Einführung in die Physik I. Kinematik der Massenpunkte. O. von der Lühe und U. Landgraf

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Einführung in die Physik I. Kinematik der Massenpunkte. O. von der Lühe und U. Landgraf"

Transkript

1 Einfühung in die Phsik I Kinemaik de Massenpunke O. on de Lühe und U. Landgaf

2 O und Geschwindigkei Wi beachen den O eines als punkfömig angenommenen Köpes im Raum als Funkion de Zei Eindimensionale Posiion O O Veände de Köpe seinen O im Laufe de Zei, so wid eine Funkion de Zei: () Δ Die Geschwindigkei is die Ändeung des Oes mi de Zei. Δ Zei Kinemaik

3 O, Geschwindigkei und Beschleunigung Ein uhendes Objek eände den O nich mi de Zei O Seigung Ein gleichfömig beweges Objek ha eine konsane Geschwindigkei. Die Ableiung on () nach de Zei is übeall gleich goß O Seigung > Zei Seigung < Zei Ein nich gleichfömig beweges Objek unelieg eine Beschleunigung a. Die Geschwindigkei is eine Funkion de Zei () O Seigung is aiabel Zei Kinemaik 3

4 Mahemaische Fomulieung Die Geschwindigkei wid mahemaisch ausgedück duch die Ableiung des Os () nach de Zei d d Fü ein nich gleichfömig bewegen Köpe is die Geschwindigkei ebenfalls eine Funkion de Zei: () Die Beschleunigung a wid mahemaisch ausgedück duch die Ableiung de Geschwindigkei () nach de Zei. Sie enspich de weien Ableiung des Os nach de Zei ( ) d a d ( ) d ( ) d Is die Beschleunigung a konsan, so wid de Köpe gleichfömig beschleunig Kinemaik 4

5 Einheien on Geschwindigkei und Beschleunigung Die Einhei de Geschwindigkei is Ändeung eine Länge (gemessen in [m]) diidie duch Ändeung de Zei (gemessen in [s]) Einhei on is [m s - ] Die Einhei de Beschleunigung is Ändeung eine Geschwindigkei (gemessen in [m s - ]) diidie duch Ändeung de Zei (gemessen in [s]) Einhei on a is [m s - ] Mekegel: bei jede Ableiung egib sich die Einhei des Egebnisses aus de Einhei de abgeleieen Funkion diidie duch die Einhei de Göße, nach welche abgeleie wid Kinemaik 5

6 Beispiel: feie Fall Als feien Fall beeichne man die Bewegung eines Köpes une dem Einfluss eine konsanen Beschleunigung, d.h. die Bewegung eines gleichfömig beschleunigen Köpes. Bekanneses Beispiel is ein im Gaiaionsfeld de Ede fallen gelassene Köpe In de Nähe des Edbodens is die om Gaiaionsfeld bewike Beschleunigung konsan: g [ ms ] Konenionell wid de O als Höhe, mi posiie Richung nach oben gemessen; dahe muss g ein negaies Voeichen haben Kinemaik 6

7 Beechnung de Höhe beim feien Fall Zu einem Zeipunk wid de Köpe losgelassen. Fü diesen Zeipunk gil: ( ) () Nach eine Zei Δ beäg die Geschwindigkei (Δ ) -g Δ, nach de doppelen Zei is (Δ ) -g Δ, usw. Allgemein kann () duch Inegaion de Beschleunigung übe die Zei fü einen beliebigen Zeipunk > emiel weden: () ( g) d g d g [ ] g g g Kinemaik 7

8 Beechnung de Höhe beim feien Fall Die Höhe () um Zeipunk kann duch Inegaion de Geschwindigkei () emiel weden: () ( ) g ( g ) g d d g d g g Höhe [m] Feie Fall aus m Höhe 3 4 Zei [s] Kinemaik 8

9 Kinemaik 9 Feie Fall mi Anfangsgeschwindigkei Ha de Köpe u Beginn des Falls eine Anfangsgeschwindigkei (), so gil fü die Geschwindigkei Dann egib sich die Höhe als Funkion de Zei () ( ) g d g () ( ) ( ) g d g d d g d

10 Bewegungen in meheen Dimensionen In de Wel unsee Efahung weden Oe und Secken im Raum duch die Angabe on dei Längen fesgeleg Länge, Beie, Höhe Zu Angabe on Oen benöig man ein Koodinaenssem Viele phsikalische Pobleme lassen sich bequem im Caesischen Koodinaen (nach René Descaes, ) dasellen Dasellung des Oes duch einen Veko ( ) () () Kinemaik

11 Kinemaik Beechnungen mi Koodinaenekoen Addiion und Subakion skalaes Poduk Skalapoduk Beag a a a a

12 Geschwindigkei und Beschleunigung in meheen Dimensionen Die Geschwindigkei gib die Ändeung des Oes mi de Zei fü jede Richung im Koodinaenssem unabhängig an, und kann dahe auch als Veko mi dei Komponenen dagesell weden V ( ) d d d () () d d d Dasselbe gil fü die Beschleunigung. Sie gib die Ändeung de Geschwindigkei mi de Zei fü jede Richung unabhängig an. A a a a d d d d d d d d d d d d ( ) () () Kinemaik

13 Kinemaik 3 Beispiel: de schiefe Wuf In diesem Beispiel is de eiliche Velauf des Oes eines im Schweefeld de Ede gewofenen Köpes fü jede de dei Raumichungen andes Wi nehmen an, dass de Köpe um Zeipunk om Uspung des Koodinaenssems schäg in die Richung de -Achse und nach oben (Richung de -Achse) gewofen wid Die Anfangsbedingungen lauen somi Die Beschleunigung wik nu in Richung de -Achse ( ) ( ), V g A

14 Beispiel: de schiefe Wuf Gesuch is das Zeigese fü den O in den dei Raumichungen Fü jede Richung müssen Beschleunigung und Geschwindigkei inegie weden In Richung de -Achse sind die Anfangsgeschwindigkei und die Beschleunigung gleich Null. Die Lage des Köpes efäh in diese Richung keine Ändeung mi de Zei. Dami is die Posiion des Köpes in de -Richung gleich de Posiion fü, d.h., () In de Richung de -Achse ha de Köpe die Anfangsgeschwindigkei. Da die Beschleunigung in diese Richung ebenfalls Null is, gil () Das Poblem in de Richung de -Achse wude schon fü den feien Fall gelös ( ) () () () g ( ) Kinemaik 4

15 Dasellung Schiefe Wuf [m s - ] 3 [m s - ] Kinemaik 5

16 Die Keisbewegung Keisbewegung: Bewegung eines Köpes mi konsanem Absand um Mielpunk M des Keises Veändeliche Winkel ϑ() mi eine Refeenichung (.B. -Achse) Die Winkelgeschwindigkei is die Ändeung des Winkels ϑ mi de Zei ω d ϑ( ) d Y ϑ Die Einhei de Winkelgeschwindigkei is [Umdehung po Sekunde] ode [s - ] Kinemaik 6

17 Die Keisbewegung Die momenane Geschwindigkei des Köpes is angenial um Keis seh senkech auf de Vebindungslinie om Keismielpunk um Köpe Oseko ebinde Keismielpunk mi dem momenanen O des sich bewegenden Köpes ha konsane Länge Beag de momenanen Geschwindigkei ω dϑ d Y Kinemaik 7

18 Mahemaische Umweg: das Vekopoduk Mihilfe des Vekopoduks (Keupoduk) wid aus wei Vekoen ein die Veko gebilde, de u beiden andeen senkech seh 3 3 Reche-Hand-Regel besimm die Richung des Egebnisekos Das Vekopoduk is nich kommuai Sind wei Vekoen paallel ueinande, eschwinde ih Vekopoduk sin ( ) α Kinemaik 8 3 α 3 3 3

19 Die Keisbewegung Dasellung de Winkelgeschwindigkei als Veko: Seh senkech auf Oseko und Geschwindigkeiseko Lieg in Richung de Dehachse ω ω,, ω () ω cos sin ( ϑ( ) ) ( ϑ() ) Kinemaik 9

20 Die gleichfömige Keisbewegung Is die Winkelgeschwindigkei konsan, dann is die Keisbewegung gleichfömig ϑ ( ) ω ω cos sin d d ( ω) ( ω) cos sin ( ω) ( ω) ω sin ω cos ( ω) ( ω) Kinemaik

21 Beschleunigung auf de Keisbahn Da die Richung des Geschwindigkeisekos eiabhängig is, gib es eine Beschleunigung a d d d d ω cos ω sin ω sin ω cos ( ω) ( ω) ( ω) ( ω) ω ω a Die Beschleunigung is dem Radiuseko engegengese paallel - Zenipealbeschleunigung Kinemaik

22 Hamonische Schwingung Viele Bewegungen lassen sich als Schwingungen dasellen Gebundene Bewegung um eine Ruhelage Hamonische Bewegung Dasellung duch eine Sinusode Kosinusfunkion de Zei Begene Ampliude Eine hamonische Schwingung is eine Keisbewegung on de Seie beache O und Beschleunigung sind popoional ueinande Diffeenialgleichung fü hamonische Schwingungen (wei Scheibweisen) () sin( ω) () ω cos( ω) a( ) d d ω sin ( ) && ω ( ω) () () ω () () d d d d () Kinemaik

23 Keisfequen ω: Hamonische Schwingung Fequen und Keisfequen Winkel ϑ im Bogenmaß Eine Umdehung enspich π Einhei [s - ] Fequen ν: Inese Länge de Peiode de Schwingung in [s] Eine Umdehung enspich eine Peiode Einhei [s - ] ode He [H] ( ) sin( ω ) sin( π ν ) ω π ν Kinemaik 3

24 Hamonische Schwingung.5 Hamonische Schwingung 5 O [m] Geschwindigkei [m s^-] O Geschwindigkei Zei [s] Kinemaik 4

25 Hamonische Schwingung.5 Hamonische Schwingung 4 O [m].5.5 Beschleunigung [m s^-] O Beschleunigung Zei [s] Kinemaik 5

Einführung in die Physik I. Kinematik der Massenpunkte

Einführung in die Physik I. Kinematik der Massenpunkte Einfühung in die Phsik I Kinemik de Mssenpunke O. von de Lühe und U. Lndgf O und Geschwindigkei Wi bechen den O eines ls punkfömig ngenommenen Köpes im Rum ls Funkion de Zei Eindimensionle Posiion O O

Mehr

Grundbegriffe Geschwindigkeit und Beschleunigung. r = r dt

Grundbegriffe Geschwindigkeit und Beschleunigung. r = r dt Gundbegiffe Geschwindigkei und Beschleunigung Die Geschwindigkei eines Köpes is ein Maß fü seinen je Zeieinhei in eine besimmen Richung zuückgelegen Weg. Sie is, wie de O, ein Veko und definie duch die

Mehr

Leseprobe. Dietmar Mende, Günter Simon. Physik. Gleichungen und Tabellen. ISBN (Buch): ISBN (E-Book):

Leseprobe. Dietmar Mende, Günter Simon. Physik. Gleichungen und Tabellen. ISBN (Buch): ISBN (E-Book): Lesepobe Diema Mende, Güne Simon Physik Gleichungen und Tabellen ISBN (Buch): 978-3-446-43754-8 ISBN (E-Book): 978-3-446-43861-3 Weiee Infomaionen ode Besellungen une hp://www.hanse-fachbuch.de/978-3-446-43754-8

Mehr

Experimentalphysik II (Kip SS 2007)

Experimentalphysik II (Kip SS 2007) peimenalphsik II Kip SS 7 Zusavolesungen: Z-1 in- und mehdimensionale Inegaion Z- Gadien Divegen und Roaion Z-3 Gaußsche und Sokessche Inegalsa Z-4 Koninuiäsgleichung Z-5 lekomagneische Felde an Genflächen

Mehr

Kraftfelder. Die Kraft auf eine Masse kann an verschiedenen Orten unterschiedlich sein. Zur vollständigen Angabe muss für jeden Ort

Kraftfelder. Die Kraft auf eine Masse kann an verschiedenen Orten unterschiedlich sein. Zur vollständigen Angabe muss für jeden Ort Kaffelde Die Kaf auf eine Masse kann an eschiedenen Oen uneschiedlich sein. Zu ollsändigen Angabe muss fü jeden O F F, F, F Scheibweise:,, de Kafeko angegeben weden. Kaffeld Gafische Dasellung F F,,, F,,,

Mehr

1.1 Eindimensionale, geradlinige Bewegung

1.1 Eindimensionale, geradlinige Bewegung 1. Inenion O, Geschwindigkei und Beschleunigung eines Köpes zu jedem Zeipunk bescheiben. z e e z e () Oseko: () R. Giwidz 1 1.1 Eindimensionle, gedlinige Bewegung Eindimensionles Koodinenssem: 1 Veeinfchend

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

I MECHANIK. 1. EINFÜHRUNG Grundlagen, Kinematik, Dynamik (Wiederholung der Schulphysik)

I MECHANIK. 1. EINFÜHRUNG Grundlagen, Kinematik, Dynamik (Wiederholung der Schulphysik) Physik EI1 Mechnik - Einfühung Seie I MECHNIK 1. EINÜHRUNG Gundlgen, Kinemik, Dynmik (Wiedeholung de Schulphysik) _Mechnik_Einfuehung1_Bneu.doc - 1/9 Die einfühenden Kpiel weden wi zunächs uf dem Niveu

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EPI 06 I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang EPI WS 2006/07 Dünnwebe/Faessle 1 x 1 = x 1 y 1 x 1 x 1 = y 1 I)Mechanik: 1.Kinematik, 2.Dynamik Bewegung in Ebene und Raum (2- und

Mehr

Zur Erinnerung. Winkelmaße: Radiant und Steradiant. Stichworte aus der 3. Vorlesung:

Zur Erinnerung. Winkelmaße: Radiant und Steradiant. Stichworte aus der 3. Vorlesung: Zu inneung Sichwoe aus de 3. Volesung: inkelaße: Radian und Seadian die (gleichföige) Keisbewegung als beschleunige Bewegung (Richungsändeung von v) Dasellung de kineaischen Gößen duch die inheisvekoen

Mehr

Integralrechnung III.Teil

Integralrechnung III.Teil Inegalechnung III.eil 1 Inegalechnung III.eil ngewande Mahemaik GM Wolgang Kugle Inegalechnung III.eil Inhalsvezeichnis 1. Mielwee peiodische Signale 1.1 Deiniion des aihmeischen Mielwees 1. Deiniion des

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

Zeitabhängige Felder, Maxwell-Gleichungen

Zeitabhängige Felder, Maxwell-Gleichungen Zeiabhängige Felde, Mawell-Gleichungen Man beobache, dass ein eiabhängiges Magnefeld ein elekisches Feld eeug. Dies füh.. u eine Spannung an eine Dahschleife (ndukion). mgekeh beobache man auch: ein eiabhängiges

Mehr

Vorkurs Mathematik-Physik, Teil 6 c 2016 A. Kersch

Vorkurs Mathematik-Physik, Teil 6 c 2016 A. Kersch Vorkurs Mahemaik-Physik, Teil 6 c 6 A. Kersch Kinemaik In der Kinemaik geh es um die Frage: wie kann ich Bewegungen, also Bahnen von punkförmigen (Kinemaik der Translaion) oder ausgedehnen Körpern (Kinemaik

Mehr

2. Kinematik. v = a = dx v = dt. 2.1 Ortskurven. x(t) v > 0. Kurve: Beschreibung der Bewegung von Massenpunkten. v = 0.

2. Kinematik. v = a = dx v = dt. 2.1 Ortskurven. x(t) v > 0. Kurve: Beschreibung der Bewegung von Massenpunkten. v = 0. . Kinemaik Beschreibun er Beweun on Massenpunken Kure: () > Definiion : : Zei [s] (,y,) : Posiion [m] s : urückeleer We [m] ( ) : Geschwinikei [m/s] a : Beschleuniun [m/s ] is Seiun er Kure: Allemein :

Mehr

g T Zahlenbeispiel zum freien Fall: Fallzeit T einer Kapsel im Bremer Fallturm aus H = 110 m Höhe:

g T Zahlenbeispiel zum freien Fall: Fallzeit T einer Kapsel im Bremer Fallturm aus H = 110 m Höhe: Phsik I U Domund WS7/8 Gudun Hille Shauka Khan Kapiel Zahlenbeispiel zum feien Fall: Fallzei eine Kapsel im Beme Fallum aus H = m Höhe: h h H h m H H H ms 9,8m 4,74 s Wähend diese Zei hesch in de Kapsel

Mehr

5.5. Anwendungsaufgaben aus der Physik

5.5. Anwendungsaufgaben aus der Physik .. Anwendungsaufgaben aus de Physik Aufgabe 1: Kinemaik Skizzieen Sie die Geschwindigkeis-Zei- und Weg-Zei Diagamme im Beeich < < 1 s und sellen Sie die Funkionsgleichungen fü v() und s() auf. a) Ein Köpe

Mehr

Masse, Kraft und Beschleunigung Masse:

Masse, Kraft und Beschleunigung Masse: Masse, Kraf und Beschleunigung Masse: Sei 1889 is die Einhei der Masse wie folg fesgeleg: Das Kilogramm is die Einhei der Masse; es is gleich der Masse des Inernaionalen Kilogrammprooyps. Einzige Einhei

Mehr

( ) ( ) () () 4.1 Superpositionsprinzip. a v. g v. 4.1 Test des Superpositionsprinzip. v v. h v

( ) ( ) () () 4.1 Superpositionsprinzip. a v. g v. 4.1 Test des Superpositionsprinzip. v v. h v 4. Supeposiionspinip Beweun in 3 Koodinaenicunen sind unabäni oneinande! Beispiel: Sciefe Wuf ( ) ( ) a () nfansbedinunen Beweun in de --Ebene Eliminaion on () ( ) () ( ) 4. Tes des Supeposiionspinip fei

Mehr

1. Übung. 2. Übung. 2 = 12h = Wahrer Ortsmittag

1. Übung. 2. Übung. 2 = 12h = Wahrer Ortsmittag 1. Übung 1. Schi: Wann is Miag? Mie zwischen den beiden Messungen besimmen: 14h 44 19 + 17h 02 09 31h 46 28 31h 46 28 2 15h 53 14 Wahe Osmiag 2. Schi: Weil Miag is sind wi auf dem selben Längengad wie

Mehr

Mathematik für Ingenieure 2

Mathematik für Ingenieure 2 Mahemaik fü Ingenieue Eemweaufgaben (Opimieung une Nebenbedingungen) Eemweaufgaben - Einfühung In de Pais een häufig Pobleme auf, bei denen es daauf ankomm, einen opimalen We zu besimmen; z. B. den maimalen

Mehr

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie Oktober 2012 Vorzurechnen bis zum 9. November

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie Oktober 2012 Vorzurechnen bis zum 9. November Seie 3 29. Oktobe 2012 Vozuechnen bis zum 9. Novembe Aufgabe 1: Zwei Schwimme spingen nacheinande vom Zehn-Mete-Tum ins Becken. De este Schwimme lässt sich vom Rand des Spungbetts senkecht heuntefallen,

Mehr

Beiblätter zur Vorlesung Physik 1 für Elektrotechniker und Informatiker, Maschinenbauer und Mechatroniker

Beiblätter zur Vorlesung Physik 1 für Elektrotechniker und Informatiker, Maschinenbauer und Mechatroniker Beibläe zu Volesung Physik fü Elekoechnike und Infomike, Mschinenbue und Mechonike WS 4/5 Pof. D. Min Senbeg, Pof. D. Eckehd Mülle Ohne Veändeungen zugelssen zu Klusu GPH Kinemik Dynmik Abei und Enegie

Mehr

Ausgangspunkt zur Herleitung der Wellengleichung sind die Maxwell-Gleichungen v E = t. v v v v. D t

Ausgangspunkt zur Herleitung der Wellengleichung sind die Maxwell-Gleichungen v E = t. v v v v. D t Insiu fü hsi und hsialische Technologien de TU Claushal Mä 6 Nichlineae Opi WS 5/6 leomagneische Wellen. Wellengleichung Ausgangspun u eleiung de Wellengleichung sind die Mawell-Gleichungen B D ρ B D Ladungen

Mehr

d zyklische Koordinaten oder Terme der Form F(q, t) dt

d zyklische Koordinaten oder Terme der Form F(q, t) dt 6 Woche.doc, 3.11.10.5 "Reep" u Lösung von Bewegungspoblemen mi Hilfe de Lagange- Gleichungen II.. Beispiele 1. Wähle geeignee ( Zwangbedingungen, Smmeie) veallgemeinee Koodinaen ( 1,,..., f ) n (, ) n.

Mehr

6. Gravitation. m s. r r. G = Nm 2 /kg 2. Beispiel: Mond. r M = 1738 km

6. Gravitation. m s. r r. G = Nm 2 /kg 2. Beispiel: Mond. r M = 1738 km 00 0 6. Gavitation Gavitationswechselwikung: eine de vie fundaentalen Käfte (die andeen sind elektoagnetische, schwache und stake Wechselwikung) Ein Köpe it asse i Abstand zu eine Köpe it asse übt auf

Mehr

4. Quadratische Funktionen.

4. Quadratische Funktionen. 4-1 Funkionen 4 Quadraische Funkionen 41 Skalierung, Nullsellen Eine quadraische Funkion is von der Form f() = c 2 + b + a mi reellen Zahlen a, b, c; is c 0, so sprechen wir von einer echen quadraischen

Mehr

Kapitelübersicht. Kapitel. Die Bewertung von Anleihen und Aktien. Bewertung von Anleihen und Aktien. einer Anleihe

Kapitelübersicht. Kapitel. Die Bewertung von Anleihen und Aktien. Bewertung von Anleihen und Aktien. einer Anleihe 5-0 5- Kapiel 5 Die Beweung von Anleihen und Akien Kapielübesich 5. Definiion und Beispiel eine Anleihe ( Bond ) 5. Beweung von Anleihen 5.3 Anleihenspezifika 5.4 De Bawe eine Akie 5.5 Paameeschäzungen

Mehr

C Die Gleichung. Passive Netzwerke Differentialgleichungen H. Friedli. Darstellung der passiven Bauelemente Widerstand Kondensator Spule

C Die Gleichung. Passive Netzwerke Differentialgleichungen H. Friedli. Darstellung der passiven Bauelemente Widerstand Kondensator Spule Passive Neweke Diffeenialgleichungen H. Fiedli Dasellung de passiven auelemene Widesand Kondensao Spule du U R I( ) I U& di( ) ( ) U L L I& d d Mi diesen Definiionen lassen sich alle passiven Kombinaionen

Mehr

2. Kinematik punktförmiger Körper

2. Kinematik punktförmiger Körper . Kinemaik punkförmier Körper Beschleuniun: Körper werden als Massenpunke idealisier. Beweun im -dimensionalen Raum d( ) a( ) ɺ ( ) ɺɺ ( ) d Konenion: : Zei [s] (,y,) : Or [m] : Geschwindikei [m/s] a :

Mehr

Kapitelübersicht. Kapitel. Kapitalwert und Endwert. 4.1 Der Ein-Perioden-Fall: Barwert. 4.1 Der Ein-Perioden-Fall: Barwert

Kapitelübersicht. Kapitel. Kapitalwert und Endwert. 4.1 Der Ein-Perioden-Fall: Barwert. 4.1 Der Ein-Perioden-Fall: Barwert -0 - Kapiel Kapialwe und Endwe Kapielübesich. De Ein-Peioden-Fall. De Meh-Peioden-Fall. Diskonieung. Veeinfachungen.5 De Unenehmenswe.6 Zusammenfassung und Schlussfolgeungen -. De Ein-Peioden-Fall: Endwe

Mehr

Motivation der Dierenzial- und Integralrechnung

Motivation der Dierenzial- und Integralrechnung Moivaion der Dierenzial- und Inegralrechnung Fakulä Grundlagen Hochschule Esslingen SS 2010 4 3 2 1 0 5 10 15 20 25 30 Fakulä Grundlagen (Hochschule Esslingen) SS 2010 1 / 9 Übersich 1 Vorberachungen Ableiungsbegri

Mehr

Einführung in die Physik

Einführung in die Physik Einfühung in die Physik fü Phamazeuen und Biologen (PPh Mechanik, Elekiziäslehe, Opik Übung : Volesung: Tuoials: Monags 13:15 bis 14 Uh, Buenand-HS Monags 14:15 bis 15:45, Liebig HS Monags 16:00 bis 17:30,

Mehr

Physik A VL6 ( )

Physik A VL6 ( ) Physik A VL6 (19.10.01) Bescheibung on Bewegungen - Kinematik in dei Raumichtungen II Deh- und Rotationsbewegungen Zusammenfassung: Kinematik Deh- und Rotationsbewegungen Deh- und Rotationsbewegungen Paamete

Mehr

Name: Punkte: Note: Ø:

Name: Punkte: Note: Ø: Name: Punke: Noe: Ø: Kernfach Physik Abzüge für Darsellung: Rundung: 4. Klausur in K am 5. 5. 0 Ache auf die Darsellung und vergiss nich Geg., Ges., Formeln, Einheien, Rundung...! Angaben: e =,60 0-9 C

Mehr

Elektromagnetische Wellen

Elektromagnetische Wellen leomagneische Wellen In einem Wechselsomeis mi Spule und Kondensao (Schwingeis wechsel die negie peiodisch wischen -Feld im Kondensao und -Feld in de Spule. Spule und Kondensao sind geschlossen aufgebau

Mehr

1.1. Grundbegriffe zur Mechanik

1.1. Grundbegriffe zur Mechanik ... Die geradlinig gleichförmige Bewegung.. Grundbegriffe zur Mechanik Ein Körper beweg sich geradlinig und gleichförmig enlang der -Achse, wenn seine Geschwindigkei (eloci) 0 konsan bleib. Srecke Zeiabschni

Mehr

Die Eckpunkte A und E liegen in der y-z-ebene; Es wird ein dritter Schnittpunkt der y-z-ebene mit dem Körper berechnet.

Die Eckpunkte A und E liegen in der y-z-ebene; Es wird ein dritter Schnittpunkt der y-z-ebene mit dem Körper berechnet. Lösungen Abiu Leisungsus Mahemai Seie von 9 P Analyische Geomeie. Dasellung de Veoen: BE + FG = BH. C F = AF AF + F = C AF + FC = AC AC FC = AF A ( ;;) B ( ; 4; ) C ( ;; ) D ( ;;) E ( ;;) F ( ; 4; ) G

Mehr

Gewöhnliche Differentialgleichungen (DGL)

Gewöhnliche Differentialgleichungen (DGL) Gewöhnliche Differenialgleichungen (DGL) Einführende Beispiele und Definiion einer DGL Beispiel 1: 1. Die lineare Pendelbewegung eines Federschwingers führ uner Zuhilfenahme des Newonschen Krafgesezes

Mehr

7 Erzwungene Schwingung bei Impulslasten

7 Erzwungene Schwingung bei Impulslasten Einmassenschwinger eil I.7 Impulslasen 53 7 Erzwungene Schwingung bei Impulslasen Impulslasen im echnischen Allag sind zum Beispiel Soß- oder Aufprallvorgänge oder Schläge. Die Las seig dabei in kurzer

Mehr

1 Lokale Änderungsrate und Gesamtänderung

1 Lokale Änderungsrate und Gesamtänderung Schülerbuchseie Lösungen vorläufig I Inegralrechnung Lokale Änderungsrae und Gesamänderung S. S. b h = m s ( s) + m s s + m s ( s) = 7 m Fläche = 7 FE a) s =, h km h +, h km h +, h km h +, h km h +,, h

Mehr

Lösung Klausur. p(t) = (M + dm)v p(t + dt) = M(v + dv) + dm(v + dv u) Wir behalten nur die Terme der ersten Ordnung und erhalten.

Lösung Klausur. p(t) = (M + dm)v p(t + dt) = M(v + dv) + dm(v + dv u) Wir behalten nur die Terme der ersten Ordnung und erhalten. T1 I. Theorieeil a) Zur Zei wird ein Pake der Masse dm mi der Geschwindigkei aus der Rakee ausgesoÿen. Newon's zweies Gesez läss sich schreiben als dp d = F p( + ) p() = F d = Av2 d Der Impuls des Sysems

Mehr

4 ARBEIT UND LEISTUNG

4 ARBEIT UND LEISTUNG 10PS/TG - MECHANIK P. Rendulić 2008 ARBEIT UND LEISTUNG 27 4 ARBEIT UND LEISTUNG 4.1 Mehnihe Abei 4.1.1 Definiion de Abei enn ein Köpe une de Einwikung eine konnen Kf die Seke in egihung zuükleg, dnn wid

Mehr

(Newton II). Aus der Sicht eines mitbeschleunigten Beobachters liest sich diese Gleichung:

(Newton II). Aus der Sicht eines mitbeschleunigten Beobachters liest sich diese Gleichung: f) Scheinkäfte.f) Scheinkäfte Tägheitskäfte in beschleunigten Systemen, z.b. im anfahenden ode bemsenden Auto ode in de Kuve ( Zentifugalkaft ). In nicht beschleunigten Systemen ( Inetialsysteme ) gibt

Mehr

Wiederholung zur Physik I. von. Prof. Dr. Hagen Voß

Wiederholung zur Physik I. von. Prof. Dr. Hagen Voß Wiedeholung zu Physik I von Pof. D. Hagen Voß Wiedeholung zu Physik Vesion. Wiedeholung zu Physik I WIEDERHOLUNG ZUR PHYSIK I... KAPITEL : KINEMATIK... 3 Kinemaik in eine Dimension... 3 Kinemaik in zwei

Mehr

6.6 Frequenzgang ). (6.70) Man hat nur in der Übertragungsfunktion G(s) die komplexe Variable durch die rein imaginäre Variable s = jω. zu ersetzen.

6.6 Frequenzgang ). (6.70) Man hat nur in der Übertragungsfunktion G(s) die komplexe Variable durch die rein imaginäre Variable s = jω. zu ersetzen. 6.6 Fequenzgang Neben de Übeagungfunkion zu Becheibung de Signalübeagung in einem lineaen Übeagungglied im Bildbeeich wid in vechiedenen Teilgebieen de Elekoechnik noch eine andee Kennfunkion benuz, de

Mehr

Arbeit in Kraftfeldern

Arbeit in Kraftfeldern Abeit in Kaftfelden In einem Kaftfeld F ( ) ist F( )d die vom Feld bei Bewegung eines Köps entlang dem Weg geleistete Abeit. Achtung: Vozeichenwechsel bzgl. voheigen Beispielen Konsevative Kaftfelde Ein

Mehr

2 Mechanik des Massenpunkts und starrer Körper

2 Mechanik des Massenpunkts und starrer Körper 8 Mechanik des Massenpunks und sae Köpe MEV Mechanik des Massenpunks und sae Köpe Bewegung In diese Kapiel geh es u Bewegung: Geschwindigkei, Beschleunigung, Roaion ec Und zwa nu u den Velauf de Bewegung,

Mehr

Lösung V Veröentlicht:

Lösung V Veröentlicht: 1 Bewegung entlang eines hoizontalen Keises (a) Ein Ball de Masse m hängt an einem Seil de Länge L otiet mit eine konstanten Geschwindigkeit v auf einem hoizontalen Keis mit Radius, wie in Abbildung 2

Mehr

E B. B r = 0 B E E E B B. E r. Elektromagnetische Wellen. Die vier Maxwell Gleichungen im quellenfreien Raum. mit

E B. B r = 0 B E E E B B. E r. Elektromagnetische Wellen. Die vier Maxwell Gleichungen im quellenfreien Raum. mit lekomagneishe Wellen µ Die vie Mawell Gleihungen im quellenfeien Raum µ a a a mi µ µ mi µ µ µ Wellengleihung eindimensionale Wellengleihung.. 3. 4. Lösung de eindimensionalen Wellengleihung? in Ansa: sin

Mehr

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge Dr. Dirk Windelberg Leibniz Universiä Hannover Mahemaik für Ingenieure Mahemaik hp://www.windelberg.de/agq 14 Kurven in Parameerdarsellung, Tangenenvekor und Bogenlänge Aufgabe 14.1 (Tangenenvekor und

Mehr

Messwertaufnahme und Messwertverarbeitung mit dem PC

Messwertaufnahme und Messwertverarbeitung mit dem PC Phsikalisches Gundpakikum Vesuch 2 Vesuchspookolle Ralf Elebach Messweaufnahme und Messweveabeiung mi dem P ufgaben. Messung und Besimmung de Ladezeikonsane beim ufladen eines Kondensaos. 2. Messung und

Mehr

Physik PHB3/4 (Schwingungen, Wellen, Optik) 3.4 Eigenschaften von elektromagnetischen Wellen Herleitung von elektromagnetischen Wellen

Physik PHB3/4 (Schwingungen, Wellen, Optik) 3.4 Eigenschaften von elektromagnetischen Wellen Herleitung von elektromagnetischen Wellen Phsi PH3/4 (Shwingungen, Wellen, Opi Seie 8_lmagWellen1_a_A.do - 1/7 3.4 igenshafen von eleomagneishen Wellen 3.4.1 Heleiung von eleomagneishen Wellen 1 Qualiaive, anshaulihe Heleiung (nih gan ihig eshleunige

Mehr

Mechanik. 2. Dynamik: die Lehre von den Kräften. Physik für Mediziner 1

Mechanik. 2. Dynamik: die Lehre von den Kräften. Physik für Mediziner 1 Mechanik. Dynamik: die Lehe von den Käften Physik fü Medizine 1 Usache von Bewegungen: Kaft Bislang haben wi uns auf die Bescheibung von Bewegungsvogängen beschänkt, ohne nach de Usache von Bewegung zu

Mehr

Abiturprüfung Mathematik 2012 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2012 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 Abiurprüfung Mahemaik 0 (Baden-Würemberg) Berufliche Gymnasien Analysis, Aufgabe. (8 Punke) Die Abbildung zeig das Schaubild einer Funkion h mi der Definiionsmenge [-7 ; 4]. Die Funkion H is eine Sammfunkion

Mehr

Definition. Definition. 1 Q eine endliche Menge von Zuständen, 2 Σ eine endliche Menge von Eingabesymbolen,

Definition. Definition. 1 Q eine endliche Menge von Zuständen, 2 Σ eine endliche Menge von Eingabesymbolen, Diskee Mahemaik OLC mpuaional gic Main Avanzini Ane Dü Chisoph Kolleide Geog Mose Zusammenfassung de lezen LV Zusammenfassung de lezen LV deeminisische TM mi k Bänden einbändige, deeminisische TM M, sodass

Mehr

Zusammenfassung Kapitel 2 Mechanik eines Massenpunktes

Zusammenfassung Kapitel 2 Mechanik eines Massenpunktes Zusmmenfssung Kpiel Mechnik eines Mssenpunkes 1 Mechnik eines Mssenpunkes idelisiees Gebilde : lle Msse des Köpes in einem Punk konzenie keine Beücksichigung de Ausdehnung eines Köpes Ausdehnung d sei

Mehr

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt Prof Dr M Gerds Dr A Dreves J Michael Winerrimeser 6 Mahemaische Mehoden in den Ingenieurwissenschafen 4 Übungsbla Aufgabe 9 : Mehrmassenschwinger Berache wird ein schwingendes Sysem aus Körpern der Masse

Mehr

= 7,0 kg), der sich in der Höhe h = 7,5 m über B befindet, ist durch ein Seil mit dem Körper K 2

= 7,0 kg), der sich in der Höhe h = 7,5 m über B befindet, ist durch ein Seil mit dem Körper K 2 59. De Köpe K ( 7,0 kg), de ich in de öhe h 7,5 übe B befinde, i duch ein Seil i de Köpe K (,0 kg) ebunden. Die Köpe ezen ich zu Zei 0 au de Ruhe heau in Bewegung. K gleie eibungfei auf eine chiefen Ebene

Mehr

Geradlinige Bewegung Krummlinige Bewegung Kreisbewegung

Geradlinige Bewegung Krummlinige Bewegung Kreisbewegung 11PS KINEMATIK P. Rendulić 2011 EINTEILUNG VON BEWEGUNGEN 1 KINEMATIK Die Kinemaik (Bewegunglehre) behandel die Geezmäßigkeien, die den Bewegungabläufen zugrunde liegen. Die bei der Bewegung aufreenden

Mehr

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 www.mahe-aufgaben.com Abiurprüfung Mahemaik 009 (Baden-Würemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (7 Punke) Das Schaubild P einer Polynomfunkion drien Grades ha den Wendepunk W(-/-) und

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 Inhal der Vorlesung A1 1. Einführung Mehode der Physik Physikalische Größen Übersich über die vorgesehenen Themenbereiche. Teilchen A. Einzelne Teilchen Beschreibung von Teilchenbewegung Kinemaik: Quaniaive

Mehr

Universität Ulm Samstag,

Universität Ulm Samstag, Universiä Ulm Samsag, 5.6. Prof. Dr. W. Arend Robin Nika Sommersemeser Punkzahl: Lösungen Gewöhnliche Differenialgleichungen: Klausur. Besimmen Sie die Lösung (in möglichs einfacher Darsellung) folgender

Mehr

Kapitel 6: Ort, Geschwindigkeit und Beschleunigung als Funktion der Zeit

Kapitel 6: Ort, Geschwindigkeit und Beschleunigung als Funktion der Zeit Kapiel 6: Or, Geschwindigkei und Beschleunigung als Funkion der Zei 2 Kapiel 6: Or, Geschwindigkei und Beschleunigung als Funkion der Zei Einführung Lerninhal Einführung 3 Das Programm yzet erlaub es,

Mehr

3 Ebene elektromagnetische Wellen

3 Ebene elektromagnetische Wellen 3 bene elekomagneisce Wellen nscaulice Besceibung 6 3 bene elekomagneisce Wellen In diesem bscni weden ebene elekomagneisce Wellen in omogenen Medien beandel. Dabei sollen die fü die Besceibung elekomagneisce

Mehr

Physik für Nicht-Physikerinnen und Nicht-Physiker

Physik für Nicht-Physikerinnen und Nicht-Physiker FAKULTÄT FÜR PHYSIK UND ASTRONOMIE Physik fü Nicht-Physikeinnen und Nicht-Physike A. Belin 15.Mai2014 Lenziele Die Gößen Winkelgeschwindigkeit, Dehmoment und Dehimpuls sind Vektoen die senkecht auf de

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK Physik A/B1 A WS SS 17 13/14 Inhal der Vorlesung A1 1. Einführung Mehode der Physik Physikalische Größen Übersich über die orgesehenen Themenbereiche. Teilchen A. Einelne Teilchen Beschreibung on

Mehr

f ( x) = x + x + 1 (quadratische Funktion) f '( x) = x + (Ableitungsfunktion)

f ( x) = x + x + 1 (quadratische Funktion) f '( x) = x + (Ableitungsfunktion) R. Brinkmann hp://brinkmann-du.de Seie.. Tangene und Normale Tangenenseigung Die Seigung eines Funkionsgraphen in einem Punk P ( f ( ) ) is gleichbedeuend mi der Seigung der Tangene in diesem Punk. Nachfolgend

Mehr

Analytische Geometrie Übungsaufgaben 1 gesamtes Stoffgebiet

Analytische Geometrie Übungsaufgaben 1 gesamtes Stoffgebiet Analyiche Geomeie Übungaufgaben geame Soffgebie Pflicheil (ohne GTR und ohne Fomelammlung): P: Zeichne die folgenden Ebenen mi Hilfe ihe Spugeaden in ein kaeiche Koodinaenyem ein: a) E: b) E: 8 c) E: P:

Mehr

Maxwellsche Gleichungen. James Clerk Maxwell ( )

Maxwellsche Gleichungen. James Clerk Maxwell ( ) Mawellsche Gleichungen James Clek Mawell 1831-1879 bisheige Gundgleichungen... Ladungen ezeugen elekische Felde: div s gib keine Ladungen die magneische Felde ezeugen: Söme ezeugen magneische Wibel-Felde:

Mehr

Magnetismus EM 33. fh-pw

Magnetismus EM 33. fh-pw Magnetismus Das magnetische eld 34 Magnetische Kaft (Loentz-Kaft) 37 Magnetische Kaft auf einen elektischen Leite 38 E- eld s. -eld 40 Geladenes Teilchen im homogenen Magnetfeld 41 Magnetische lasche (inhomogenes

Mehr

7.3. Partielle Ableitungen und Richtungsableitungen

7.3. Partielle Ableitungen und Richtungsableitungen 7.3. Parielle Ableiungen und Richungsableiungen Generell vorgegeben sei eine Funkion f von einer Teilmenge A der Ebene R oder allgemeiner des n-dimensionalen Raumes R n nach R. Für x [x 1,..., x n ] aus

Mehr

1. Übungsblatt zur Theoretischen Physik I im SS16: Mechanik & Spezielle Relativitätstheorie. Newtonsche Mechanik

1. Übungsblatt zur Theoretischen Physik I im SS16: Mechanik & Spezielle Relativitätstheorie. Newtonsche Mechanik 1. Übungsblatt zu Theoetischen Physik I im SS16: Mechanik & Spezielle elativitätstheoie Newtonsche Mechanik Aufgabe 1 Abhängigkeit physikalische Gesetze von de Zeitdefinition Eine wesentliche Gundlage

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

2 Homogene Transformationen und Posen

2 Homogene Transformationen und Posen 2. Homogene Tansfomaionen un Posen 2 Homogene Tansfomaionen un Posen Auf e Basis e homogenen Tansfomaionen können Kooinaenansfomaionen wischen Objeken anspaen übe nich ekusive Maipouke beschieben ween.

Mehr

Analysis: Exponentialfunktionen Analysis

Analysis: Exponentialfunktionen Analysis www.mahe-aufgaben.com Analysis: Eponenialfunkionen Analysis Übungsaufgaben u Eponenialfunkionen Pflich- und Wahleil gesames Soffgebie (insbesondere Funkionsscharen) ohne Wachsum Gymnasium ab J Aleander

Mehr

1.2.2 Gravitationsgesetz

1.2.2 Gravitationsgesetz VAK 5.04.900, WS03/04 J.L. Vehey, (CvO Univesität Oldenbug ) 1.. Gavitationsgesetz Heleitung aus Planetenbewegung Keplesche Gesetze 1. Planeten bewegen sich auf Ellipsen. De von Sonne zum Planeten gezogene

Mehr

Physik II Übung 1 - Lösungshinweise

Physik II Übung 1 - Lösungshinweise Physik II Übung 1 - Lösungshinweise Stefan Reutte SoSe 01 Moitz Kütt Stand: 19.04.01 Fanz Fujaa Aufgabe 1 We kennt wen? Möglicheweise kennt ih schon einige de Studieenden in eue Übungsguppe, vielleicht

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK Physik A/B A WS SS 07 03/4 Inhalt de Volesung A. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kinematik: Quantitative Efassung Dynamik: Usachen de Bewegung Käfte Abeit + Leistung,

Mehr

1. Ebene Bewegung eines Punktes

1. Ebene Bewegung eines Punktes Prof. V. Prediger: ufgaen zur Lehrveransalung Kinemaik und Kineik. Eene ewegung eines Punkes ufgae.: Es is ekann, dass die ewegung eines Körpers im Zeiereich 0 0s nach dem folgenden Gesez safinde: 2 3

Mehr

, die Anzahl der Perioden in einem Gitter wird im Folgenden mit m bezeichnet.

, die Anzahl der Perioden in einem Gitter wird im Folgenden mit m bezeichnet. .. Gie.. Baufomen Mi de Bezeichnun Gie is im Folenden eine Suku emein, bei de eine peiodische Ändeun des Bechunsindex enlan eine Raumichun volie. Gie weden in Halbleielasen vo allem in zwei Baufomen einesez.

Mehr

Bewegung. Einteilung der Mechanik. Kinematik. Bezugssystem. Modell Massepunkt. Geradlinig gleichförmige Bewegung

Bewegung. Einteilung der Mechanik. Kinematik. Bezugssystem. Modell Massepunkt. Geradlinig gleichförmige Bewegung Eineilung der Mechanik Kinemaik Mechanik Kinemaik Dynamik Lehre von den Bewegungen und ihren Gesezen, ohne Beachung der zu Grunde liegenden Ursachen Lehre von den Kräfen und deren Wirkungen und dami der

Mehr

Vorlesung Technische Mechanik 1 Statik, Wintersemester 2007/2008. Technische Mechanik

Vorlesung Technische Mechanik 1 Statik, Wintersemester 2007/2008. Technische Mechanik Volesung Technische Mechanik 1 Statik, Wintesemeste 2007/2008 Technische Mechanik 1. Einleitung 2. Statik des staen Köpes 2.1 Äquivalenz von Käfteguppen am staen Köpe 2.2 Käfte mit gemeinsamem Angiffspunkt

Mehr

Abstand von 4,5 cm von der Mitte. Wie groß ist die Bahngeschwindigkeit eines Punktes in diesem Abstand? (in km/h)

Abstand von 4,5 cm von der Mitte. Wie groß ist die Bahngeschwindigkeit eines Punktes in diesem Abstand? (in km/h) Aufgaben zu Roaion 1. Die Spize de Minuenzeige eine Tuuh ha die Gechwindigkei 1,5-1. Wie lang i de Zeige?. Eine Ulazenifuge eeich 3 940 Udehungen po Minue bei eine Radiu von 10 c. Welchen Weg leg ein Teilchen

Mehr

WACHSTUM VON POPULATIONEN

WACHSTUM VON POPULATIONEN WACHSTUM VO POPULATIOE I II Exponenielles Wachsum Logisisches Wachsum Bei auseichenden Resoucen und fehlende Einwikung duch naüliche Feinde ode sonsige Einflußgößen, die das Wachsum beschänken, komm es

Mehr

Astroteilchenphysik I

Astroteilchenphysik I Asoeilchenphysik I Winesemese 2012/1 Volesung # 2, 25.10.2012 Guido Dexlin, Insiu fü Expeimenelle Kenphysik Fühes Univesum - Hubble-Expansion - Uknall: Gundlagen - Expansionsdynamik: a & Zusandsgleichungen

Mehr

Regelkurven. 1 Am Beispiel einer Sinuswelle. Version: NX 8.5 Ersteller: Sebastian Höglauer. Seite 1/11

Regelkurven. 1 Am Beispiel einer Sinuswelle. Version: NX 8.5 Ersteller: Sebastian Höglauer. Seite 1/11 Regelkurven Version: NX 8.5 Erseller: Sebasian Höglauer Ales Menü Neues Menü Einfügen > Kurve > Regelkurve Inser > Curve > Law Curve 1 Am Beispiel einer Sinuswelle Eingabe in Werkzeuge > Ausdruck (Tools

Mehr

8. Bewegte Bezugssysteme

8. Bewegte Bezugssysteme 8. Bewegte Bezugssysteme 8.1. Vobemekungen Die gundlegenden Gesetze de Mechanik haben wi bishe ohne Bezug auf ein spezielles Bezugssystem definiet. Gundgesetze sollen ja auch unabhängig vom Bezugssystem

Mehr

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff Die Bioverfügbarkei is eine Messgröße dafür, wie schnell und in welchem Umfang ein Arzneimiel resorbier wird und am Wirkor zur Verfügung seh. Zur Messung der Bioverfügbarkei wird die Wirksoffkonzenraion

Mehr

5 Gleichförmige Rotation (Kreisbewegung)

5 Gleichförmige Rotation (Kreisbewegung) -IC5-5 Gleichfömige Rotation (Keisbewegung) 5 Definitionen zu Kinematik de Rotation 5 Bahngeschwindigkeit und Winkelgeschwindigkeit Die bei de Rotationsbewegung (Abb) geltenden Gesetze sind analog definiet

Mehr

Es können nur Schwarz-Weiß-Bilder erkannt werden. Am Ende wird kein Gleichgewichtszustand (der Ausgabeneuronen) erreicht.

Es können nur Schwarz-Weiß-Bilder erkannt werden. Am Ende wird kein Gleichgewichtszustand (der Ausgabeneuronen) erreicht. Neuonale Neze, Fuzzy Conol, Geneische Algoihmen Pof. Jügen Saue 0. Aufgabenbla mi Lösungen. Nennen Sie eine ypische Anwendung von Hopfield-Nezen. Museekennung 2. Welche Einschänkungen gib es hiefü? Es

Mehr

e r a Z = v2 die zum Mittelpunkt der Kreisbahn gerichtet ist. herbeigeführt. Diese Kraft lässt sich an ausgelenkter Federwaage ablesen.

e r a Z = v2 die zum Mittelpunkt der Kreisbahn gerichtet ist. herbeigeführt. Diese Kraft lässt sich an ausgelenkter Federwaage ablesen. Im (x 1, y 1 ) System wikt auf Masse m die Zentipetalbeschleunigung, a Z = v2 e die zum Mittelpunkt de Keisbahn geichtet ist. Folie: Ableitung von a Z = v2 e Pfeil auf Keisscheibe, Stoboskop Die Keisbewegung

Mehr

Einführung in die Physik I. Elektromagnetismus 3. O. von der Lühe und U. Landgraf

Einführung in die Physik I. Elektromagnetismus 3. O. von der Lühe und U. Landgraf Einfühung in die Physik Elektomagnetismus 3 O. von de Lühe und U. Landgaf Magnetismus Neben dem elektischen Feld gibt es eine zweite Kaft, die auf Ladungen wikt: die magnetische Kaft (Loentz-Kaft) Die

Mehr

Abituraufgaben Grundkurs 2009 Bayern Analysis I. dt mit D F = R.

Abituraufgaben Grundkurs 2009 Bayern Analysis I. dt mit D F = R. Abiuraufgaben Grundkurs 9 Bayern Analysis I I.). Die Abbildung zeig den Graphen G f einer ganzraionalen Funkion f drien Grades mi dem Definiionsbereich D f R. Die in der Abbildung angegebenen Punke P(

Mehr

Basiswissen Physik 11. Jahrgangsstufe

Basiswissen Physik 11. Jahrgangsstufe Basiswissen Physik 11. Jahrgangssufe 1. Einfache lineare Bewegungen a) Darsellung von Bewegungen im Koordinaensysem Unerscheide sorgfälig die in der Zei zurückgelege Srecke s() von der zur Zei eingenommenen

Mehr

6a Dynamik. Animation follows the laws of physics unless it is funnier otherwise. 1

6a Dynamik. Animation follows the laws of physics unless it is funnier otherwise. 1 6a Dnamik Animation follows the laws of phsics unless it is funnie othewise. alsche Vostellung Kaftbild in de Antike Ansatz von Aistoteles: Käfte veusachen die Bewegung von Köpen Natülich fü einen Köpe

Mehr

Ferienkurs Experimentalphysik 1

Ferienkurs Experimentalphysik 1 Ferienkurs Experimenalphysik 1 1 Fakulä für Physik Technische Universiä München Bernd Kohler & Daniel Singh Bla 1 - Lösung WS 214/215 23.3.215 Ferienkurs Experimenalphysik 1 ( ) - leich ( ) - miel ( )

Mehr

Bewertungsformeln für Barrier Options im klassischen Optionspreismodell von BLACK, SCHOLES und MERTON

Bewertungsformeln für Barrier Options im klassischen Optionspreismodell von BLACK, SCHOLES und MERTON Beweungsfomeln fü Baie Opions im klassischen Opionspeismodell von BLACK, SCOLES und MERON ANDREAS PECL Es wid zunächs die eellweige Funkion 3 F : mi x x log log y ρ υ y ρ υ F( x, y, z;, υρ, : x z e ρ =

Mehr

Numerisches Programmieren

Numerisches Programmieren Technische Universiä München WS 11/1 Insiu für Informaik Prof. Dr. Hans-Joachim Bungarz Michael Lieb, M. Sc. Dipl.-Inf. Chrisoph Riesinger Dipl.-Inf. Marin Schreiber Numerisches Programmieren 4. Programmieraufgabe:

Mehr

Kinematik und Dynamik (Mechanik II)

Kinematik und Dynamik (Mechanik II) TECHNISCHE UNIVERSITÄT BERLIN Fakulä V Vekehs- und Maschinensysee - Insiu fü Mechanik FG Sysedynaik und Reibungsphysik Pof D e na V Popov wwweibungsphysikde Kineaik und Dynaik (Mechanik II) Volesungsnoizen

Mehr