Mathematik. für das Ingenieurstudium HANSER. Jürgen Koch Martin Stärrlpfle. 2., aktualisierte Auflage

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Mathematik. für das Ingenieurstudium HANSER. Jürgen Koch Martin Stärrlpfle. 2., aktualisierte Auflage"

Transkript

1 Jürgen Koch Martin Stärrlpfle Mathematik für das Ingenieurstudium 2., aktualisierte Auflage Mit 609 Abbildungen, 456 durchgerechneten Beispielen und 313 Aufgaben mit ausführlichen Lösungen im Internet HANSER

2 7 Inhaltsverzeichnis 1 Grundlagen 1.1 Logik und Mengen Aussagenlogik Mengen. 1.2 Zahlen Natürliche Zahlen Ganze Zahlen Rationale Zahlen Reelle Zahlen Ordnung Intervalle Betrag und Signum Summe und Produkt. 1.3 Potenz und Wurzel Potenzen Potenzgesetze Wurzeln Binomischer Satz. 1.4 Trigonometrie Trigonometrie im rechtwinkligen Dreieck Winkel im Grad- und Bogenmaß Sinus- und Kosinussatz 1.5 Gleichungen und Ungleichungen Lineare Gleichungen Potenzgleichungen Quadratische Gleichungen Wurzelgleichungen Ungleichungen. 1.6 Beweise Direkter Beweis Indirekter Beweis Konstruktiver Beweis Vollständige Induktion 1.7 Aufgaben Lineare Gleichungssysteme 2.1 Einführung.... ~ 55

3 8 In haltsverzeich nis 2.2 Gauß-Algorithmus Äquivalenzumformungen Vorwärtselimination Rückwärtseinsetzen Gaußsches Eliminationsverfahren Rechenschema. 2.3 Spezielle Typen linearer Gleichungssysteme Lineare Gleichungssysteme ohne Lösung Lineare Gleichungssysteme mit unendlich vielen Lösungen Systeme mit redundanten Gleichungen Unterbestimmte lineare Gleichungssysteme Überbestimmte lineare Gleichungssysteme Homogene lineare Gleichungssysteme Lineare Gleichungssysteme mit Parametern 2.4 Numerische Verfahren Jakobi-Iteration Gauß-Seidel-Iteration. 2.5 Anwendungen Produktion l\ietzwerkanalyse in der Elektrotechnik. 2.6 Aufgaben. 3 Vektoren 3.1 Der Begriff eines Vektors. 3.2 Vektorrechnung ohne Koordinaten Addition und Subtraktion Skalare Multiplikation Skalarprodukt Vektorprodukt Spatprodukt Lineare Abhängigkeit und Komponentenzerlegung 3.3 Vektoren in Koordinatendarstellung Koordinatendarstellung Addition und Subtraktion Skalare Multiplikation Skalarprodukt Vektorprodukt Spatprodukt Lineare Abhängigkeit und Komponentenzerlegung 3.4 Punkte, Geraden und Ebenen Kartesisches Koordinatensystem Parameterdarstellung von Geraden und Ebenen Parameterfreie Darstellung von Geraden und Ebenen Schnitte von Geraden und Ebenen Abstände

4 Inhaltsverzeichnis Winkel 3.5 Anwendungen Kraft Arbeit Drehmoment 3.6 Aufgaben. 4 Matrizen 4.1 Der Begriff einer Matrix. 4.2 Rechnen mit Matrizen Addition, Subtraktion und skalare Multiplikation Multiplikation von Matrizen. 4.3 Determinanten Determinante einer (2,2)-Matrix Determinante einer (3,3)-Matrix Determinante einer (n,n)-matrix 4.4 Inverse Matrix Invertierbare Matrizen Inverse einer (2.2)-Matrix Inverse Matrix und lineares Gleichungssystem. 4.5 Lineare Abbildungen Matrizen als Abbildungen Kern, Bild und Rang. 4.6 Eigenwerte und Eigenvektoren 4.7 Numerische Verfahren. 4.8 Anwendungen 4.9 Aufgaben. 5 Funktionen 5.1 Einführung Begriff der Funktion Wertetabelle Schaubild Explizite und implizite Darstellung Abschnittsweise definierte Funktionen Funktionsschar Verkettung von Funktionen. 5.2 Polynome und rationale Funktionen Potenzfunktionen mit ganzen Hochzahlen Polynome Gebrochenrationale Funktionen 5.3 Eigenschaften Symmetrie Periode Monotonie Beschränktheit

5 10 Inhaltsverzeichn is 5.4 Sinus, Kosinus und Tangens Definition am Einheitskreis Eigenschaften Allgemeine Sinus- und Kosinusfunktion 5.5 Grenzwert und Stetigkeit Zahlenfolgen Grenzwert einer Funktion Stetigkeit Asymptotisches Verhalten 5.6 Exponential- und Hyperbelfunktionen Exponentialfunktionen Die e-funktion Hyperbelfunktionen Umkehrfunktionen Das Prinzip der Umkehrfunktion Wurzelfunktionen Arkusfunktionen Logarithmusfunktionen Area-Funktionen. 5.8 Numerische Verfahren Berechnung von Funktionswerten Bisektionsverfahren. 5.9 Anwendungen Messwerte Industrieroboter Aufgaben... 6 Differenzialrechnung 6.1 Steigung und Ableitungsfunktion Tangente und Differenzierbarkeit Differenzial Ableitungsfunktion Mittelwertsatz der Differenzialrechnung Höhere Ableitungen 6.2 Ableitungstechnik Ableitungsregeln Ableitung der Umkehrfunktion Logarithmisches Differenzieren Implizites Differenzieren Zusammenfassung. 6.3 Regel von Bernoulli-de I'Hospital. 6.4 Geometrische Bedeutung der Ableitungen I\leigungswinkel und Schnittwinkel Monotonie Krümmung

6 Inhaltsverzeichnis Lokale Extrema Wendepunkte Globale Extrema 6.5 Numerische Verfahren Numerische DifFerenziation Newton-Verfahren Sekantenverfahren 6.6 Anwendungen Fehlerrechnung Extremwertaufgaben Momentan- und Durchschnittsgeschwindigkeit 6.7 Aufgaben Integralrechnung 7.1 Flächenproblem Integralsymbol Integral als Grenzwert von Summen Bestimmtes Integral Zusammenhang von Ableitung und Integral Integralfunktion Stammfunktion Bestimmtes Integral und Stammfunktion Mittelwertsatz der Integralrechnung 7.3 Integrationstechnik Integrationsregeln Integration durch Substitution Partielle Integration Gebrochenrationale Funktionen Uneigentliche Integrale Länge, Flächeninhalt und Volumen Flächeninhalte Bogenlänge Rotationskörper. 7.5 Numerische Verfahren Trapezregel Romberg-Verfahren. 7.6 Anwendungen EfFektivwert Schwerpunkte und statische Momente ebener Flächen. 7.7 Aufgaben.. 8 Potenzreihen 8.1 Unendliche Reihen. 8.2 Potenzreihen und Konvergenz 8.3 Taylor-Reihen 8.4 Eigenschaften

7 12 Inhaltsverzeichnis 8.5 Numerische Verfahren. 8.6 Anwendungen 8.7 Aufgaben 9 Kurven 9.1 Parameterdarstellung 9.2 Kegelschnitte 9.3 Tangente Krümmung Bogenlänge Numerische Verfahren. 9.7 Anwendungen Mechanik Straßen bau 9.8 Aufgaben. 10 Funktionen mit mehreren Variablen 10.1 Definition und Darstellung Definition einer Funktion mit mehreren Variablen Schaubild einer Funktion mit mehreren Variablen Schnittkurven mit Ebenen und Höhenlinien Grenzwert und Stetigkeit Grenzwert einer Funktion mit mehreren Variablen Stetigkeit DifFerenziation Partielle Ableitungen und partielle DifFerenzierbarkeit DifFerenzierbarkeit und Tangentialebene Gradient und Richtungsableitung Differenzial Höhere partielle Ableitungen Extremwerte Ausgleichsrechnung Methode der kleinsten Fehlerquadrate Ausgleichsrechnung mit Polynomen Lineare Ausgleichsrechnung 10.5 Vektorwertige Funktionen Numerische Verfahren Mehrdimensionales Newton-Verfahren Gradientenverfahren 10.7 Anwendungen 10.8 Aufgaben. 11 Komplexe Zahlen und Funktionen 11.1 Definition und Darstellung Komplexe Zahlen Gaußsche Zahlenebene

8 Inhaltsverzeichnis Polarkoordinaten Exponentialform Rechenregeln Gleichheit Addition und Subtraktion Multiplikation und Division Rechnen mit der konjugiert komplexen Zahl Rechnen mit dem Betrag einer komplexen Zahl Potenzen, Wurzeln und Polynome Potenzen Wurzeln Fundamentalsatz der Algebra Komplexe Funktionen Ortskurven Harmonische Schwingungen Transformationen Anwendungen Aufgaben Gewöhnliche Differenzialgleichungen Einführung Grundbegriffe Anfangswert- und Randwertproblem Richtungsfeld und Orthogonaltrajektorie Differenzialgleichung und Funktionenschar Differenzialgleichungen erster Ordnung Separation der Variablen Lineare Substitution Ähnlichkeitsdifferenzialgleichungen Lineare Differenzialgleichungen Homogene und inhomogene lineare Differenzialgleichungen Lineare Differenzialgleichungen erster Ordnung Allgemeine Eigenschaften Differenzialgleichungen mit konstanten Koeffizienten Schwingungsdifferenzialgleichungen Allgemeine Form Freie Schwingung Harmonisch angeregte Schwingung Frequenzgänge Differenzialgleichungssysteme Eliminationsverfahren Zustandsvariablen Lineare Systeme mit konstanten Koeffizienten Lineare Differenzialgleichung als System Stabilität. 518

9 14 Inhaltsverzeichnis 12.6 Numerische Verfahren Polygonzugverfahren von Euler Euler-Verfahren für Differenzialgleichungssysteme 12.7 Anwendungen Temperaturverlauf Radioaktiver Zerfall Freier Fall mit Luftwiderstand Feder-Masse-Schwinger Pendel Wechselstromkreise Aufgaben. 13 Fourier-Reihen 13.1 Fourier-Analyse Periodische Funktionen Trigonometrische Polynome Fourier-Reihe Satz von Fourier Gibbssches Phänomen 13.2 Komplexe Darstellung Komplexe Fourier-Reihe Berechnung komplexer Fourier-Koeffizienten Spektrum Minimaleigenschaft Eigenschaften Symmetrie Integrationsintervall Mittelwert Linearität Ähnlichkeit und Zeitumkehr Zeitverschiebung 13.4 Aufgaben. 14 Verallgemeinerte Funktionen 14.1 Heaviside-Funktion Dirac-Distribution Verallgemeinerte Ableitung Faltung Aufgaben. 15 Fourier-Transformation 15.1 Integraltransformation Definition Darstellung mit Real- und Imaginärteil Sinus- und Kosinustransformation Transformation gerader und ungerader Funktionen

10 Inhaltsverzeichnis Darstellung mit Amplitude und Phase 15.2 Eigenschaften Linearität Zeitverschiebung Amplitudenmodulation Ähnlichkeit und Zeitumkehr Inverse Fourier-Transformation Definition Vertauschungssatz Linearität DifFerenziation, Integration und Faltung DifFerenziation im Zeitbereich DifFerenziation im Frequenzbereich Multiplikationssatz Integration Faltung Periodische Funktionen Fourier-Transformation einer Fourier-Reihe Koeffizienten der Fourier-Reihe Grenzwertbetrachtung Anwendungen Lineare zeitinvariante Systeme Tiefpassfilter 15.7 Aufgaben. 16 Laplace-Transformation 16.1 Bildbereich Definition Laplace- und Fourier-Transformation Eigenschaften Linearität Ähnlichkeit '" Zeitverschiebung Dämpfung DifFerenziation, Integration und Faltung DifFerenziation Integration Faltung Grenzwerte Transformation periodischer Funktionen 16.5 Rücktransformation Lösung gewöhnlicher DifFerenzialgleichungen Anwendungen 16.8 Aufgaben

11 16 17 z-transformation 17.1 Transformation diskreter Signale Definition z-transformation und Laplace-Transformation 17.2 Eigenschaften linearität Verschiebung Dämpfung VorwärtsdifFerenzen Lösung von DifFerenzengleichungen 17.4 Anwendungen 17.5 Aufgaben. Inhaltsverzeich nis A Anhang A.1 Ableitungen A.2 Ableitungsregeln. A.3 Integrale... A.4 Integralregeln A.5 Potenzreihen. A.6 Fourier-Reihen A.7 Fourier-Transformationen. A.8 Laplace-Transformationen A.9 z- Transformationen. A.lO Griechisches Alphabet. A.ll Bedeutende Mathematiker Literaturverzeichnis Sachwortverzeichnis

Mathematik. Mathematik für das Ingenieurstudium downloaded from by on March 10, für das Ingenieurstudium

Mathematik. Mathematik für das Ingenieurstudium downloaded from  by on March 10, für das Ingenieurstudium Jürgen Koch Martin Stämpfle Mathematik für das Ingenieurstudium 3., aktualisierte und erweiterte Auflage Koch Stämpfle Mathematik für das Ingenieurstudium Jürgen Koch Martin Stämpfle Mathematik für das

Mehr

Jürgen Koch Martin Stämpfle. Mathematik. für das Ingenieurstudium. 3., aktualisierte und erweiterte Auflage

Jürgen Koch Martin Stämpfle. Mathematik. für das Ingenieurstudium. 3., aktualisierte und erweiterte Auflage Jürgen Koch Martin Stämpfle Mathematik für das Ingenieurstudium 3., aktualisierte und erweiterte Auflage 7 Inhaltsverzeichnis 1 Grundlagen 19 1.1 Logik und Mengen... 19 1.1.1 Aussagenlogik... 19 1.1.2

Mehr

Mathematik I+II. für FT, LOT, PT, WT im WS 2015/2016 und SS 2016

Mathematik I+II. für FT, LOT, PT, WT im WS 2015/2016 und SS 2016 Mathematik I+II für FT, LOT, PT, WT im WS 2015/2016 und SS 2016 I. Wiederholung Schulwissen 1.1. Zahlbereiche 1.2. Rechnen mit reellen Zahlen 1.2.1. Bruchrechnung 1.2.2. Betrag 1.2.3. Potenzen 1.2.4. Wurzeln

Mehr

REPETITORIUM DER HÖHEREN MATHEMATIK. Gerhard Merziger Thomas Wirth

REPETITORIUM DER HÖHEREN MATHEMATIK. Gerhard Merziger Thomas Wirth REPETITORIUM DER HÖHEREN MATHEMATIK Gerhard Merziger Thomas Wirth 6 INHALTSVERZEICHNIS Inhaltsverzeichnis Fl Formelsammlung F2 Formelsammlung Alphabete 11 Zeichenindex 12 1 Grundbegriffe 14 1.1 Logische

Mehr

Mathematik 1. ^A Springer. Albert Fetzer Heiner Fränkel. Lehrbuch für ingenieurwissenschaftliche Studiengänge

Mathematik 1. ^A Springer. Albert Fetzer Heiner Fränkel. Lehrbuch für ingenieurwissenschaftliche Studiengänge Albert Fetzer Heiner Fränkel Mathematik 1 Lehrbuch für ingenieurwissenschaftliche Studiengänge Mit Beiträgen von Akad. Dir. Dr. rer. nat. Dietrich Feldmann Prof. Dr. rer. nat. Albert Fetzer Prof. Dr. rer.

Mehr

Ingenieurmathematik mit MATLAB

Ingenieurmathematik mit MATLAB Dieter Schott Ingenieurmathematik mit MATLAB Algebra und Analysis für Ingenieure Mit 179 Abbildungen, zahlreichen Beispielen, Übungsaufgaben und Lernkontrollen Fachbuchverlag Leipzig im Carl Hanser Verlag

Mehr

Inhaltsverzeichnis. Inhalt. Einleitung Vektoralgebra

Inhaltsverzeichnis. Inhalt. Einleitung Vektoralgebra Inhalt 3 Inhaltsverzeichnis Einleitung...9 1 Vektoralgebra 1.1 Geometrische Darstellung von Vektoren... 14 1.1.1 Begriff des Vektors... 14 1.1.2 Inverser Vektor und Nullvektor... 17 1.1.3 Addition von

Mehr

Mathematik für Ingenieure mit Maple

Mathematik für Ingenieure mit Maple Thomas Westermann Mathematik für Ingenieure mit Maple Bandl: Differential- und Integralrechnung für Funktionen einer Variablen, Vektor- und Matrizenrechnung, Komplexe Zahlen, Funktionenreihen 4., neu bearbeitete

Mehr

Mathematik anschaulich dargestellt

Mathematik anschaulich dargestellt Peter Dörsam Mathematik anschaulich dargestellt für Studierende der Wirtschaftswissenschaften 15. überarbeitete Auflage mit zahlreichen Abbildungen PD-Verlag Heidenau Inhaltsverzeichnis 1 Lineare Algebra

Mehr

Mathematik für Ingenieure mit Maple

Mathematik für Ingenieure mit Maple Thomas Westermann Mathematik für Ingenieure mit Maple Band 1: Differential- und Integralrechnung für Funktionen einer Variablen, Vektor- und Matrizenrechnung, Komplexe Zahlen, Funktionenreihen Mit 300

Mehr

Mathematik für Ingenieure mit Maple

Mathematik für Ingenieure mit Maple Thomas Westermann Mathematik für Ingenieure mit Maple Band 1: Differential- und Integralrechnung für Funktionen einer Variablen, Vektor- und Matrizenrechnung, Komplexe Zahlen, Funktionenreihen 2. Auflage

Mehr

Mathematik für Fachhochschule, Duale Hochschule und Berufsakademie

Mathematik für Fachhochschule, Duale Hochschule und Berufsakademie Mathematik für Fachhochschule, Duale Hochschule und Berufsakademie mit ausführlichen Erläuterungen und zahlreichen Beispielen Bearbeitet von Prof. Dr. Guido Walz 1. Auflage 2010. Taschenbuch. xi, 580 S.

Mehr

Mathematik für die ersten Semester

Mathematik für die ersten Semester Mathematik für die ersten Semester von Prof. Dr. Wolfgang Mückenheim 2., verbesserte Auflage Oldenbourg Verlag München Inhaltsverzeichnis I Grundlagen 1 1 Logik 3 2 Mengen 7 3 Relationen 15 3.1 Abbildungen

Mehr

Inhalt. 1 Rechenoperationen Gleichungen und Ungleichungen... 86

Inhalt. 1 Rechenoperationen Gleichungen und Ungleichungen... 86 Inhalt 1 Rechenoperationen.................................. 13 1.1 Grundbegriffe der Mengenlehre und Logik............................. 13 1.1.0 Vorbemerkung.................................................

Mehr

Inhaltsverzeichnis. Vorwort 1. I Zahlen 5. II Algebra 29

Inhaltsverzeichnis. Vorwort 1. I Zahlen 5. II Algebra 29 Inhaltsverzeichnis Vorwort 1 I Zahlen 5 1. Rechnen mit ganzen Zahlen 6 Addition, Subtraktion und Multiplikation............. 7 Division mit Rest........................... 7 Teiler und Primzahlen........................

Mehr

Inhaltsverzeichnis. Vorwort. I Zahlen 5. II Algebra 29

Inhaltsverzeichnis. Vorwort. I Zahlen 5. II Algebra 29 Inhaltsverzeichnis Vorwort I Zahlen 5 1. Rechnen mit ganzen Zahlen 6 Addition, Subtraktion und Multiplikation 7 Division mit Rest 7 Teiler und Primzahlen 9 Der ggt und das kgv 11 2. Rechnen mit Brüchen

Mehr

Mathematik kompakt. ^ Springer. Y. Stry R. Schwenkert. für Ingenieure und Informatiker. Zweite, bearbeitete Auflage

Mathematik kompakt. ^ Springer. Y. Stry R. Schwenkert. für Ingenieure und Informatiker. Zweite, bearbeitete Auflage Y. Stry R. Schwenkert Mathematik kompakt für Ingenieure und Informatiker Zweite, bearbeitete Auflage Mit 156 Abbildungen und 10 Tabellen ^ Springer Inhaltsverzeichnis 1 Mathematische Grundbegriffe 1 1.1

Mehr

Inhaltsverzeichnis. 1 Lineare Algebra 12

Inhaltsverzeichnis. 1 Lineare Algebra 12 Inhaltsverzeichnis 1 Lineare Algebra 12 1.1 Vektorrechnung 12 1.1.1 Grundlagen 12 1.1.2 Lineare Abhängigkeit 18 1.1.3 Vektorräume 22 1.1.4 Dimension und Basis 24 1.2 Matrizen 26 1.2.1 Definition einer

Mehr

MATHEMATIK. Lehr- und Übungsbuch. Fachbuchverlag Leipzig im Carl Hanser Verlag. Band 2. Analysis

MATHEMATIK. Lehr- und Übungsbuch. Fachbuchverlag Leipzig im Carl Hanser Verlag. Band 2. Analysis i Lehr- und Übungsbuch MATHEMATIK Band 2 Analysis Mit 164 Bildern, 265 Beispielen und 375 Aufgaben mit Lösungen Fachbuchverlag Leipzig im Carl Hanser Verlag Inhaltsverzeichnis 1 Grundlagen 11 1.1 Abbildungen

Mehr

Oberstufenmathematik leicht gemacht

Oberstufenmathematik leicht gemacht Peter Dörsam Oberstufenmathematik leicht gemacht Band 1: Differential- und Integralrechnung 5. überarbeitete Auflage mit zahlreichen Abbildungen und Beispielaufgaben PD-Verlag Heidenau Inhaltsverzeichnis

Mehr

Großes Lehrbuch der Mathematik für Ökonomen

Großes Lehrbuch der Mathematik für Ökonomen Großes Lehrbuch der Mathematik für Ökonomen Von Professor Dr. Karl Bosch o. Professor für angewandte Mathematik und Statistik an der Universität Stuttgart-Hohenheim und Professor Dr. Uwe Jensen R. Oldenbourg

Mehr

Kompaktkurs Ingenieurmathematik mit Wahrscheinlichkeitsrechnung und Statistik

Kompaktkurs Ingenieurmathematik mit Wahrscheinlichkeitsrechnung und Statistik Kompaktkurs Ingenieurmathematik mit Wahrscheinlichkeitsrechnung und Statistik Bearbeitet von Wolfgang Schäfer, Gisela Trippler 2. Auflage 2001. Buch. 376 S. Hardcover ISBN 978 3 446 21595 5 Format (B x

Mehr

Jürgen Koch Martin Stämpfle. Mathematik. für das Ingenieurstudium. 3., aktualisierte und erweiterte Auflage

Jürgen Koch Martin Stämpfle. Mathematik. für das Ingenieurstudium. 3., aktualisierte und erweiterte Auflage Jürgen Koch Martin Stämpfle Mathematik für das Ingenieurstudium 3., aktualisierte und erweiterte Auflage Koch Stämpfle Mathematik für das Ingenieurstudium Jürgen Koch Martin Stämpfle Mathematik für das

Mehr

1 ALLGEMEINE HINWEISE Das Fach Mathematik für Wirtschaftswissenschaftler Bisheriger Aufbau der Klausur...

1 ALLGEMEINE HINWEISE Das Fach Mathematik für Wirtschaftswissenschaftler Bisheriger Aufbau der Klausur... Grundlagen Mathe V Inhaltsverzeichnis 1 ALLGEMEINE HINWEISE... 1-1 1.1 Das Fach Mathematik für Wirtschaftswissenschaftler... 1-1 1.2 Bisheriger Aufbau der Klausur... 1-1 1.3 Zugelassene Hilfsmittel und

Mehr

Mathematik für Physiker 1

Mathematik für Physiker 1 Klaus Weltner Mathematik für Physiker 1 Basiswissen für das Grundstudium der Experimentalphysik 14. überarbeitete Auflage mit 231 Abbildungen und CD-ROM verfasst von Klaus Weltner, Hartmut Wiesner, Paul-Bernd

Mehr

LEISTUNGSKURS GESAMTBAND. bearbeitet von Heidi Bück Rolf Dürr Hans Freudigmann Günther Reinelt Manfred Zinser

LEISTUNGSKURS GESAMTBAND. bearbeitet von Heidi Bück Rolf Dürr Hans Freudigmann Günther Reinelt Manfred Zinser nsivsr i, LEISTUNGSKURS GESAMTBAND Mathematisches Unterrichtswerk für das Gymnasium Ausgabe A bearbeitet von Heidi Bück Rolf Dürr Hans Freudigmann Günther Reinelt Manfred Zinser unter Mitwirkung von Jürgen

Mehr

Mathematik für Physiker und Ingenieure 1

Mathematik für Physiker und Ingenieure 1 Klaus Weltner Mathematik für Physiker und Ingenieure 1 Basiswissen für das Grundstudium - lnit n1ehr als 1400 Aufgaben und Lösungen anline unter Mitwirkung von Hartmut Wiesner, PauI-Bemd Heinrich, Peter

Mehr

Inhalt 1 GRUNDLAGEN Zahlen Natürliche Zahlen Ganze Zahlen Rationale Zahlen Reelle Zahlen 4

Inhalt 1 GRUNDLAGEN Zahlen Natürliche Zahlen Ganze Zahlen Rationale Zahlen Reelle Zahlen 4 Inhalt 1 GRUNDLAGEN 1 1.1 Zahlen 1 1.1.1 Natürliche Zahlen 1 1.1.2 Ganze Zahlen 2 1.1.3 Rationale Zahlen 3 1.1.4 Reelle Zahlen 4 1.2 Rechnen mit reellen Zahlen 8 1.2.1 Grundgesetze der Addition 8 1.2.2

Mehr

Inhaltsverzeichnis. Kapitel 1: Rechnen mit Zahlen. Kapitel 2: Umformen von Ausdrücken. Kapitel 3: Gleichungen, Ungleichungen, Gleichungssysteme

Inhaltsverzeichnis. Kapitel 1: Rechnen mit Zahlen. Kapitel 2: Umformen von Ausdrücken. Kapitel 3: Gleichungen, Ungleichungen, Gleichungssysteme Kapitel 1: Rechnen mit Zahlen 1.1 Rechnen mit reellen Zahlen 1.2 Berechnen von Summen und Produkten 1.3 Primfaktorzerlegung 1.4 Größter gemeinsamer Teiler 1.5 Kleinstes gemeinsames Vielfaches 1.6 n-te

Mehr

Inhaltsverzeichnis VII

Inhaltsverzeichnis VII Inhaltsverzeichnis Teil I Analysis 1 Mengen... 3 1.1 Grundbegriffe..... 3 1.2 Mengenverknüpfungen... 5 1.3 Zahlenmengen... 6 1.3.1 Natürliche,ganzeundrationaleZahlen... 7 1.3.2 ReelleZahlen... 8 2 Elementare

Mehr

Leseprobe. Jürgen Koch, Martin Stämpfle. Mathematik für das Ingenieurstudium. ISBN (Buch): ISBN (E-Book):

Leseprobe. Jürgen Koch, Martin Stämpfle. Mathematik für das Ingenieurstudium. ISBN (Buch): ISBN (E-Book): Leseprobe Jürgen Koch, Martin Stämpfle Mathematik für das Ingenieurstudium ISBN (Buch): 978-3-446-44454-6 ISBN (E-Book): 978-3-446-44158-3 Weitere Informationen oder Bestellungen unter http://www.hanser-fachbuch.de/978-3-446-44454-6

Mehr

0 Einleitung I. 1 Elementarmathematik 1

0 Einleitung I. 1 Elementarmathematik 1 Inhaltsverzeichnis 0 Einleitung I i Das Team ist der Primus............................... II ii Eingangstest...................................... III iii Wolfis Welt.......................................

Mehr

Elemente der Mathematik für Pharmazeuten

Elemente der Mathematik für Pharmazeuten Hans-Heinrich Körle Richard Hirsch Elemente der Mathematik für Pharmazeuten Womit ein Pharmazeut rechnen muß Mit 54 Bildern und 101 Übungsaufgaben mit ausführlichen Lösungen vieweg IX Inhaltsverzeichnis

Mehr

Friederike Goerigk (Autor) Mathematik nicht nur für Wirtschaftswissenschaftler

Friederike Goerigk (Autor) Mathematik nicht nur für Wirtschaftswissenschaftler Friederike Goerigk (Autor) Mathematik nicht nur für Wirtschaftswissenschaftler https://cuvillier.de/de/shop/publications/1601 Copyright: Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg

Mehr

2.5.5 Fundamentalsatz der Algebra, Folgen und Reihen, stetige Funktionen im Komplexen

2.5.5 Fundamentalsatz der Algebra, Folgen und Reihen, stetige Funktionen im Komplexen Inhaltsverzeichnis 1 Grundlagen 1 1.1 Reelle Zahlen..................................... 1 1.1.1 Die Zahlengerade................................. 1 1.1.2 Rechnen mit reellen Zahlen...........................

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Knut Sydsaeter Peter HammondJ Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 2., aktualisierte Auflage Inhaltsverzeichnis Vorwort 13 Vorwort zur zweiten Auflage 19 Kapitel 1 Einführung,

Mehr

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57 Vorwort... 13 Vorwort zur 3. deutschen Auflage... 17 Kapitel 1 Einführung, I: Algebra... 19 1.1 Die reellen Zahlen... 20 1.2 Ganzzahlige Potenzen... 23 1.3 Regeln der Algebra... 29 1.4 Brüche... 34 1.5

Mehr

Mathematik für. Wirtschaftswissenschaftler. Basiswissen mit Praxisbezug. 4., aktualisierte und erweiterte Auflage

Mathematik für. Wirtschaftswissenschaftler. Basiswissen mit Praxisbezug. 4., aktualisierte und erweiterte Auflage Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 4., aktualisierte und erweiterte Auflage Knut Sydsaeter Peter Hammond mit Arne Strom Übersetzt und fach lektoriert durch Dr. Fred Böker

Mehr

Mathematik für Physiker und Ingenieure 1

Mathematik für Physiker und Ingenieure 1 Springer-Lehrbuch Mathematik für Physiker und Ingenieure 1 Basiswissen für das Grundstudium - mit mehr als 1400 Aufgaben und Lösungen online Bearbeitet von Klaus Weltner 1. Auflage 2012. Buch. IX, 301

Mehr

Mathematik für Ingenieure 1

Mathematik für Ingenieure 1 A. Hoffmann B. Marx W. Vogt Mathematik für Ingenieure 1 Lineare Algebra, Analysts Theorie und Numerik PEARSON Studium ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don

Mehr

Mathematische Probleme lösen mit Maple

Mathematische Probleme lösen mit Maple Mathematische Probleme lösen mit Maple Ein Kurzeinstieg Bearbeitet von Thomas Westermann überarbeitet 2008. Buch. XII, 169 S. ISBN 978 3 540 77720 5 Format (B x L): 15,5 x 23,5 cm Weitere Fachgebiete >

Mehr

Inhaltsverzeichnis Vorwort Grundlagen

Inhaltsverzeichnis Vorwort Grundlagen Inhaltsverzeichnis Vorwort... 1 Grundlagen... 1 1.1 Mengenlehre... 1 1.1.1 Mengenbegriff... 2 1.1.2 Mengenoperationen... 4 1.1.3 Abbildungen... 7 1.2 Logik... 12 1.2.1 Aussagenlogik... 12 1.2.2 Prädikatenlogik...

Mehr

1 Mathematische Zeichen und Symbole 1. 2 Logik 9. 3 Arithmetik 11

1 Mathematische Zeichen und Symbole 1. 2 Logik 9. 3 Arithmetik 11 IX 1 Mathematische Zeichen und Symbole 1 2 Logik 9 3 Arithmetik 11 3.1 Mengen 11 3.1.1 Allgemeines 11 3.1.2 Mengenrelationen 12 3.1.3 Mengenoperationen 12 3.1.4 Beziehungen, Gesetze, Rechenregeln 14 3.1.5

Mehr

Kurt Meyberg Peter Vachenauer. Höhere Mathematik 1. Differential- und Integralrechnung Vektor- und Matrizenrechnung

Kurt Meyberg Peter Vachenauer. Höhere Mathematik 1. Differential- und Integralrechnung Vektor- und Matrizenrechnung Kurt Meyberg Peter Vachenauer Höhere Mathematik 1 Differential- und Integralrechnung Vektor- und Matrizenrechnung Vierte, korrigierte Auflage Mit 450 Abbildungen Springer Inhaltsverzeichnis Kapitel 1.

Mehr

Mathematik für Ingenieure und Naturwissenschaftler Band 1

Mathematik für Ingenieure und Naturwissenschaftler Band 1 Lothar Papula Mathematik für Ingenieure und Naturwissenschaftler Band 1 Ein Lehr- und Arbeitsbuch für das Grundstudium 9., verbesserte Auflage Mit zahlreichen Beispielen aus Naturwissenschaft und Technik,

Mehr

Mathematik für Ahnungslose

Mathematik für Ahnungslose Mathematik für Ahnungslose Eine Einstiegshilfe für Studierende Von Dipl.-lng. Yära Detert, Rodenberg S. Hirzel Verlag Stuttgart VII Inhaltsverzeichnis Vorwort Verzeichnis mathematischer Symbole V XII 1

Mehr

Inhaltsverzeichnis. 3 Folgen Achilles und die Schildkröte Grundbegriffe Fraktale... 49

Inhaltsverzeichnis. 3 Folgen Achilles und die Schildkröte Grundbegriffe Fraktale... 49 Inhaltsverzeichnis 1 Analytische Geometrie: Geraden 8 1.1 Lineare Gleichungen........................ 8 1.2 Die Hauptform einer linearen Gleichung............. 8 1.3 Wertetabellen............................

Mehr

Mathematik für Ingenieure 1

Mathematik für Ingenieure 1 A. Hoff mann B. Marx W. Vogt Mathematik für Ingenieure 1 Lineare Algebra, Analysis Theorie und Numerik PEARSON btudiurn. ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don

Mehr

Springers Mathematische Formeln

Springers Mathematische Formeln Lennart Rade Bertil Westergren Springers Mathematische Formeln Taschenbuch für Ingenieure, Naturwissenschaftler, Informatiker, Wirtschaftswissenschaftler Übersetzt und bearbeitet von Peter Vachenauer Dritte,

Mehr

Mathematik für Ingenieure und Naturwissenschaftler Band 2

Mathematik für Ingenieure und Naturwissenschaftler Band 2 Lothar Papula Mathematik für Ingenieure und Naturwissenschaftler Band 2 Ein Lehr- und Arbeitsbuch für das Grundstudium 8., verbesserte Auflage Mit zahlreichen Beispielen aus Naturwissenschaft und Technik,

Mehr

Höhere Mathematik. Grundlagen Beispiele Aufgaben. Mit 887 Bildern, 525 vollständig durchgerechneten Beispielen und 4759 Aufgaben

Höhere Mathematik. Grundlagen Beispiele Aufgaben. Mit 887 Bildern, 525 vollständig durchgerechneten Beispielen und 4759 Aufgaben shermann K. stein Einf ührungskurs Höhere Mathematik Grundlagen Beispiele Aufgaben Mit 887 Bildern, 525 vollständig durchgerechneten Beispielen und 4759 Aufgaben Friedr. Vieweg & Sohn Braunschweig/Wiesbaden

Mehr

Mathematik 2 für Nichtmathematiker

Mathematik 2 für Nichtmathematiker Mathematik 2 für Nichtmathematiker Funktionen - Folgen und Reihen - Differential- und Integralrechnung - Differentialgleichungen - Ordnung und Chaos von Professor Dr. Manfred Precht Dipl.-Math. Karl Voit

Mehr

Mit 119 Bildern, 368 Beispielen und 225 Aufgaben mit Lösungen

Mit 119 Bildern, 368 Beispielen und 225 Aufgaben mit Lösungen Mathematik für Wirtschaftswissenschaftler Ein Lehr- und Übungsbuch für Bachelors 2., aktualisierte Auflage Mit 119 Bildern, 368 Beispielen und 225 Aufgaben mit Lösungen Fachbuchverlag Leipzig im Carl Hanser

Mehr

Passerelle. Beschrieb der Fach-Module. von der Berufsmaturität. zu den universitären Hochschulen

Passerelle. Beschrieb der Fach-Module. von der Berufsmaturität. zu den universitären Hochschulen Passerelle von der Berufsmaturität zu den universitären Hochschulen Beschrieb der Fach-Module Fachbereich Mathematik Teilmodule Teilmodul 1: Analysis (Differential- und Integralrechnung) Teilmodul 2: Vektorgeometrie

Mehr

Höhere Mathematik für Naturwissenschaftler und Ingenieure

Höhere Mathematik für Naturwissenschaftler und Ingenieure Günter Bärwolff Höhere Mathematik für Naturwissenschaftler und Ingenieure unter Mitarbeit von Gottfried Seifert ELSEVIER SPEKTRUM AKADEMISCHER VERLAG Spekt rum K-/1. AKADEMISCHER VERLAG AKADEMISC Inhaltsverzeichnis

Mehr

CARL HANSER VERLAG. Wolfgang Eichholz, Eberhard Vilkner. Taschenbuch der Wirtschaftsmathematik

CARL HANSER VERLAG. Wolfgang Eichholz, Eberhard Vilkner. Taschenbuch der Wirtschaftsmathematik CARL HANSER VERLAG Wolfgang Eichholz, Eberhard Vilkner Taschenbuch der Wirtschaftsmathematik 3-446-22080-1 www.hanser.de Inhaltsverzeichnis 1 Grundlagen... 11 1.1 Mengen... 11 1.2 Aussagenlogik... 13 1.3

Mehr

Mathematik für Ingenieure

Mathematik für Ingenieure A. Hoffmann B. Marx W. Vogt Mathematik für Ingenieure Lineare Algebra, Analysis Theorie und Numerik 1. Auflage ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills,

Mehr

Enrico G. De Giorgi. Mathematik. 2. Auflage Lehrstuhl für Mathematik Universität St.Gallen. Diese Version: August 2014.

Enrico G. De Giorgi. Mathematik. 2. Auflage Lehrstuhl für Mathematik Universität St.Gallen. Diese Version: August 2014. Enrico G. De Giorgi Mathematik 2. Auflage 2014 Lehrstuhl für Mathematik Universität St.Gallen Diese Version: August 2014. c 2014, Enrico De Giorgi, Universität St.Gallen, alle Rechte vorbehalten. Die Vervielfältigung

Mehr

Mathematik 2. 4y Springer Vieweg. Lehrbuch für ingenieurwissenschaftliche Studiengänge. Albert Fetzer Heiner Fränkel. 7. Auflage

Mathematik 2. 4y Springer Vieweg. Lehrbuch für ingenieurwissenschaftliche Studiengänge. Albert Fetzer Heiner Fränkel. 7. Auflage Albert Fetzer Heiner Fränkel Mathematik 2 Lehrbuch für ingenieurwissenschaftliche Studiengänge 7. Auflage Mit Beiträgen von Akad. Dir. Dr. rer. nat. Dietrich Feldmann Prof. Dr. rer. nat. Albert Fetzer

Mehr

ELEMENTAR-MATHEMATIK

ELEMENTAR-MATHEMATIK WILLERS ELEMENTAR-MATHEMATIK Ein Vorkurs zur Höheren Mathematik 13., durchgesehene Auflage von Dr.-Ing. G. Opitz und Dr. phil. H. Wilson Mit 189 Abbildungen VERLAG THEODOR STEINKOPFF DRESDEN 1968 Inhaltsverzeichnis

Mehr

Inhaltsverzeichnis. xiii. Vorworte

Inhaltsverzeichnis. xiii. Vorworte Inhaltsverzeichnis Vorworte xiii I Einführung 1 I.1 Ein paar Beispiele............................... 1 I.2 Interpretation von Schaubildern....................... 3 I.3 Mathematische Beschreibung von Abhängigkeiten.............

Mehr

Springers Mathematische Formeln

Springers Mathematische Formeln г Lennart Rade Bertil Westergren Springers Mathematische Formeln Taschenbuch für Ingenieure, Naturwissenschaftler, Wirtschaftswissenschaftler Übersetzt und bearbeitet von Peter Vachenauer Inhaltsverzeichnis

Mehr

Vorkurs der Ingenieurmathematik

Vorkurs der Ingenieurmathematik Jürgen Wendeler 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Vorkurs der Ingenieurmathematik Mit 249 Aufgaben

Mehr

Christian B. Lang / Norbert Pucker. Mathematische Methoden in der Physik

Christian B. Lang / Norbert Pucker. Mathematische Methoden in der Physik Christian B. Lang / Norbert Pucker Mathematische Methoden in der Physik Spektrum Akademischer Verlag Heidelberg Berlin Inhaltsverzeichnis Einleitung xv 1 Unendliche Reihen 1 1.1 Folgen und Reihen 1 1.1.1

Mehr

Stoffverteilungsplan Sek II

Stoffverteilungsplan Sek II Klasse 11 (3-stündig) Stoffverteilungsplan Sek II Analysis - Differenzialrechnung Inhalte Hinweise Schulbuch Funktionen - Begriff der Funktion 12-15 - Symmetrien 22-24 - Verhalten im Unendlichen 20-21

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik Eine Einführung mit Beispielen und Übungsaufgaben von Prof. Dr. Karl Bosch 14., korrigierte Auflage Oldenbourg Verlag München Inhaltsverzeichnis 1 Grundlagen der Mengenlehre 1 1.1

Mehr

Arithmetik, Algebra, Mengen- und Funktionenlehre

Arithmetik, Algebra, Mengen- und Funktionenlehre Carsten Gellrich Regina Gellrich Arithmetik, Algebra, Mengen- und Funktionenlehre Mit zahlreichen Abbildungen, Aufgaben mit Lösungen und durchgerechneten Beispielen VERLAG HARRI DEUTSCH Inhaltsverzeichnis

Mehr

RRL GO- KMK EPA Mathematik. Ulf-Hermann KRÜGER Fachberater für Mathematik bei der Landesschulbehörde, Abteilung Hannover

RRL GO- KMK EPA Mathematik. Ulf-Hermann KRÜGER Fachberater für Mathematik bei der Landesschulbehörde, Abteilung Hannover RRL GO- KMK EPA Mathematik Jahrgang 11 Propädeutischer Grenzwertbegriff Rekursion /Iteration Ableitung Ableitungsfunktion von Ganzrationalen Funktionen bis 4. Grades x 1/(ax+b) x sin(ax+b) Regeln zur Berechnung

Mehr

Mathematik. Aufgabensammlung mit Lösungen. 6., verbesserte und erweiterte Auflage. R. Oldenbourg Verlag München Wien. Von Professor Aribert Nieswandt

Mathematik. Aufgabensammlung mit Lösungen. 6., verbesserte und erweiterte Auflage. R. Oldenbourg Verlag München Wien. Von Professor Aribert Nieswandt Mathematik Aufgabensammlung mit Lösungen Von Professor Aribert Nieswandt 6., verbesserte und erweiterte Auflage R. Oldenbourg Verlag München Wien Inhaltsverzeichnis Aufgaben zur Mengenalgebra und Kombinatorik

Mehr

Anlage 1 für Cluster 1b (allgemeine technische Mathematik) ANGEWANDTE MATHEMATIK

Anlage 1 für Cluster 1b (allgemeine technische Mathematik) ANGEWANDTE MATHEMATIK 1 von 5 Anlage 1 für Cluster 1b (allgemeine technische Mathematik) ANGEWANDTE MATHEMATIK I. J a h r g a n g : - kennen den Mengenbegriff und können die grundlegenden Mengenoperationen zur Darstellung von

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik Von Dr. Karl Bosch Professor für angewandte Mathematik und Statistik an der Universität Stuttgart-Hohenheim 10., verbesserte Auflage R. Oldenbourg Verlag München Wien Inhaltsverzeichnis

Mehr

Inhaltsverzeichnis. Kapitel 1. Zahlen und Vektoren... 1

Inhaltsverzeichnis. Kapitel 1. Zahlen und Vektoren... 1 Inhaltsverzeichnis Kapitel 1. Zahlen und Vektoren... 1 1. Mengen und Abbildungen... 1 1.1 Mengen 1.2 Mengenoperationen 1.3 Abbildungen 2. Die reellen Zahlen... 3 2.1 Bezeichnungen 2.2 Ungleichungen 2.3

Mehr

Analysis für Wirtschaftswissenschaftler und Ingenieure

Analysis für Wirtschaftswissenschaftler und Ingenieure Dieter Hoffmann 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Analysis für Wirtschaftswissenschaftler und Ingenieure

Mehr

Stoffverteilungsplan Mathematik Oberstufe für Berlin und Brandenburg

Stoffverteilungsplan Mathematik Oberstufe für Berlin und Brandenburg Stoffverteilungsplan Mathematik Oberstufe für Berlin und Brandenburg Grundlagen: 1.) Rahmenstoffplan Mathematik für die gymnasiale Oberstufe, herausgegeben von der Senatsverwaltung für Bildung, Jugend

Mehr

S.L. Salas/Einar Hille. Calculus. Einführung in die Differential- und Integralrechnung

S.L. Salas/Einar Hille. Calculus. Einführung in die Differential- und Integralrechnung * S.L. Salas/Einar Hille Calculus Einführung in die Differential- und Integralrechnung Aus dem Amerikanischen von Michael Basler, Thomas Lange und Karl-Heinz Lotze Mit 670 Abbildungen Spektrum Akademischer

Mehr

Berufliche Schulen des Landes Hessen Lehrplan Fachoberschule Allgemein bildender Lernbereich Mathematik

Berufliche Schulen des Landes Hessen Lehrplan Fachoberschule Allgemein bildender Lernbereich Mathematik Berufliche Schulen des Landes Hessen Lehrplan Fachoberschule Allgemein bildender Lernbereich Mathematik Unterrichtsinhalte Funktionale Zusammenhänge Ausbildungsabschnitt I, 50Stunden Lineare Funktionen

Mehr

Mathematik für Ingenieure und Naturwissenschaftler

Mathematik für Ingenieure und Naturwissenschaftler Lothar Papula Mathematik für Ingenieure und Naturwissenschaftler Bandl Ein Lehr- und Arbeitsbuch für das Grundstudium 14., überarbeitete und erweiterte Auflage Mit 643 Abbildungen, 500 Beispielen aus Naturwissenschaft

Mehr

Brückenkurs Mathematik für Wirtschaftswissenschaftler

Brückenkurs Mathematik für Wirtschaftswissenschaftler VlEWEG+ TIUBNER Walter Purkert Brückenkurs Mathematik für Wirtschaftswissenschaftler Z, aktualisierte Auflage STUDIUM Inhaltsverzeichnis 1 Das Rechnen mit reellen Zahlen 1.1 Grundregeln des Rechnens....

Mehr

Stichpunkte zum Abschnitt Analysis der Höheren Mathematik für Ingenieure I

Stichpunkte zum Abschnitt Analysis der Höheren Mathematik für Ingenieure I Stichpunkte zum Abschnitt Analysis der Höheren Mathematik für Ingenieure I Komplexe Zahlen Definition komplexer Zahlen in der Gaußschen Zahlenebene, algebraische Form, trigonometrische Form, exponentielle

Mehr

Elementare Wirtschaftsmathematik

Elementare Wirtschaftsmathematik Rainer Göb Elementare Wirtschaftsmathematik Erster Teil: Funktionen von einer und zwei Veränderlichen Mit 87 Abbildungen Methodica-Verlag Veitshöchheim Inhaltsverzeichnis 1 Grundlagen: Mengen, Tupel, Relationen.

Mehr

Inhaltsverzeichnis.

Inhaltsverzeichnis. Inhaltsverzeichnis 1 Mengenlehre 1 1.1 Definition 1 1.2 Mengenoperationen 2 1.3 Potenzmenge 3 1.4 Mengensysteme 3 1.5 Mengengesetze 4 1.6 Geordnetes Paar 4 1.7 Relation 5 1.8 Äquivalenzrelation 5 2 Inferenzregeln

Mehr

Inhaltsverzeichnis. A Analysis... 9

Inhaltsverzeichnis. A Analysis... 9 Inhaltsverzeichnis A Analysis... 9 1 Funktionale Zusammenhänge Wiederholung und Erweiterungen... 11 Rückblick... 11 1.1 Ganzrationale Funktionen... 14 1.2 Grenzwert einer Funktion f an einer Stelle x 0...

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Fred Böker Mathematik für Wirtschaftswissenschaftler Das Übungsbuch 2., aktualisierte Auflage Higher Education München Harlow Amsterdam Madrid Boston San Francisco Don Mills Mexico City Sydney a part of

Mehr

Einführung in die Mathematik

Einführung in die Mathematik Helmut Koch Einführung in die Mathematik Hintergründe der Schulmathematik Zweite, korrigierte und erweiterte Auflage Springer Inhaltsverzeichnis Einleitung 1 1 Natürliche Zahlen 11 1.1 Zählen 11 1.2 Die

Mehr

Lineare Algebra und Geometrie für Ingenieure

Lineare Algebra und Geometrie für Ingenieure Lineare Algebra und Geometrie für Ingenieure Eine, anwendungsbezogene Einführung mit Übungen Prof. Dr. Manfred Andrie Dipl.-Ing. Paul Meier 3. Auflage VER^G Inhaltsverzeichnis MENGEN 1 Grundbegriffe 13

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Helge Röpcke Markus Wessler Wirtschaftsmathematik Methoden - Beispiele - Anwendungen Mit 84 Bildern, 113 durchgerechneten Beispielen und 94 Aufgaben mit ausführlichen Lösungen im Internet Fachbuchverlag

Mehr

(Hoch)Schulmathematik

(Hoch)Schulmathematik Tobias Glosauer (Hoch)Schulmathematik Ein Sprungbrett vom Gymnasium an die Uni ~ Springer Spektrum Inhalt..2 2 2. 2.2 2. 2.4..2 Formales Fundament Ein wenig Logik. Aussagenlogik.... Aussagen...2 Junktoren..

Mehr

Jahrgangscurriculum 11.Jahrgang

Jahrgangscurriculum 11.Jahrgang Jahrgangscurriculum 11.Jahrgang Koordinatengeometrie Geraden (Lage von Geraden; Schnittwinkel) Abstände im KOSY Kreise Kreise und Geraden Parabeln und quadratische Funktionen (Parabel durch 3 Punkte, Anwendungsaufgaben)

Mehr

ANALYTISCHE GEOMETRIE, VEKTORRECHNUNG UND INFINITESIMALRECHNUNG

ANALYTISCHE GEOMETRIE, VEKTORRECHNUNG UND INFINITESIMALRECHNUNG ANALYTISCHE GEOMETRIE, VEKTORRECHNUNG UND INFINITESIMALRECHNUNG 21. Auflage Mit 3 74 Bildern und 1080 A ufgaben mit Lösungen A Fachbuchverlag Leipzig Inhaltsverzeichnis Analytische Geometrie 1. Punkte

Mehr

Inhaltsverzeichnis. Zeichenerklärung

Inhaltsverzeichnis. Zeichenerklärung Inhaltsverzeichnis Zeichenerklärung XIII 1 Grundlagen 1 1.1 Instrumente der Elementarmathematik 1 1.1.1 Zahlbereiche. Zahlendarstellung 1 1.1.2 Rechnen mit Zahlen 3 1.1.3 Bruchrechnung 7 1.1.4 Potenzrechnung

Mehr

Mathematik für Informatik und Biolnformatik

Mathematik für Informatik und Biolnformatik M.P.H. Wolff P. Hauck W. Küchlin Mathematik für Informatik und Biolnformatik Springer Inhaltsverzeichnis 1. Einleitung und Überblick... 1 1.1 Ziele und Entstehung des Buchs... 1 1.2 Wozu dient die Mathematik

Mehr

W. Oevel. Mathematik für Physiker I. Veranstaltungsnr: Skript zur Vorlesung, Universität Paderborn, Wintersemester 2003/2004

W. Oevel. Mathematik für Physiker I. Veranstaltungsnr: Skript zur Vorlesung, Universität Paderborn, Wintersemester 2003/2004 W. Oevel Mathematik für Physiker I Veranstaltungsnr: 172020 Skript zur Vorlesung, Universität Paderborn, Wintersemester 2003/2004 Zeit und Ort: V2 Di 11.15 12.45 D1.303 V2 Mi 11.15 12.45 D1.303 V2 Do 9.15

Mehr

Kleine Formelsammlung Mathematik

Kleine Formelsammlung Mathematik Kleine Formelsammlung Mathematik Bearbeitet von Hans-Jochen Bartsch 2. Auflage 2001. Buch. 256 S. Hardcover ISBN 978 3 446 21811 6 Format (B x L): 11,6 x 16,6 cm Gewicht: 229 g schnell und portofrei erhältlich

Mehr

Mathematik für Fachoberschulen

Mathematik für Fachoberschulen Dr. Kuno Füssel, Reinhard Jansen, Dr. William Middendorf, Dietmar Mrusek Mathematik für Fachoberschulen 13. Auflage Bestellnummer 0234 Haben Sie Anregungen oder Kritikpunkte zu diesem Produkt? Dann senden

Mehr

Angewandte Mathematik mit Mathcad

Angewandte Mathematik mit Mathcad JosefTrölß Angewandte Mathematik mit Mathcad Lehr- und Arbeitsbuch Band 1 Einführung in Mathcad Dritte, aktualisierte Auflage SpringerWienNewYork 1. Beschreibung der Oberfläche und Bearbeitung eines Arbeitsblattes

Mehr

Höhere Mathematik für Ingenieure Band II

Höhere Mathematik für Ingenieure Band II Teubner-Ingenieurmathematik Höhere Mathematik für Ingenieure Band II Lineare Algebra Bearbeitet von Klemens Burg, Herbert Haf, Friedrich Wille, Andreas Meister 1. Auflage 2012. Taschenbuch. xvii, 417 S.

Mehr

Unterrichtsinhalte. Der Aufbau zusammengesetzter Funktionen aus elementaren Funktionen (ca. 3 5 Std.) Produkt, Quotient und Verkettung von Funktionen

Unterrichtsinhalte. Der Aufbau zusammengesetzter Funktionen aus elementaren Funktionen (ca. 3 5 Std.) Produkt, Quotient und Verkettung von Funktionen Kompetenzen und Inhalte des Bildungsplans Unterrichtsinhalte Hinweise/Vorschläge zur Erweiterung und Vertiefung des Kompetenzerwerbs - besondere Eigenschaften von Funktionen rechnerisch und mithilfe des

Mehr

Matrizen und Determinanten, Lineare Gleichungssysteme, Vektorrechnung, Analytische Geometrie

Matrizen und Determinanten, Lineare Gleichungssysteme, Vektorrechnung, Analytische Geometrie Regina Gellrich Carsten Gellrich Matrizen und Determinanten, Lineare Gleichungssysteme, Vektorrechnung, Analytische Geometrie Mit zahlreichen Abbildungen, Aufgaben mit Lösungen und durchgerechneten Beispielen

Mehr