlicher Deformationszustand Beziehung zwischen Elastizitäts-, Schubmodul und Querkontraktionszahl Verschiebung Zusammenhang von Dehnung und Verschiebung eines räumlichen Elementes Volumenänderung Gerader Stab Wärmedehnung Fachwerke Statisch bestimmtes Fachwerk Statisch unbestimmtes Fachwerk Ausnahmefachwerk Flächentragwerke Gleichförmig belastete Scheibe Rohr unter Überruck und zylindrischer Kessel Balkenbiegung Spannungs-, Dehnungsverteilung und Krümmungsradius Differentialgleichung der elastischen Linie Flächenträgheitsmomente einfacher und zusammengesetzter Querschnittsflächen Berechnung von Biegelinien Übertragung bereits bekannter Ergebnisse auf andere Fragestellungen Kombinierte Probleme mit Balken und Stäben A Vektoren i A.1 Symbolische und grafische Darstellung von Vektoren i A.2 Darstellung von Vektoren in kartesischen Koordinatensystemens iii A.3 Addition von Vektoren v A.4 Subtraktion von Vektoren vi A.5 Produkte von Vektoren vii A.5.1 Skalares oder inneres Produkt von Vektoren vii A.5.2 Vektor-, Kreuz- oder äußeres Produkt dreidimensionaler Vektoren.... viii A.5.3 Spatprodukt ix A.5.4 Indexschreibweise und Tensorkalkül x B Literaturempfehlungen xiii B.1 Statik xiii B.2 Festigkeitslehre xiii

4 A Vektoren A.1 Symbolische und grafische Darstellung von Vektoren Vektoren unterscheiden sich von einfachen reellen Zahlen, die in dieser Systematisierung als Skalare bezeichnet werden. Vektoren besitzen eine Länge oder Größe (engl. magnitude), zusätzlich eine Richtung (engl. direction) und einen Richtungssinn (engl. sense). symbolisch: lateinischer Buchstabe mit Vektorpfeil: grafisch 1) : Der gezeichnete Pfeil bezeichnet den Richtungssinn und a den skalaren Faktor (nicht Betrag) in Bezug zum Richtungssinn. Daraus ergibt sich Folgendes: a > : Richtungssinn des Vektors wie dargestellt a < : Richtungssinn entgegen der Pfeilrichtung Äquivalente grafische Darstellung ein und desselben Vektors a : 1) Diese Darstellung wird hier in der Mechanik gewählt im Hinblick auf die sehr wichtigen Werkzeuge Lageplänen und Freischnittdiagramm. Hierdurch kann die Aussage des 3. Newtonschen Axioms actio=reactio grafisch eindeutig umgesetzt werden. Dies wird in den Abschnitten 1.3 und 1.4 unmittelbar klar. i

5 Übung - Stellen Sie einen von Ihnen beliebig gewählten Vektor F 1 grafisch dar! Für einen zweiten Vektor gelte in symbolischer Schreibweise F 2 = F 1. - Stellen Sie den so definierten Vektor F 2 in drei verschiedenen äquivalenten Versionen grafisch dar! - Ist die Aussage F 2 = F 1 richtig? Spielt es dabei eine Rolle, ob F 1 > oder F 1 < ist? Lösung ii

6 A.2 Darstellung von Vektoren in kartesischen Koordinatensystemens Besonders einfach kann mit einem Vektor gerechnet werden, wenn seine Darstellung auf ein kartesisches Koordinatensystem Bezug nimmt. z z x y x a z a x a a y y Koordinaten des Vektors: Die oben eingeführte symbolische Schreibweise a kann deshalb bedarfsweise auch als Zeile oder Spalte der drei Skalare geschrieben werden: Länge oder der Betrag des Vektors (Satz des Pythagoras): Die Richtungssinn eines Vektors kann durch Angabe der Winkel zwischen den Koordinatenachsen und dem Vektor angegeben werden: iii

7 Es ist ferner hilfreich Einheitsvektoren in die Koordinatenrichtungen zu definieren: Jeweils zwei Koordinaten verschwinden, die verbleibende dritte Koordinate ist +1. Man gelangt nun offensichtlich vom Fuß des Vektor a zu seinem Endpunkt an der Pfeilspitze, in dem man nacheinander in Richtung der Einheitsvektoren um jeweils eine Strecke, die durch die Koordinaten festgelegt wird, marschiert. Es gilt also in symbolischer Schreibweise: Komponenten des Vektors a: iv

8 A.3 Addition von Vektoren symbolisch: Darstellung von c: Außerdem bzw. Koeffizientenvergleich: Vektoren werden addiert, indem ihre kartesischen Komponenten addiert werden. Es gilt das Kommutativgesetz. Verallgemeinerung für viele Vektoren: v

9 A.4 Subtraktion von Vektoren symbolisch: Es folgt sofort Koordinaten des Differenzvektors c: Übung - Stellen Sie für zwei von Ihnen beliebig gewählte zweidimensionale Vektoren a und b die Differenz c = a b grafisch dar und zeigen Sie damit, dass a b = ( b a) gilt! vi

10 A.5 Produkte von Vektoren A.5.1 Skalares oder inneres Produkt von Vektoren Das Skalarprodukt zweier Vektoren ist definiert als das Produkt der Beträge der Vektoren multipliziert mit dem Cosinus des eingeschlossenen Winkels. symbolisch: Aus der Definition folgt sofort das Kommutativgesetz Übung - Zeigen Sie, dass a a = ( a ) 2! - Berechnen Sie die Skalarprodukte der Einheitsvektoren des kartesischen Koordinatensystems! - Berechnen Sie das Skalarprodukt s = a b für Vektoren a und b in kartesischer Darstellung! - Nennen Sie ein Beispiel aus der Mechanik, für das das Skalarprodukt eine Rolle spielt? vii

11 A.5.2 Vektor-, Kreuz- oder äußeres Produkt dreidimensionaler Vektoren Das Vektorprodukt zweier Vektoren ist nur in drei Dimensionen definiert. Das Vektorprodukt der dreidimensionalen Vektoren a und b ergibt einen Vektor c mit folgenden Eigenschaften: der Vektor c steht senkrecht auf der durch die beiden Vektoren a und b aufgespannten Ebene sein Richtungssinn wird durch die Rechtsschraubenregel bei Drehung des ersten Vektors a auf kürzestem Wege in den Richtungssinn des zweiten Vektors b definiert (Rechte-Hand-Regel) seine Länge c ist durch die Größe der Fläche A des von den Vektoren aufgespannten Parallelogramms bestimmt. c b ab a A symbolisch: mit dem skalaren Wert Aus der Definition folgt sofort Übung - Beweisen Sie: c = a b = b a! -) Zeigen Sie, dass die Länge des Vektors c mit der Fläche A des Parallelogramms identisch ist, welches die Vektoren a und b aufspannen! - Zeigen Sie, dass für die Einheitsvektoren eines rechtshändigen kartesischen Koordinatensystems i i =, j j =, k k =, gilt! i j = k, j k = i, k i = j - Zeigen Sie, dass für die Koordinaten des Vektors c = a b c x = a y b z a z b y, c y = a z b x a x b z, c z = a x b y a y b x gilt, wenn die Zahlen a x, a y, a z bzw. b x, b y, b z die rechtwinkligen kartesischen Koordinaten der Vektoren a und b sind! - Nennen Sie ein Beispiel aus der Mechanik, für das das Kreuzprodukt eine Rolle spielt? viii

12 A.5.3 Spatprodukt symbolisch: Aus den Definition von Skalar- und Kreuzprodukt folgt sofort d = pipapo aa a c ab b A Übung - Beweisen Sie, dass s = a ( b c) identisch mit dem Volumen V des von den drei Vektoren a, b und c aufgespannten Spates ist! ix

13 A.5.4 Indexschreibweise und Tensorkalkül Vektoren oder Tensoren können zusätzlich zu den angegebenenn Schreibwiesen auch in Indexschreibwiese dargestellt werden. Wir beschränken uns auf den wichtigen dreidimensionalen Fall. Für einen Vektor oder Tensor 1. Stufe und einen Tensor 2. Stufe schreiben wir in der Indexschreibweise: a 1 T 11 T 12 T 13 a = a 2 a i, i = 1,..., n, T = T 21 T 22 T 23 T i,j, i, j = 1,..., n. a 3 T 31 T 32 T 33 Vektoren besitzen demnach einen freien Index, Tensoren 2. Stufe zwei freie Indizes und so weiter. Ein besonderes Beispiel für einen Tensor 2. Stufe ist der Einheitstensor auch Kronecker-Delta genannt: 1 δ ij = 1 1 Dies ist ein symmetrischer Tensor δ ij = δ ji. Entsprechend werden Tensoren höherer Stufe definiert. In diesem Zusammenhang sei der Levi- Civitasche Tensor ϵ ijk, ein Tensor 3. Stufe, erwähnt: +1 falls i, j, k eine gerade Permutation von 1,2,3 ϵ ijk = 1 falls i, j, k eine ungerade Permutation von 1,2,3 sonst Die zugehörige Matrixdarstellung zeigt die Abbildung. ε ijk = Der Tensor ist ein vollständig unsymmetrischer Tensor ϵ ijk = ϵ ikj = ϵ jik. Er wird für die Ausrechnung von Kreuzprodukten nützlich sein. Wir wollen uns auf eine rechtwinklige orthogonale Basis, die durch konstante Einheitsvektoren wie bei einem festen kartesischen Koordinatensystems aufgespannt wird, beschränken 23). Dann lautet das Skalarprodukt zwischen zwei Vektoeren a i und b i in der Indexschreibwiese s = 3 a i b i. i=1 Einstein hat zur weiteren Vereinfachung der Schreibweise eingeführt, dass über doppelte Indizes, die auch stumme oder gebundene Indizes genannt werden, stets zu summieren ist, wenn nicht ausdrücklich etwas anderes vermerkt ist, so dass das Skalarprodukt einfach als s = a i b i geschrieben wird. Der Index i kann wegen der Summation auch in jeden anderen Index umbenannt werden zum Beispiel a i b i a k b k 23) Ohne diese Beschränkung müssen die Einheitsvektoren e i zur Darstellung der Vektoren und Tensoren mitgeführt werden: a = a i e i. 1 x

14 Dies ist nützlich um mehr als zweifaches Auftreten von Indizes während des Rechnens im Tensorkalkül zu vermeiden. Als Beispiel für die Summenkonvention wollen wir T i,j a j betrachten. Der Ausdruck besitzt einen freien Index i und einen gebundenen Index j. Wir schreiben dies ausnahmsweise vollständig hin T 1,1 a 1 + T 1,2 a 2 + T 1,3 a 3 3 T i,j a j T i,j a j = T i,1 a 1 + T i,2 a 2 + T i,3 a 3 = T 2,1 a 1 + T 2,2 a 2 + T 2,3 a 3. j=1 T 3,1 a 1 + T 3,2 a 2 + T 3,3 a 3 Das Ergebnis des Produktes stellt einen Tensor 1. Stufe oder Vektor dar, dessen Komponenten durch ein Matrizenprodukt gebildet werden. Von besonderem Interesse ist das Produkt zwischen dem Einheitstensor und einem Vektor: δ i,j a j Wir erhalten folgendes Ergebnis δ 1,1 a 1 + δ 1,2 a 2 + δ 1,3 a 3 3 δ i,j a j δ i,j a j = δ i,1 a 1 + δ i,2 a 2 + δ i,3 a 3 = δ 2,1 a 1 + δ 2,2 a 2 + δ 2,3 a 3 j=1 δ 3,1 a 1 + δ 3,2 a 2 + δ 3,3 a 3 = a 1 a 2 a 3 = a i. Die besondere Struktur des Einheitstensors erlaubt es also den freien Index j eines Vektors a j in einen neuen freien Index i in dem Produkt δ i,j a j zu wandeln. Solche Rechentricks führen dann oft zu Produkten der Form δ ij δ jk, für die dann gilt δ ij δ jk = δ ik. Wir wollen uns Rechenoperationen mit dem Levi-Civitaschen Tensor anschauen. Wir betrachten den Ausdruck ϵ ijk a j b k. Darin sind die Indizes j und k gebundene Indizes, der Index i ist frei. Das Produkt der Vektoren a und b in dieser Kombination mit ϵ ijk liefert also wieder einen Vektor. In der Tat rechnet man wegen der Struktur des Levi-Civitaschen Tensores nach, dass so das Kreuzprodukt dargestellt werden kann: Als Beispiel soll das doppelte Kreuzprodukt c = a b c i = ϵ ijk a j b k a ( b c ) in Indexschreibweise dargestellt werden. Zunächst bilden wir den Hilfsvektor h h = b c hi = ϵ ijk b j c k ( ) Der dadurch beschriebene Vektor h wird durch den freien Index i repräsentiert und soll von links mit dem verbleibenden Vektor a multipliziert werden. a h ϵ ijk a j h k xi

15 Beim Einsetzen der Ausdrücke ineinander sind wir gezwungen den freien Index in (*) umzubenennen. Da der Index k in (*) schon benutzt wurde und der Index j mehr als zweifach auftreten würde, benennen wir diese gebundenen Indizes um h k = ϵ klm b l c m. Dies dürfen wir dann zusammenfassen zu a ( ) b c ϵ ijk a j ϵ ilm b l c m Man überzeuge sich, dass die Reihenfolge der Faktoren beliebig ist, weshalb wir keine Klammer setzen müssen und belibig umsortieren dürfen: ϵ ijk a j ϵ klm b l c m = ϵ ijk ϵ klm a j b l c m. Produkte der Art ϵ ijk ϵ klm lassen sich nach dem Entwicklungssatz der Tensorrechnung umschreiben ϵ ijk ϵ klm = δ il δ jm δ im δ jl Wir erhalten ϵ ijk ϵ klm a j b l c m = ( δ il δ jm δ im δ jl ) aj b l c m = a m b i c m a l b l c i = b i a m c m c i a l b l Der gefundene Ausdruck ist in symbolischer Schreibweise gleichzusetzen mit a ( b c ) = b a c c a b, dem bekannten Entwicklungssatz der Vektorrechnung. Übung a) Bestimmen Sie den Zahlenwert für die Spur δ ii! = Spur(δ ij ) des Einheitstensors! b) Zeigen Sie mit der Indexschreibweise, dass das Kreuzprodukt a b nicht kommutativ ist! c) Schreiben Sie das Spatprodukt a ( b c ) in Indexschreibweise auf! d) Beweisen Sie die Lagrangesche Identität: ( a b ) ( c d ) = a c b d a d b c! e) Zeigen sie, dass der Entwicklungssatz ϵ ijk ϵ lmn = det δ il δ im δ in δ jl δ jm δ jn δ kl δ km δ kn und für den Speziallfall l = k ϵ ijk ϵ kmn = det δ im δ jm δ in δ jn gilt! xii

16 B Literaturempfehlungen B.1 Statik Technische Mechanik 1: Band 1: Statik Dietmar Gross, Werner Hauger, Jörg Schröder, und Wolfgang A. Wall von Springer-Verlag, Berlin (Taschenbuch, 28), ISBN-1: Formeln und Aufgaben zur Technischen Mechanik 1: Statik Dietmar Gross, Wolfgang Ehlers, und Peter Wriggers, Springer-Verlag, Berlin (Taschenbuch, 28) Technische Mechanik 1 Band 1 Statik E. Pestel, Mannheim Wien Zürich, BI-Verlag, 1982 B.2 Festigkeitslehre Technische Mechanik 2: Band 2: Elastostatik Dietmar Gross, Werner Hauger, Jörg Schröder, und Wolfgang A. Wall von Springer-Verlag, Berlin (Taschenbuch, 28), 1. Auflage, ISBN: xiii

Mechanik I. Statik und Festigkeitslehre

Mechanik I. Statik und Festigkeitslehre Mechanik I Statik und Festigkeitslehre Vorlesungsbegleitende Unterlagen Bernd Binninger Aachen im Herbst 2017 Institut fu r Technische Verbrennung RWTH Aachen Inhaltsverzeichnis 1 Statik 1 1.1 Kraft...........................................

Mehr

Vektoren. A.1 Symbolische und grafische Darstellung von Vektoren

Vektoren. A.1 Symbolische und grafische Darstellung von Vektoren A Vektoren A. Symbolische und grafische Darstellung von Vektoren Vektoren unterscheiden sich von einfachen reellen Zahlen, die in dieser Systematisierung als Skalare bezeichnet werden. Vektoren besitzen

Mehr

Arbeitsblatt 1 Einführung in die Vektorrechnung

Arbeitsblatt 1 Einführung in die Vektorrechnung Arbeitsblatt Einführung in die Vektorrechnung Allgemein Vektoren sind physikalische Größen und durch ihre Richtung und ihren Betrag festgelegt. Geometrisch wird ein Vektor durch einen Pfeil dargestellt,

Mehr

Grundlagen der Vektorrechnung

Grundlagen der Vektorrechnung Grundlagen der Vektorrechnung Ein Vektor a ist eine geordnete Liste von n Zahlen Die Anzahl n dieser Zahlen wird als Dimension des Vektors bezeichnet Schreibweise: a a a R n Normale Reelle Zahlen nennt

Mehr

Technische Universität Berlin. Wolfgang Raack MECHANIK. 13. verbesserte Auflage. ULB Darmstadt. nwuiui i utr IVIOWI IClI'lIK.

Technische Universität Berlin. Wolfgang Raack MECHANIK. 13. verbesserte Auflage. ULB Darmstadt. nwuiui i utr IVIOWI IClI'lIK. Technische Universität Berlin Wolfgang Raack MECHANIK 13. verbesserte Auflage ULB Darmstadt 16015482 nwuiui i utr IVIOWI IClI'lIK Berlin 2004 Inhaltsverzeichnis 1 Einführung 1 1.1 Definition der Mechanik

Mehr

Technische Mechanik. Statik

Technische Mechanik. Statik Hans Albert Richard Manuela Sander Technische Mechanik. Statik Lehrbuch mit Praxisbeispielen, Klausuraufgaben und Lösungen 4., überarbeitete und erweiterte Auflage Mit 263 Abbildungen ^ Springer Vieweg

Mehr

1 Fragestellungen der Statik... 1

1 Fragestellungen der Statik... 1 VII 1 Fragestellungen der Statik... 1 2 Kräfte und ihre Wirkungen... 5 2.1 Äußere Kräfte, wirkende Lasten... 5 2.2 Reaktionskräfte und innere Kräfte... 8 2.3 Kräfte am starren Körper... 10 2.3.1 Linienflüchtigkeitsaxiom...

Mehr

Inhaltsverzeichnis. 0 Einleitung 1. 1 Grundbegriffe 3

Inhaltsverzeichnis. 0 Einleitung 1. 1 Grundbegriffe 3 Inhaltsverzeichnis 0 Einleitung 1 1 Grundbegriffe 3 1.1 Begriffserklärung Statik starrer Körper... 3 1.2 Kräfte und Kräftearten... 3 1.3 Streckenlasten... 4 1.4 Was ist ein mechanisches System... 5 1.5

Mehr

Inhaltsverzeichnis. 0 Einleitung 1. 1 Grundbegriffe Erstarrungsmethode Axiome der Statik... 21

Inhaltsverzeichnis. 0 Einleitung 1. 1 Grundbegriffe Erstarrungsmethode Axiome der Statik... 21 Inhaltsverzeichnis 0 Einleitung 1 1 Grundbegriffe 3 1.1 Begriffserklärung Statik starrer Körper... 3 1.2 Kräfte und Kräftearten... 3 1.3 Streckenlasten... 4 1.4 Was ist ein mechanisches System... 5 1.5

Mehr

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat.

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. 1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. übliche Beispiele: Ort r = r( x; y; z; t ) Kraft F Geschwindigkeit

Mehr

Kapitel 2. Mathematische Grundlagen. Koordinatensystem

Kapitel 2. Mathematische Grundlagen. Koordinatensystem Kapitel 2 Mathematische Grundlagen 2.1 Koordinatensystem Zumeist werden in diesem Buch rechtwinkelige kartesische Koordinatensysteme verwendet. Sie sind durch drei zueinander orthogonale Koordinatenachsen

Mehr

Definition: Euklidischer Raum mit Skalarprodukt. Die kanonische Basis von Einheitsvektoren sind paarweise orthogonal zueinander:

Definition: Euklidischer Raum mit Skalarprodukt. Die kanonische Basis von Einheitsvektoren sind paarweise orthogonal zueinander: Definition: Euklidischer Raum mit Skalarprodukt Einsteinsche Summenkonvention (ES): über doppelt vorkommende Indizes wird summiert. Die kanonische Basis von Einheitsvektoren sind paarweise orthogonal zueinander:

Mehr

2. Vorlesung Wintersemester

2. Vorlesung Wintersemester 2. Vorlesung Wintersemester 1 Mechanik von Punktteilchen Ein Punktteilchen ist eine Abstraktion. In der Natur gibt es zwar Elementarteilchen (Elektronen, Neutrinos, usw.), von denen bisher keine Ausdehnung

Mehr

1 Vorlesungen: und Vektor Rechnung: 1.Teil

1 Vorlesungen: und Vektor Rechnung: 1.Teil 1 Vorlesungen: 4.10.005 und 31.10.005 Vektor Rechnung: 1.Teil Einige in der Physik auftretende Messgrößen sind durch eine einzige Zahl bestimmt: Temperatur T K Dichte kg/m 3 Leistung P Watt = J/s = kg

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

Mechanik 1. Übungsaufgaben

Mechanik 1. Übungsaufgaben Mechanik 1 Übungsaufgaben Universitätsprofessor Dr.-Ing. habil. Jörg Schröder Universität Duisburg-Essen, Standort Essen Fachbereich 10 - Bauwesen Institut für Mechanik Übung zu Mechanik 1 Seite 1 Aufgabe

Mehr

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015 Vektorrechnung Fakultät Grundlagen Juli 205 Fakultät Grundlagen Vektorrechnung Übersicht Grundsätzliches Grundsätzliches Vektorbegriff Algebraisierung der Vektorrechnung Betrag 2 Skalarprodukt Vektorprodukt

Mehr

Vektorrechnung. 10. August Inhaltsverzeichnis. 1 Vektoren 2. 2 Grundlegende Rechenoperationen mit Vektoren 3. 3 Geometrie der Vektoren 5

Vektorrechnung. 10. August Inhaltsverzeichnis. 1 Vektoren 2. 2 Grundlegende Rechenoperationen mit Vektoren 3. 3 Geometrie der Vektoren 5 Vektorrechnung 0. August 07 Inhaltsverzeichnis Vektoren Grundlegende Rechenoperationen mit Vektoren 3 3 Geometrie der Vektoren 5 4 Das Kreuzprodukt 9 Vektoren Die reellen Zahlen R können wir uns als eine

Mehr

Einführung Vektoralgebra VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen. October 6, 2007

Einführung Vektoralgebra VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen. October 6, 2007 Hochschule Esslingen October 6, 2007 Overview Einführung 1 Einführung 2 Was sind Vektoren? Vektoren werden geometrisch definiert als Pfeilklassen: Strecken mit gleichem Betrag, gleicher Richtung und Orientierung.

Mehr

Vektoren, Vektorräume

Vektoren, Vektorräume Vektoren, Vektorräume Roman Wienands Sommersemester 2010 Mathematisches Institut der Universität zu Köln Roman Wienands (Universität zu Köln) Mathematik II für Studierende der Chemie Sommersemester 2010

Mehr

Vektoralgebra Anwendungen der Vektorrechnung VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen 1/64

Vektoralgebra Anwendungen der Vektorrechnung VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen 1/64 1/64 VEKTORRECHNUNG Prof. Dr. Dan Eugen Ulmet Hochschule Esslingen März 2011 2/64 Overview Vektoralgebra 1 Vektoralgebra 2 Was sind Vektoren? 3/64 Vektoren werden geometrisch definiert als Pfeilklassen:

Mehr

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren Kapitel 3 Vektoren 31 Skalare, Vektoren, Tensoren Viele physikalische Größen lassen sich bei bekannter Maßeinheit durch Angabe ihres Betrages als reelle Zahl vollständig angeben Solche Größen nennt man

Mehr

Technische Mechanik I

Technische Mechanik I Technische Mechanik I m.braun@uni-duisburg.de Wintersemester 2003/2004 Lehrveranstaltung Zeit Hörsaal Beginn Technische Mechanik I V 3 Mi 14:00 15:30 LB 104 15.10.2003 r 08:15 09:45 LB 104 17.10.2003 14tägig

Mehr

2.2 Kollineare und koplanare Vektoren

2.2 Kollineare und koplanare Vektoren . Kollineare und koplanare Vektoren Wie wir schon gelernt haben, können wir einen Vektor durch Multiplikation mit einem Skalar verlängern oder verkürzen. In Abbildung 9 haben u und v die gleiche Richtung,

Mehr

Lernmaterialblatt Mathematik. Vektorrechnung eine Einführung. Anwendung Mathematik I. Einleitung:

Lernmaterialblatt Mathematik. Vektorrechnung eine Einführung. Anwendung Mathematik I. Einleitung: Vektorrechnung eine Einführung Einleitung: Um beispielsweise das Dreieck ABC in der Abbildung an die Position A'B'C' zu verschieben, muss jeder Punkt um sieben Einheiten nach rechts und drei nach oben

Mehr

Mathematische Grundlagen der Tensoralgebra und Tensoranalysis

Mathematische Grundlagen der Tensoralgebra und Tensoranalysis Kapitel 2 Mathematische Grundlagen der Tensoralgebra und Tensoranalysis Zusammenfassung Die in der Kontinuumsmechanik betrachteten Größen sind Skalare, Vektoren und Tensoren, oder allgemeiner Tensoren

Mehr

Inhaltsverzeichnis. I Starrkörperstatik 17. Vorwort 5

Inhaltsverzeichnis. I Starrkörperstatik 17. Vorwort 5 Inhaltsverzeichnis Vorwort 5 1 Allgemeine Einführung 13 1.1 Aufgabe und Einteilung der Mechanik.............. 13 1.2 Vorgehen in der Mechanik..................... 14 1.3 Physikalische Größen und Einheiten................

Mehr

Länge, Skalarprodukt, Vektorprodukt

Länge, Skalarprodukt, Vektorprodukt Länge, Skalarprodukt, Vektorprodukt Jörn Loviscach Versionsstand: 20. April 2009, 19:39 1 Überblick Ein Vektorraum muss nur eine Minimalausstattung an Rechenoperationen besitzen: die Addition zweier Vektoren

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

Mathematik für Chemische Technologie 2

Mathematik für Chemische Technologie 2 Mathematik für Chemische Technologie 2 Themenüberblick: Funktionen mehrerer unabhängigen Veränderlichen Vektoralgebra Lineare Gleichungssysteme und Determinanten Fehlerrechnung Schwerpunkt des Sommersemesters

Mehr

Grundkurs Technische Mechanik

Grundkurs Technische Mechanik Frank Mestemacher Grundkurs Technische Mechanik Statik der Starrk6rper, Elastostatik, Dynamik Inhaltsverzeichnis Vorwort v I Statik der St.arrkorper 1 1 Mathematische Voriiberlegungen 3 1.1 Skalare.. 3

Mehr

Umwelt-Campus Birkenfeld. der Fachhochschule Trier. Technische Mechanik I. Prof. Dr.-Ing. T. Preußler. 2. Grundlagen. 2.

Umwelt-Campus Birkenfeld. der Fachhochschule Trier. Technische Mechanik I. Prof. Dr.-Ing. T. Preußler. 2. Grundlagen. 2. 2. Grundlagen 1 2.1 Mathematische Grundbegriffe In der Mechanik treten folgende mathematische Größen auf: Skalare Richtungsunabhängige Größen, definiert durch Maßzahl und Einheit (Länge, Zeit, Arbeit,

Mehr

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2 Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra 1 Vektoralgebra 1 Der dreidimensionale Vektorraum R 3 ist die Gesamtheit aller geordneten Tripel (x 1, x 2, x 3 ) reeller Zahlen Jedes geordnete

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

Universität für Bodenkultur

Universität für Bodenkultur Baustatik Übungen Kolloquiumsvorbereitung Universität für Bodenkultur Department für Bautechnik und Naturgefahren Wien, am 15. Oktober 2004 DI Dr. techn. Roman Geier Theoretischer Teil: Ziele / Allgemeine

Mehr

Universität Stuttgart Physik und ihre Didaktik PD Dr. Holger Cartarius. Matrizen. a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A = a m,1 a m,2 a m,n

Universität Stuttgart Physik und ihre Didaktik PD Dr. Holger Cartarius. Matrizen. a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A = a m,1 a m,2 a m,n Universität Stuttgart Physik und ihre Didaktik PD Dr Holger Cartarius Matrizen Matrizen: Ein rechteckiges Zahlenschema der Form a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A a m,1 a m,2 a m,n (a) nennt man eine

Mehr

Kapitel 22. Aufgaben. Verständnisfragen. Rechenaufgaben

Kapitel 22. Aufgaben. Verständnisfragen. Rechenaufgaben Kapitel Aufgaben Verständnisfragen Aufgabe. Gegeben sind kartesische Tensoren r ij k, s ij und t ij. Welche der folgenden Größen sind koordinateninvariant? s ii, s ij t jk, s ij t ji, r ijj, s ij t jk

Mehr

Aus dem Beispiel lässt sich ablesen (und auch beweisen, siehe Mathematikvorlesung): Die Einheitsvektoren des Koordinatensystems K sind die Spalten der

Aus dem Beispiel lässt sich ablesen (und auch beweisen, siehe Mathematikvorlesung): Die Einheitsvektoren des Koordinatensystems K sind die Spalten der 7 Aus dem Beispiel lässt sich ablesen (und auch beweisen, siehe Mathematikvorlesung): Folgerung: Drehmatrizen haben die Determinante. Folgerung: Drehmatrizen sind orthogonale Matrizen, das heißt D = D

Mehr

1.2 Das kartesische Koordinatensystem

1.2 Das kartesische Koordinatensystem Kapitel 1 Vektoralgebra 1.1 Einführung Am ersten Kapitel widmen wir uns den Grundlagen der Vektoralgebra, wobei wir speziell auf die Definitionen von Skalaren und Vektoren eingehen und Produkte zwischen

Mehr

Otto Rang. Vektoralgebra. Mit 94 Abbildungen und 66 Übungsaufgaben mit Lösungen. Dr. Dietrich Steinkopff Verlag Darmstadt

Otto Rang. Vektoralgebra. Mit 94 Abbildungen und 66 Übungsaufgaben mit Lösungen. Dr. Dietrich Steinkopff Verlag Darmstadt Otto Rang Vektoralgebra Mit 94 Abbildungen und 66 Übungsaufgaben mit Lösungen Dr. Dietrich Steinkopff Verlag Darmstadt Vorwort Inhaltsverzeichnis 1. Die Vektordefinition und einfachere Gesetzmäßigkeiten

Mehr

Inhaltsverzeichnis. Raimond Dallmann. Baustatik 1. Berechnung statisch bestimmter Tragwerke ISBN:

Inhaltsverzeichnis. Raimond Dallmann. Baustatik 1. Berechnung statisch bestimmter Tragwerke ISBN: Inhaltsverzeichnis Raimond Dallmann Baustatik 1 Berechnung statisch bestimmter Tragwerke ISBN: 978-3-446-42319-0 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-42319-0 sowie

Mehr

3.6 Einführung in die Vektorrechnung

3.6 Einführung in die Vektorrechnung 3.6 Einführung in die Vektorrechnung Inhaltsverzeichnis Definition des Vektors 2 2 Skalare Multiplikation und Kehrvektor 4 3 Addition und Subtraktion von Vektoren 5 3. Addition von zwei Vektoren..................................

Mehr

Aufgaben zu Kapitel 22

Aufgaben zu Kapitel 22 Aufgaben zu Kapitel Aufgaben zu Kapitel Verständnisfragen Aufgabe. Gegeben sind kartesische Tensoren r ij k, s ij und t ij. Welche der folgenden Größen sind koordinateninvariant? s ii, s ij t jk, s ij

Mehr

& sind die Vektorkomponenten von und sind die Vektorkoordinaten von. A x. a) Der Betrag eines Vektors

& sind die Vektorkomponenten von und sind die Vektorkoordinaten von. A x. a) Der Betrag eines Vektors Einführu hnung Was ist ein Vektor? In Bereichen der Naturwissenschaften treten Größen auf, die nicht nur durch eine Zahlenangabe dargestellt werden können, wie Kraft oder Geschwindigkeit. Zur vollständigen

Mehr

Kapitel I: Vektorrechnung 2: Vektoren im Raum

Kapitel I: Vektorrechnung 2: Vektoren im Raum WS 1/14 - Prof Dr Manfred Leitz 2 Vektoren im Raum A Grundbegriffe B Rechnen mit Vektoren C Der euklidische Betrag D Das euklidische Skalarprodukt E Vektorprodukt und Spatprodukt F Geraden und Ebenen im

Mehr

1 Statik. 1.1 Kraft. Folgende Eigenschaften bestimmen eine Kraft: Der Kraftvektor ist damit ein gebundener Vektor: symbolisch F

1 Statik. 1.1 Kraft. Folgende Eigenschaften bestimmen eine Kraft: Der Kraftvektor ist damit ein gebundener Vektor: symbolisch F 1 Statik 1.1 Kraft Folgende Eigenschaften bestimmen eine Kraft: Der Kraftvektor ist damit ein gebundener Vektor: symbolisch F Einheit der Kraft: 1 Newton = 1 N = 1 kg m/s 2 Darstellung: Kraft F mit einem

Mehr

Denition 6.1 Eine Gerade ist die Menge aller Losungen (x; y) einer linearen Gleichung. y = A B x + C B : Ax + By = C mit 6= 0

Denition 6.1 Eine Gerade ist die Menge aller Losungen (x; y) einer linearen Gleichung. y = A B x + C B : Ax + By = C mit 6= 0 6 Der Vektorraum R n In den folgenden Wochen wenden wir uns der Linearen Algebra zu, die man als eine abstrakte Form des Rechnens mit Vektoren auassen kann. Ein zentrales Thema werden lineare Raume (=

Mehr

Theoretische Physik 1, Mechanik

Theoretische Physik 1, Mechanik Theoretische Physik 1, Mechanik Harald Friedrich, Technische Universität München Sommersemester 2009 Mathematische Ergänzungen Vektoren und Tensoren Partielle Ableitungen, Nabla-Operator Physikalische

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P. Grohs T. Welti F. Weber Herbstsemester 5 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie Aufgabe. Skalarprodukt und Orthogonalität.a) Bezüglich des euklidischen

Mehr

5 Lineare Algebra (Teil 3): Skalarprodukt

5 Lineare Algebra (Teil 3): Skalarprodukt 5 Lineare Algebra (Teil 3): Skalarprodukt Der Begriff der linearen Abhängigkeit ermöglicht die Definition, wann zwei Vektoren parallel sind und wann drei Vektoren in einer Ebene liegen. Daß aber reale

Mehr

Lineare Algebra: Theorie und Anwendungen

Lineare Algebra: Theorie und Anwendungen Lineare Algebra: Theorie und Anwendungen Sommersemester 2012 Bernhard Burgeth Universität des Saarlandes c 2010 2012, Bernhard Burgeth 1 VEKTOREN IN DER EBENE UND IM RAUM 2 1 Vektoren in der Ebene und

Mehr

Vom Spannungstensor zum Impulsstrom

Vom Spannungstensor zum Impulsstrom Vom Spannungstensor zum Impulsstrom Physikalische Grundpraktika FU-Berlin Quelle: Skript zur Mechanik, Herrmann Welche Größe wird durch den Pfeil symbolisiert? Wie hängt die Größe (formal) mit anderen

Mehr

Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof. Dr. Ulrich Reif

Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof. Dr. Ulrich Reif 14 Oktober 2008 1 Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof Dr Ulrich Reif Inhalt: 1 Vektorrechnung 2 Lineare Gleichungssysteme 3 Matrizenrechnung 4 Lineare Abbildungen 5 Eigenwerte

Mehr

1 Fraktale Eigenschaften der Koch-Kurve

1 Fraktale Eigenschaften der Koch-Kurve Anhang Inhaltsverzeichnis Fraktale Eigenschaften der Koch-Kurve iii. Einführung.................................. iii.2 Defintion.................................... iii.3 Gesamtlänge der Koch-Kurve........................

Mehr

VEKTOREN. Allgemeines. Vektoren in der Ebene (2D)

VEKTOREN. Allgemeines. Vektoren in der Ebene (2D) VEKTOREN Allgemeines Man unterscheidet im Schulgebrauch zwischen zweidimensionalen und dreidimensionalen Vektoren (es kann aber auch Vektoren geben, die mehr als 3 Komponenten haben). Während zweidimensionale

Mehr

Dietmar Gross, Werner Hauger, Jörg Schröder und Wolfgang A. Wall

Dietmar Gross, Werner Hauger, Jörg Schröder und Wolfgang A. Wall Spannungszustand 2 Dietmar Gross, Werner Hauger, Jörg Schröder und Wolfgang A. Wall Springer-Verlag GmbH Deutschland 2017 D. Gross et al., Technische Mechanik 2, DOI 10.1007/978-3-662-53679-7_2 35 36 2

Mehr

1 Mathematische Hilfsmittel

1 Mathematische Hilfsmittel Mathematische Hilfsmittel. Vektoranalysis Wiederholung Vektor: Länge und Richtung Vektoraddition: A + B = B + A (A + B) + C = A + (B + C) kartesische Koordinaten: B A + B = i (a i + b i )e i A+B Multiplikation

Mehr

Mit Skalarprodukt und Vektorprodukt lässt sich ein weiteres, kombiniertes Produkt, das Spatprodukt

Mit Skalarprodukt und Vektorprodukt lässt sich ein weiteres, kombiniertes Produkt, das Spatprodukt Mit Skalarprodukt und Vektorprodukt lässt sich ein weiteres, kombiniertes Produkt, das Spatprodukt a ( b c) bilden. Aus der geometrischen Interpretation von Skalarprodukt und Vektorprodukt ist sofort ersichtlich,

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 6 4. Mai 2010 Definition 69. Der Vektor f 3 x 2 (x 1, x 2, x 3 ) f 2 x 3 (x 1, x 2, x 3 ) f 1 x 3 (x 1, x 2, x 3 ) f 3 x 1 (x 1, x 2, x 3 ) f 2 x

Mehr

Einführung. 1 Vektoren

Einführung. 1 Vektoren Einführung Die Vektorgeometrie beschreibt geometrische Sachverhalte in einer algebraischen Sprache. Sie gibt uns ein mathematisches Hilfsmittel in die Hand, mit welchem wir Geometrie nicht nur konstruktiv

Mehr

Vektoren und Matrizen

Vektoren und Matrizen Universität Basel Wirtschaftswissenschaftliches Zentrum Vektoren und Matrizen Dr. Thomas Zehrt Inhalt: 1. Vektoren (a) Einführung (b) Linearkombinationen (c) Länge eines Vektors (d) Skalarprodukt (e) Geraden

Mehr

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010 Aufgabensammlung aus Mathematik 2 UMIT, SS 2, Version vom 7. Mai 2 I Aufgabe I Teschl / K 3 Zerlegen Sie die Zahl 8 N in ihre Primfaktoren. Aufgabe II Teschl / K 3 Gegeben sind die natürliche Zahl 7 und

Mehr

MECHANIK & WERKSTOFFE

MECHANIK & WERKSTOFFE MECHANIK & WERKSTOFFE Statik Lagerung von Körpern 1-wertig Pendelstütze Seil (keine Lasten dazwischen) (nur Zug) Loslager Anliegender Stab Kraft in Stabrichtung Kraft in Seilrichtung Kraft in Auflagefläche

Mehr

Definition, Grundbegriffe, Grundoperationen

Definition, Grundbegriffe, Grundoperationen Aufgaben 1 Vektoren Definition, Grundbegriffe, Grundoperationen Lernziele - einen Vektor korrekt kennzeichnen bzw. schreiben können. - wissen, was ein Gegenvektor ist. - wissen, wie die Addition zweier

Mehr

Skalarprodukt. Anwendung auf die Berechnung von einfachen Abständen und Winkeln sowie Normalenvektor. Ganz einfache Erklärung der Grundlagen:

Skalarprodukt. Anwendung auf die Berechnung von einfachen Abständen und Winkeln sowie Normalenvektor. Ganz einfache Erklärung der Grundlagen: Vektorgeometrie ganz einfach Teil 5 Skalarprodukt Anwendung auf die Berechnung von einfachen Abständen und Winkeln sowie Normalenvektor Ganz einfache Erklärung der Grundlagen: Die wichtigsten Aufgabenstellungen

Mehr

3. Elastizitätsgesetz

3. Elastizitätsgesetz 3. Elastizitätsgesetz 3.1 Grundlagen 3.2 Isotropes Material 3.3 Orthotropes Material 3.4 Temperaturdehnungen 1.3-1 3.1 Grundlagen Elastisches Material: Bei einem elastischen Material besteht ein eindeutig

Mehr

Vektoren - Basiswechsel

Vektoren - Basiswechsel Vektoren - Basiswechsel Grundprinzip Für rein geometrische Anwendungen verwendet man üblicherweise die Standardbasis. Damit ergibt sich in den Zahlenangaben der Koordinaten kein Unterschied zu einem Bezug

Mehr

3 Vektoren. 3.1 Kartesische Koordinaten in Ebene und Raum. Höhere Mathematik 60

3 Vektoren. 3.1 Kartesische Koordinaten in Ebene und Raum. Höhere Mathematik 60 Kartesische Koordinaten in Ebene und Raum 3 Vektoren 3.1 Kartesische Koordinaten in Ebene und Raum In der Ebene (mathematisch ist dies die Menge R 2 ) ist ein kartesisches Koordinatensystem festgelegt

Mehr

a 2β... a n ω alle Permutationen von α β γ... ω a 3 γ ( 1) k a 1α

a 2β... a n ω alle Permutationen von α β γ... ω a 3 γ ( 1) k a 1α Mathematik 1 - Übungsblatt 7 Lösungshinweise Tipp: Verwenden Sie zur Kontrolle Scilab, wo immer es möglich ist. Aufgabe 1 (Definitionsformel für Determinanten) Determinanten quadratischer Matrizen sind

Mehr

Grundwissen Abitur Geometrie 15. Juli 2012

Grundwissen Abitur Geometrie 15. Juli 2012 Grundwissen Abitur Geometrie 5. Juli 202. Erkläre die Begriffe (a) parallelgleiche Pfeile (b) Vektor (c) Repräsentant eines Vektors (d) Gegenvektor eines Vektors (e) Welcher geometrische Zusammenhang besteht

Mehr

Lernunterlagen Vektoren in R 2

Lernunterlagen Vektoren in R 2 Die Menge aller reellen Zahlen wird mit R bezeichnet, die Menge aller Paare a 1 a 2 reeller Zahlen wird mit R 2 bezeichnet. Definition der Menge R 2 : R 2 { a 1 a 2 a 1, a 2 R} Ein Zahlenpaar a 1 a 2 bezeichnet

Mehr

Serie 10: Inverse Matrix und Determinante

Serie 10: Inverse Matrix und Determinante D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die

Mehr

Zusammenfassung zum Thema Vektor- und Matrizenrechnung

Zusammenfassung zum Thema Vektor- und Matrizenrechnung Zusammenfassung zum Thema Vektor- und Matrizenrechnung Mathematischer Vorkurs für Physiker und Naturwissenschaftler WS 2014/2015 Grundbegriffe der Linearen Algebra Viele physikalische Größen (Geschwindigkeit,

Mehr

Seminar 1. Epsilontik. 1.1 Der ε-pseudotensor und einige seiner Eigenschaften

Seminar 1. Epsilontik. 1.1 Der ε-pseudotensor und einige seiner Eigenschaften Seminar 1 1 Vektoralgebra, -Operator, Epsilontik 1.1 Der ε-pseudotensor und einige seiner Eigenschaften In in allen Bereichen der theoretischen Physik sehr gebräuchliches Hilfsmittel ist der ε-pseudotensor.

Mehr

mit "Skalarprodukt" aus i-tem "Zeilenvektor" und j-tem "Spaltenvektor"

mit Skalarprodukt aus i-tem Zeilenvektor und j-tem Spaltenvektor Zusammenfassung Matrizen Transponierte: Addition: mit Skalare Multiplikation: Matrixmultiplikation: m x p m x n n x p mit ES "Skalarprodukt" aus i-tem "Zeilenvektor" und j-tem "Spaltenvektor" "Determinante"

Mehr

Klassische Theoretische Physik I WS 2013/ Kronecker und Levi-Civita Symbole ( = 50 Punkte)

Klassische Theoretische Physik I WS 2013/ Kronecker und Levi-Civita Symbole ( = 50 Punkte) Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 2013/2014 Prof. Dr. J. Schmalian Blatt 4 Dr. P. P. Orth Abgabe und Besprechung 22.11.2013 1. Kronecker und

Mehr

2 Skalarprodukt, Vektorprodukt

2 Skalarprodukt, Vektorprodukt 37 2 Skalarprodukt, Vektorprodukt Es gibt zwei verschiedene Verknüpfungsregeln für das Produkt von Vektoren. Die mechanische Arbeit ist definiert als Produkt aus Kraft und Weg. 1 Vorausgesetzt wird dabei,

Mehr

Inhaltsverzeichnis. Ulrich Gabbert, Ingo Raecke. Technische Mechanik für Wirtschaftsingenieure. ISBN (Buch):

Inhaltsverzeichnis. Ulrich Gabbert, Ingo Raecke. Technische Mechanik für Wirtschaftsingenieure. ISBN (Buch): Inhaltsverzeichnis Ulrich Gabbert, Ingo Raecke Technische Mechanik für Wirtschaftsingenieure ISBN (Buch): 978-3-446-43253-6 ISBN (E-Book): 978-3-446-43595-7 Weitere Informationen oder Bestellungen unter

Mehr

Gleiche Vorgehensweise wie beim Einheitsvektor in der Ebene (also wie bei 2D).Beispiel:

Gleiche Vorgehensweise wie beim Einheitsvektor in der Ebene (also wie bei 2D).Beispiel: VEKTOREN Vektoren im Raum (3D) Länge/Betrag eines räumlichen Vektors Um die Länge eines räumlichen Vektors zu bestimmen, berechnen wir dessen Betrag. Auch hier rechnet man genauso wie bei einem zweidimensionalen

Mehr

2.3.4 Drehungen in drei Dimensionen

2.3.4 Drehungen in drei Dimensionen 2.3.4 Drehungen in drei Dimensionen Wir verallgemeinern die bisherigen Betrachtungen nun auf den dreidimensionalen Fall. Für Drehungen des Koordinatensystems um die Koordinatenachsen ergibt sich 1 x 1

Mehr

Übersicht Kapitel 9. Vektorräume

Übersicht Kapitel 9. Vektorräume Vektorräume Definition und Geometrie von Vektoren Übersicht Kapitel 9 Vektorräume 9.1 Definition und Geometrie von Vektoren 9.2 Teilräume 9.3 Linearkombinationen und Erzeugendensysteme 9.4 Lineare Abhängigkeiten

Mehr

Analytische Geometrie, Vektorund Matrixrechnung

Analytische Geometrie, Vektorund Matrixrechnung Kapitel 1 Analytische Geometrie, Vektorund Matrixrechnung 11 Koordinatensysteme Eine Gerade, eine Ebene oder den Anschauungsraum beschreibt man durch Koordinatensysteme 111 Was sind Koordinatensysteme?

Mehr

Technische Mechanik. Technische Mechanik. Statik Kinematik Kinetik Schwingungen Festigkeitslehre. Martin Mayr. Martin Mayr. 8.

Technische Mechanik. Technische Mechanik. Statik Kinematik Kinetik Schwingungen Festigkeitslehre. Martin Mayr. Martin Mayr. 8. 44570_Mayr_205x227_44570_Mayr_RZ 03.07.5 3:39 Seite Martin Mayr Das erfolgreiche Lehrbuch ermöglicht Studenten des Maschinenbaus, der Elektrotechnik und der Mechatronik einen leichten Einstieg in die Technische

Mehr

1 Einführung in die Vektorrechnung

1 Einführung in die Vektorrechnung 3 1 Einführung in die Vektorrechnung Neben der Integral- und Differentialrechnung ist die Vektorrechnung eine der wichtigsten mathematischen Disziplinen für die Ausbildung in einem Ingenieurfach, da in

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

Lineare Algebra - Übungen 1 WS 2017/18

Lineare Algebra - Übungen 1 WS 2017/18 Prof. Dr. A. Maas Institut für Physik N A W I G R A Z Lineare Algebra - Übungen 1 WS 017/18 Aufgabe P1: Vektoren Präsenzaufgaben 19. Oktober 017 a) Zeichnen Sie die folgenden Vektoren: (0,0) T, (1,0) T,

Mehr

EINFÜHRUNG IN DIE TENSORRECHNUNG

EINFÜHRUNG IN DIE TENSORRECHNUNG EINFÜHRUNG IN DIE ENSORRECHNUNG eil 1 SIEGFRIED PERY Neufassung vom 7 Juni 2016 I n h a l t 1 Was sind ensoren? 2 2 Multiplikation von Matrizen 21 Multiplikation einer Vektors mit einem ensor 2 Stufe 5

Mehr

, v 3 = und v 4 =, v 2 = V 1 = { c v 1 c R }.

, v 3 = und v 4 =, v 2 = V 1 = { c v 1 c R }. 154 e Gegeben sind die Vektoren v 1 = ( 10 1, v = ( 10 1. Sei V 1 = v 1 der von v 1 aufgespannte Vektorraum in R 3. 1 Dann besteht V 1 aus allen Vielfachen von v 1, V 1 = { c v 1 c R }. ( 0 ( 01, v 3 =

Mehr

Rechnen mit Vektoren. 1. Vektoren im Koordinatensystem Freie Vektoren in der Ebene

Rechnen mit Vektoren. 1. Vektoren im Koordinatensystem Freie Vektoren in der Ebene Rechnen mit 1. im Koordinatensystem 1.1. Freie in der Ebene 1) Definition Ein Vektor... Zwei sind gleich, wenn... 2) Das ebene Koordinatensystem Wir legen den Koordinatenursprung fest, ferner zwei zueinander

Mehr

Vektoren. Kapitel 13 Vektoren. Mathematischer Vorkurs TU Dortmund Seite 114 / 1

Vektoren. Kapitel 13 Vektoren. Mathematischer Vorkurs TU Dortmund Seite 114 / 1 Vektoren Kapitel 13 Vektoren Mathematischer Vorkurs TU Dortmund Seite 114 / 1 Vektoren 131 Denition: Vektoren im Zahlenraum Ein Vektor (im Zahlenraum) mit n Komponenten ist ein n-tupel reeller Zahlen,

Mehr

Teil II. Geometrie 19

Teil II. Geometrie 19 Teil II. Geometrie 9 5. Dreidimensionales Koordinatensystem Im dreidimensionalen Koordinatensystem gibt es acht Oktanten, oben I bis VI und unten VI bis VIII. Die Koordinatenachsen,x 2 und stehen jeweils

Mehr

Arbeitsblatt Mathematik 2 (Vektoren)

Arbeitsblatt Mathematik 2 (Vektoren) Fachhochschule Nordwestschweiz (FHNW Hochschule für Technik Institut für Mathematik und Naturwissenschaften Arbeitsblatt Mathematik (Vektoren Dozent: - Brückenkurs Mathematik / Physik 6. Aufgabe Gegeben

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 4 Wintersemester 2017/18 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2017 Steven Köhler Wintersemester 2017/18 Inhaltsverzeichnis Teil 1 Teil

Mehr

4.4 Eigenwerte und Eigenvektoren

4.4 Eigenwerte und Eigenvektoren 4.4-1 4.4 Eigenwerte und Eigenvektoren 4.4.1 Die Eulersche Gleichung Der Drehimpulsvektor kann folgendermaßen geschrieben werden, (1) worin die e i o Einheitsvektoren in Richtung der Hauptachsen sind,

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

Vektorgeometrie - Teil 1

Vektorgeometrie - Teil 1 Vektorgeometrie - Teil 1 MNprofil - Mittelstufe KZN Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 14. März 2016 Inhaltsverzeichnis 1 Einführung & die analytische Darstellung der

Mehr

Mathematik für Naturwissenschaftler II

Mathematik für Naturwissenschaftler II Mathematik für Naturwissenschaftler II Dr Peter J Bauer Institut für Mathematik Universität Frankfurt am Main Sommersemester 27 Lineare Algebra Der mehrdimensionale Raum Vektoren Im Teil I dieser Vorlesung

Mehr

Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben:

Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben: Korrelationsmatrix Bisher wurden nur statistische Bindungen zwischen zwei (skalaren) Zufallsgrößen betrachtet. Für den allgemeineren Fall einer Zufallsgröße mit N Dimensionen bietet sich zweckmäßiger Weise

Mehr

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21 5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11

Mehr

L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren...

L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren... L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren... (benötigt neue Struktur über Vektorraumaxiome hinaus) Sei Länge von nach Pythagoras: Länge quadratisch in Komponenten! - Für : Skalarprodukt

Mehr