Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen

Größe: px
Ab Seite anzeigen:

Download "Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen"

Transkript

1 Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen Wahrscheinlichkeitstheorie Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh

2 X = (X 1,, X k ) k - dimensionale ZV ist Zufallsvektor Kennzahlen: 1.) für einzelne Komponenten 2.) zur Analyse des Zusammenhangs Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen 2

3 1. Komponentenweise a) Erwartungswert - über Randverteilung - direkt b) Varianz - über Randverteilung - direkt Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen 3

4 1. Komponentenweise Erwartungswert für: X = (X 1,, X k ) Für jede Komponente X i ist der Erwartungswert, wenn er existiert, eine Kennzahl für die Lage der Verteilung. X diskret: X i diskret mit Werten x ij, j J i E(X i ) = x ij P(X i = x ij ), für jedes i }{{} j J i Randverteilung Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen 4

5 X diskret: P(X i = x ij ) = P(X i = x ij, X t = x ts für t i) t i s J t }{{} Aufsummieren von Wahrscheinlichkeiten E(X i ) = x ij ( P(X i = x ij, X t = x ts für t i)) j J i t i s J t = x ij P(X i = x ij, X t = x ts für t i) j J i t i s J t Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen 5

6 In Vektorschreibweise: X habe Werte x (r) R k, x (r) = (x (r) 1, x (r) 2,..., x (r) k ) E(X i ) = r x (r) i P(X = x (r) ) oder E(X ) = (E(X 1 ),, E(X k )) = r x (r) P(X = x (r) ) Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen 6

7 Beispiel zu 1.) X = (X 1, X 2, X 3 ) mit X 1 habe die Werte 1,2,3,4 X 2 habe die Werte 0,1 X 3 habe die Werte 1,2 Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen 7

8 Beispiel - Wahrscheinlichkeitsverteilung X 3 =1: X 2 = X 1 = X 3=2: X 2 = X 1 = Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen 8

9 Beispiel - Randverteilung und Erwartungswert X 1 : P(X 1 = ) E(X 1) P(X 1 = 1) P(X 1 = 2) P(X 1 = 3) P(X 1 = 4) 1 P(X 1 = 1) P(X 1 = 4) = = 0.23 = 0.29 = = Analog: X 2 : P(X 2 = ) 0 1 E(X 2 ) X 3 : P(X 3 = ) 1 2 E(X 3 ) Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen 9

10 Randverteilung und Erwartungswert Äquivalent: E(X ) = (1, 0, 1) P(X =(1,0,1)) {}}{ 0.2 +(1, 0, 2) +(2, 0, 1) (2, 0, 2) 0.1 +(3, 0, 1) (3, 0, 2) (4, 0, 1) (4, 0, 2) 0.1 +(1, 1, 1) (1, 1, 2) (2, 1, 1) (2, 1, 2) (3, 1, 1) (3, 1, 2) (4, 1, 1) (4, 1, 2) P(X =(1,0,2)) {}}{ 0.1 = (1.05, 0.06, 0.51) + (1.255, 0.04, 0.98) = (2.305, 0.1, 1.49) Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen 10

11 X stetig: = + E(X i ) = x i f xi (x i )dx i + + x i... + f X (x 1,..., x i,..., x k )dx 1... dx i 1 dx i+1... dx k dx i In Vektorschreibweise: + E(X ) =... + (x 1,..., x k )f X (x 1,..., x k )dx 1... dx k Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen 11

12 Varianz und höhere Momente: Berechnung Komponentenweise: Var(X i ) = E(X 2 i ) E(X i ) 2 Vektorschreibweise nicht sinnvoll, da missverständlich. Denn sei X Vektor X 2 = (X 1,..., X n ) 2 = }{{} Skalarprodukt n i=1 X 2 i und nicht (X 2 1,..., X 2 n ) Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen 12

13 Beispiel zu 1.) - Varianz - über Randverteilung: E(X 2 1 ) = = = Var(X 1 ) = E(X 2 1 ) E(X 1 ) 2 = = E(X 2 2 ) = 0.1 = Var(X 2 ) = = 0.09 E(X 2 3 ) = = 2.47 = Var(X 3 ) = = Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen 13

14 Beispiel zu 1.) - Varianz - direkt (E(X1 2 ), E(X2 2 ), E(X3 2 )) = (1, 0, 1) (1, 0, 4) 0.1 +(4, 0, 1) (4, 0, 4) (16, 1, 1) (16, 1, 4) = (6.485, 0.1, 2.47) (Var(X 1 ), Var(X 2 ), Var(X 3 )) = (6.485, 0.1, 2.47) ( , 0.1 2, ) = (1.172, 0.09, ) Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen 14

15 Zu 2.) - Kovarianz und Korrelationskoeffizient für die Analyse des Zusammenhangs: Übertragung der Vorgehensweise in der deskriptiven Statistik auf diskrete ZV: Merkmalausprägung Werte des ZV arithm. Mittel entspricht Erwartungswert rel. Häufigkeiten Wahrscheinlichkeiten Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen 15

16 Zu 2.) - Kovarianz und Korrelationskoeffizient für die Analyse des Zusammenhangs: Kovarianz zweier Merkmale aus Häufigkeitsverteilung (X, Y ) diskret: Cov(x, y) = a (a x)(b y)p(a, b) b entspricht Cov(X, Y ) = i (x i E(X ))(y j E(Y )) P(X = x i, Y = y j ) j Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen 16

17 zu 2.) - Kovarianz und Korrelationskoeffizient für die Analyse des Zusammenhangs: Es gilt: P(X = x i, Y = y j ) = P(Y = y j, X = x i ) diskret bzw. f x,y (x, y) = f y,x (y, x) stetig Folgerung: Cov(X, Y ) = Cov(Y, X ) Bemerkung: Die Kovarianz muss nicht existieren (d.h. nicht endlich). Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen 17

18 zu 2.) - Kovarianz und Korrelationskoeffizient für die Analyse des Zusammenhangs: (X, Y ) diskret: mit Werten x i bzw. y j Cov(X, Y ) = i (x i E(X ))(y j E(Y ))P(X = x i, Y = y j ) j (X, Y ) stetig: Cov(X, Y ) = + + (x E(X ))(y E(Y ))f X,Y (x, y)dxdy Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen 18

19 Wiederholung - Beispiel: X = (X 1, X 2, X 3 ) mit X 1 habe die Werte 1,2,3,4 X 2 habe die Werte 0,1 X 3 habe die Werte 1,2 X hat die Werte: (1, 0, 1), (1, 0, 2), (1, 1, 1), (1, 1, 2), (2, 0, 1)... Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen 19

20 Wiederholung - Beispiel: Wahrscheinlichkeitsverteilung von X : X 3 = 1 : P(X 1 =, X 2 =, X 3 = 1) X 1 = P(X 2 =, X 3 = 1) X 2 = P(X 1 =, X 3 = 1) = P(X 3 = 1) Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen 20

21 Wiederholung - Beispiel: Wahrscheinlichkeitsverteilung von X : X 3 = 2 : P(X 1 =, X 2 =, X 3 = 2) X 1 = P(X 2 =, X 3 = 2) X 2 = P(X 1 =, X 3 = 2) = P(X 3 = 2) Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen 21

22 Beispiel zu 2.): Cov(X 1, X 2 ) =? Gemeinsame Verteilung: X X 2 = E(X 1 ) = E(X 2 ) = 0.1 Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen 22

23 Beispiel zu 2.): Cov(X 1, X 2 ) = 0 E(X 2) 1 E(X 1) {}}{{}}{ (0 0.1)( ( ) ) P(1,0) {}}{ 0.3 +( 0.305) 0.2 +(1 0.1)( ) = } X 2 = 0 X 2 = 1 Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen 23

24 Bemerkung: Sind X und Y unabhängig Cov(X, Y ) = 0 Beweis im diskreten Fall: analog zur deskriptiven Statistik Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen 24

25 Beweis im stetigen Fall: Cov(X, Y ) = = = = 0 (x E(X ))(y E(Y ))f X,Y (x, y)dxdy (x E(X ))(y E(Y ))f X (x)f Y (y)dxdy (x E(X ))f X (x)dx } {{ } =0 + (y E(Y ))f Y (y)dy } {{ } =0 Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen 25

26 Die Umkehrung gilt im Allgemeinen nicht. Cov(X, Y ) = 0 X, Y unabhängig Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen 26

27 Korrelationskoeffizient Veränderung der Kovarianz bei linearer Transformation: h 1 (X ) = αx + β, h 2 (Y ) = γy + δ X hat Werte x i, Y hat Werte y j P(X = x i, Y = y j ) = P(h 1 (X ) = αx i + β, h 2 (Y ) = γy j + δ) h 1 (X ) hat Werte αx i + β, h 2 (Y ) hat die Werte γy j + δ Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen 27

28 Korrelationskoeffizient Cov(αX + β, γy + δ) = αγcov(x, Y ) Var(αX + β) = Var(h 1 (X )) = α 2 Var(X ) Var(γY + δ) = Var(h 2 (Y )) = γ 2 Var(Y ) Folgerung: ϱ(αx + β, γy + δ) = = Cov(αX + β, γy + δ) Var(αX + β) Var(γY + δ) Cov(X, Y ) Var(X ) Var(Y ) = ϱ(x, Y ) ist invariant unter linearen Transformationen. Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen 28

29 Korrelationskoeffizient Definition: ϱ(x, Y ) = Cov(X, Y ) Var(X ) Var(Y ) heißt Korrelationskoeffizient Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen 29

30 Beispiel zu 2.) Korrelation von X 1 und X 2 : ϱ(x 1, X 2 ) = Var(X1 ) Var(X 2 ) = = Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen 30

31 Kovarianz bei linearer Transformation Bemerkungen: 1.) ϱ(x, Y ) ist invariant unter linearen Transformationen. 2.) 1 ϱ(x, Y ) 1 (analog zum Bravais - Pearson - Korrelationskoeffizienten der deskriptiven Statistik) ϱ(x, Y ) > 0 ϱ(x, Y ) = 0 ϱ(x, Y ) < 0 X und Y sind positiv korreliert X und Y sind unkorreliert X und Y sind negativ korreliert Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen 31

32 Kovarianzmatrix X = (X 1,..., X k ) ist Zufallsvektor Dann paarweise Kovarianz { Cov(Xi, X j ) i j c ij = Cov(X i, X i ) i = j Zusammenstellung in einem Matrixschema C = c 11 c 12 c 1k c 21 c 22 c 2k.. c k1 c kk ergibt die Kovarianzmatrix. Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen 32

33 Korrelationsmatrix Analog Korrelationsmatrix { ϱ(xi, X j ) i j ϱ ij = 1 i = j ergibt S = 1 ϱ 12 ϱ 1k ϱ ϱ k1 1 Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen 33

34 Korrelationsmatrix Bemerkungen: 1.) Die Matrix C ist symmetrisch, d.h. c ij = Cov(X i, X j ) = Cov(X j, X i ) = c ji für i j 2.) Sind die Komponenten paarweise unkorreliert, d.h. Cov(X i, X j ) = 0 für i j, so hat die Kovarianzmatrix Diagonalgestalt, d.h. außerhalb der Diagonalen stehen nur Nullen. X 1,..., X n heißen dann unkorreliert. Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen 34

35 Kovarianzmatrix bei unkorrelierten X 1,..., X n : C = Var(X 1 ) Var(X n ) Korrelationsmatrix bei unkorrelierten X 1,..., X n : S = Übungsaufgabe: Berechnung der Kovarianzmatrix im Beispiel. Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen 35

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit 3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit Lernziele dieses Kapitels: Mehrdimensionale Zufallsvariablen (Zufallsvektoren) (Verteilung, Kenngrößen) Abhängigkeitsstrukturen Multivariate

Mehr

Statistische Analyseverfahren Abschnitt 2: Zufallsvektoren und mehrdimensionale Verteilungen

Statistische Analyseverfahren Abschnitt 2: Zufallsvektoren und mehrdimensionale Verteilungen Statistische Analyseverfahren Abschnitt 2: Zufallsvektoren und mehrdimensionale Verteilungen Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Oktober 2018 Prof. Dr. Hans-Jörg

Mehr

Unabhängige Zufallsvariablen

Unabhängige Zufallsvariablen Kapitel 9 Unabhängige Zufallsvariablen Die Unabhängigkeit von Zufallsvariablen wird auf die Unabhängigkeit von Ereignissen zurückgeführt. Im Folgenden sei Ω, A, P ) ein Wahrscheinlichkeitsraum. Definition

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

Unabhängigkeit von Zufallsvariablen

Unabhängigkeit von Zufallsvariablen Unabhängigkeit von Zufallsvariablen Seminar Gegenbeispiele in der Wahrscheinlichkeitstheorie Pascal Beckedorf 12. November 2012 Pascal Beckedorf Unabhängigkeit von Zufallsvariablen 12. November 2012 1

Mehr

1.5 Mehrdimensionale Verteilungen

1.5 Mehrdimensionale Verteilungen Poisson eine gute Näherung, da np = 0 und 500p = 5 00 = n. Wir erhalten somit als Näherung Exakte Rechnung ergibt P(2 X 0) = k=2 0 k=2 π (k) = 0,26424. 0 ( ) 00 P(2 X 0) = 0,0 k 0,99 00 k = 0,264238. k.4.2.4

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Varianz und Kovarianz

Varianz und Kovarianz KAPITEL 9 Varianz und Kovarianz 9.1. Varianz Definition 9.1.1. Sei (Ω, F, P) ein Wahrscheinlichkeitsraum und X : Ω eine Zufallsvariable. Wir benutzen die Notation (1) X L 1, falls E[ X ]

Mehr

Reelle Zufallsvariablen

Reelle Zufallsvariablen Kapitel 3 eelle Zufallsvariablen 3. Verteilungsfunktionen esultat aus der Maßtheorie: Zwischen der Menge aller W-Maße auf B, nennen wir sie W B ), und der Menge aller Verteilungsfunktionen auf, nennen

Mehr

1 Multivariate Zufallsvariablen

1 Multivariate Zufallsvariablen 1 Multivariate Zufallsvariablen 1.1 Multivariate Verteilungen Definition 1.1. Zufallsvariable, Zufallsvektor (ZV) Sei Ω die Ergebnismenge eines Zufallsexperiments. Eine (univariate oder eindimensionale)

Mehr

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.)

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.) Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.) 1 Zusammenfassung Bedingte Verteilung: P (y x) = P (x, y) P (x) mit P (x) > 0 Produktsatz P (x, y) = P (x y)p (y) = P (y x)p (x) Kettenregel

Mehr

Kapitel X - Randverteilung, bedingte Verteilung und Unabhängigkeit von Zufallsvariablen

Kapitel X - Randverteilung, bedingte Verteilung und Unabhängigkeit von Zufallsvariablen Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel X - Randverteilung, bedingte Verteilung und Unabhängigkeit von Zufallsvariablen

Mehr

4. Verteilungen von Funktionen von Zufallsvariablen

4. Verteilungen von Funktionen von Zufallsvariablen 4. Verteilungen von Funktionen von Zufallsvariablen Allgemeine Problemstellung: Gegeben sei die gemeinsame Verteilung der ZV en X 1,..., X n (d.h. bekannt seien f X1,...,X n bzw. F X1,...,X n ) Wir betrachten

Mehr

Mehrdimensionale Zufallsvariablen

Mehrdimensionale Zufallsvariablen Mehrdimensionale Zufallsvariablen Im Folgenden Beschränkung auf den diskreten Fall und zweidimensionale Zufallsvariablen. Vorstellung: Auswerten eines mehrdimensionalen Merkmals ( ) X Ỹ also z.b. ω Ω,

Mehr

Zusammenfassung: diskrete und stetige Verteilungen. Woche 4: Gemeinsame Verteilungen. Zusammenfassung: diskrete und stetige Verteilungen

Zusammenfassung: diskrete und stetige Verteilungen. Woche 4: Gemeinsame Verteilungen. Zusammenfassung: diskrete und stetige Verteilungen Zusammenfassung: e und e Verteilungen Woche 4: Gemeinsame Verteilungen Wahrscheinlichkeitsverteilung p() Wahrscheinlichkeitsdichte f () WBL 15/17, 11.05.2015 Alain Hauser P(X = k

Mehr

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Review)

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Review) Einige Konzepte aus der Wahrscheinlichkeitstheorie (Review) 1 Diskrete Zufallsvariablen (Random variables) Eine Zufallsvariable X(c) ist eine Variable (genauer eine Funktion), deren Wert vom Ergebnis c

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 7. Vorlesung - 2018 Bemerkung: Sei X = X 1,..., X n Zufallsvektor. Der n dimensionale Vektor EX = EX 1,..., EX n ist der Erwartungswert des Zufallsvektors X. Beispiel: Seien X, Y N0, 1. X, Y sind die Koordinaten

Mehr

67 Zufallsvariable, Erwartungswert, Varianz

67 Zufallsvariable, Erwartungswert, Varianz 67 Zufallsvariable, Erwartungswert, Varianz 67.1 Motivation Oft möchte man dem Resultat eines Zufallsexperiments eine reelle Zahl zuordnen. Der Gewinn bei einem Glücksspiel ist ein Beispiel hierfür. In

Mehr

Kapitel XIII - Funktion und Transformation mehrdimensionaler Zufallsvariablen

Kapitel XIII - Funktion und Transformation mehrdimensionaler Zufallsvariablen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XIII - Funktion und Transformation mehrdimensionaler Zufallsvariablen Wahrscheinlichkeitstheorie Prof. Dr. W.-D.

Mehr

Teil VI. Gemeinsame Verteilungen. Lernziele. Beispiel: Zwei Würfel. Gemeinsame Verteilung

Teil VI. Gemeinsame Verteilungen. Lernziele. Beispiel: Zwei Würfel. Gemeinsame Verteilung Zusammenfassung: diskrete und stetige Verteilungen Woche 4: Verteilungen Patric Müller diskret Wahrscheinlichkeitsverteilung p() stetig Wahrscheinlichkeitsdichte f ()

Mehr

Kapitel IX - Mehrdimensionale Zufallsvariablen

Kapitel IX - Mehrdimensionale Zufallsvariablen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel IX - Mehrdimensionale Zufallsvariablen Wahrscheinlichkeitstheorie Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung SS 13: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung SS 13: Woche vom Übungsaufgaben 11. Übung SS 13: Woche vom 24. 6. 13-28. 6. 2013 Stochastik V: ZG Momente von ZG; Grenzverteilungssätze Aufgaben: s. pdf auf der homepage von Dr. Vanselow http://www.math.tu-dresden.de/

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 12. Übung SS 18: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 12. Übung SS 18: Woche vom Übungsaufgaben 12. Übung SS 18: Woche vom 2. 7. 6. 7. 2018 Stochastik VI: Zufallsvektoren; Funktionen von ZG Aufgaben: s. pdf auf der homepage von Dr. Vanselow http://www.math.tu-dresden.de/ vanselow/...

Mehr

Zusatzmaterial zur Vorlesung Statistik II

Zusatzmaterial zur Vorlesung Statistik II Zusatzmaterial zur Vorlesung Statistik II Dr. Steffi Höse Professurvertretung für Ökonometrie und Statistik, KIT Wintersemester 2011/2012 (Fassung vom 15.11.2011, DVI- und PDF-Datei erzeugt am 15. November

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Lageparameter: Erwartungswert d) Erwartungswert

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung SS 18: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung SS 18: Woche vom Übungsaufgaben 11. Übung SS 18: Woche vom 25. 6. 29. 6. 2016 Stochastik V: ZG; Momente von ZG; Zufallsvektoren Aufgaben: s. pdf auf der homepage von Dr. Vanselow http://www.math.tu-dresden.de/ vanselow/...

Mehr

Sind f X bzw. f Y die wie auf Folie 242 definierten Dichtefunktionen zur N(µ X, σx 2 )- bzw. N(µ Y, σy 2 )-Verteilung, so gilt (genau) im Fall ρ = 0

Sind f X bzw. f Y die wie auf Folie 242 definierten Dichtefunktionen zur N(µ X, σx 2 )- bzw. N(µ Y, σy 2 )-Verteilung, so gilt (genau) im Fall ρ = 0 Beispiel: Zweidimensionale Normalverteilung I Beispiel: Zweidimensionale Normalverteilung II Wichtige mehrdimensionale stetige Verteilung: mehrdimensionale multivariate Normalverteilung Spezifikation am

Mehr

Wahrscheinlichkeitstheorie Kapitel X - Randverteilung, bedingte Verteilung und Unabhängigkeit von Zufallsvariablen

Wahrscheinlichkeitstheorie Kapitel X - Randverteilung, bedingte Verteilung und Unabhängigkeit von Zufallsvariablen Wahrscheinlichkeitstheorie Kapitel X - Randverteilung, bedingte Verteilung und Unabhängigkeit von Zufallsvariablen Georg Bol bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Streuungsparameter Varianz Var(X) bzw. σ 2 : [x i E(X)] 2 f(x i ), wenn X diskret Var(X)

Mehr

Vorlesung 8a. Kovarianz und Korrelation

Vorlesung 8a. Kovarianz und Korrelation Vorlesung 8a Kovarianz und Korrelation 1 Wir erinnern an die Definition der Kovarianz Für reellwertige Zufallsvariable X, Y mit E[X 2 ] < und E[Y 2 ] < ist Cov[X, Y ] := E [ (X EX)(Y EY ) ] Insbesondere

Mehr

Kapitel II - Wahrscheinlichkeitsraum

Kapitel II - Wahrscheinlichkeitsraum Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel II - Wahrscheinlichkeitsraum Wahrscheinlichkeitstheorie Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh

Mehr

Kapitel 12 Erwartungswert und Varianz

Kapitel 12 Erwartungswert und Varianz Kapitel 12 Erwartungswert und Varianz Vorlesung Wahrscheinlichkeitsrechnung I vom 4/10. Juni 2009 Lehrstuhl für Angewandte Mathematik 1 FAU 12.1 Der Erwartungswert Der Erwartungswert einer Zufallsvariablen

Mehr

5 Erwartungswerte, Varianzen und Kovarianzen

5 Erwartungswerte, Varianzen und Kovarianzen 47 5 Erwartungswerte, Varianzen und Kovarianzen Zur Charakterisierung von Verteilungen unterscheidet man Lageparameter, wie z. B. Erwartungswert ( mittlerer Wert ) Modus (Maximum der Wahrscheinlichkeitsfunktion,

Mehr

oder A = (a ij ), A =

oder A = (a ij ), A = Matrizen 1 Worum geht es in diesem Modul? Definition und Typ einer Matrix Spezielle Matrizen Rechenoperationen mit Matrizen Rang einer Matrix Rechengesetze Erwartungswert, Varianz und Kovarianz bei mehrdimensionalen

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Studierende der Informatik. PD Dr. U. Ludwig. Vorlesung 7 1 / 19

Wahrscheinlichkeitsrechnung und Statistik für Studierende der Informatik. PD Dr. U. Ludwig. Vorlesung 7 1 / 19 Wahrscheinlichkeitsrechnung und Statistik für Studierende der Informatik PD Dr. U. Ludwig Vorlesung 7 1 / 19 2.2 Erwartungswert, Varianz und Standardabweichung (Fortsetzung) 2 / 19 Bedingter Erwartungswert

Mehr

Statistik I für Betriebswirte Vorlesung 3

Statistik I für Betriebswirte Vorlesung 3 Statistik I für Betriebswirte Vorlesung 3 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 15. April 2019 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 3 Version: 1. April

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management für Betriebswirtschaft und internationales Management Sommersemester 2015 Prof. Dr. Stefan Etschberger Hochschule Augsburg Normalverteilung Eine Zufallsvariable X mit einer Dichtefunktion und σ > 0 heißt

Mehr

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung 4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung Häufig werden mehrere Zufallsvariablen gleichzeitig betrachtet, z.b. Beispiel 4.1. Ein Computersystem bestehe aus n Teilsystemen. X i sei der Ausfallzeitpunkt

Mehr

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Stefan Etschberger für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Sommersemester 2017 Rechenregeln für den Erwartungswert Ist f symmetrisch bzgl. a, so gilt E(X)

Mehr

11.4 Korrelation. Def. 44 Es seien X 1 und X 2 zwei zufällige Variablen, für die gilt: 0 < σ X1,σ X2 < +. Dann heißt der Quotient

11.4 Korrelation. Def. 44 Es seien X 1 und X 2 zwei zufällige Variablen, für die gilt: 0 < σ X1,σ X2 < +. Dann heißt der Quotient 11.4 Korrelation Def. 44 Es seien X 1 und X 2 zwei zufällige Variablen, für die gilt: 0 < σ X1,σ X2 < +. Dann heißt der Quotient (X 1,X 2 ) = cov (X 1,X 2 ) σ X1 σ X2 Korrelationskoeffizient der Zufallsgrößen

Mehr

Kapitel 8: Zufallsvektoren

Kapitel 8: Zufallsvektoren Folie zur Vorlesung Wahrscheinlichkeitsrechnung und Stoch. Prozesse 03.12.2015 Kapitel 8: Zufallsvektoren Statt einem Merkmal werden häufig mehrere Merkmale gleichzeitig betrachtet, z.b. Körpergröße und

Mehr

Kapitel 8. Parameter multivariater Verteilungen. 8.1 Erwartungswerte

Kapitel 8. Parameter multivariater Verteilungen. 8.1 Erwartungswerte Kapitel 8 Parameter multivariater Verteilungen 8.1 Erwartungswerte Wir können auch bei mehrdimensionalen Zufallsvariablen den Erwartungswert betrachten. Dieser ist nichts anderes als der vektor der Erwartungswerte

Mehr

Folie zur Vorlesung Wahrscheinlichkeitsrechnung und Stoch. Prozesse

Folie zur Vorlesung Wahrscheinlichkeitsrechnung und Stoch. Prozesse Folie zur Vorlesung Wahrscheinlichkeitsrechnung und Stoch. Prozesse Die Gamma-Verteilung 13.12.212 Diese Verteilung dient häufig zur Modellierung der Lebensdauer von langlebigen Industriegüstern. Die Dichte

Mehr

2. Zufallsvektoren. Zufallsvektoren allgemein. Diskreter Fall. Multivariate Verteilungsfunktion. Stetige Zufallsvektoren

2. Zufallsvektoren. Zufallsvektoren allgemein. Diskreter Fall. Multivariate Verteilungsfunktion. Stetige Zufallsvektoren 2 Zufallsvektoren 2. Zufallsvektoren Zufallsvektoren allgemein Diskreter Fall Multivariate Verteilungsfunktion Stetige Zufallsvektoren Unabhängigkeit von Zufallsvariablen Korrelationskoeffizienten Dr.

Mehr

2.1 Gemeinsame-, Rand- und bedingte Verteilungen

2.1 Gemeinsame-, Rand- und bedingte Verteilungen Kapitel Multivariate Verteilungen 1 Gemeinsame-, Rand- und bedingte Verteilungen Wir hatten in unserer Datenmatrix m Spalten, dh m Variablen Demnach brauchen wir jetzt die wichtigsten Begriffe für die

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

Übungsrunde 10, Gruppe 2 LVA , Übungsrunde 10, Gruppe 2, Markus Nemetz, TU Wien,

Übungsrunde 10, Gruppe 2 LVA , Übungsrunde 10, Gruppe 2, Markus Nemetz, TU Wien, Übungsrunde, Gruppe 2 LVA 7.369, Übungsrunde, Gruppe 2, 9..27 Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 9..27 Anmerkung: Viele dieser Lösungsvorschläge stammen aus dem Informatik-Forum, Subforum

Mehr

Stochastik Musterlösung 7

Stochastik Musterlösung 7 ETH Zürich HS 216 RW, D-MATL, D-MAVT Prof. Dr. Martin Schweizer Koordinator Calypso Herrera Stochastik Musterlösung 7 1. a) Es sind folgende zwei Eigenschaften zu zeigen: f X,Y (x, y) für alle (x, y) R

Mehr

Kapitel XI - Die n-fache unabhängige Wiederholung eines Experiments

Kapitel XI - Die n-fache unabhängige Wiederholung eines Experiments Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XI - Die n-fache unabhängige Wiederholung eines Experiments Wahrscheinlichkeitstheorie Prof. Dr. W.-D. Heller Hartwig

Mehr

Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2.

Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2. Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2. Lineare Korrelation Annahme: var(x 1 ),var(x 2 ) (0, ). Der Koeffizient

Mehr

Kapitel XII - Gleichmäßig beste unverfälschte Tests und Tests zur Normalverteilung

Kapitel XII - Gleichmäßig beste unverfälschte Tests und Tests zur Normalverteilung Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XII - Gleichmäßig beste unverfälschte Tests und Tests zur Normalverteilung Induktive Statistik Prof. Dr. W.-D.

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 2. Stock, Nordflügel R. 02-429 (Persike) R. 02-431 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psmet03.sowi.uni-mainz.de/

Mehr

Finanzmathematische Modelle und Simulation

Finanzmathematische Modelle und Simulation Finanzmathematische Modelle und Simulation WS 9/1 Rebecca Henkelmann In meiner Ausarbeitung Grundbegriffe der Stochastik I, geht es darum die folgenden Begriffe für die nächsten Kapitel einzuführen. Auf

Mehr

Theorem 9 Sei G eine Verteilungsfunktion in IR. 1. Quantil-Transformation: Wenn U U(0, 1) (standard Gleichverteilung), dann gilt P(G (U) x) = G(x).

Theorem 9 Sei G eine Verteilungsfunktion in IR. 1. Quantil-Transformation: Wenn U U(0, 1) (standard Gleichverteilung), dann gilt P(G (U) x) = G(x). Theorem 9 Sei G eine Verteilungsfunktion in IR. 1. Quantil-Transformation: Wenn U U(0, 1) (standard Gleichverteilung), dann gilt P(G (U) x) = G(x). 2. Wahrscheinlichkeit-Transformation: Sei Y eine Zufallsvariable

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 8. Vorlesung - 2017 Bemerkung: Sei X = (X 1,..., X n ) Zufallsvektor. Der n dimensionale Vektor ( ) E(X ) = E(X 1 ),..., E(X n ) ist der Erwartungswert des Zufallsvektors X. Beispiel: Seien X, Y N (0,

Mehr

Vorlesung 8b. Kovarianz, Korrelation und Regressionsgerade

Vorlesung 8b. Kovarianz, Korrelation und Regressionsgerade Vorlesung 8b Kovarianz, Korrelation und Regressionsgerade 1 1. Die Kovarianz und ihre Eigenschaften 2 Wir erinnern an die Definition der Kovarianz Für reellwertige Zufallsvariable X, Y mit E[X 2 ] < und

Mehr

Statistik I für Betriebswirte Vorlesung 4

Statistik I für Betriebswirte Vorlesung 4 Statistik I für Betriebswirte Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 25. April 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Mainz, 4. Mai 2017 Dr. Michael O. Distler

Mehr

Vorlesung 9b. Kovarianz und Korrelation

Vorlesung 9b. Kovarianz und Korrelation Vorlesung 9b Kovarianz und Korrelation 1 Wir erinnern an die Definition der Kovarianz Für reellwertige Zufallsvariable X, Y mit E[X 2 ] < und E[Y 2 ] < ist Cov[X,Y]:= E [ (X EX)(Y EY) ] Insbesondere ist

Mehr

Vorlesung 7b. Kovarianz und Korrelation

Vorlesung 7b. Kovarianz und Korrelation Vorlesung 7b Kovarianz und Korrelation 1 Wir erinnern an die Definition der Kovarianz Für reellwertige Zufallsvariable X, Y mit E[X 2 ] < und E[Y 2 ] < ist Cov[X,Y]:= E [ (X EX)(Y EY) ] Insbesondere ist

Mehr

Eine Auswahl wichtiger Definitionen und Aussagen zur Vorlesung»Stochastik für Informatiker und Regelschullehrer«

Eine Auswahl wichtiger Definitionen und Aussagen zur Vorlesung»Stochastik für Informatiker und Regelschullehrer« Eine Auswahl wichtiger Definitionen und Aussagen zur Vorlesung»Stochastik für Informatiker und Regelschullehrer«Werner Linde WS 2008/09 Inhaltsverzeichnis 1 Wahrscheinlichkeiten 2 1.1 Wahrscheinlichkeitsräume...........................

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Einführung in einige Teilbereiche der Wintersemester 206 Prof. Dr. Stefan Etschberger HSA Unabhängigkeit von Ereignissen A, B unabhängig: Eintreten von A liefert keine Information über P(B). Formal: P(A

Mehr

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Version: 15. Jänner 2017 Evelina Erlacher Inhaltsverzeichnis 1 Mengen 2 2 Wahrscheinlichkeiten 3 3 Zufallsvariablen 5 3.1 Diskrete Zufallsvariablen............................

Mehr

A. Grundlagen der Stochastik

A. Grundlagen der Stochastik A. Grundlagen der Stochastik Satz A.1 (Axiome der Wahrscheinlichkeit). Folgende Axiome der Wahrscheinlichkeit können definiert werden: (1) Die Wahrscheinlichkeit P(A) eines Ergebnisses A bei einem Experiment

Mehr

A. Grundlagen der Stochastik

A. Grundlagen der Stochastik A. Grundlagen der Stochastik Satz A.1 (Axiome der Wahrscheinlichkeit). Folgende Axiome der Wahrscheinlichkeit können definiert werden: (1) Die Wahrscheinlichkeit P(A) eines Ergebnisses A bei einem Experiment

Mehr

Diskrete Zufallsvariablen (Forts.) I

Diskrete Zufallsvariablen (Forts.) I 9 Eindimensionale Zufallsvariablen Diskrete Zufallsvariablen 9.4 Diskrete Zufallsvariablen (Forts.) I T (X ) ist endlich oder abzählbar unendlich, die Elemente von T (X ) werden daher im Folgenden häufig

Mehr

Diskrete Zufallsvariablen (Forts.) I

Diskrete Zufallsvariablen (Forts.) I 9 Eindimensionale Zufallsvariablen Diskrete Zufallsvariablen 9.4 Diskrete Zufallsvariablen (Forts.) I T (X ) ist endlich oder abzählbar unendlich, die Elemente von T (X ) werden daher im Folgenden häufig

Mehr

Statistik für Ingenieure Vorlesung 10

Statistik für Ingenieure Vorlesung 10 Statistik für Ingenieure Vorlesung 10 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 16. Januar 2018 4.2.5. Kenngrößen für kategorielle Daten Für eine diskrete Wahrscheinlichkeitsverteilung

Mehr

Copula Funktionen. Eine Einführung. Nils Friewald

Copula Funktionen. Eine Einführung. Nils Friewald Copula Funktionen Eine Einführung Nils Friewald Institut für Managementwissenschaften Abteilung Finanzwirtschaft und Controlling Favoritenstraße 9-11, 1040 Wien friewald@imw.tuwien.ac.at 13. Juni 2005

Mehr

Kapitel VI - Maximum-Likelihood-Schätzfunktionen

Kapitel VI - Maximum-Likelihood-Schätzfunktionen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel VI - Maximum-Likelihood-Schätzfunktionen Induktive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh

Mehr

Fakultät Verkehrswissenschaften Friedrich List Professur für Ökonometrie und Statistik, insb. im Verkehrswesen. Statistik II

Fakultät Verkehrswissenschaften Friedrich List Professur für Ökonometrie und Statistik, insb. im Verkehrswesen. Statistik II Statistik II 1. Ergänzungen zur Wahrscheinlichkeitstheorie Fakultät Verkehrswissenschaften Friedrich List Professur für Ökonometrie und Statistik, insb. im Verkehrswesen Statistik II 1. Ergänzungen zur

Mehr

Kapitel XIV - Konvergenz und Grenzwertsätze

Kapitel XIV - Konvergenz und Grenzwertsätze Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XIV - Konvergenz und Grenzwertsätze Wahrscheinlichkeitstheorie Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh

Mehr

Übung 1: Wiederholung Wahrscheinlichkeitstheorie

Übung 1: Wiederholung Wahrscheinlichkeitstheorie Übung 1: Wiederholung Wahrscheinlichkeitstheorie Ü1.1 Zufallsvariablen Eine Zufallsvariable ist eine Variable, deren numerischer Wert solange unbekannt ist, bis er beobachtet wird. Der Wert einer Zufallsvariable

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 15.0.009 Fachbereich Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Statistik für Informatiker, SS Erwartungswert, Varianz und Kovarianz

Statistik für Informatiker, SS Erwartungswert, Varianz und Kovarianz Erwartungswert, Varianz und Kovarianz 1/65 Statistik für Informatiker, SS 2018 1.4 Erwartungswert, Varianz und Kovarianz Matthias Birkner http://www.staff.uni-mainz.de/birkner/statinfo18/ 14.5.2018 / 28.5.2018

Mehr

Kapitel VI - Lage- und Streuungsparameter

Kapitel VI - Lage- und Streuungsparameter Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VI - Lage- und Streuungsparameter Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr

Statistik für Informatiker, SS Erwartungswert, Varianz und Kovarianz

Statistik für Informatiker, SS Erwartungswert, Varianz und Kovarianz 1/65 Statistik für Informatiker, SS 2017 1.3 Erwartungswert, Varianz und Kovarianz Matthias Birkner http://www.staff.uni-mainz.de/birkner/statinfo17/ 7.6.2017 / 14.6.2017 2/65 Der Erwartungswert ist eine

Mehr

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11.

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11. Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11 Namensschild Dr. Martin Becker Hinweise für die Klausurteilnehmer

Mehr

Quantitatives Risikomanagement

Quantitatives Risikomanagement Quantitatives Risikomanagement Korrelation und Abhängigkeit im Risikomanagement: Eigenschaften und Irrtümer von Jan Hahne und Wolfgang Tischer -Korrelation und Abhängigkeit im Risikomanagement: Eigenschaften

Mehr

Multivariate Verteilungen und Copulas

Multivariate Verteilungen und Copulas Multivariate Verteilungen und Copulas Zufallsvektoren und Modellierung der Abhängigkeiten Ziel: Modellierung der Veränderungen der Risikofaktoren X n = (X n,1, X n,2,..., X n,d ) Annahme: X n,i und X n,j

Mehr

1 Erwartungswert und Kovarianzmatrix von Zufallsvektoren

1 Erwartungswert und Kovarianzmatrix von Zufallsvektoren Erwartungswert und Kovarianzmatrix von Zufallsvektoren Erwartungswert und Kovarianzmatrix von Zufallsvektoren. Definition Ist X X,...,X p ein p-dimensionaler Zufallsvektor mit E X j < für alle j, so heißt

Mehr

Wahrscheinlichkeitsrechnung. Sommersemester Kurzskript

Wahrscheinlichkeitsrechnung. Sommersemester Kurzskript Wahrscheinlichkeitsrechnung Sommersemester 2008 Kurzskript Version 1.0 S. Döhler 1. Juli 2008 In diesem Kurzskript sind Begriffe und Ergebnisse aus der Lehrveranstaltung zusammengestellt. Außerdem enthält

Mehr

Kapitel VII - Funktion und Transformation von Zufallsvariablen

Kapitel VII - Funktion und Transformation von Zufallsvariablen Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VII - Funktion und Transformation von Zufallsvariablen Markus Höchstötter Lehrstuhl

Mehr

Multivariate Verteilungen

Multivariate Verteilungen Multivariate Verteilungen Zufallsvektoren und Modellierung der Abhängigkeiten Ziel: Modellierung der Veränderungen der Risikofaktoren X n = (X n,1, X n,2,..., X n,d ) Annahme: X n,i und X n,j sind abhängig

Mehr

2.Tutorium Multivariate Verfahren

2.Tutorium Multivariate Verfahren 2.Tutorium Multivariate Verfahren - Multivariate Verteilungen - Hannah Busen: 27.04.2015 und 04.05.2015 Nicole Schüller: 28.04.2015 und 05.05.2015 Institut für Statistik, LMU München 1 / 21 Gliederung

Mehr

1.5 Erwartungswert und Varianz

1.5 Erwartungswert und Varianz Ziel: Charakterisiere Verteilungen von Zufallsvariablen durch Kenngrößen (in Analogie zu Lage- und Streuungsmaßen der deskriptiven Statistik). Insbesondere: a) durchschnittlicher Wert Erwartungswert, z.b.

Mehr

Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2.

Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2. Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2. Lineare Korrelation Annahme: var(x 1 ),var(x 2 ) (0, ). Der Koeffizient

Mehr

Multivariate Verteilungen. Gerhard Tutz LMU München

Multivariate Verteilungen. Gerhard Tutz LMU München Multivariate Verteilungen Gerhard Tutz LMU München INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Multivariate Normalverteilung 3 Wishart Verteilung 7 3 Hotellings T Verteilung 11 4 Wilks Λ 14 INHALTSVERZEICHNIS

Mehr

Y = g 2 (U 1,U 2 ) = 2 ln U 1 sin 2πU 2

Y = g 2 (U 1,U 2 ) = 2 ln U 1 sin 2πU 2 Bsp. 72 (BOX MÜLLER Transformation) Es seien U 1 und U 2 zwei unabhängige, über dem Intervall [0, 1[ gleichverteilte Zufallsgrößen (U i R(0, 1), i = 1, 2), U = (U 1,U 2 ) T ein zufälliger Vektor. Wir betrachten

Mehr

Beispiel: Zweidimensionale Normalverteilung I

Beispiel: Zweidimensionale Normalverteilung I 10 Mehrdimensionale Zufallsvariablen Bedingte Verteilungen 10.6 Beispiel: Zweidimensionale Normalverteilung I Wichtige mehrdimensionale stetige Verteilung: mehrdimensionale (multivariate) Normalverteilung

Mehr

Vorlesung 5a. Varianz und Kovarianz

Vorlesung 5a. Varianz und Kovarianz Vorlesung 5a Varianz und Kovarianz 1 1. Varianz und Standardabweichung: Elementare Eigenschaften (Buch S. 24) 2 X sei reellwertige Zufallsvariable mit endlichem Erwartungswert µ. Die Varianz von X ist

Mehr

Kenngrößen von Zufallsvariablen

Kenngrößen von Zufallsvariablen Kenngrößen von Zufallsvariablen Die Wahrscheinlichkeitsverteilung kann durch die sogenannten Kenngrößen beschrieben werden, sie charakterisieren sozusagen die Verteilung. Der Erwartungswert Der Erwartungswert

Mehr

Vorlesung 5a. Die Varianz

Vorlesung 5a. Die Varianz Vorlesung 5a Die Varianz 1 1. Varianz und Standardabweichung: Elementare Eigenschaften (Buch S. 24) 2 X sei reellwertige Zufallsvariable mit endlichem Erwartungswert µ. Die Varianz von X ist definiert

Mehr

Vertiefung NWI: 8. Vorlesung zur Wahrscheinlichkeitstheorie

Vertiefung NWI: 8. Vorlesung zur Wahrscheinlichkeitstheorie Fakultät für Mathematik Prof. Dr. Barbara Gentz SS 2013 Vertiefung NWI: 8. Vorlesung zur Wahrscheinlichkeitstheorie Mittwoch, 5.6.2013 8. Unabhängigkeit von Zufallsgrößen, Erwartungswert und Varianz 8.1

Mehr

4.2 Moment und Varianz

4.2 Moment und Varianz 4.2 Moment und Varianz Def. 2.10 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: EX p

Mehr

Mehrdimensionale Verteilungen und Korrelation

Mehrdimensionale Verteilungen und Korrelation Vorlesung: Computergestützte Datenauswertung Mehrdimensionale Verteilungen und Korrelation Günter Quast Fakultät für Physik Institut für Experimentelle Kernphysik SS '17 KIT Die Forschungsuniversität in

Mehr

Kapitel V - Erwartungstreue Schätzfunktionen

Kapitel V - Erwartungstreue Schätzfunktionen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel V - Erwartungstreue Schätzfunktionen Induktive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh

Mehr

4. Gemeinsame Verteilung und Grenzwertsätze

4. Gemeinsame Verteilung und Grenzwertsätze 4. Gemeinsame Verteilung und Grenzwertsätze Häufig in der Praxis: Man muss mehrere (n) ZV en gleichzeitig betrachten (vgl. Statistik I, Kapitel 6) Zunächst Vereinfachung: Betrachte n = 2 Zufallsvariablen

Mehr

4. Gemeinsame Verteilung und Grenzwertsätze

4. Gemeinsame Verteilung und Grenzwertsätze 4. Gemeinsame Verteilung und Grenzwertsätze Häufig in der Praxis: Man muss mehrere (n) ZV en gleichzeitig betrachten (vgl. Statistik I, Kapitel 6) Zunächst Vereinfachung: Betrachte n = 2 Zufallsvariablen

Mehr