Mathematik. für das Ingenieurstudium HANSER. Jürgen Koch Martin Stärrlpfle. 2., aktualisierte Auflage

Save this PDF as:

Größe: px
Ab Seite anzeigen:

Download "Mathematik. für das Ingenieurstudium HANSER. Jürgen Koch Martin Stärrlpfle. 2., aktualisierte Auflage"

Transkript

1 Jürgen Koch Martin Stärrlpfle Mathematik für das Ingenieurstudium 2., aktualisierte Auflage Mit 609 Abbildungen, 456 durchgerechneten Beispielen und 313 Aufgaben mit ausführlichen Lösungen im Internet HANSER

2 7 Inhaltsverzeichnis 1 Grundlagen 1.1 Logik und Mengen Aussagenlogik Mengen. 1.2 Zahlen Natürliche Zahlen Ganze Zahlen Rationale Zahlen Reelle Zahlen Ordnung Intervalle Betrag und Signum Summe und Produkt. 1.3 Potenz und Wurzel Potenzen Potenzgesetze Wurzeln Binomischer Satz. 1.4 Trigonometrie Trigonometrie im rechtwinkligen Dreieck Winkel im Grad- und Bogenmaß Sinus- und Kosinussatz 1.5 Gleichungen und Ungleichungen Lineare Gleichungen Potenzgleichungen Quadratische Gleichungen Wurzelgleichungen Ungleichungen. 1.6 Beweise Direkter Beweis Indirekter Beweis Konstruktiver Beweis Vollständige Induktion 1.7 Aufgaben Lineare Gleichungssysteme 2.1 Einführung.... ~ 55

3 8 In haltsverzeich nis 2.2 Gauß-Algorithmus Äquivalenzumformungen Vorwärtselimination Rückwärtseinsetzen Gaußsches Eliminationsverfahren Rechenschema. 2.3 Spezielle Typen linearer Gleichungssysteme Lineare Gleichungssysteme ohne Lösung Lineare Gleichungssysteme mit unendlich vielen Lösungen Systeme mit redundanten Gleichungen Unterbestimmte lineare Gleichungssysteme Überbestimmte lineare Gleichungssysteme Homogene lineare Gleichungssysteme Lineare Gleichungssysteme mit Parametern 2.4 Numerische Verfahren Jakobi-Iteration Gauß-Seidel-Iteration. 2.5 Anwendungen Produktion l\ietzwerkanalyse in der Elektrotechnik. 2.6 Aufgaben. 3 Vektoren 3.1 Der Begriff eines Vektors. 3.2 Vektorrechnung ohne Koordinaten Addition und Subtraktion Skalare Multiplikation Skalarprodukt Vektorprodukt Spatprodukt Lineare Abhängigkeit und Komponentenzerlegung 3.3 Vektoren in Koordinatendarstellung Koordinatendarstellung Addition und Subtraktion Skalare Multiplikation Skalarprodukt Vektorprodukt Spatprodukt Lineare Abhängigkeit und Komponentenzerlegung 3.4 Punkte, Geraden und Ebenen Kartesisches Koordinatensystem Parameterdarstellung von Geraden und Ebenen Parameterfreie Darstellung von Geraden und Ebenen Schnitte von Geraden und Ebenen Abstände

4 Inhaltsverzeichnis Winkel 3.5 Anwendungen Kraft Arbeit Drehmoment 3.6 Aufgaben. 4 Matrizen 4.1 Der Begriff einer Matrix. 4.2 Rechnen mit Matrizen Addition, Subtraktion und skalare Multiplikation Multiplikation von Matrizen. 4.3 Determinanten Determinante einer (2,2)-Matrix Determinante einer (3,3)-Matrix Determinante einer (n,n)-matrix 4.4 Inverse Matrix Invertierbare Matrizen Inverse einer (2.2)-Matrix Inverse Matrix und lineares Gleichungssystem. 4.5 Lineare Abbildungen Matrizen als Abbildungen Kern, Bild und Rang. 4.6 Eigenwerte und Eigenvektoren 4.7 Numerische Verfahren. 4.8 Anwendungen 4.9 Aufgaben. 5 Funktionen 5.1 Einführung Begriff der Funktion Wertetabelle Schaubild Explizite und implizite Darstellung Abschnittsweise definierte Funktionen Funktionsschar Verkettung von Funktionen. 5.2 Polynome und rationale Funktionen Potenzfunktionen mit ganzen Hochzahlen Polynome Gebrochenrationale Funktionen 5.3 Eigenschaften Symmetrie Periode Monotonie Beschränktheit

5 10 Inhaltsverzeichn is 5.4 Sinus, Kosinus und Tangens Definition am Einheitskreis Eigenschaften Allgemeine Sinus- und Kosinusfunktion 5.5 Grenzwert und Stetigkeit Zahlenfolgen Grenzwert einer Funktion Stetigkeit Asymptotisches Verhalten 5.6 Exponential- und Hyperbelfunktionen Exponentialfunktionen Die e-funktion Hyperbelfunktionen Umkehrfunktionen Das Prinzip der Umkehrfunktion Wurzelfunktionen Arkusfunktionen Logarithmusfunktionen Area-Funktionen. 5.8 Numerische Verfahren Berechnung von Funktionswerten Bisektionsverfahren. 5.9 Anwendungen Messwerte Industrieroboter Aufgaben... 6 Differenzialrechnung 6.1 Steigung und Ableitungsfunktion Tangente und Differenzierbarkeit Differenzial Ableitungsfunktion Mittelwertsatz der Differenzialrechnung Höhere Ableitungen 6.2 Ableitungstechnik Ableitungsregeln Ableitung der Umkehrfunktion Logarithmisches Differenzieren Implizites Differenzieren Zusammenfassung. 6.3 Regel von Bernoulli-de I'Hospital. 6.4 Geometrische Bedeutung der Ableitungen I\leigungswinkel und Schnittwinkel Monotonie Krümmung

6 Inhaltsverzeichnis Lokale Extrema Wendepunkte Globale Extrema 6.5 Numerische Verfahren Numerische DifFerenziation Newton-Verfahren Sekantenverfahren 6.6 Anwendungen Fehlerrechnung Extremwertaufgaben Momentan- und Durchschnittsgeschwindigkeit 6.7 Aufgaben Integralrechnung 7.1 Flächenproblem Integralsymbol Integral als Grenzwert von Summen Bestimmtes Integral Zusammenhang von Ableitung und Integral Integralfunktion Stammfunktion Bestimmtes Integral und Stammfunktion Mittelwertsatz der Integralrechnung 7.3 Integrationstechnik Integrationsregeln Integration durch Substitution Partielle Integration Gebrochenrationale Funktionen Uneigentliche Integrale Länge, Flächeninhalt und Volumen Flächeninhalte Bogenlänge Rotationskörper. 7.5 Numerische Verfahren Trapezregel Romberg-Verfahren. 7.6 Anwendungen EfFektivwert Schwerpunkte und statische Momente ebener Flächen. 7.7 Aufgaben.. 8 Potenzreihen 8.1 Unendliche Reihen. 8.2 Potenzreihen und Konvergenz 8.3 Taylor-Reihen 8.4 Eigenschaften

7 12 Inhaltsverzeichnis 8.5 Numerische Verfahren. 8.6 Anwendungen 8.7 Aufgaben 9 Kurven 9.1 Parameterdarstellung 9.2 Kegelschnitte 9.3 Tangente Krümmung Bogenlänge Numerische Verfahren. 9.7 Anwendungen Mechanik Straßen bau 9.8 Aufgaben. 10 Funktionen mit mehreren Variablen 10.1 Definition und Darstellung Definition einer Funktion mit mehreren Variablen Schaubild einer Funktion mit mehreren Variablen Schnittkurven mit Ebenen und Höhenlinien Grenzwert und Stetigkeit Grenzwert einer Funktion mit mehreren Variablen Stetigkeit DifFerenziation Partielle Ableitungen und partielle DifFerenzierbarkeit DifFerenzierbarkeit und Tangentialebene Gradient und Richtungsableitung Differenzial Höhere partielle Ableitungen Extremwerte Ausgleichsrechnung Methode der kleinsten Fehlerquadrate Ausgleichsrechnung mit Polynomen Lineare Ausgleichsrechnung 10.5 Vektorwertige Funktionen Numerische Verfahren Mehrdimensionales Newton-Verfahren Gradientenverfahren 10.7 Anwendungen 10.8 Aufgaben. 11 Komplexe Zahlen und Funktionen 11.1 Definition und Darstellung Komplexe Zahlen Gaußsche Zahlenebene

8 Inhaltsverzeichnis Polarkoordinaten Exponentialform Rechenregeln Gleichheit Addition und Subtraktion Multiplikation und Division Rechnen mit der konjugiert komplexen Zahl Rechnen mit dem Betrag einer komplexen Zahl Potenzen, Wurzeln und Polynome Potenzen Wurzeln Fundamentalsatz der Algebra Komplexe Funktionen Ortskurven Harmonische Schwingungen Transformationen Anwendungen Aufgaben Gewöhnliche Differenzialgleichungen Einführung Grundbegriffe Anfangswert- und Randwertproblem Richtungsfeld und Orthogonaltrajektorie Differenzialgleichung und Funktionenschar Differenzialgleichungen erster Ordnung Separation der Variablen Lineare Substitution Ähnlichkeitsdifferenzialgleichungen Lineare Differenzialgleichungen Homogene und inhomogene lineare Differenzialgleichungen Lineare Differenzialgleichungen erster Ordnung Allgemeine Eigenschaften Differenzialgleichungen mit konstanten Koeffizienten Schwingungsdifferenzialgleichungen Allgemeine Form Freie Schwingung Harmonisch angeregte Schwingung Frequenzgänge Differenzialgleichungssysteme Eliminationsverfahren Zustandsvariablen Lineare Systeme mit konstanten Koeffizienten Lineare Differenzialgleichung als System Stabilität. 518

9 14 Inhaltsverzeichnis 12.6 Numerische Verfahren Polygonzugverfahren von Euler Euler-Verfahren für Differenzialgleichungssysteme 12.7 Anwendungen Temperaturverlauf Radioaktiver Zerfall Freier Fall mit Luftwiderstand Feder-Masse-Schwinger Pendel Wechselstromkreise Aufgaben. 13 Fourier-Reihen 13.1 Fourier-Analyse Periodische Funktionen Trigonometrische Polynome Fourier-Reihe Satz von Fourier Gibbssches Phänomen 13.2 Komplexe Darstellung Komplexe Fourier-Reihe Berechnung komplexer Fourier-Koeffizienten Spektrum Minimaleigenschaft Eigenschaften Symmetrie Integrationsintervall Mittelwert Linearität Ähnlichkeit und Zeitumkehr Zeitverschiebung 13.4 Aufgaben. 14 Verallgemeinerte Funktionen 14.1 Heaviside-Funktion Dirac-Distribution Verallgemeinerte Ableitung Faltung Aufgaben. 15 Fourier-Transformation 15.1 Integraltransformation Definition Darstellung mit Real- und Imaginärteil Sinus- und Kosinustransformation Transformation gerader und ungerader Funktionen

10 Inhaltsverzeichnis Darstellung mit Amplitude und Phase 15.2 Eigenschaften Linearität Zeitverschiebung Amplitudenmodulation Ähnlichkeit und Zeitumkehr Inverse Fourier-Transformation Definition Vertauschungssatz Linearität DifFerenziation, Integration und Faltung DifFerenziation im Zeitbereich DifFerenziation im Frequenzbereich Multiplikationssatz Integration Faltung Periodische Funktionen Fourier-Transformation einer Fourier-Reihe Koeffizienten der Fourier-Reihe Grenzwertbetrachtung Anwendungen Lineare zeitinvariante Systeme Tiefpassfilter 15.7 Aufgaben. 16 Laplace-Transformation 16.1 Bildbereich Definition Laplace- und Fourier-Transformation Eigenschaften Linearität Ähnlichkeit '" Zeitverschiebung Dämpfung DifFerenziation, Integration und Faltung DifFerenziation Integration Faltung Grenzwerte Transformation periodischer Funktionen 16.5 Rücktransformation Lösung gewöhnlicher DifFerenzialgleichungen Anwendungen 16.8 Aufgaben

11 16 17 z-transformation 17.1 Transformation diskreter Signale Definition z-transformation und Laplace-Transformation 17.2 Eigenschaften linearität Verschiebung Dämpfung VorwärtsdifFerenzen Lösung von DifFerenzengleichungen 17.4 Anwendungen 17.5 Aufgaben. Inhaltsverzeich nis A Anhang A.1 Ableitungen A.2 Ableitungsregeln. A.3 Integrale... A.4 Integralregeln A.5 Potenzreihen. A.6 Fourier-Reihen A.7 Fourier-Transformationen. A.8 Laplace-Transformationen A.9 z- Transformationen. A.lO Griechisches Alphabet. A.ll Bedeutende Mathematiker Literaturverzeichnis Sachwortverzeichnis

Inhaltsverzeichnis. 1 Grundlagen Lineare Gleichungssysteme 57

Inhaltsverzeichnis. 1 Grundlagen Lineare Gleichungssysteme 57 7 Inhaltsverzeichnis 1 Grundlagen 19 1.1 Logik und Mengen..! 19 1.1.1 Aussagenlogik 19 1.1.2 Mengen 22 1.2 Zahlen 25 1.2.1 Natürliche Zahlen 25 1.2.2 Ganze Zahlen 26 1.2.3 Rationale Zahlen 27 1.2.4 Reelle

Mehr

Mathematik. für das Ingenieurstudium. Jürgen Koch HANSER. Martin Stämpfle. 3., aktualisierte und erweiterte Auflage

Mathematik. für das Ingenieurstudium. Jürgen Koch HANSER. Martin Stämpfle. 3., aktualisierte und erweiterte Auflage Jürgen Koch Martin Stämpfle Mathematik für das Ingenieurstudium 3., aktualisierte und erweiterte Auflage Mit 627 Abbildungen, 499 durchgerechneten Beispielen und 339 Aufgaben mit ausführlichen Lösungen

Mehr

Mathematik. Mathematik für das Ingenieurstudium downloaded from by on March 10, für das Ingenieurstudium

Mathematik. Mathematik für das Ingenieurstudium downloaded from  by on March 10, für das Ingenieurstudium Jürgen Koch Martin Stämpfle Mathematik für das Ingenieurstudium 3., aktualisierte und erweiterte Auflage Koch Stämpfle Mathematik für das Ingenieurstudium Jürgen Koch Martin Stämpfle Mathematik für das

Mehr

Jürgen Koch Martin Stämpfle. Mathematik. für das Ingenieurstudium. 3., aktualisierte und erweiterte Auflage

Jürgen Koch Martin Stämpfle. Mathematik. für das Ingenieurstudium. 3., aktualisierte und erweiterte Auflage Jürgen Koch Martin Stämpfle Mathematik für das Ingenieurstudium 3., aktualisierte und erweiterte Auflage Koch Stämpfle Mathematik für das Ingenieurstudium Jürgen Koch Martin Stämpfle Mathematik für das

Mehr

Jürgen Koch Martin Stämpfle. Mathematik. für das Ingenieurstudium. 3., aktualisierte und erweiterte Auflage

Jürgen Koch Martin Stämpfle. Mathematik. für das Ingenieurstudium. 3., aktualisierte und erweiterte Auflage Jürgen Koch Martin Stämpfle Mathematik für das Ingenieurstudium 3., aktualisierte und erweiterte Auflage 7 Inhaltsverzeichnis 1 Grundlagen 19 1.1 Logik und Mengen... 19 1.1.1 Aussagenlogik... 19 1.1.2

Mehr

Jürgen Koch Martin Stämpfle. Mathematik. für das Ingenieurstudium. 2., aktualisierte Auflage

Jürgen Koch Martin Stämpfle. Mathematik. für das Ingenieurstudium. 2., aktualisierte Auflage Jürgen Koch Martin Stämpfle Mathematik für das Ingenieurstudium 2., aktualisierte Auflage Koch Stämpfle Mathematik für das Ingenieurstudium Jürgen Koch Martin Stämpfle Mathematik für das Ingenieurstudium

Mehr

Mathematik I+II. für FT, LOT, PT, WT im WS 2015/2016 und SS 2016

Mathematik I+II. für FT, LOT, PT, WT im WS 2015/2016 und SS 2016 Mathematik I+II für FT, LOT, PT, WT im WS 2015/2016 und SS 2016 I. Wiederholung Schulwissen 1.1. Zahlbereiche 1.2. Rechnen mit reellen Zahlen 1.2.1. Bruchrechnung 1.2.2. Betrag 1.2.3. Potenzen 1.2.4. Wurzeln

Mehr

Inhaltsverzeichnis INHALTSVERZEICHNIS. Fl Formelsammlung F2 Formelsammlung. Alphabete 11. Zeichenindex 12

Inhaltsverzeichnis INHALTSVERZEICHNIS. Fl Formelsammlung F2 Formelsammlung. Alphabete 11. Zeichenindex 12 Inhaltsverzeichnis Fl Formelsammlung F2 Formelsammlung Alphabete 11 Zeichenindex 12 1 Grundbegriffe 14 1.1 Logische Grundlagen, Aussagen 14 1.2 Mathematische Grundlagen, Mengen 17 1.3 Vollständige Induktion

Mehr

REPETITORIUM DER HÖHEREN MATHEMATIK. Gerhard Merziger Thomas Wirth

REPETITORIUM DER HÖHEREN MATHEMATIK. Gerhard Merziger Thomas Wirth REPETITORIUM DER HÖHEREN MATHEMATIK Gerhard Merziger Thomas Wirth 6 INHALTSVERZEICHNIS Inhaltsverzeichnis Fl Formelsammlung F2 Formelsammlung Alphabete 11 Zeichenindex 12 1 Grundbegriffe 14 1.1 Logische

Mehr

Mathematik I/II für Verkehrsingenieurwesen 2007/08/09

Mathematik I/II für Verkehrsingenieurwesen 2007/08/09 Prof. Dr. habil. M. Ludwig Mathematik I/II für Verkehrsingenieurwesen 2007/08/09 Inhalt der Vorlesung Mathematik I Schwerpunkte: 0 Vorbetrachtungen, Mengen 1. Lineare Algebra 1.1 Matrizen 1.2 Determinanten

Mehr

Mathematik für Bauingenieure

Mathematik für Bauingenieure Mathematik für Bauingenieure Kerstin Rjasanowa ISBN 3-446-40479-1 Weitere Informationen oder Bestellungen unter http://www.hanser.de/3-446-40479-1 sowie im Buchhandel 7 1 Arithmetik reeller Zahlen 11 1.1

Mehr

Mathematik 1. ^A Springer. Albert Fetzer Heiner Fränkel. Lehrbuch für ingenieurwissenschaftliche Studiengänge

Mathematik 1. ^A Springer. Albert Fetzer Heiner Fränkel. Lehrbuch für ingenieurwissenschaftliche Studiengänge Albert Fetzer Heiner Fränkel Mathematik 1 Lehrbuch für ingenieurwissenschaftliche Studiengänge Mit Beiträgen von Akad. Dir. Dr. rer. nat. Dietrich Feldmann Prof. Dr. rer. nat. Albert Fetzer Prof. Dr. rer.

Mehr

Inhaltsverzeichnis. Inhalt. Einleitung Vektoralgebra

Inhaltsverzeichnis. Inhalt. Einleitung Vektoralgebra Inhalt 3 Inhaltsverzeichnis Einleitung...9 1 Vektoralgebra 1.1 Geometrische Darstellung von Vektoren... 14 1.1.1 Begriff des Vektors... 14 1.1.2 Inverser Vektor und Nullvektor... 17 1.1.3 Addition von

Mehr

Ingenieurmathematik mit MATLAB

Ingenieurmathematik mit MATLAB Dieter Schott Ingenieurmathematik mit MATLAB Algebra und Analysis für Ingenieure Mit 179 Abbildungen, zahlreichen Beispielen, Übungsaufgaben und Lernkontrollen Fachbuchverlag Leipzig im Carl Hanser Verlag

Mehr

Mathematik für Ingenieure mit Maple

Mathematik für Ingenieure mit Maple Thomas Westermann Mathematik für Ingenieure mit Maple Bandl: Differential- und Integralrechnung für Funktionen einer Variablen, Vektor- und Matrizenrechnung, Komplexe Zahlen, Funktionenreihen 4., neu bearbeitete

Mehr

Inhaltsverzeichnis.

Inhaltsverzeichnis. Inhaltsverzeichnis Vorwort v 1 Grundlagen 1 1.1 Mengenlehre 1 1.1.1 Mengenbegriff 2 1.1.2 Mengenoperationen 4 1.1.3 Abbildungen 7 1.2 Logik 12 1.2.1 Aussagenlogik 12 1.2.2 Prädikatenlogik 18 1.2.3 Beweise

Mehr

Inhalt. Inhaltsverzeichnis. Einleitung Vektoralgebra

Inhalt. Inhaltsverzeichnis. Einleitung Vektoralgebra 3 Inhaltsverzeichnis Einleitung... 9 1 Vektoralgebra 1.1 Geometrische Darstellung von Vektoren... 14 1.1.1 Begriff des Vektors... 14 1.1.2 Inverser Vektor und Nullvektor... 17 1.1.3 Addition von Vektoren...

Mehr

Mathematik für Ingenieure mit Maple

Mathematik für Ingenieure mit Maple Thomas Westermann Mathematik für Ingenieure mit Maple Band 1: Differential- und Integralrechnung für Funktionen einer Variablen, Vektor- und Matrizenrechnung, Komplexe Zahlen, Funktionenreihen Mit 300

Mehr

Mathematik anschaulich dargestellt

Mathematik anschaulich dargestellt Peter Dörsam Mathematik anschaulich dargestellt für Studierende der Wirtschaftswissenschaften 15. überarbeitete Auflage mit zahlreichen Abbildungen PD-Verlag Heidenau Inhaltsverzeichnis 1 Lineare Algebra

Mehr

Mathematik für Ingenieure mit Maple

Mathematik für Ingenieure mit Maple Thomas Westermann Mathematik für Ingenieure mit Maple Band 1: Differential- und Integralrechnung für Funktionen einer Variablen, Vektor- und Matrizenrechnung, Komplexe Zahlen, Funktionenreihen 2. Auflage

Mehr

Mathematik für die ersten Semester

Mathematik für die ersten Semester Mathematik für die ersten Semester von Prof. Dr. Wolfgang Mückenheim 2., verbesserte Auflage Oldenbourg Verlag München Inhaltsverzeichnis I Grundlagen 1 1 Logik 3 2 Mengen 7 3 Relationen 15 3.1 Abbildungen

Mehr

Mathematik für Fachhochschule, Duale Hochschule und Berufsakademie

Mathematik für Fachhochschule, Duale Hochschule und Berufsakademie Mathematik für Fachhochschule, Duale Hochschule und Berufsakademie mit ausführlichen Erläuterungen und zahlreichen Beispielen Bearbeitet von Prof. Dr. Guido Walz 1. Auflage 2010. Taschenbuch. xi, 580 S.

Mehr

Ingenieurmathematik mit MATLAB

Ingenieurmathematik mit MATLAB Ingenieurmathematik mit MATLAB Algebra und Analysis für Ingenieure Bearbeitet von Dieter Schott 1. Auflage 2004. Buch. 520 S. Hardcover ISBN 978 3 446 22043 0 Format (B x L): 17,7 x 24,7 cm Gewicht: 1073

Mehr

Mathematik. für die ersten Semester von Prof. Dr. Wolfgang Mückenheim. OldenbourgVerlag München

Mathematik. für die ersten Semester von Prof. Dr. Wolfgang Mückenheim. OldenbourgVerlag München Mathematik für die ersten Semester von Prof. Dr. Wolfgang Mückenheim OldenbourgVerlag München Inhaltsverzeichnis I 1 2 3 3.1 11 4 4.1 4.2 4.3 5 5.1 5.2 5.3 5.4 5.5 5.6 Grundlagen Logik 3 Mengen 7 Relationen

Mehr

Inhalt. 1 Rechenoperationen Gleichungen und Ungleichungen... 86

Inhalt. 1 Rechenoperationen Gleichungen und Ungleichungen... 86 Inhalt 1 Rechenoperationen.................................. 13 1.1 Grundbegriffe der Mengenlehre und Logik............................. 13 1.1.0 Vorbemerkung.................................................

Mehr

Inhaltsverzeichnis. Vorwort 1. I Zahlen 5. II Algebra 29

Inhaltsverzeichnis. Vorwort 1. I Zahlen 5. II Algebra 29 Inhaltsverzeichnis Vorwort 1 I Zahlen 5 1. Rechnen mit ganzen Zahlen 6 Addition, Subtraktion und Multiplikation............. 7 Division mit Rest........................... 7 Teiler und Primzahlen........................

Mehr

Inhaltsverzeichnis. 1 Vorwort 9

Inhaltsverzeichnis. 1 Vorwort 9 Inhaltsverzeichnis 1 Vorwort 9 2 Grundlagen 13 2.1 Notationen, Symbole und Konstanten 13 2.1.1 Rechnen mit reellen Zahlen 14 2.1.2 Potenzregeln 15 2.2 Mengen 15 2.2.1 Teilmengen 16 2.2.2 Mächtigkeit von

Mehr

Mathematik kompakt. ^ Springer. Y. Stry R. Schwenkert. für Ingenieure und Informatiker. Zweite, bearbeitete Auflage

Mathematik kompakt. ^ Springer. Y. Stry R. Schwenkert. für Ingenieure und Informatiker. Zweite, bearbeitete Auflage Y. Stry R. Schwenkert Mathematik kompakt für Ingenieure und Informatiker Zweite, bearbeitete Auflage Mit 156 Abbildungen und 10 Tabellen ^ Springer Inhaltsverzeichnis 1 Mathematische Grundbegriffe 1 1.1

Mehr

Mathematik für Ingenieure

Mathematik für Ingenieure Ziya ~anal Mathematik für Ingenieure Grundlagen, Anwendungen in Maple und C++ 2., aktualisierte und erweiterte Auflage STUDIUM 11 VIEWEG+ TEUBNER Inhaltsverzeichnis 1 Grundwissen 1.1 Absolutwert............

Mehr

Inhaltsverzeichnis. Vorwort. I Zahlen 5. II Algebra 29

Inhaltsverzeichnis. Vorwort. I Zahlen 5. II Algebra 29 Inhaltsverzeichnis Vorwort I Zahlen 5 1. Rechnen mit ganzen Zahlen 6 Addition, Subtraktion und Multiplikation 7 Division mit Rest 7 Teiler und Primzahlen 9 Der ggt und das kgv 11 2. Rechnen mit Brüchen

Mehr

Mathematik für Ingenieure

Mathematik für Ingenieure Mathematik für Ingenieure Von Prof. Dr. rer. nat. Wolfgang Brauch, Ravensburg Prof. Dr.-Ing. Hans-Joachim Dreyer, Hamburg Prof. Dr. rer. nat. Wolfhart Haacke, Paderborn unter Mitwirkung von Prof. Dr. rer.

Mehr

Inhaltsverzeichnis. Christopher Dietmaier. Mathematik für Wirtschaftsingenieure. Lehr- und Übungsbuch. ISBN (Buch):

Inhaltsverzeichnis. Christopher Dietmaier. Mathematik für Wirtschaftsingenieure. Lehr- und Übungsbuch. ISBN (Buch): Inhaltsverzeichnis Christopher Dietmaier Mathematik für Wirtschaftsingenieure Lehr- und Übungsbuch ISBN (Buch): 978-3-446-43801-9 ISBN (E-Book): 978-3-446-43832-3 Weitere Informationen oder Bestellungen

Mehr

Inhaltsverzeichnis Kapitel 1: Rechnen mit Zahlen... 1 Kapitel 2: Umformen von Ausdrücken... 10

Inhaltsverzeichnis Kapitel 1: Rechnen mit Zahlen... 1 Kapitel 2: Umformen von Ausdrücken... 10 Kapitel 1: Rechnen mit Zahlen...1 1.1 Rechnen mit reellen Zahlen...2 1.2 Berechnen von Summen und Produkten...3 1.3 Primfaktorzerlegung...4 1.4 Größter gemeinsamer Teiler...4 1.5 Kleinstes gemeinsames

Mehr

Inhaltsverzeichnis. 1 Lineare Algebra 12

Inhaltsverzeichnis. 1 Lineare Algebra 12 Inhaltsverzeichnis 1 Lineare Algebra 12 1.1 Vektorrechnung 12 1.1.1 Grundlagen 12 1.1.2 Lineare Abhängigkeit 18 1.1.3 Vektorräume 22 1.1.4 Dimension und Basis 24 1.2 Matrizen 26 1.2.1 Definition einer

Mehr

MATHEMATIK. Lehr- und Übungsbuch. Fachbuchverlag Leipzig im Carl Hanser Verlag. Band 2. Analysis

MATHEMATIK. Lehr- und Übungsbuch. Fachbuchverlag Leipzig im Carl Hanser Verlag. Band 2. Analysis i Lehr- und Übungsbuch MATHEMATIK Band 2 Analysis Mit 164 Bildern, 265 Beispielen und 375 Aufgaben mit Lösungen Fachbuchverlag Leipzig im Carl Hanser Verlag Inhaltsverzeichnis 1 Grundlagen 11 1.1 Abbildungen

Mehr

Kompaktkurs Ingenieurmathematik mit Wahrscheinlichkeitsrechnung und Statistik

Kompaktkurs Ingenieurmathematik mit Wahrscheinlichkeitsrechnung und Statistik Kompaktkurs Ingenieurmathematik mit Wahrscheinlichkeitsrechnung und Statistik Bearbeitet von Wolfgang Schäfer, Gisela Trippler 2. Auflage 2001. Buch. 376 S. Hardcover ISBN 978 3 446 21595 5 Format (B x

Mehr

Inhalte der Vorlesung "Mathe für Ingenieure" Semester 1 und 2

Inhalte der Vorlesung Mathe für Ingenieure Semester 1 und 2 Inhalte der Vorlesung "Mathe für Ingenieure" Dies ist eine Inhaltsangabe der Vorlesung Mathe für Ingenieure, wie sie im WS2017ff von Oliver Sander gehalten wird. Es besteht keine Gewähr, dass diese Inhaltsangabe

Mehr

Mathematischer Vorkurs

Mathematischer Vorkurs Klaus Hefft Mathematischer Vorkurs zum Studium der Physik Das Begleitbuch zum Heidelberger Online-Kurs ELSEVIER SPEKTRUM AKADEMISCHER VERLAG Spektrum k_/l AKADEMISCHER VERLAG Inhaltsverzeichnis Vorwort

Mehr

Mathematik für Physiker und Ingenieure 1

Mathematik für Physiker und Ingenieure 1 Klaus Weltner Mathematik für Physiker und Ingenieure 1 Basiswissen für das Grundstudium - lnit n1ehr als 1400 Aufgaben und Lösungen anline unter Mitwirkung von Hartmut Wiesner, PauI-Bemd Heinrich, Peter

Mehr

Oberstufenmathematik leicht gemacht

Oberstufenmathematik leicht gemacht Peter Dörsam Oberstufenmathematik leicht gemacht Band 1: Differential- und Integralrechnung 5. überarbeitete Auflage mit zahlreichen Abbildungen und Beispielaufgaben PD-Verlag Heidenau Inhaltsverzeichnis

Mehr

Großes Lehrbuch der Mathematik für Ökonomen

Großes Lehrbuch der Mathematik für Ökonomen Großes Lehrbuch der Mathematik für Ökonomen Von Professor Dr. Karl Bosch o. Professor für angewandte Mathematik und Statistik an der Universität Stuttgart-Hohenheim und Professor Dr. Uwe Jensen R. Oldenbourg

Mehr

Probleme? Höhere Mathematik!

Probleme? Höhere Mathematik! Hans LTrinkaus Probleme? Höhere Mathematik! Eine Aufgabensammlung zur Analysis, Vektor- und Matrizenrechnung Zweite, unveränderte Auflage Mit 307 Abbildungen Springer-Verlag Berlin Heidelberg New York

Mehr

Analysis für Ingenieure

Analysis für Ingenieure Analysis für Ingenieure Eine, anwendungsbezogene Einführung mit Übungen Prof. Dr. Manfred Andrie Dipl.-Ing. Paul Meier 3. Auflage VMVERLX3 Inhaltsverzeichnis GRUNDLAGEN 1 Mengen 13 2 Zahlen 14 3 Übungen

Mehr

3.2 Gebrochene rationale Funktionen Aufgaben zu Abschnitt

3.2 Gebrochene rationale Funktionen Aufgaben zu Abschnitt Inhalt 1 Grundlagen 1.1 Aussagenlogik und Beweisverfahren 13 1.1.1 Ausdruck. Aussage. Definition. Axiom 13 1.1.2 Aussagenverkniipfung 16 1.1.3 Aussagenlogische AusdrUcke und Gesetze 20 1.1.4 Mathematische

Mehr

Mathematik für Physiker 1

Mathematik für Physiker 1 Klaus Weltner Mathematik für Physiker 1 Basiswissen für das Grundstudium der Experimentalphysik 14. überarbeitete Auflage mit 231 Abbildungen und CD-ROM verfasst von Klaus Weltner, Hartmut Wiesner, Paul-Bernd

Mehr

UVK Verlagsgesellschaft mbh Konstanz mit UVK/Lucius München

UVK Verlagsgesellschaft mbh Konstanz mit UVK/Lucius München IngolfTerveer Mathematik- Formeln Wirtschaftswissenschaften UVK Verlagsgesellschaft mbh Konstanz mit UVK/Lucius München Inhalt 1 Grundlegende Begriffe 11 1.1 Zahlbereiche 11 1.1.1 Reelle Zahlen 11 1.1.2

Mehr

LEISTUNGSKURS GESAMTBAND. bearbeitet von Heidi Bück Rolf Dürr Hans Freudigmann Günther Reinelt Manfred Zinser

LEISTUNGSKURS GESAMTBAND. bearbeitet von Heidi Bück Rolf Dürr Hans Freudigmann Günther Reinelt Manfred Zinser nsivsr i, LEISTUNGSKURS GESAMTBAND Mathematisches Unterrichtswerk für das Gymnasium Ausgabe A bearbeitet von Heidi Bück Rolf Dürr Hans Freudigmann Günther Reinelt Manfred Zinser unter Mitwirkung von Jürgen

Mehr

Jürgen Koch Martin Stämpfle. Mathematik. für das Ingenieurstudium. 3., aktualisierte und erweiterte Auflage

Jürgen Koch Martin Stämpfle. Mathematik. für das Ingenieurstudium. 3., aktualisierte und erweiterte Auflage Jürgen Koch Martin Stämpfle Mathematik für das Ingenieurstudium 3., aktualisierte und erweiterte Auflage Koch Stämpfle Mathematik für das Ingenieurstudium Jürgen Koch Martin Stämpfle Mathematik für das

Mehr

Inhaltsverzeichnis. I Lineare Algebra. 1 Vektoren 1

Inhaltsverzeichnis. I Lineare Algebra. 1 Vektoren 1 IX I Lineare Algebra i 1 Vektoren 1 2 Reelle Matrizen 5 2.1 Ein einführendes Beispiel 5 2.2 Definition einer reellen Matrix 6 2.3 Transponierte einer Matrix 10 2.4 Spezielle quadratische Matrizen 11 2.4.1

Mehr

Inhalt 1 GRUNDLAGEN Zahlen Natürliche Zahlen Ganze Zahlen Rationale Zahlen Reelle Zahlen 4

Inhalt 1 GRUNDLAGEN Zahlen Natürliche Zahlen Ganze Zahlen Rationale Zahlen Reelle Zahlen 4 Inhalt 1 GRUNDLAGEN 1 1.1 Zahlen 1 1.1.1 Natürliche Zahlen 1 1.1.2 Ganze Zahlen 2 1.1.3 Rationale Zahlen 3 1.1.4 Reelle Zahlen 4 1.2 Rechnen mit reellen Zahlen 8 1.2.1 Grundgesetze der Addition 8 1.2.2

Mehr

Inhaltsverzeichnis. Kapitel 1: Rechnen mit Zahlen. Kapitel 2: Umformen von Ausdrücken. Kapitel 3: Gleichungen, Ungleichungen, Gleichungssysteme

Inhaltsverzeichnis. Kapitel 1: Rechnen mit Zahlen. Kapitel 2: Umformen von Ausdrücken. Kapitel 3: Gleichungen, Ungleichungen, Gleichungssysteme Kapitel 1: Rechnen mit Zahlen 1.1 Rechnen mit reellen Zahlen 1.2 Berechnen von Summen und Produkten 1.3 Primfaktorzerlegung 1.4 Größter gemeinsamer Teiler 1.5 Kleinstes gemeinsames Vielfaches 1.6 n-te

Mehr

1 ALLGEMEINE HINWEISE Das Fach Mathematik für Wirtschaftswissenschaftler Bisheriger Aufbau der Klausur...

1 ALLGEMEINE HINWEISE Das Fach Mathematik für Wirtschaftswissenschaftler Bisheriger Aufbau der Klausur... Grundlagen Mathe V Inhaltsverzeichnis 1 ALLGEMEINE HINWEISE... 1-1 1.1 Das Fach Mathematik für Wirtschaftswissenschaftler... 1-1 1.2 Bisheriger Aufbau der Klausur... 1-1 1.3 Zugelassene Hilfsmittel und

Mehr

Wolfgang Pavel Ralf Winkler Mathematik für Naturwissenschaftler

Wolfgang Pavel Ralf Winkler Mathematik für Naturwissenschaftler Wolfgang Pavel Ralf Winkler Mathematik für Naturwissenschaftler ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario Sydney Mexico City Madrid Amsterdam Mathematik

Mehr

Mathematik für Ingenieure und Naturwissenschaftler - Klausur- und Übungsaufgaben

Mathematik für Ingenieure und Naturwissenschaftler - Klausur- und Übungsaufgaben Mathematik für Ingenieure und Naturwissenschaftler - Klausur- und Übungsaufgaben 632 Aufgaben mit ausführlichen Lösungen zum Selbststudium und zur Prüfungsvorbereitung Bearbeitet von Lothar Papula 4.,

Mehr

0 Einleitung I. 1 Elementarmathematik 1

0 Einleitung I. 1 Elementarmathematik 1 Inhaltsverzeichnis 0 Einleitung I i Das Team ist der Primus............................... II ii Eingangstest...................................... III iii Wolfis Welt.......................................

Mehr

Mathematik- Vorkurs. Übungs- und Arbeitsbuch für Studienanfänger

Mathematik- Vorkurs. Übungs- und Arbeitsbuch für Studienanfänger Mathematik- Vorkurs Übungs- und Arbeitsbuch für Studienanfänger Von Prof. Dr. rer. nat. habil. Wolfgang Schäfer Oberstudienrat Kurt Georgi und Doz. Dr. rer. nat. habil. Gisela Trippier Unter Mitarbeit

Mehr

Leseprobe. Jürgen Koch, Martin Stämpfle. Mathematik für das Ingenieurstudium. ISBN (Buch): ISBN (E-Book):

Leseprobe. Jürgen Koch, Martin Stämpfle. Mathematik für das Ingenieurstudium. ISBN (Buch): ISBN (E-Book): Leseprobe Jürgen Koch, Martin Stämpfle Mathematik für das Ingenieurstudium ISBN (Buch): 978-3-446-44454-6 ISBN (E-Book): 978-3-446-44158-3 Weitere Informationen oder Bestellungen unter http://www.hanser-fachbuch.de/978-3-446-44454-6

Mehr

2.5.5 Fundamentalsatz der Algebra, Folgen und Reihen, stetige Funktionen im Komplexen

2.5.5 Fundamentalsatz der Algebra, Folgen und Reihen, stetige Funktionen im Komplexen Inhaltsverzeichnis 1 Grundlagen 1 1.1 Reelle Zahlen..................................... 1 1.1.1 Die Zahlengerade................................. 1 1.1.2 Rechnen mit reellen Zahlen...........................

Mehr

Elemente der Mathematik für Pharmazeuten

Elemente der Mathematik für Pharmazeuten Hans-Heinrich Körle Richard Hirsch Elemente der Mathematik für Pharmazeuten Womit ein Pharmazeut rechnen muß Mit 54 Bildern und 101 Übungsaufgaben mit ausführlichen Lösungen vieweg IX Inhaltsverzeichnis

Mehr

Inhaltsverzeichnis VII

Inhaltsverzeichnis VII Inhaltsverzeichnis Teil I Analysis 1 Mengen... 3 1.1 Grundbegriffe..... 3 1.2 Mengenverknüpfungen... 5 1.3 Zahlenmengen... 6 1.3.1 Natürliche,ganzeundrationaleZahlen... 7 1.3.2 ReelleZahlen... 8 2 Elementare

Mehr

Friederike Goerigk (Autor) Mathematik nicht nur für Wirtschaftswissenschaftler

Friederike Goerigk (Autor) Mathematik nicht nur für Wirtschaftswissenschaftler Friederike Goerigk (Autor) Mathematik nicht nur für Wirtschaftswissenschaftler https://cuvillier.de/de/shop/publications/1601 Copyright: Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg

Mehr

Mathematik für das Ingenieurstudium

Mathematik für das Ingenieurstudium Mathematik für das Ingenieurstudium Bearbeitet von Jürgen Koch, Martin Stämpfle 3., aktualisierte und erweiterte Auflage 2015. Buch. 735 S. Hardcover ISBN 978 3 446 44454 6 Format (B x L): 17,8 x 24,6

Mehr

Mathematik für Ingenieure

Mathematik für Ingenieure Mathematik für Ingenieure Grundlagen - Anwendungen in Maple Bearbeitet von Ziya Sanal 3., vollständig überarbeitete und erweiterte Auflage 2015. Buch mit CD-ROM. XII, 816 S. Kartoniert ISBN 978 3 658 10641

Mehr

Mathematik für Physiker und Ingenieure 1

Mathematik für Physiker und Ingenieure 1 Springer-Lehrbuch Mathematik für Physiker und Ingenieure 1 Basiswissen für das Grundstudium - mit mehr als 1400 Aufgaben und Lösungen online Bearbeitet von Klaus Weltner 1. Auflage 2012. Buch. IX, 301

Mehr

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57 Vorwort... 13 Vorwort zur 3. deutschen Auflage... 17 Kapitel 1 Einführung, I: Algebra... 19 1.1 Die reellen Zahlen... 20 1.2 Ganzzahlige Potenzen... 23 1.3 Regeln der Algebra... 29 1.4 Brüche... 34 1.5

Mehr

Vorwort zur zweiten Auflage 19. Kapitel 1 Einführung, I: Algebra 21. Kapitel 2 Einführung, II: Gleichungen 59

Vorwort zur zweiten Auflage 19. Kapitel 1 Einführung, I: Algebra 21. Kapitel 2 Einführung, II: Gleichungen 59 Vorwort 13 Vorwort zur zweiten Auflage 19 Kapitel 1 Einführung, I: Algebra 21 1.1 Die reellen Zahlen... 22 1.2 Ganzzahlige Potenzen... 25 1.3 Regeln der Algebra... 31 1.4 Brüche... 37 1.5 Gebrochene Potenzen...

Mehr

Mathematik für Naturwissenschaftler

Mathematik für Naturwissenschaftler Mathematik für Naturwissenschaftler von Prof. Dr. Bartel Leendert van der Waerden Universität Zürich Wissenschaftsverlag Mannheim/Wien/Zürich INHALTSVERZEICHNIS 1. Teil: Analytische Geometrie und Vektorrechnung

Mehr

Mathematik-1, Wintersemester Vorlesungsplan, Übungen, Hausaufgaben

Mathematik-1, Wintersemester Vorlesungsplan, Übungen, Hausaufgaben Mathematik-1, Wintersemester 2014-15 Vorlesungsplan, Übungen, Hausaufgaben Vorlesungen: Lubov Vassilevskaya Übungen: Dr. Wilhelm Mons, Lubov Vassilevskaya http://www.math-grain.de/ Inhaltsverzeichnis 1.

Mehr

Höhere Mathematik für Ingenieure

Höhere Mathematik für Ingenieure Burg/Haf/Wille Höhere Mathematik für Ingenieure Band I Analysis Von Dr. rer. nat. Friedrich Wille Professor an der Universität Kassel, Gesamthochschule 2., durchgesehene Auflage Mit 209 Figuren, zahlreichen

Mehr

Inhaltsverzeichnis. Benutzerhinweise...XIII. Teil I Analysis in einer reellen Variablen

Inhaltsverzeichnis. Benutzerhinweise...XIII. Teil I Analysis in einer reellen Variablen Inhaltsverzeichnis Benutzerhinweise...XIII Teil I Analysis in einer reellen Variablen 1 Reelle und komplexe Zahlen... 3 A. Mengen,Funktionen,Körper... 3 B. Anordnung, Betrag, Induktion............................

Mehr

Inhaltsverzeichnis. Wolfgang Eichholz, Eberhard Vilkner. Taschenbuch der Wirtschaftsmathematik ISBN:

Inhaltsverzeichnis. Wolfgang Eichholz, Eberhard Vilkner. Taschenbuch der Wirtschaftsmathematik ISBN: Inhaltsverzeichnis Wolfgang Eichholz, Eberhard Vilkner Taschenbuch der Wirtschaftsmathematik ISBN: 978-3-446-41775-5 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-41775-5

Mehr

I Lineare Algebra 1. 3 Ergänzungen Reguläre Matrix Inverse Matrix Rang einer Matrix 46.

I Lineare Algebra 1. 3 Ergänzungen Reguläre Matrix Inverse Matrix Rang einer Matrix 46. I Lineare Algebra 1 1 Matrizen 1 1.1 Ein einführendes Beispiel 1 1.2 Definition einer Matrix 2 1.3 Transponierte einer Matrix 4 1.4 Spezielle quadratische Matrizen 5 1.4.1 Diagonalmatrix 6 1.4.2 Einheitsmatrix

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Knut Sydsaeter Peter HammondJ Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 2., aktualisierte Auflage Inhaltsverzeichnis Vorwort 13 Vorwort zur zweiten Auflage 19 Kapitel 1 Einführung,

Mehr

Mathematische Grundlagen in Biologie und Geowissenschaften Kurs 2004/2005

Mathematische Grundlagen in Biologie und Geowissenschaften Kurs 2004/2005 Ina Kersten Mathematische Grundlagen in Biologie und Geowissenschaften Kurs 2004/2005 TgX-Bearbeitung von Ben Müller und Christian Kierdorf Universitätsdrucke Göttingen 2004 Zahlen und Abbildungen 10 1

Mehr

Mathematik für Ingenieure 1

Mathematik für Ingenieure 1 A. Hoffmann B. Marx W. Vogt Mathematik für Ingenieure 1 Lineare Algebra, Analysts Theorie und Numerik PEARSON Studium ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don

Mehr

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57 Vorwort... 13 Vorwort zur 3. deutschen Auflage... 17 Kapitel 1 Einführung, I: Algebra... 19 1.1 Die reellen Zahlen... 20 1.2 Ganzzahlige Potenzen... 23 1.3 Regeln der Algebra... 29 1.4 Brüche... 34 1.5

Mehr

Mathematische Probleme lösen mit Maple

Mathematische Probleme lösen mit Maple Mathematische Probleme lösen mit Maple Ein Kurzeinstieg Bearbeitet von Thomas Westermann überarbeitet 2008. Buch. XII, 169 S. ISBN 978 3 540 77720 5 Format (B x L): 15,5 x 23,5 cm Weitere Fachgebiete >

Mehr

1 Mathematische Zeichen und Symbole 1. 2 Logik 9. 3 Arithmetik 11

1 Mathematische Zeichen und Symbole 1. 2 Logik 9. 3 Arithmetik 11 IX 1 Mathematische Zeichen und Symbole 1 2 Logik 9 3 Arithmetik 11 3.1 Mengen 11 3.1.1 Allgemeines 11 3.1.2 Mengenrelationen 12 3.1.3 Mengenoperationen 12 3.1.4 Beziehungen, Gesetze, Rechenregeln 14 3.1.5

Mehr

Inhaltsverzeichnis Unendliche Reihen Komplexe Zahlen

Inhaltsverzeichnis Unendliche Reihen Komplexe Zahlen Inhaltsverzeichnis 1 Unendliche Reihen... 1 1.1 Folgen und Reihen... 1 1.1.1 Achill und die Schildkröte... 1 1.1.2 Rechnen mit Grenzwerten... 7 1.1.3 Anwendungen von unendlichen Reihen... 13 1.2 Konvergenz

Mehr

Inhaltsverzeichnis Vorwort Grundlagen

Inhaltsverzeichnis Vorwort Grundlagen Inhaltsverzeichnis Vorwort... 1 Grundlagen... 1 1.1 Mengenlehre... 1 1.1.1 Mengenbegriff... 2 1.1.2 Mengenoperationen... 4 1.1.3 Abbildungen... 7 1.2 Logik... 12 1.2.1 Aussagenlogik... 12 1.2.2 Prädikatenlogik...

Mehr

Mathematische Methode. in der Physi k. 2. Auflage

Mathematische Methode. in der Physi k. 2. Auflage Christian B. Lang Norbert Pucke r Mathematische Methode n in der Physi k 2. Auflage Einleitung xix 1 Unendliche Reihen 1 1.1 Folgen und Reihen 1 1.1.1 Achill und die Schildkröte 1 1.1.2 Rechnen mit Grenzwerten

Mehr

Mathematik für. Wirtschaftswissenschaftler. Basiswissen mit Praxisbezug. 4., aktualisierte und erweiterte Auflage

Mathematik für. Wirtschaftswissenschaftler. Basiswissen mit Praxisbezug. 4., aktualisierte und erweiterte Auflage Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 4., aktualisierte und erweiterte Auflage Knut Sydsaeter Peter Hammond mit Arne Strom Übersetzt und fach lektoriert durch Dr. Fred Böker

Mehr

Kurt Meyberg Peter Vachenauer. Höhere Mathematik 1. Differential- und Integralrechnung Vektor- und Matrizenrechnung

Kurt Meyberg Peter Vachenauer. Höhere Mathematik 1. Differential- und Integralrechnung Vektor- und Matrizenrechnung Kurt Meyberg Peter Vachenauer Höhere Mathematik 1 Differential- und Integralrechnung Vektor- und Matrizenrechnung Vierte, korrigierte Auflage Mit 450 Abbildungen Springer Inhaltsverzeichnis Kapitel 1.

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis 237

Inhaltsverzeichnis. Inhaltsverzeichnis 237 Inhaltsverzeichnis 237 Inhaltsverzeichnis 1 Analysis in einer Variablen 4 1 Die reellen Zahlen.................................. 4 1.1 Die gängigen Zahlbereiche......................... 4 1.1.1 Beschreibung

Mehr

Mathematik zum Studieneinstieg

Mathematik zum Studieneinstieg Gabriele Adams Hermann-Josef Kruse Diethelm Sippel Udo Pfeiffer Mathematik zum Studieneinstieg Grundwissen der Analysis für Wirtschaftswissenschaftler, Ingenieure, Naturwissenschaftler und Informatiker

Mehr

Mathematik für Ingenieure und Naturwissenschaftler Band 1

Mathematik für Ingenieure und Naturwissenschaftler Band 1 Lothar Papula Mathematik für Ingenieure und Naturwissenschaftler Band 1 Ein Lehr- und Arbeitsbuch für das Grundstudium 9., verbesserte Auflage Mit zahlreichen Beispielen aus Naturwissenschaft und Technik,

Mehr

Inhaltsverzeichnis EINLEITUNG 2 KAPITEL 1: MENGENLEHRE 2. Aussagenlogik 2. Mengen 3 Schreibweisen und Symbole 3

Inhaltsverzeichnis EINLEITUNG 2 KAPITEL 1: MENGENLEHRE 2. Aussagenlogik 2. Mengen 3 Schreibweisen und Symbole 3 Inhaltsverzeichnis EINLEITUNG 2 KAPITEL 1: MENGENLEHRE 2 Aussagenlogik 2 Mengen 3 Schreibweisen und Symbole 3 Seite Operationen mit Mengen 4 Darstellungsweise 4 Die leere Menge 4 Teilmengen 4 Gleichheit

Mehr

Mathematik für Ingenieure und Naturwissenschaftler Band 2

Mathematik für Ingenieure und Naturwissenschaftler Band 2 Lothar Papula Mathematik für Ingenieure und Naturwissenschaftler Band 2 Ein Lehr- und Arbeitsbuch für das Grundstudium 8., verbesserte Auflage Mit zahlreichen Beispielen aus Naturwissenschaft und Technik,

Mehr

Mathematik für Ingenieure 1

Mathematik für Ingenieure 1 A. Hoff mann B. Marx W. Vogt Mathematik für Ingenieure 1 Lineare Algebra, Analysis Theorie und Numerik PEARSON btudiurn. ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don

Mehr

Rechenmethoden der Physik

Rechenmethoden der Physik May-Britt Kallenrode Rechenmethoden der Physik Mathematischer Begleiter zur Experimentalphysik Mit 47 Abbildungen, 297 Aufgaben und Lösungen Springer Teil I Erste Schritte Rechnen in der Mechanik Rechnen

Mehr

Springers Mathematische Formeln

Springers Mathematische Formeln Lennart Rade Bertil Westergren Springers Mathematische Formeln Taschenbuch für Ingenieure, Naturwissenschaftler, Informatiker, Wirtschaftswissenschaftler Übersetzt und bearbeitet von Peter Vachenauer Dritte,

Mehr

Höhere Mathematik. Grundlagen Beispiele Aufgaben. Mit 887 Bildern, 525 vollständig durchgerechneten Beispielen und 4759 Aufgaben

Höhere Mathematik. Grundlagen Beispiele Aufgaben. Mit 887 Bildern, 525 vollständig durchgerechneten Beispielen und 4759 Aufgaben shermann K. stein Einf ührungskurs Höhere Mathematik Grundlagen Beispiele Aufgaben Mit 887 Bildern, 525 vollständig durchgerechneten Beispielen und 4759 Aufgaben Friedr. Vieweg & Sohn Braunschweig/Wiesbaden

Mehr

Mathematik für Biologen

Mathematik für Biologen Dirk Horstmann Mathematik für Biologen 2. überarbeitete und ergänzte Auflage & Springer Spektrum 1 Einstieg und grafische Darstellungen von Messdaten 1 1.1 Grafische Darstellung von Daten und unterschiedliche

Mehr