7 Gültigkeit und logische Form von Argumenten

Größe: px
Ab Seite anzeigen:

Download "7 Gültigkeit und logische Form von Argumenten"

Transkript

1 7 Gültigkeit und logische Form von Argumenten Zwischenresümee 1. Logik ist ein grundlegender Teil der Lehre vom richtigen Argumentieren. 2. Speziell geht es der Logik um einen spezifischen Aspekt der Güte von Argumenten: ihre Gültigkeit. 3. Bei der Logik im engeren Sinne geht es sogar nur um eine der beiden Arten von Gültigkeit nämlich um die deduktive Gültigkeit. Gültigkeit und logische Form 1 Der Gegenstand der Logik ist die deduktive Gültigkeit von Argumenten bzw. die logische Folgerungsbeziehung, die zwischen den Prämissen und der Konklusion eines Arguments bestehen muss, wenn dieses Argument deduktiv gültig sein soll. Gültigkeit und logische Form 2

2 Bisher hatten wir gesagt Ein Argument ist genau dann (deduktiv) gültig, wenn in ihm die Konklusion logisch aus den Prämissen folgt, d.h. wenn die Konklusion wahr sein muss, falls alle Prämissen wahr sind. Frage Was ist hier mit dem Ausdruck muss gemeint? Gültigkeit und logische Form 3 Zwei Beispielargumente (1) Arminia Bielefeld spielt in der zweiten oder in der ersten Bundesliga. Arminia Bielefeld spielt nicht in der ersten Bundesliga. Also: Arminia Bielefeld spielt in der zweiten Bundesliga. (2) Flöten sind keine Blechblasinstrumente. Klaviere sind keine Blechblasinstrumente. Also: Klaviere sind keine Flöten. Gültigkeit und logische Form 4

3 Zwei weitere Beispielargumente (3) Dieter Timmermann ist Rektor der Universität Bielefeld oder Prorektor für den Bereich Lehre. Dieter Timmermann ist nicht Prorektor für den Bereich Lehre. Also: Dieter Timmermann ist Rektor der Universität Bielefeld. (4) Flöten sind keine Blechblasinstrumente. Piccoloflöten sind keine Blechblasinstrumente. Also: Piccoloflöten sind keine Flöten. Gültigkeit und logische Form 5 Diagnose Die Argumente (1) und (3) und die Argumente (2) und (4) haben jeweils dieselbe logische Form. Die logische Form von (1) und (3) kann man durch folgende Argumentform beschreiben: (1 ) p oder q nicht q Also: p Gültigkeit und logische Form 6

4 Und die logische Form von (2) und (4) kann man durch folgende Argumentform beschreiben: (2 ) Fs sind keine Gs Hs sind keine Gs Also: Hs sind keine Fs Gültigkeit und logische Form 7 Beobachtung Auf der einen Seite gilt: Alle Argumente der Form (1 ) mit wahren Prämissen haben auch eine wahre Konklusion. Und auf der anderen Seite gilt: Es gibt Argumente der Form (2 ) mit wahren Prämissen und falscher Konklusion. [(4) ist so ein Argument.] Gültigkeit und logische Form 8

5 Fazit Die Argumente (1) und (3) sind deshalb gültig, weil alle Argumente der gleichen logischen Form (alle strukturgleichen Argumente) mit wahren Prämissen auch eine wahre Konklusion haben. Und Das Argument (2) ist deshalb nicht gültig, weil es ein Argument der gleichen logischen Form (ein strukturgleiches Argument) mit wahren Prämissen und falscher Konklusion gibt. Gültigkeit und logische Form 9 Generell Ein Argument ist genau dann gültig, wenn es kein strukturgleiches Argument mit wahren Prämissen und falscher Konklusion gibt. Und umgekehrt: Ein Argument ist genau dann nicht gültig, wenn es mindestens ein strukturgleiches Argument mit wahren Prämissen und falscher Konklusion gibt. Gültigkeit und logische Form 10

6 Definition 7.1 In einem Argument folgt die Konklusion genau dann logisch aus den Prämissen, wenn alle strukturgleichen Argumente mit wahren Prämissen auch wahre Konklusionen haben. Gültigkeit und logische Form 11 Bemerkung Die Tatsache, dass es bei der Gültigkeit eines Arguments nur auf dessen logische Form ankommt, ist der Grund dafür, dass die deduktive Logik häufig auch als formale Logik bezeichnet wird. Hinter diesem Ausdruck verbirgt sich also gar nichts Geheimnisvolles, und er bedeutet auch nicht, dass man in der Logik oder besser: mit Hilfe der Logik niemals zu inhaltlichen Aussagen kommen kann. In dieser Ausdrucksweise wird vielmehr nur deutlich, dass die Gültigkeit von Argumenten (also das, worum es der Logik geht) allein von ihrer logischen Form abhängt. Gültigkeit und logische Form 12

7 8 Logische Form und die Bedeutung der in einem Argument enthaltenen logischen Ausdrücke Frage Wenn A eine Argumentform ist, für die gilt: Alle Einsetzungsinstanzen von A mit wahren Prämissen haben auch eine wahre Konklusion, ist das reiner Zufall? Oder gibt es dafür einen systematischen Grund? Logische Form und logische Ausdrücke 1 Vergleichen wir die folgenden Sätze (1) Gerhard Schröder ist Bundeskanzler. (2) Färsen sind Kühe. (3) 3 ist durch 2 teilbar oder 3 ist nicht durch 2 teilbar. Logische Form und logische Ausdrücke 2

8 Die Wahrheit des Satzes (1) hängt unter anderem davon ab, wie die Realität beschaffen ist. Um festzustellen, ob dieser Satz wahr ist, müssen wir nicht nur wissen, was die Ausdrücke Gerhard Schröder und Bundeskanzler bedeuten, sondern auch, ob es wirklich so ist, wie der Satz besagt, d.h. ob die durch den Ausdruck Gerhard Schröder bezeichnete Person tatsächlich die durch den Ausdruck Bundeskanzler bezeichnete Eigenschaft hat. Sätze dieser Art werden traditionell synthetische Aussagesätze genannt. Logische Form und logische Ausdrücke 3 Um festzustellen, dass der Satz (2) wahr ist, müssen wir dagegen nicht wissen, wie die Realität beschaffen ist. Die Wahrheit dieses Satzes ergibt sich allein schon aus der Bedeutung der Ausdrücke Färse und Kuh. (Denn im Lexikon steht: Färse Kuh, die noch nicht gekalbt hat.) Sätze wie (2) werden daher zur Abgrenzung gegen Sätze wie (1) analytische Aussagesätze genannt. Logische Form und logische Ausdrücke 4

9 Die Wahrheit des Satzes (3) hängt nicht einmal mehr von der Bedeutung der Ausdrücke 3 und durch 2 teilbar ab. Für die Wahrheit dieses Satzes kommt es nur auf die Bedeutung der Ausdrücke oder und nicht an. Diese nennt man in Abgrenzung zu den deskriptiven Ausdrücken 3 und durch 2 teilbar logische Ausdrücke. Sätze wie (3) nennt man daher logisch determinierte Aussagesätze. Logische Form und logische Ausdrücke 5 Beobachtung Aus der Tatsache, dass der Satz (3) allein aufgrund der Bedeutung der in ihm vorkommenden logischen Ausdrücke wahr ist, folgt, dass alle Sätze wahr sind, die dieselbe logische Form wie dieser Satz haben, d.h. alle Sätze der Form (3 ) p oder nicht p. Logische Form und logische Ausdrücke 6

10 Analog gilt für Argumente Wenn sich allein aus der Bedeutung der in einem Argument vorkommenden logischen Zeichen ergibt, dass die Konklusion wahr ist, wenn alle Prämissen wahr sind, dann haben alle strukturgleichen Argumenten mit wahren Prämissen ebenfalls eine wahre Konklusion. Und umgekehrt Wenn alle Argumente derselben logischen Form mit wahren Prämissen auch eine wahre Konklusion haben, dann kann das nur daran liegen, dass sich allein aus der Bedeutung der in diesen Argumenten vorkommenden logischen Zeichen ergibt, dass ihre Konklusion wahr ist, wenn ihre Prämissen wahr sind. Logische Form und logische Ausdrücke 7 Definition 8.1 In einem Argument folgt die Konklusion genau dann logisch aus den Prämissen, wenn sich allein aus der Bedeutung der in den Prämissen und der Konklusion vorkommenden logischen Ausdrücke ergibt, dass alle strukturgleichen Argumente mit wahren Prämissen auch eine wahre Konklusion haben. Definition 8.2 Ein Argument ist genau dann (deduktiv) gültig, wenn sich allein aus der Bedeutung der in den Prämissen und der Konklusion vorkommenden logischen Ausdrücke ergibt, dass alle strukturgleichen Argumente mit wahren Prämissen auch eine wahre Konklusion haben. Logische Form und logische Ausdrücke 8

11 9 Die Problematik der logischen Form natürlichsprachlicher Aussagesätze Beispiel (1) Alle Tiere sind Lebewesen. Snoopy ist ein Tier. Also: Snoopy ist ein Lebewesen. Wenn wir feststellen wollen ob dieses Argument gültig ist, müssen wir dreierlei tun: Die Problematik natürlich-sprachlicher Aussagesätze 1 1. Wir müssen die logische Form des Arguments klären, d.h. feststellen, welche logischen Ausdrücke in ihm vorkommen und auf welche Weise diese Ausdrücke mit den vorkommenden deskriptiven Ausdrücken verbunden sind. 2. Wir müssen klären, welche Bedeutung die vorkommenden logischen Ausdrücke haben. 3. Wir müssen klären, ob sich aus der Bedeutung dieser Ausdrücke ergibt, dass alle strukturgleichen Argumente mit wahren Prämissen auch eine wahre Konklusion haben. Die Problematik natürlich-sprachlicher Aussagesätze 2

12 Dies ist es bei umgangssprachlich formulierten Argumenten aber oftmals nicht möglich, und zwar hauptsächlich aus zwei Gründen: 1. Es ist im allgemeinen schwierig und manchmal sogar unmöglich, die logische Form umgangssprachlich formulierter Argumente eindeutig zu bestimmen. 2. Die logischen Ausdrücke in der Umgangssprache sind oft mehrdeutig; auf jeden Fall ist ihre Bedeutung im allgemeinen nur schwer bestimmbar. Die Problematik natürlich-sprachlicher Aussagesätze 3 Erstes Beispiel Betrachten wir die folgenden beiden Sätze: (2) Paul ist sportlich und musikalisch. und (3) Paul ist sportlich und Paul ist musikalisch. Prima facie haben die beiden Sätze (2) und (3) offenbar verschiedene logische Formen (2 ) a ist F und G und (3 ) a ist F und a ist G. Die Problematik natürlich-sprachlicher Aussagesätze 4

13 Es wird jedoch oft die Auffassung vertreten, dass die Sätzen (2) und (3) dieselbe logische Form haben. Wie lässt sich diese Auffassung begründen? Wenn man vergleicht, wann die Sätze (2) und (3) wahr sind, dann wird schnell klar, dass sie dieselben Wahrheitsbedingungen besitzen: Beide Sätze sind genau dann wahr, wenn es wahr ist, dass Paul sportlich ist und dass Paul musikalisch ist. Also scheint es plausibel anzunehmen, dass beide Sätze dieselbe logische Form haben und zwar die Form (3 ) a ist F und a ist G. Die Problematik natürlich-sprachlicher Aussagesätze 5 Allerdings Wenn es nur auf die Identität der Wahrheitsbedingungen ankäme, müssten auch die beiden Sätze (3) Paul ist sportlich und Paul ist musikalisch und (4) Es ist nicht der Fall, dass Paul nicht sportlich ist oder dass Paul nicht musikalisch ist dieselbe logische Form haben. Denn auch diese Sätze haben dieselben Wahrheitsbedingungen. Bei diesen Sätzen gibt es jedoch nach übereinstimmender Meinung aller Logiker keinen Zweifel daran, dass ihre logische Form verschieden ist. Die Problematik natürlich-sprachlicher Aussagesätze 6

14 Eine Alternative Eine andere Methode, die häufig angewendet wird, um zu entscheiden, ob zwei Sätze A und B dieselbe logische Form haben, besteht darin, zu prüfen, ob aus ihnen dieselben Konklusionen folgen. Probleme 1. Diese Methode führt zu denselben Ergebnissen wie die Methode, bei der geprüft wird, ob A und B dieselben Wahrheitsbedingungen haben. Und 2. Wir benötigen Auskünfte über die logische Form von Sätzen ja gerade deshalb, weil wir wissen wollen, welche anderen Sätze aus ihnen folgen. Wir können also nicht voraussetzen, dass uns das schon bekannt ist. Die Problematik natürlich-sprachlicher Aussagesätze 7 Zweites Beispiel Betrachten wir die folgenden beiden Sätze (5) Anja und Petra sind Studentinnen und (6) Klaus und Tanja sind ein Paar. Auch diese Sätze scheinen dieselbe logische Form zu haben. Die Problematik natürlich-sprachlicher Aussagesätze 8

15 Aber Aus dem Satz (5) kann man auf den Satz (7) Anja ist eine Studentin schließen. Auf der anderen Seite ist der entsprechende Schluss von (6) auf den Satz (8) Klaus ist ein Paar aber nicht möglich. Denn dieser letzte Satz ist nicht nur falsch, er ist sogar unsinnig. Die Problematik natürlich-sprachlicher Aussagesätze 9 Wenn wir noch einmal genauer hinschauen, dann wird deutlich, dass die Sätze (5) und (6) trotz ihrer grammatisch gleichen Struktur strukturell verschiedene Wahrheitsbedingungen haben. Der Satz (5) ist genau dann wahr, wenn Anja und Petra beide eine bestimmte Eigenschaft haben nämlich die Eigenschaft, eine Studentin zu sein. Der Satz (6) dagegen ist genau dann wahr, wenn zwischen Klaus und Tanja eine bestimmte Beziehung besteht nämlich die Beziehung, ein Paar zu sein. Die Problematik natürlich-sprachlicher Aussagesätze 10

16 Der Satz (5) ähnelt also mehr den Sätzen Hans und Paul sind sportlich und Hans und Paul sind musikalisch. Der Satz (6) dagegen mehr den Sätzen Fritz und Inge sind verwandt oder Fritz und Inge sind Geschäftspartner. Die Problematik natürlich-sprachlicher Aussagesätze 11 In den beiden Sätzen (5) und (6) kommt nicht derselbe logische Ausdruck und vor, sondern zwei verschiedene Arten des und sozusagen ein und 1 und ein und 2. Wenn das so ist, dann ist aber auch die logische Form der beiden Sätze verschieden. Denn dann hat der Satz (5) die Form (5 ) a und 1 b sind F Und der Satz (6) die Form (6 ) a und 2 b sind G. Die Problematik natürlich-sprachlicher Aussagesätze 12

17 Drittes Beispiel (11) Fritz und Inge sind verliebt. Problem In diesem Satz kann das und sowohl im Sinne von und 1 als auch im Sinne von und 2 gemeint sein. Der Satz kann bedeuten, dass Fritz und Inge beide verliebt sind aber nicht unbedingt ineinander. Er kann aber auch bedeuten, dass Fritz und Inge ineinander verliebt sind. Es ist also nicht klar, welche logische Form dieser Satz hat. Und das ist so, weil nicht klar ist, was das in ihm enthaltene und bedeuten soll. Die Problematik natürlich-sprachlicher Aussagesätze 13 Es gibt viele Fälle, in denen es schwierig, vielleicht sogar unmöglich ist, die logische Form umgangssprachlicher Sätze bzw. die Bedeutung der in diesen Sätzen vorkommenden logischen Ausdrücke genau zu bestimmen. Die Problematik natürlich-sprachlicher Aussagesätze 14

18 Dafür gibt es zwei Hauptgründe Erster Grund Es gibt Sätze, die auf den ersten Blick trotz unterschiedlicher grammatischer Form dieselbe logische Form zu haben scheinen. Z.B.: (2) Paul ist sportlich und musikalisch. (3) Paul ist sportlich und Paul ist musikalisch. Die Problematik natürlich-sprachlicher Aussagesätze 15 In diesem Fall stellen sich folgende Fragen: 1. Ist es überhaupt möglich, dass es Sätze gibt, die trotz verschiedener grammatischer Form die gleiche logische Form haben? 2. Falls es möglich ist, wie kann man dann die logische Form dieser Sätze bestimmen? Die Problematik natürlich-sprachlicher Aussagesätze 16

19 Zweiter Grund Es gibt Sätze, die zwar die gleiche grammatische, aber nicht die gleiche logische Form haben. Z.B.: (5) Anja und Petra sind Studentinnen. (6) Klaus und Tanja sind ein Paar. In diesem Fall stellt sich die Frage: Wie kann man feststellen, ob ein in einem Aussagesatz vorkommender logischer Ausdruck dieselbe oder eine andere Bedeutung hat als derselbe Ausdruck in einem anderen Aussagesatz? Die Problematik natürlich-sprachlicher Aussagesätze 17 Da sich diese Fragen für die deutsche Umgangssprache nur mit den größten Schwierigkeiten (wenn überhaupt) beantworten lassen, sind wir gezwungen, folgenden Ausweg zu wählen. Wir werden an dieser Stelle die deutsche Umgangssprache verlassen und unsere Zuflucht bei zwei künstlichen Sprachen den Sprachen AL und PL suchen, die so konstruiert sind, dass Probleme der zuvor geschilderten Art gar nicht erst auftreten können. Die Problematik natürlich-sprachlicher Aussagesätze 18

20 D.h., diese Sprachen erfüllen die folgenden beiden Bedingungen: 1. In allen Sätzen der Sprachen AL und PL entspricht die logische Form genau der grammatischen Form. 2. Die in diesen Sprachen vorkommenden logischen Ausdrücke haben jeweils nur eine klar definierte Bedeutung. Die Problematik natürlich-sprachlicher Aussagesätze 19

Erinnerung 1. Erinnerung 2

Erinnerung 1. Erinnerung 2 Erinnerung 1 Ein Argument ist eine Folge von Aussagesätzen, mit der der Anspruch verbunden ist, dass ein Teil dieser Sätze (die Prämissen) einen Satz der Folge (die Konklusion) in dem Sinne stützen, dass

Mehr

Einführung in die Logik

Einführung in die Logik Einführung in die Logik Prof. Dr. Ansgar Beckermann Wintersemester 2001/2 Allgemeines vorab Wie es abläuft Vorlesung (Grundlage: Ansgar Beckermann. Einführung in die Logik. (Sammlung Göschen Bd. 2243)

Mehr

13 Übersetzung umgangssprachlicher Sätze in die Sprache AL

13 Übersetzung umgangssprachlicher Sätze in die Sprache AL 13 Übersetzung umgangssprachlicher Sätze in die Sprache AL Lässt sich die Kenntnis der logischen Eigenschaften der Sätze von AL auch zur Beurteilung umgangssprachlicher Sätze und Argumente nutzen? Grundsätzliches

Mehr

14 Beurteilung umgangssprachlicher Sätze und Argumente mit aussagenlogischen Mitteln

14 Beurteilung umgangssprachlicher Sätze und Argumente mit aussagenlogischen Mitteln 14 Beurteilung umgangssprachlicher Sätze und Argumente mit aussagenlogischen Mitteln Erinnerung Man kann die logischen Eigenschaften von Sätzen der Sprache AL in dem Maße zur Beurteilung der logischen

Mehr

19 Übersetzung umgangssprachlicher Sätze in die Sprache PL

19 Übersetzung umgangssprachlicher Sätze in die Sprache PL 19 Übersetzung umgangssprachlicher Sätze in die Sprache PL Erinnerung Man kann die logischen Eigenschaften der Sätze einer Sprache L, deren Logik wir gut verstehen, zur Beurteilung der logischen Eigenschaften

Mehr

sich die Schuhe zubinden können den Weg zum Bahnhof kennen die Quadratwurzel aus 169 kennen

sich die Schuhe zubinden können den Weg zum Bahnhof kennen die Quadratwurzel aus 169 kennen Programm Christian Nimtz www.nimtz.net // lehre@nimtz.net Grundfragen der Erkenntnistheorie Kapitel 2: Die klassische Analyse des Begriffs des Wissens 1 Varianten des Wissens 2 Was ist das Ziel der Analyse

Mehr

Wissenschaftliches Arbeiten

Wissenschaftliches Arbeiten Teil 7: Argumentieren und Begründen 1 Grundregel: Spezifisch argumentieren Wissenschaftliches Arbeiten Nie mehr zeigen, als nötig oder gefragt ist. Sonst wird das Argument angreifbar und umständlich. Schwammige

Mehr

Rhetorik und Argumentationstheorie.

Rhetorik und Argumentationstheorie. Rhetorik und Argumentationstheorie 2 [frederik.gierlinger@univie.ac.at] Teil 2 Was ist ein Beweis? 2 Wichtige Grundlagen Tautologie nennt man eine zusammengesetzte Aussage, die wahr ist, unabhängig vom

Mehr

Jeweils am Montag um 18:30 treffen sich Studenten in Seminarraum 3 zum gemeinsamen Lernen.

Jeweils am Montag um 18:30 treffen sich Studenten in Seminarraum 3 zum gemeinsamen Lernen. Jeweils am Montag um 18:30 treffen sich Studenten in Seminarraum 3 zum gemeinsamen Lernen. Betrachtungen zu Sprache, Logik und Beweisen Sprache Wir gehen von unserem Alphabet einigen Zusatzsymbolen aus.

Mehr

Logik und Missbrauch der Logik in der Alltagssprache

Logik und Missbrauch der Logik in der Alltagssprache Logik und Missbrauch der Logik in der Alltagssprache Wie gewinnt man in Diskussionen? Carmen Kölbl SS 2004 Seminar: " Logik auf Abwegen: Irrglaube, Lüge, Täuschung" Übersicht logische Grundlagen Inferenzregeln

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mathematische Sprache und naive Mengenlehre Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johann-von-Neumann-Haus Fachschaft Menge aller Studenten eines Institutes

Mehr

Formale Methoden II. Gerhard Jäger. SS 2008 Universität Bielefeld. Teil 8, 11. Juni 2008. Formale Methoden II p.1/30

Formale Methoden II. Gerhard Jäger. SS 2008 Universität Bielefeld. Teil 8, 11. Juni 2008. Formale Methoden II p.1/30 Formale Methoden II SS 2008 Universität Bielefeld Teil 8, 11. Juni 2008 Gerhard Jäger Formale Methoden II p.1/30 Beispiele Anmerkung: wenn der Wahrheitswert einer Formel in einem Modell nicht von der Belegungsfunktion

Mehr

7 Bedeutung und Logik

7 Bedeutung und Logik 7 Bedeutung und Logik 7.1 Logische Eigenschaften von Sätzen 7.2 Logische Beziehungen zwischen Sätzen 7.3 Logische Beziehungen und Bedeutungsbeziehungen 7.4 Formale Semantik Johannes Dölling: Semantik und

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 1 Logik,, Doris Bohnet Universität Hamburg - Department Mathematik Mo 6.10.2008 Zeitplan Tagesablauf: 9:15-11:45 Vorlesung Audimax I 13:00-14:30 Übung Übungsräume

Mehr

Von der Metaethik zur Moralphilosophie: R. M. Hare Der praktische Schluss/Prinzipien Überblick zum 26.10.2009

Von der Metaethik zur Moralphilosophie: R. M. Hare Der praktische Schluss/Prinzipien Überblick zum 26.10.2009 TU Dortmund, Wintersemester 2009/10 Institut für Philosophie und Politikwissenschaft C. Beisbart Von der Metaethik zur Moralphilosophie: R. M. Hare Der praktische Schluss/Prinzipien Überblick zum 26.10.2009

Mehr

ÜBUNG ZUM GRUNDKURS LOGIK SS 2016 GÜNTHER EDER

ÜBUNG ZUM GRUNDKURS LOGIK SS 2016 GÜNTHER EDER ÜBUNG ZUM GRUNDKURS LOGIK SS 2016 GÜNTHER EDER FORMALE SPRACHEN Bevor wir anfangen, uns mit formaler Logik zu beschäftigen, müssen wir uns mit formalen Sprachen beschäftigen Wie jede natürliche Sprache,

Mehr

Kapitel 1.0. Aussagenlogik: Einführung. Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1

Kapitel 1.0. Aussagenlogik: Einführung. Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1 Kapitel 1.0 Aussagenlogik: Einführung Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1 Ziele der Aussagenlogik In der Aussagenlogik analysiert man die Wahrheitswerte zusammengesetzter

Mehr

Welcher der folgenden Sätze ist eine Aussage, welcher eine Aussageform, welcher ist keines von beiden:

Welcher der folgenden Sätze ist eine Aussage, welcher eine Aussageform, welcher ist keines von beiden: Übungsaufgaben 1. Aufgabe 1 Welcher der folgenden Sätze ist eine Aussage, welcher eine Aussageform, welcher ist keines von beiden: a. x ist eine gerade Zahl. Aussageform b. 10 ist Element der Menge A.

Mehr

Aussagenlogik-Boolesche Algebra

Aussagenlogik-Boolesche Algebra Aussagenlogik-Boolesche Algebra 1 Aussagen In der Mathematik und in der Logik werden Sätze der Umgangssprache nur unter bestimmten Bedingungen Aussagen genannt. Sätze nennt man Aussagen, wenn sie etwas

Mehr

Sudoku. Warum 6? Warum 6?

Sudoku. Warum 6? Warum 6? . / Sudoku Füllen Sie die leeren Felder so aus, dass in jeder Zeile, in jeder Spalte und in jedem x Kästchen alle Zahlen von bis stehen.. / Warum?. / Warum?. / Geschichte der Logik Syllogismen (I) Beginn

Mehr

Aristoteles Satz vom Widerspruch. Prof. Dr. Gregor Nickel: Philosophie der Mathematik. (Vorlesung im Sommersemester 2016)

Aristoteles Satz vom Widerspruch. Prof. Dr. Gregor Nickel: Philosophie der Mathematik. (Vorlesung im Sommersemester 2016) Aristoteles Satz vom Widerspruch Prof. Dr. Gregor Nickel: Philosophie der Mathematik (Vorlesung im Sommersemester 2016) Stand: 15.06.2016 Karsten Berg Ja, er gilt absolut! In der Logik und damit auch der

Mehr

3 Vom Zählen zur Induktion

3 Vom Zählen zur Induktion 7 3 Vom Zählen zur Induktion 3.1 Natürliche Zahlen und Induktions-Prinzip Seit unserer Kindheit kennen wir die Zahlen 1,, 3, 4, usw. Diese Zahlen gebrauchen wir zum Zählen, und sie sind uns so vertraut,

Mehr

Aussagenlogik. Aussagen und Aussagenverknüpfungen

Aussagenlogik. Aussagen und Aussagenverknüpfungen Aussagenlogik Aussagen und Aussagenverknüpfungen Aussagen sind Sätze, von denen sich sinnvollerweise sagen läßt, sie seien wahr oder falsch. Jede Aussage besitzt also einen von zwei möglichen Wahrheitswerten,

Mehr

28. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 6 Saison 1988/1989 Aufgaben und Lösungen

28. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 6 Saison 1988/1989 Aufgaben und Lösungen 28. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 6 Saison 1988/1989 Aufgaben und Lösungen 1 OJM 28. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 6 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

Über Wittgensteins Logikbegriff in der Logischphilosophischen

Über Wittgensteins Logikbegriff in der Logischphilosophischen HU Berlin SS 06 Seminar Wittgensteins Tractatus Logico-Philosophicus von Uwe Scheffler und Ulrich Schlösser Essay von Johannes Stein Über Wittgensteins Logikbegriff in der Logischphilosophischen Abhandlung

Mehr

Phänomene der Semantik: Konditionalsätze (Handout 8) Janneke Huitink - Cécile Meier Sommersemester 2009

Phänomene der Semantik: Konditionalsätze (Handout 8) Janneke Huitink - Cécile Meier Sommersemester 2009 Phänomene der Semantik: Konditionalsätze (Handout 8) Janneke Huitink - Cécile Meier Sommersemester 2009 1. Arten von Konditionalsätzen Konditionalsätze drücken aus, dass ein Ereignis nur unter einer bestimmten

Mehr

Zum Verhältnis der Wissenschaften Mathematik und Didaktik des Mathematikunterrichts. Hans Dieter Sill, Universität Rostock

Zum Verhältnis der Wissenschaften Mathematik und Didaktik des Mathematikunterrichts. Hans Dieter Sill, Universität Rostock Zum Verhältnis der Wissenschaften Mathematik und Didaktik des Mathematikunterrichts Hans Dieter Sill, Universität Rostock Gliederung 1. Phänomene 2. Ursachen 3. Konsequenzen 2 Phänomene Studenten, Lehrer

Mehr

Einführung in die Mathematik (Vorkurs 1 )

Einführung in die Mathematik (Vorkurs 1 ) Einführung in die Mathematik (Vorkurs 1 ) Wintersemester 2008/09 Dr. J. Jordan Institut für Mathematik Universität Würzburg Germany 1 Modulbezeichnung 10-M-VKM 1 Inhaltsverzeichnis 1 Aussagen und Beweise

Mehr

SS April Übungen zur Vorlesung Logik Blatt 1. Prof. Dr. Klaus Madlener Abgabe bis 27. April :00h

SS April Übungen zur Vorlesung Logik Blatt 1. Prof. Dr. Klaus Madlener Abgabe bis 27. April :00h SS 2011 20. April 2011 Übungen zur Vorlesung Logik Blatt 1 Prof. Dr. Klaus Madlener Abgabe bis 27. April 2011 10:00h 1. Aufgabe: [strukturelle Induktion, Übung] Zeigen Sie mit struktureller Induktion über

Mehr

2 Mengenlehre. Definition: Unter einer Menge M versteht man die Zusammenfassung von unterscheidbaren Objekten (den Elementen) zu einem Ganzen.

2 Mengenlehre. Definition: Unter einer Menge M versteht man die Zusammenfassung von unterscheidbaren Objekten (den Elementen) zu einem Ganzen. Mengenlehre 2 Mengenlehre Definition: Unter einer Menge M versteht man die Zusammenfassung von unterscheidbaren Objekten (den Elementen) zu einem Ganzen. Üblicherweise werden Mengen mit Großbuchstaben

Mehr

Eine kurze Tabelle soll uns erste Einsichten erleichtern. Der Strich heißt, dass es eine solche Darstellung nicht gibt.

Eine kurze Tabelle soll uns erste Einsichten erleichtern. Der Strich heißt, dass es eine solche Darstellung nicht gibt. Summen von Quadraten 1 Physikalische Motivation Eine schwingende Saite hat eine Grundfrequenz F, die von Länge, Dicke, Beschaffenheit der Saite und so fort abhängt Neben dieser Grundfrequenz gibt es auch

Mehr

Argumentationstheorie 5. Sitzung

Argumentationstheorie 5. Sitzung Zwei Arten von Schlüssen Argumentationstheorie 5. Sitzung All reasonings may be divided into two kinds, namely demonstrative reasoning, [ ] and moral (or probable) reasoning. David Hume An Enquiry Concerning

Mehr

1. Einleitung wichtige Begriffe

1. Einleitung wichtige Begriffe 1. Einleitung wichtige Begriffe Da sich meine besondere Lernleistung mit dem graziösen Färben (bzw. Nummerieren) von Graphen (speziell von Bäumen), einem Teilgebiet der Graphentheorie, beschäftigt, und

Mehr

Diese 36 Fragen reichen, um sich zu verlieben

Diese 36 Fragen reichen, um sich zu verlieben Diese 36 Fragen reichen, um sich zu verlieben Wie verliebt er oder sie sich bloß in mich? Während Singles diese Frage wieder und wieder bei gemeinsamen Rotweinabenden zu ergründen versuchen, haben Wissenschaftler

Mehr

Erläuterung zum Satz vom ausgeschlossenen Widerspruch

Erläuterung zum Satz vom ausgeschlossenen Widerspruch TU Dortmund, Wintersemester 2010/11 Institut für Philosophie und Politikwissenschaft C. Beisbart Aristoteles, Metaphysik Der Satz vom ausgeschlossenen Widerspruch (Buch 4/Γ; Woche 4: 8. 9.11.2010) I. Der

Mehr

Glücklich. Heute, morgen und für immer

Glücklich. Heute, morgen und für immer Kurt Tepperwein Glücklich Heute, morgen und für immer Teil 1 Wissen macht glücklich die Theorie Sind Sie glücklich? Ihr persönlicher momentaner Glücks-Ist-Zustand Zum Glück gehört, dass man irgendwann

Mehr

3.1 Die Grenzen von AL

3.1 Die Grenzen von AL 3 Prädikatenlogik der. Stufe (PL) Teil I 3 Prädikatenlogik der. Stufe (PL) Teil I 3. Die Grenzen von AL [ Partee 95-97 ] Schluss AL- Schema Prädikatenlogische Struktur Alle Logiker sind Pedanten. φ x [

Mehr

Fremdwörter in der Jugendsprache

Fremdwörter in der Jugendsprache Miwako Oda Fremdwörter in der Jugendsprache 1.Thema In letzter Zeit ändern sich Moden sehr schnell. Unter Jugendlichen kann man das deutlich erkennen: Musik, Kleidung, Frisur, Fernsehschauspieler und so

Mehr

9. Übung Formale Grundlagen der Informatik

9. Übung Formale Grundlagen der Informatik Institut für Informatik Sommersemester 2001 Universität Zürich 9. Übung Formale Grundlagen der Informatik Norbert E. Fuchs (fuchs@ifi.unizh.ch) Reinhard Riedl (riedl@ifi.unizh.ch) Nadine Korolnik (korolnik@ifi.unizh.ch)

Mehr

Interpretationskurs: Das menschliche Wissen Zweifel und Sicherheit (Descartes; Übersicht zur Sitzung am 24.10.2011)

Interpretationskurs: Das menschliche Wissen Zweifel und Sicherheit (Descartes; Übersicht zur Sitzung am 24.10.2011) TU Dortmund, Wintersemester 2011/12 Institut für Philosophie und Politikwissenschaft C. Beisbart Interpretationskurs: Das menschliche Wissen Zweifel und Sicherheit (Descartes; Übersicht zur Sitzung am

Mehr

Formale Grundlagen 2008W. Vorlesung im 2008S Institut für Algebra Johannes Kepler Universität Linz

Formale Grundlagen 2008W. Vorlesung im 2008S  Institut für Algebra Johannes Kepler Universität Linz Formale Grundlagen Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Inhalt Definition Sei A eine Menge und ɛ A A A eine zweistellige

Mehr

Sophie Scholl Die letzten Tage

Sophie Scholl Die letzten Tage JJ - 06/07 Sophie Scholl Die letzten Tage Zusatzaufgaben zum Thema MUT / (ZIVIL)COURAGE Man muss etwas machen, um selbst keine Schuld zu haben. Dazu brauchen wir einen harten Geist und ein weiches Herz.

Mehr

Ansgar Beckermann Einführung in die Logik, 3. Aufl., Berlin/New York: Walter de Gruyter Lösungen der Übungsaufgaben. Lösungen zu Kapitel 2

Ansgar Beckermann Einführung in die Logik, 3. Aufl., Berlin/New York: Walter de Gruyter Lösungen der Übungsaufgaben. Lösungen zu Kapitel 2 1 Ansgar Beckermann Einführung in die Logik, 3. Aufl., Berlin/New York: Walter de Gruyter 2011 Lösungen der Übungsaufgaben Stand: 09.01.2011 Lösungen zu Kapitel 2 1. Die Tete (b), (d) und (e) enthalten

Mehr

Wie beweise ich etwas? 9. Juli 2012

Wie beweise ich etwas? 9. Juli 2012 Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Wie beweise ich etwas? 9. Juli 2012 1 Was ist ein Beweis? 1.1 Ein Beispiel Nimm einen Stift und ein Blatt Papier und zeichne fünf

Mehr

Wahrheitswertesemantik Einführung Aussagenlogik

Wahrheitswertesemantik Einführung Aussagenlogik Wahrheitsbedingungen Wahrheitswertesemantik Einführung Aussagenlogik Sie haben sich in der ersten Sitzung mit verschiedenen Aspekten von Bedeutung auseinandergesetzt. Ein Aspekt, der dabei eine Rolle spielte,

Mehr

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale Kapitel I Reelle Zahlen 1 Axiomatische Charakterisierung der reellen Zahlen R 2 Angeordnete Körper 3 Die natürlichen, die ganzen und die rationalen Zahlen 4 Das Vollständigkeitsaxiom und irrationale Zahlen

Mehr

Entwicklung der modernen Naturwissenschaft (speziell der Physik/Mechanik) in Abgrenzung von der mittelalterlich-scholastischen Naturphilosophie

Entwicklung der modernen Naturwissenschaft (speziell der Physik/Mechanik) in Abgrenzung von der mittelalterlich-scholastischen Naturphilosophie René Descartes (1596-1650) Meditationen über die Grundlagen der Philosophie (1641) Geistes- bzw. wissenschaftsgeschichtlicher Hintergrund Entwicklung der modernen Naturwissenschaft (speziell der Physik/Mechanik)

Mehr

Klinische Studien für Kinder erklärt Eine Broschüre für Kinder ab 7 Jahre

Klinische Studien für Kinder erklärt Eine Broschüre für Kinder ab 7 Jahre Forschen, um neue Medikamente zu finden Klinische Studien für Kinder erklärt Eine Broschüre für Kinder ab 7 Jahre Worum geht es hier? Liebe Kinder, liebe Eltern, in dieser Broschüre steht, wie man neue

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 3: Alphabete (und Relationen, Funktionen, Aussagenlogik) Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Oktober 2008 1/18 Überblick Alphabete ASCII Unicode

Mehr

Grammatik des Standarddeutschen III. Michael Schecker

Grammatik des Standarddeutschen III. Michael Schecker Grammatik des Standarddeutschen III Michael Schecker Einführung und Grundlagen Nominalgruppen Nomina Artikel Attribute Pronomina Kasus (Subjekte und Objekte, Diathese) Verbalgruppen Valenz und Argumente

Mehr

Stetigkeit. Im Bildungsplan bis 2004 verpflichtend, jetzt nicht mehr. - Soll Stetigkeit in der Schule behandelt werden? Warum?

Stetigkeit. Im Bildungsplan bis 2004 verpflichtend, jetzt nicht mehr. - Soll Stetigkeit in der Schule behandelt werden? Warum? 1 Nr.4-12.05.2016 Stetigkeit Im Bildungsplan bis 2004 verpflichtend, jetzt nicht mehr. - Soll Stetigkeit in der Schule behandelt werden? Warum? 1. Das ist ein ganz einfach zu verstehender Begriff, der

Mehr

Rhetorik und Argumentationstheorie. [frederik.gierlinger@univie.ac.at]

Rhetorik und Argumentationstheorie. [frederik.gierlinger@univie.ac.at] Rhetorik und Argumentationstheorie 1 [frederik.gierlinger@univie.ac.at] Ablauf der Veranstaltung Termine 1-6 Erarbeitung diverser Grundbegriffe Termine 7-12 Besprechung von philosophischen Aufsätzen Termin

Mehr

Handout zu Beweistechniken

Handout zu Beweistechniken Handout zu Beweistechniken erstellt vom Lernzentrum Informatik auf Basis von [Kre13],[Bün] Inhaltsverzeichnis 1 Was ist ein Beweis? 2 2 Was ist Vorraussetzung, was ist Behauptung? 2 3 Beweisarten 3 3.1

Mehr

Leadership Essentials

Leadership Essentials Leadership 4.0 - Essentials Kommunikationskompetenz für Führungskräfte Teil 1: Wie Sie wirkungsvoll für Klarheit sorgen Inhalte 1. Warum klare Kommunikation in der Führung wichtiger ist denn je 2. Die

Mehr

Logic in a Nutshell. Christian Liguda

Logic in a Nutshell. Christian Liguda Logic in a Nutshell Christian Liguda Quelle: Kastens, Uwe und Büning, Hans K., Modellierung: Grundlagen und formale Methoden, 2009, Carl Hanser Verlag Übersicht Logik - Allgemein Aussagenlogik Modellierung

Mehr

Philosophische Semantik. SS 2009 Manuel Bremer. Vorlesung 1. Einleitung und Überblick

Philosophische Semantik. SS 2009 Manuel Bremer. Vorlesung 1. Einleitung und Überblick Philosophische Semantik SS 2009 Manuel Bremer Vorlesung 1 Einleitung und Überblick Was alles ist philosophische Semantik? 1. Verständnismöglichkeiten von philosophische Semantik 2. Die Frage nach der Bedeutung

Mehr

Paul Watzlawick II. Gestörte Kommunikation

Paul Watzlawick II. Gestörte Kommunikation Prof. Dr. Wilfried Breyvogel Sommersemester 05 Montag 12.00-14.00 Uhr R11 T00 D05 Vorlesung vom 18.07.2005 Paul Watzlawick II. Gestörte Kommunikation 1. Die Unmöglichkeit, nicht zu kommunizieren, oder:

Mehr

Vorlesung Einführung in die Logik Prädikatenlogik. Philipp Etti (Institut für Logik+Wissenschaftstheorie)

Vorlesung Einführung in die Logik Prädikatenlogik. Philipp Etti (Institut für Logik+Wissenschaftstheorie) Vorlesung Einführung in die Logik Prädikatenlogik Philipp Etti (Institut für Logik+Wissenschaftstheorie) www.etti.de.gg Aussagenlogik versus Prädikatenlogik AL: * Aussagenlogik Prädikatenlogik * Aussage

Mehr

Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade

Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade Clemens Heuberger 22. September 2014 Inhaltsverzeichnis 1 Dezimaldarstellung 1 2 Teilbarkeit

Mehr

Eine Aussage kann eine Eigenschaft für ein einzelnes, konkretes Objekt behaupten:

Eine Aussage kann eine Eigenschaft für ein einzelnes, konkretes Objekt behaupten: Aussagen Aussagen Eine Aussage kann eine Eigenschaft für ein einzelnes, konkretes Objekt behaupten: verbale Aussage formale Aussage Wahrheitswert 1) 201 ist teilbar durch 3 3 201 wahre Aussage (w.a.) 2)

Mehr

Christian Nimtz // 2 Freges theoretischer Begriff der Bedeutung F. Klassische Fragen der Sprachphilosophie

Christian Nimtz  // 2 Freges theoretischer Begriff der Bedeutung F. Klassische Fragen der Sprachphilosophie Programm Christian Nimtz www.nimtz.net // lehre@nimtz.net Klassische Fragen der Sprachphilosophie 1 Zur Erinnerung: Wo wir stehen 2 Freges theoretischer Begriff der Bedeutung F Kapitel 3: Freges referezielle

Mehr

Mathematik-Vorkurs für Informatiker Aussagenlogik 1

Mathematik-Vorkurs für Informatiker Aussagenlogik 1 Christian Eisentraut & Julia Krämer www.vorkurs-mathematik-informatik.de Mathematik-Vorkurs für Informatiker Aussagenlogik 1 Aufgabe 1. (Wiederholung wichtiger Begriffe) Notieren Sie die Definitionen der

Mehr

Die ganze Welt ist Harmonie und Zahl.

Die ganze Welt ist Harmonie und Zahl. Die ganze Welt ist Harmonie und Zahl. Pythagoras http://www.firstlutheranchurch-burbank.org/school/images/piano.jpg 1 Ma 1 Lubov Vassilevskaya, WS 2008 Was sind die Zahlen? Aber, mögen Sie sagen, nichts

Mehr

Vorlesung. Funktionen/Abbildungen

Vorlesung. Funktionen/Abbildungen Vorlesung Funktionen/Abbildungen 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 30.

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 30. Formale Logik PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg Wintersemester 16/17 Sitzung vom 30. November 2016 Süddeutsche Zeitung, 8. Januar 2010 Fehlschluss: G L (L G) vielleicht

Mehr

Lineare Abhängigkeit

Lineare Abhängigkeit Lineare Abhängigkeit Vorbemerkung. Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung I X, i x i. I heißt dabei Indexmenge. Man verwendet dabei oft die Schreibweise (x i ) oder (x

Mehr

5 Logische Programmierung

5 Logische Programmierung 5 Logische Programmierung Logik wird als Programmiersprache benutzt Der logische Ansatz zu Programmierung ist (sowie der funktionale) deklarativ; Programme können mit Hilfe zweier abstrakten, maschinen-unabhängigen

Mehr

Kennzeichen von Wissenschaftlichkeit

Kennzeichen von Wissenschaftlichkeit Kennzeichen von Wissenschaftlichkeit HS 2013 Peter Wilhelm Indikatoren pseudowissenschaftlicher Praktiken (Lawson, 2007, nach Macho, 2013) Ungenaue, wissenschaftlich klingende Sprache ^ Verwendung wissenschaftlich

Mehr

Erörterung. Hauptteil Zweck: Themafrage erörtern; Möglichkeiten des Hauptteils:

Erörterung. Hauptteil Zweck: Themafrage erörtern; Möglichkeiten des Hauptteils: Erörterung Ausgangsfrage Einleitung Zweck: Interesse wecken, Hinführung zum Thema; Einleitungsmöglichkeiten: geschichtlicher Bezug, Definition des Themabegriffs, aktuelles Ereignis, Statistik/Daten, Zitat/Sprichwort/Spruch;

Mehr

Rhetorikgrundlagen sicher Argumentieren

Rhetorikgrundlagen sicher Argumentieren Rhetorikgrundlagen sicher Argumentieren Kommunikative Kompetenz ist eine wichtige Voraussetzung um Gespräche und Verhandlungen erfolgreich zu führen oder Konflikte konstruktiv zu lösen. Rhetorische Techniken

Mehr

Das Beweisverfahren der vollständigen Induktion

Das Beweisverfahren der vollständigen Induktion c 2004 by Rainer Müller - http://www.emath.de 1 Das Beweisverfahren der vollständigen Induktion Einleitung In der Mathematik gibt es im Prinzip drei grundlegende Beweismethoden, mit denen man versucht,

Mehr

BEGRÜNDEN BEWEISEN. Franz Schoberleitner Institut für Didaktik der Mathematik, JKU Linz

BEGRÜNDEN BEWEISEN. Franz Schoberleitner Institut für Didaktik der Mathematik, JKU Linz ARGUMENTIEREN BEGRÜNDEN BEWEISEN Referat bei der BIST-Tagung Salzburg, 19.1.2012 Franz Schoberleitner Institut für Didaktik der Mathematik, JKU Linz franz.schoberleitner@jku.at Beweisen / Begründen im

Mehr

Wenn Jesse James abgedrückt hätte, wäre Bill Bullock gestorben.

Wenn Jesse James abgedrückt hätte, wäre Bill Bullock gestorben. KK5: Metaphysik 5. Fragenzettel (K) 1. Angenommen, Jesse James bedroht bei einem Banküberfall, der unblutig abläuft, den Kassierer Bill Bullock mit seinem Revolver. Betrachten Sie das kontrafaktische Konditio-

Mehr

(10) x 1[FRAU(x 1) RENNT(x 1)] Keine Frau rennt.

(10) x 1[FRAU(x 1) RENNT(x 1)] Keine Frau rennt. Institut für deutsche Sprache und Linguistik, Humboldt-Universität zu Berlin, GK Semantik SS 2009, F.Sode Basierend auf Seminarunterlagen von Prof. Manfred Krifka Quantoren in der Prädikatenlogik (auch

Mehr

Die pragmatischen Axiome von Paul Watzlawick

Die pragmatischen Axiome von Paul Watzlawick Kontextmodul 2 Kommunikation für Beruf und Praxis Die pragmatischen Axiome von Paul Watzlawick Dr. Othmar Baeriswyl Dozent Othmar.baeriswyl@hslu.ch Horw 14. Februar 2016 Einleitung by mediata sa, Villars-sur-Glâne/CH

Mehr

SE PHILOSOPHISCHE LOGIK WS 2014 GÜNTHER EDER

SE PHILOSOPHISCHE LOGIK WS 2014 GÜNTHER EDER SE PHILOSOPHISCHE LOGIK WS 2014 GÜNTHER EDER FORMALE SPRACHEN Wie jede natürliche Sprache, hat auch auch jede formale Sprache Syntax/Grammatik Semantik GRAMMATIK / SYNTAX Die Grammatik / Syntax einer formalen

Mehr

4. Aussagenlogik 32 #WUUCIGPNQIKM

4. Aussagenlogik 32 #WUUCIGPNQIKM 4. Aussagenlogik Wir haben bisher beschrieben, auf welche Weise die Objekte und Individuen in unserer Welt als einfache Mengen und Mengen von n-tupeln erfasst werden können. Daraufhin haben wir Relationen

Mehr

naturverbunden hektisch anstrengend technisiert

naturverbunden hektisch anstrengend technisiert 1 Wortschatz: Zurück zur Natur! Ergänzen Sie die passenden Adjektive aus dem Kasten naturverbunden hektisch anstrengend technisiert Unser Alltagsleben ist im Vergleich zu früher sehr (1) : Machte man vor

Mehr

Klassische Aussagenlogik

Klassische Aussagenlogik Eine Einführung in die Logik Schon seit Jahrhunderten beschäftigen sich Menschen mit Logik. Die alten Griechen und nach ihnen mittelalterliche Gelehrte versuchten, Listen mit Regeln zu entwickeln, welche

Mehr

Grundlagen der Gesprächsführung: Argumentation

Grundlagen der Gesprächsführung: Argumentation Grundlagen der Gesprächsführung: Argumentation Welche sprachlichen Möglichkeiten haben wir, um Einstellungen zu verändern und Handlungen zu beeinflussen? Referent: Daniel Bedra Welche sprachlichen Möglichkeiten

Mehr

1 Zur Erinnerung: Freges referenzielle Semantik. Christian Nimtz // 2 Das Argument vom Erkenntniswert

1 Zur Erinnerung: Freges referenzielle Semantik. Christian Nimtz  // 2 Das Argument vom Erkenntniswert Programm Christian Nimtz www.nimtz.net // lehre@nimtz.net Klassische Fragen der Sprachphilosophie Kapitel 4: Frege über Sinn und Bedeutung[ F] 1 Zur Erinnerung: Freges referenzielle Semantik 2 Das Argument

Mehr

Unabhängigkeit KAPITEL 4

Unabhängigkeit KAPITEL 4 KAPITEL 4 Unabhängigkeit 4.1. Unabhängigkeit von Ereignissen Wir stellen uns vor, dass zwei Personen jeweils eine Münze werfen. In vielen Fällen kann man annehmen, dass die eine Münze die andere nicht

Mehr

Die Sprache der Mathematik

Die Sprache der Mathematik Die Sprache der Mathematik Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Diese Lehrveranstaltung...... ist Pflicht für alle Studenten der Informatik und

Mehr

Strukturelle Rekursion und Induktion

Strukturelle Rekursion und Induktion Kapitel 2 Strukturelle Rekursion und Induktion Rekursion ist eine konstruktive Technik für die Beschreibung unendlicher Mengen (und damit insbesondere für die Beschreibung unendliche Funktionen). Induktion

Mehr

Wie kommen Wahrheit und Falschheit in der vernünftigen Rede zustande?

Wie kommen Wahrheit und Falschheit in der vernünftigen Rede zustande? Technische Universität Darmstadt Institut für Philosophie PS / LK Thomas von Aquin: Von der Wahrheit Dozent: Dr. Jens Kertscher Sommersemester 2009 Wie kommen Wahrheit und Falschheit in der vernünftigen

Mehr

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend oder eindeutig, wenn keine alternativen Interpretationsmöglichkeiten

Mehr

Wissenschaftliches Arbeiten Quantitative Methoden

Wissenschaftliches Arbeiten Quantitative Methoden Wissenschaftliches Arbeiten Quantitative Methoden Prof. Dr. Stefan Nickel WS 2008 / 2009 Gliederung I. Motivation II. III. IV. Lesen mathematischer Symbole Wissenschaftliche Argumentation Matrizenrechnung

Mehr

Hausaufgaben Negation Aussagen Implikation Äquivalenz Zusammenfassung. Elementare Logik. Diskrete Strukturen. Uta Priss ZeLL, Ostfalia

Hausaufgaben Negation Aussagen Implikation Äquivalenz Zusammenfassung. Elementare Logik. Diskrete Strukturen. Uta Priss ZeLL, Ostfalia Elementare Logik Diskrete Strukturen Uta Priss ZeLL, Ostfalia Sommersemester 2016 Diskrete Strukturen Elementare Logik Slide 1/26 Agenda Hausaufgaben Negation Aussagen Implikation Äquivalenz Zusammenfassung

Mehr

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen.

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie und, oder, nicht, wenn... dann zwischen atomaren und komplexen Sätzen. I. Aussagenlogik 2.1 Syntax Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen. Sätze selbst sind entweder wahr oder falsch. Ansonsten

Mehr

2.2 Ereignisse und deren Wahrscheinlichkeit

2.2 Ereignisse und deren Wahrscheinlichkeit 2.2 Ereignisse und deren Wahrscheinlichkeit Literatur: [Papula Bd., Kap. II.2 und II.], [Benning, Kap. ], [Bronstein et al., Kap. 1.2.1] Def 1 [Benning] Ein Zufallsexperiment ist ein beliebig oft wiederholbarer,

Mehr

Mathematik. UND/ODER Verknüpfung. Ungleichungen. Betrag. Intervall. Umgebung

Mathematik. UND/ODER Verknüpfung. Ungleichungen. Betrag. Intervall. Umgebung Mathematik UND/ODER Verknüpfung Ungleichungen Betrag Intervall Umgebung Stefan Gärtner 004 Gr Mathematik UND/ODER Seite UND Verknüpfung Kommentar Aussage Symbolform Die Aussagen Hans kann schwimmen p und

Mehr

Arbeitsblatt 2 Übungen zu Mathematik I für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen H. Strade, B. Werner WiSe 06/

Arbeitsblatt 2 Übungen zu Mathematik I für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen H. Strade, B. Werner WiSe 06/ 14. November 2006 Arbeitsblatt 2 Übungen zu Mathematik I für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen H. Strade, B. Werner WiSe 06/07 31.10.06 Präsenzaufgaben: 1) Welche rationale

Mehr

Diese Unterteilung ist nicht exklusiv, Fachgrenzen (gerade auch im Zuge der interdisziplinären Vernetzung) durchlässig!

Diese Unterteilung ist nicht exklusiv, Fachgrenzen (gerade auch im Zuge der interdisziplinären Vernetzung) durchlässig! Allgemeine Begriffsbestimmung von Wissenschaft Wissenschaft ist der Oberbegriff für alle diejenigen Disziplinen menschlicher Forschung, deren Ziel es ist, Tatsachen über Bereiche der Natur sowie der geistigen,

Mehr

Einführung in die Wissenschaftsphilosophie

Einführung in die Wissenschaftsphilosophie Einführung in die Wissenschaftsphilosophie Prof. Dr. Martin Kusch 1 Einführung in die Wissenschaftsphilosophie: 2. Vorlesung: Induktion 2 (1) Logik,

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 3 30.04.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Letztes Mal Aussagenlogik Syntax: welche Formeln? Semantik:

Mehr

Teil 7. Grundlagen Logik

Teil 7. Grundlagen Logik Teil 7 Grundlagen Logik Was ist Logik? etymologische Herkunft: griechisch bedeutet Wort, Rede, Lehre (s.a. Faust I ) Logik als Argumentation: Alle Menschen sind sterblich. Sokrates ist ein Mensch. Also

Mehr

Anhang II: Induktion

Anhang II: Induktion Anhang II: Induktion Induktiv gültige Argumente Die Logik, so wie wir sie bisher kennen gelernt haben, behandelt die Frage, ob Schlüsse (Argumente) deduktiv gültig sind. Deduktiv gültige Schlüsse sind

Mehr

10 Mathematische Darstellungen verwenden. Diagramme lesen und auswerten

10 Mathematische Darstellungen verwenden. Diagramme lesen und auswerten 0 Mathematische Darstellungen verwenden Diagramme lesen und auswerten Um Daten besser vergleichen und auswerten zu können, werden sie häufig in Diagrammen dargestellt. Im Figurendiagramm (auch Piktogramm

Mehr

»bin überrascht«überrascht deshalb, weil ein altersloses Leben dem Alter, egal welchem, keine Aufmerksamkeit schenkt.[2] Die Seele ist zeitlos, sie

»bin überrascht«überrascht deshalb, weil ein altersloses Leben dem Alter, egal welchem, keine Aufmerksamkeit schenkt.[2] Die Seele ist zeitlos, sie »bin überrascht«überrascht deshalb, weil ein altersloses Leben dem Alter, egal welchem, keine Aufmerksamkeit schenkt.[2] Die Seele ist zeitlos, sie ist Ausdruck der göttlichen weiblichen, schöpferischen

Mehr

12 Der Abstand eines Punktes von einer Geraden Seite 1 von Der Abstand eines Punktes von einer Geraden

12 Der Abstand eines Punktes von einer Geraden Seite 1 von Der Abstand eines Punktes von einer Geraden 12 Der Abstand eines Punktes von einer Geraden Seite 1 von 5 12 Der Abstand eines Punktes von einer Geraden Die Bestimmung des Abstands eines Punktes von einer Geraden gehört zu den zentralen Problemen

Mehr