Copula Funktionen. Eine Einführung. Nils Friewald

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Copula Funktionen. Eine Einführung. Nils Friewald"

Transkript

1 Copula Funktionen Eine Einführung Nils Friewald Institut für Managementwissenschaften Abteilung Finanzwirtschaft und Controlling Favoritenstraße 9-11, 1040 Wien 13. Juni 2005

2 Inhalt Motivation Copula Funktionen Konstruktion Abhängigkeitskonzepte Elliptische Copulas Archimedische Copulas Simulation N. Friewald, IMW Copula Funktionen, Eine Einführung 2/28

3 Motivation Problemstellung Gegeben sei ein Portfolio mit N Aktien Gesucht ist die Dichtefunktion des Portfoliowertes Gewöhnliche Annahmen Renditen sind normalverteilt Portfoliowert ist multivariat normalverteilt N. Friewald, IMW Copula Funktionen, Eine Einführung 3/28

4 Motivation Lösungsvorschlag 1. Schätzung der Korrelationen zwischen den Renditen 2. Bestimmung der Portfolioverteilung 2.1 Analytische Berechnung der gemeinsamen multivariaten Dichtefunktion durch den Erwartungswert-Vektor und Varianz/Kovarianz-Matrix 2.2 Numerisch (Monte-Carlo-Simulation): Simulation eines Vektors mit N korrelierten und normalverteilten Renditen. Viele Szenarien (z.b ) liefern ein Histogramm der Portfolioverteilung N. Friewald, IMW Copula Funktionen, Eine Einführung 4/28

5 Motivation Kritikpunkte Renditen sind i.a. linksschief (Schiefe < 0), d.h. es treten häufiger negative als positive Werte auf Renditen sind i.a. um 0 konzentriert bzw. weisen extreme Werte auf (Kurtosis > 3) Gemeinsame Kursverluste treten mit höherer Wahrscheinlichkeit auf als gemeinsame Kursgewinne Probleme Normalverteilung als Randverteilungen ungeeignet Andere Randverteilungen nicht beliebig wählbar, da dazugehörige multivariate Verteilung nicht existieren muss Asymmetrische, multivariate Verteilung gesucht N. Friewald, IMW Copula Funktionen, Eine Einführung 5/28

6 Motivation Gefordert wird... Unabhängige Modellierung der Randverteilungen Flexible Modellierung der Abhängigkeitsstruktur N. Friewald, IMW Copula Funktionen, Eine Einführung 6/28

7 Copula Funktionen Copula Eine Copula erlaubt die Zerlegung einer multivariaten Verteilungsfunktion in eine Abhängigkeitsstruktur und einen Teil, der die Randverteilungen beschreibt. Definition (Copula) Eine Copula Funktion C : [0, 1] n [0, 1] ist eine gemeinsame kumulative Verteilungsfunktion mit n gleichverteilten Zufallsvariablen, d.h. C(u 1,..., u n ) = P{U 1 u 1,..., U n u n }. N. Friewald, IMW Copula Funktionen, Eine Einführung 7/28

8 Copula Funktionen C(u 1,..., u n ) = P{U 1 u 1,..., U n u n } Eigenschaften Da u 1 und u 2 positive Zufallsvariablen sind, gilt C(0, u 2 ) = C(u 1, 0) = 0 Da u 1 und u 2 nach oben hin durch 1 beschränkt sind, können die Randverteilungen bestimmt werden durch C(1, u 2 ) = u 2 und C(u 1, 1) = u 1 Sind u 1 und u 2 unabhängig, dann gilt C(u 1, u 2 ) = u 1 u 2 N. Friewald, IMW Copula Funktionen, Eine Einführung 8/28

9 Copula Funktionen Dichtefunktion Durch partielles Differenzieren der Verteilungsfunktion c(u 1,..., u n ) = n C(u 1,...,u n) u 1... u n N. Friewald, IMW Copula Funktionen, Eine Einführung 9/28

10 Konstruktion Verschiedene Randverteilungen Sei X 1 verteilt mit F X1 und X 2 mit F X2 dann gilt u 1 = P{x 1 X 1 } = F X1 (x 1 ) u 2 = P{x 2 X 2 } = F X2 (x 2 ) Durch Einsetzen dieser Gleichungen in C(u 1, u 2 ) = P{U 1 u 1, U 2 u 2 } ergibt eine gemeinsame Verteilungsfunktion mit beliebigen Randverteilungen C(F X1 (x 1 ), F X2 (x 2 )) = F X1,X 2 (x 1, x 2 ) Abhängigkeitsstruktur einer Copula ändert sich nicht durch eine steigende kontinuierliche Transformation der Randverteilungen! N. Friewald, IMW Copula Funktionen, Eine Einführung 10/28

11 Konstruktion C(u 1, u 2 ) = P{U 1 u 1, U 2 u 2 } Beispiel: Produkt Copula Sind U 1 und U 2 unabhängig voneinander C(u 1, u 2 ) = P{U 1 u 1 }P{U 2 u 2 } C ind (u 1, u 2 ) = u 1 u 2 Wird als Produkt Copula bezeichnet c ind (u 1, u 2 ) = 2 C ind (u 1,u 2 ) u 1 u 2 = 1 N. Friewald, IMW Copula Funktionen, Eine Einführung 11/28

12 Konstruktion Theorem (Sklar) Jede multivariate Verteilung mit Randverteilungen F X1,..., F Xn kann als Copula Funktion ausgedrückt werden. Sind die Randverteilungen kontinuierlich, so ist diese Zerlegung eindeutig. F X1,...,X n (x 1,..., x n ) = C(F X1 (x 1 ),..., F Xn (x n )) Das bedeutet... Jede kontinuierliche multivariate Verteilung kann in die Randverteilungen und eine Abhängigkeitsstruktur zerlegt werden Die Abhängigkeitsstruktur ist durch die Copula Funktion gegeben N. Friewald, IMW Copula Funktionen, Eine Einführung 12/28

13 Konstruktion Beispiel Gesucht ist die Copula Funktion einer bivariaten Normalverteilung Φ 2 R (x 1, x 2 ) Lösung Da die Verteilung stetig ist, existiert nach Sklar s Theorem eine eindeutige Lösung F X1,X 2 (x 1, x 2 ) = Φ 2 R (x 1, x 2 ) = Φ 2 R (Φ 1 (u 1 ), Φ 1 (u 2 )) = C Ga R (u 1, u 2 ) ist die Multivariate Normalverteilung mit Korrelationsmatrix R Φ 2 R Φ 1 ist die inverse der standard univariaten Normalverteilung Diese Copula wird als Normal/Gauss Copula C Ga R bezeichnet N. Friewald, IMW Copula Funktionen, Eine Einführung 13/28

14 Abhängigkeitskonzepte Definition (Lineare/Pearson s Korrelation) ρ(x, Y ) = Cov(X, Y ) Var(X ) Var(Y ) Cov(X, Y ) = E(XY ) E(X )E(Y ) Maß für lineare Abhängigkeit Invariant nur unter strikt steigender linearer Transformation Einfach zu berechnen Abhängigkeitsmaß für elliptische Verteilungen Existiert nur, wenn Varianz existiert Unabhängigkeit unkorreliert (Umkehrschluss gilt i.a. nicht!!) N. Friewald, IMW Copula Funktionen, Eine Einführung 14/28

15 Abhängigkeitskonzepte Begriffe (X, Y ) sei ein Vektor von Zufallszahlen Konkordanz: Hohe bzw. niedrige Werte von X treten tendenziell mit hohen bzw. niedrigen Werten von Y auf Diskonkordanz: Hohe Werte von X gehen einher mit niedrigen Werten von Y bzw. umgekehrt Komonotonie: X und Y sind perfekt positiv abhängig Gegenkomonotonie: X und Y sind perfekt negativ abhängig Komonotonie bzw. Gegenkomonotonie sind die Extrema von Konkordanz bzw. Diskonkordanz. N. Friewald, IMW Copula Funktionen, Eine Einführung 15/28

16 Abhängigkeitskonzepte Fréchet Grenzen Untere Grenze: W (x 1, x 2 ) = max(x 1 + x 2 1, 0) Obere Grenze: M(x 1, x 2 ) = min(x 1, x 2 ) Im 2-dim Fall sind die Grenzen selbst Copulas Untere Grenze bezeichnet perfekt negative Abhängigkeit Obere Grenze bezeichnet perfekt positive Abhängigkeit N. Friewald, IMW Copula Funktionen, Eine Einführung 16/28

17 Abhängigkeitskonzepte Rangkorrelationen Definition (Spearman s rho) ρ S (X, Y ) = ρ(f 1 (X ), F 2 (Y )) Definition (Kendall s tau) Sind (X 1, Y 1 ) und (X 2, Y 2 ) unabhängige Zufallsvektoren, dann gilt ρ τ (X, Y ) = P[(X 1 X 2 )(Y 1 Y 2 ) > 0] P[(X 1 X 2 )(Y 1 Y 2 ) < 0] N. Friewald, IMW Copula Funktionen, Eine Einführung 17/28

18 Abhängigkeitskonzepte Eigenschaften von Rangkorrelationen ρ S (X, Y ) = ρ S (Y, X ), ρ τ (X, Y ) = ρ τ (Y, X ) Wenn X und Y unabhängig, dann ist ρ S (X, Y ) = ρ τ (X, Y ) = 0 1 ρ S (X, Y ), ρ τ +1 Invariant unter monotoner Transformation N. Friewald, IMW Copula Funktionen, Eine Einführung 18/28

19 Abhängigkeitskonzepte Definition (Upper-tail Abhängigkeit) λ U = lim u 1 P[X F 1 2 (u) Y F 1 1 (u)] Analoge Definition gilt für Lower-tail Abhängigkeit Tail-Abhängigkeit Grad der Abhängigkeit im oberen/rechten Quadranten oder unteren/linken Quadranten Relevant für die Untersuchung von Abhängigkeiten zwischen extremen Werten Tail Abhängigkeit ist eine Copula Eigenschaft, daher invariant unter strikt monotoner Transformationen Wenn λ = 0 sind X und Y asymptotisch unabhängig, wenn λ (0, 1] asymptotisch abhängig N. Friewald, IMW Copula Funktionen, Eine Einführung 19/28

20 Elliptische Copulas Normal/Gauss-Copula CR Ga (u) = ( Φn R Φ 1 (u 1 ),..., Φ 1 (u n ) ) Konturen sind elliptisch bzw. radial symmetrisch Einfach zu simulieren Upper und Lower-tail Abhängigkeit identisch Jedoch weder Upper- noch Lower-tail abhängig Daher asymptotisch unabhängig τ ij = 2 π arcsin ρ ij ρ S ij = 6 π arcsin ρ ij 2 N. Friewald, IMW Copula Funktionen, Eine Einführung 20/28

21 Elliptische Copulas Student-Copula C(u) t v,r = tn v,r (t 1 v (u 1 ),..., tv 1 (u n )) Konturen sind elliptisch Ebenfalls leicht zu simulieren Identische Upper- und Lower-tail Abhängigkeit Asymptotisch abhängig Tail-Abhängigkeit nimmt mit steigender Korrelation R und fallendem Freiheitsgrad v zu N. Friewald, IMW Copula Funktionen, Eine Einführung 21/28

22 Archimedische Copulas Eigenschaften von Elliptischen Copulas Ableitung von der multivariaten Verteilung (mit Hilfe von Sklar s Theorem) Einfache Simulation Keine geschlossene Lösung der Verteilung Kontur ist durch Radial-Symmetrie sehr eingeschränkt Nicht geeigent zur Modellierung von Finanz- und Versicherungsapplikationen Eigenschaften von Archimedische Copulas Vielfältige Abhängikeitsstrukturen möglich Meist liegt geschlossene Lösungen vor Nur beschränkte Wahl der Abhängigkeitsparameter möglich N. Friewald, IMW Copula Funktionen, Eine Einführung 22/28

23 Archimedische Copulas Definition (Archimedische Copula) Sei ϕ eine kontinuierliche, strikt fallende Funktion von [0, 1] nach [0, ], sodaß ϕ(1) = 0 ist, und ϕ [ 1] die pseudo-inverse Funktion von ϕ ist, dann ist eine Archimedean Copula definiert durch C ϕ (u) = ϕ [ 1] (ϕ(u 1 ) ϕ(u n )) ϕ wird als Generator der Copula bezeichnet Falls ϕ(0) = wird von einem strikten Generator gesprochen N. Friewald, IMW Copula Funktionen, Eine Einführung 23/28

24 Archimedische Copulas Gumbel/Logistic-Copula C(u) Gu θ [ n ] 1/θ = exp ( ln u i ) θ i=1 Generator ϕ(t) = ( ln(t)) θ Parameter θ [1, ) beschreibt den Abhängikeitsgrad Perfekt positiv abhängig bei θ Unabhängig bei θ = 1 Upper-tail abhängig Lower-tail Abhängigkeit ist immer null τ = 1 θ 1 N. Friewald, IMW Copula Funktionen, Eine Einführung 24/28

25 Archimedische Copulas Clayton-Copula [ n C(u) Cl θ = u θ i n + 1 i=1 ] 1/θ Generator ϕ(t) = (t θ 1)/θ Parameter θ > 0 Unabhängikeit bei θ 0 Perfekt positiv abhängig bei θ Lower-tail Abhängigkeit τ = θ θ+2 N. Friewald, IMW Copula Funktionen, Eine Einführung 25/28

26 Simulation Inversionsmethode Sei F (X ) eine Verteilungsfunktion einer Zufallvariable X Das p-quantil von F (X ) ist die Pseudoinverse von F,wobei p zwischen 0 und 1 liegt Sei U eine gleichverteilte ZV in [0, 1] Dann ist X = F 1 (u) eine ZV die der Verteilung F genügt Bivariate Verteilung Gegeben sei eine bivariate Copula C(u 1, u 2 ) Simuliere eine gleichverteilte ZV u 1 Simuliere unabhängig von u 1 eine weitere gleichverteilte ZV p Bestimme u 2 aus p = C 2 1 (u 2 u 1 ) N. Friewald, IMW Copula Funktionen, Eine Einführung 26/28

27 Simulation Bivariater Fall Simulation von einer Bivariaten Copula: C 2 (u 2 u 1 ) = P{U 2 u 2 U 1 = u 1 } = P{U 2 u 2, U 1 = u 1 } P{U 1 = u 1 } = C 2(u 1, u 2 ) / C 1(u 1 ) u 1 u 1 Multivariater Fall Simulation von einer multivariaten Copula: C k (u k u 1,..., u k 1 ) = P{U k u k U 1 = u 1,..., U k 1 = u k 1 } = k 1 C k (u 1,..., u k ) u 1... u k 1 / k 1 C k 1 (u 1,..., u k 1 ) u 1... u k 1 N. Friewald, IMW Copula Funktionen, Eine Einführung 27/28

28 Simulation Algorithmus Definiere C k (u 1,..., u k ) = C(u 1,..., u k, 1,..., 1) mit k = 2,..., n 1 1. Simulation einer Zufallsvariable u 1 von U(0, 1) 2. Simulation einer Zufallsvariable u 2 von C 2 ( u 1 ) 3. Simulation einer Zufallsvariable u 3 von C 3 ( u 1, u 2 ). 4. Simulation einer Zufallsvariable u n von C n ( u 1,..., u n 1 ) N. Friewald, IMW Copula Funktionen, Eine Einführung 28/28

Theorem 19 Sei (X 1,X 2 ) T ein normalverteilter Zufallsvektor. Dann gilt: λ U (X 1,X 2 ) = λ L (X 1,X 2 ) = 0.

Theorem 19 Sei (X 1,X 2 ) T ein normalverteilter Zufallsvektor. Dann gilt: λ U (X 1,X 2 ) = λ L (X 1,X 2 ) = 0. Theorem 19 Sei (X 1,X 2 ) T ein normalverteilter Zufallsvektor. Dann gilt: λ U (X 1,X 2 ) = λ L (X 1,X 2 ) = 0. Korollar 2 Sei (X 1,X 2 ) T ein Zufallsvektor mit stetigen Randverteilungen und einer Gauss

Mehr

Multivariate Verteilungen

Multivariate Verteilungen Multivariate Verteilungen Zufallsvektoren und Modellierung der Abhängigkeiten Ziel: Modellierung der Veränderungen der Risikofaktoren X n = (X n,1, X n,2,..., X n,d ) Annahme: X n,i und X n,j sind abhängig

Mehr

Quantitatives Risikomanagement

Quantitatives Risikomanagement Quantitatives Risikomanagement Korrelation und Abhängigkeit im Risikomanagement: Eigenschaften und Irrtümer von Jan Hahne und Wolfgang Tischer -Korrelation und Abhängigkeit im Risikomanagement: Eigenschaften

Mehr

+ 2 F2 (u) X 1 F1 (u)) Der Koeffizient der unteren Tail-Abhängigkeit von (X 1,X 2 ) T wird folgendermaßen definiert:

+ 2 F2 (u) X 1 F1 (u)) Der Koeffizient der unteren Tail-Abhängigkeit von (X 1,X 2 ) T wird folgendermaßen definiert: Tail Abhängigkeit Definition 12 Sei (X 1,X 2 ) T ein Zufallsvektor mit Randverteilungen F 1 und F 2. Der Koeffizient der oberen Tail-Abhängigkeit von (X 1,X 2 ) T wird folgendermaßen definiert: λ U (X

Mehr

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit 3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit Lernziele dieses Kapitels: Mehrdimensionale Zufallsvariablen (Zufallsvektoren) (Verteilung, Kenngrößen) Abhängigkeitsstrukturen Multivariate

Mehr

4. Verteilungen von Funktionen von Zufallsvariablen

4. Verteilungen von Funktionen von Zufallsvariablen 4. Verteilungen von Funktionen von Zufallsvariablen Allgemeine Problemstellung: Gegeben sei die gemeinsame Verteilung der ZV en X 1,..., X n (d.h. bekannt seien f X1,...,X n bzw. F X1,...,X n ) Wir betrachten

Mehr

Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen

Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen Wahrscheinlichkeitstheorie Prof. Dr. W.-D. Heller Hartwig Senska

Mehr

2. Ein Zufallsvektor X IR d ist multivariat normal verteilt dann und nur dann wenn seine charakteristische Funktion folgendermaßen gegeben ist:

2. Ein Zufallsvektor X IR d ist multivariat normal verteilt dann und nur dann wenn seine charakteristische Funktion folgendermaßen gegeben ist: Multivariate elliptische Verteilungen a) Die multivariate Normalverteilung Definition 2 Der Zufallsvektor (X 1, X 2,..., X d ) T hat eine multivariate Normalverteilung (oder eine multivariate Gauss sche

Mehr

Quantitative Risk Management

Quantitative Risk Management Quantitative Risk Management Copulas und Abhängigkeit Johannes Paschetag Mathematisches Institut der Universität zu Köln Wintersemester 2009/10 Betreuung: Prof. Schmidli, J. Eisenberg i Inhaltsverzeichnis

Mehr

Reelle Zufallsvariablen

Reelle Zufallsvariablen Kapitel 3 eelle Zufallsvariablen 3. Verteilungsfunktionen esultat aus der Maßtheorie: Zwischen der Menge aller W-Maße auf B, nennen wir sie W B ), und der Menge aller Verteilungsfunktionen auf, nennen

Mehr

5 Erwartungswerte, Varianzen und Kovarianzen

5 Erwartungswerte, Varianzen und Kovarianzen 47 5 Erwartungswerte, Varianzen und Kovarianzen Zur Charakterisierung von Verteilungen unterscheidet man Lageparameter, wie z. B. Erwartungswert ( mittlerer Wert ) Modus (Maximum der Wahrscheinlichkeitsfunktion,

Mehr

Beispiel 6 (Multivariate Normalverteilung)

Beispiel 6 (Multivariate Normalverteilung) Beispiel 6 (Multivariate Normalverteilung) Sei X N(µ,Σ). Es existiert eine Matrix A IR d k, sodass X d = µ+az wobei Z N k (0,I) und AA T = Σ. Weiters gilt Z = RS wobei S ein gleichmäßig verteilter Zufallsvektor

Mehr

Unabhängige Zufallsvariablen

Unabhängige Zufallsvariablen Kapitel 9 Unabhängige Zufallsvariablen Die Unabhängigkeit von Zufallsvariablen wird auf die Unabhängigkeit von Ereignissen zurückgeführt. Im Folgenden sei Ω, A, P ) ein Wahrscheinlichkeitsraum. Definition

Mehr

Quantitatives Risikomanagement

Quantitatives Risikomanagement Quantitatives Risikomanagement Korrelation und Abhängigkeit im Risikomanagement: Eigenschaften und Irrtümer von Jan Hahne und Wolfgang Tischer Bergische Universität Wuppertal Dozent: M.Sc. Brice Hakwa

Mehr

Kapitel 1. Einleitung. 1.1 Einführung in die Thematik und Motivation

Kapitel 1. Einleitung. 1.1 Einführung in die Thematik und Motivation 1 Kapitel 1 Einleitung 1.1 Einführung in die Thematik und Motivation Im Zentrum des Interesses zahlreicher Fragestellungen der Finanzmarkttheorie sowie der angewandten Statistik stehen die Modellierung

Mehr

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38 Dynamische Systeme und Zeitreihenanalyse Multivariate Normalverteilung und ML Schätzung Kapitel 11 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Multivariate

Mehr

1 Multivariate Zufallsvariablen

1 Multivariate Zufallsvariablen 1 Multivariate Zufallsvariablen 1.1 Multivariate Verteilungen Definition 1.1. Zufallsvariable, Zufallsvektor (ZV) Sei Ω die Ergebnismenge eines Zufallsexperiments. Eine (univariate oder eindimensionale)

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Gegenbeispiele in der Wahrscheinlichkeitstheorie

Gegenbeispiele in der Wahrscheinlichkeitstheorie Gegenbeispiele in der Wahrscheinlichkeitstheorie Mathias Schaefer Universität Ulm 26. November 212 1 / 38 Übersicht 1 Normalverteilung Definition Eigenschaften Gegenbeispiele 2 Momentenproblem Definition

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

7.2 Moment und Varianz

7.2 Moment und Varianz 7.2 Moment und Varianz Def. 21 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: + x p

Mehr

Zusammenfassung: diskrete und stetige Verteilungen. Woche 4: Gemeinsame Verteilungen. Zusammenfassung: diskrete und stetige Verteilungen

Zusammenfassung: diskrete und stetige Verteilungen. Woche 4: Gemeinsame Verteilungen. Zusammenfassung: diskrete und stetige Verteilungen Zusammenfassung: e und e Verteilungen Woche 4: Gemeinsame Verteilungen Wahrscheinlichkeitsverteilung p() Wahrscheinlichkeitsdichte f () WBL 15/17, 11.05.2015 Alain Hauser P(X = k

Mehr

Varianz und Kovarianz

Varianz und Kovarianz KAPITEL 9 Varianz und Kovarianz 9.1. Varianz Definition 9.1.1. Sei (Ω, F, P) ein Wahrscheinlichkeitsraum und X : Ω eine Zufallsvariable. Wir benutzen die Notation (1) X L 1, falls E[ X ]

Mehr

1 Erwartungswert und Kovarianzmatrix von Zufallsvektoren

1 Erwartungswert und Kovarianzmatrix von Zufallsvektoren Erwartungswert und Kovarianzmatrix von Zufallsvektoren Erwartungswert und Kovarianzmatrix von Zufallsvektoren. Definition Ist X X,...,X p ein p-dimensionaler Zufallsvektor mit E X j < für alle j, so heißt

Mehr

Übung 1: Wiederholung Wahrscheinlichkeitstheorie

Übung 1: Wiederholung Wahrscheinlichkeitstheorie Übung 1: Wiederholung Wahrscheinlichkeitstheorie Ü1.1 Zufallsvariablen Eine Zufallsvariable ist eine Variable, deren numerischer Wert solange unbekannt ist, bis er beobachtet wird. Der Wert einer Zufallsvariable

Mehr

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung 4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung Häufig werden mehrere Zufallsvariablen gleichzeitig betrachtet, z.b. Beispiel 4.1. Ein Computersystem bestehe aus n Teilsystemen. X i sei der Ausfallzeitpunkt

Mehr

Monte-Carlo-Simulationen mit Copulas. Kevin Schellkes und Christian Hendricks 29.08.2011

Monte-Carlo-Simulationen mit Copulas. Kevin Schellkes und Christian Hendricks 29.08.2011 Kevin Schellkes und Christian Hendricks 29.08.2011 Inhalt Der herkömmliche Ansatz zur Simulation logarithmischer Renditen Ansatz zur Simulation mit Copulas Test und Vergleich der beiden Verfahren Fazit

Mehr

4. Gemeinsame Verteilung und Grenzwertsätze

4. Gemeinsame Verteilung und Grenzwertsätze 4. Gemeinsame Verteilung und Grenzwertsätze Häufig in der Praxis: Man muss mehrere (n) ZV en gleichzeitig betrachten (vgl. Statistik I, Kapitel 6) Zunächst Vereinfachung: Betrachte n = 2 Zufallsvariablen

Mehr

4. Gemeinsame Verteilung und Grenzwertsätze

4. Gemeinsame Verteilung und Grenzwertsätze 4. Gemeinsame Verteilung und Grenzwertsätze Häufig in der Praxis: Man muss mehrere (n) ZV en gleichzeitig betrachten (vgl. Statistik I, Kapitel 6) Zunächst Vereinfachung: Betrachte n = 2 Zufallsvariablen

Mehr

8. Stetige Zufallsvariablen

8. Stetige Zufallsvariablen 8. Stetige Zufallsvariablen Idee: Eine Zufallsvariable X ist stetig, falls ihr Träger eine überabzählbare Teilmenge der reellen Zahlen R ist. Beispiel: Glücksrad mit stetigem Wertebereich [0, 2π] Von Interesse

Mehr

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme Binomialverteilung Wahrscheinlichkeitsfunktion Konstruktionsprinzip: Ein Zufallsexperiment wird n mal unabhängig durchgeführt. Wir interessieren uns jeweils nur, ob ein bestimmtes Ereignis A eintritt oder

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Kapitel VII - Funktion und Transformation von Zufallsvariablen

Kapitel VII - Funktion und Transformation von Zufallsvariablen Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VII - Funktion und Transformation von Zufallsvariablen Markus Höchstötter Lehrstuhl

Mehr

Seminar Quantitatives Risikomanagement

Seminar Quantitatives Risikomanagement Seminar Quantitatives Risikomanagement Extremwerttheorie II Ann Schmidt Mathematisches Institut der Universität zu Köln Wintersemester 09/10 Betreuung: Prof. Schmidli, J. Eisenberg Inhaltsverzeichnis 1

Mehr

Teil VI. Gemeinsame Verteilungen. Lernziele. Beispiel: Zwei Würfel. Gemeinsame Verteilung

Teil VI. Gemeinsame Verteilungen. Lernziele. Beispiel: Zwei Würfel. Gemeinsame Verteilung Zusammenfassung: diskrete und stetige Verteilungen Woche 4: Verteilungen Patric Müller diskret Wahrscheinlichkeitsverteilung p() stetig Wahrscheinlichkeitsdichte f ()

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr 1.4.2 Kontinuierliche Zufallsvariablen als Grenzwerte diskreter Zufallsvariablen Sei X eine kontinuierliche Zufallsvariable. Wir können aus X leicht eine diskrete Zufallsvariable konstruieren, indem wir

Mehr

Finanzmathematische Modelle und Simulation

Finanzmathematische Modelle und Simulation Finanzmathematische Modelle und Simulation WS 9/1 Rebecca Henkelmann In meiner Ausarbeitung Grundbegriffe der Stochastik I, geht es darum die folgenden Begriffe für die nächsten Kapitel einzuführen. Auf

Mehr

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) :=

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := Definition 2.34. Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := x f(x)dx der Erwartungswert von X, sofern dieses Integral existiert. Entsprechend wird die Varianz V(X)

Mehr

Kapitel 8. Parameter multivariater Verteilungen. 8.1 Erwartungswerte

Kapitel 8. Parameter multivariater Verteilungen. 8.1 Erwartungswerte Kapitel 8 Parameter multivariater Verteilungen 8.1 Erwartungswerte Wir können auch bei mehrdimensionalen Zufallsvariablen den Erwartungswert betrachten. Dieser ist nichts anderes als der vektor der Erwartungswerte

Mehr

6. Multivariate Verfahren Übersicht

6. Multivariate Verfahren Übersicht 6. Multivariate Verfahren 6. Multivariate Verfahren Übersicht 6.1 Korrelation und Unabhängigkeit 6.2 Lineare Regression 6.3 Nichtlineare Regression 6.4 Nichtparametrische Regression 6.5 Logistische Regression

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Lageparameter: Erwartungswert d) Erwartungswert

Mehr

EINE EINFÜHRUNG IN COPULAS

EINE EINFÜHRUNG IN COPULAS EINE EINFÜHRUNG IN COPULAS Johanna Neslehova ETH Zürich Embrechts and Neslehova, 2006 1 The Perfect Storm Extreme, synchronized rises and falls in financial markets occur infrequently but they do occur.

Mehr

Einführung in die Maximum Likelihood Methodik

Einführung in die Maximum Likelihood Methodik in die Maximum Likelihood Methodik Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Gliederung 1 2 3 4 2 / 31 Maximum Likelihood

Mehr

Zusatzmaterial zur Vorlesung Statistik II

Zusatzmaterial zur Vorlesung Statistik II Zusatzmaterial zur Vorlesung Statistik II Dr. Steffi Höse Professurvertretung für Ökonometrie und Statistik, KIT Wintersemester 2011/2012 (Fassung vom 15.11.2011, DVI- und PDF-Datei erzeugt am 15. November

Mehr

UNIVERSITÄT POTSDAM Institut für Mathematik

UNIVERSITÄT POTSDAM Institut für Mathematik UNIVERSITÄT POTSDAM Institut für Mathematik Parametrische Schätzungen von elliptischen Copulafunktionen Diplomarbeit Olga Kuxhaus Mathematische Statistik und Wahrscheinlichkeitstheorie Universität Potsdam

Mehr

Stetige Standardverteilungen

Stetige Standardverteilungen Universität Basel Wirtschaftswissenschaftliches Zentrum Stetige Standardverteilungen Dr. Thomas Zehrt Inhalt: 1. Die stetige Gleichverteilung 2. Die Normalverteilung (a) Einstimmung (b) Standardisierung

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Karin Waldherr & Pantelis Christodoulides 11. Mai 2011 Waldherr / Christodoulides Einführung in Quantitative Methoden- 8.VO 1/40 Poisson-Verteilung Diese Verteilung

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Streuungsparameter Varianz Var(X) bzw. σ 2 : [x i E(X)] 2 f(x i ), wenn X diskret Var(X)

Mehr

Asymptotische Stochastik (SS 2010)

Asymptotische Stochastik (SS 2010) Institut für Stochastik PD. Dr. Dieter Kadelka Daniel Gentner Asymptotische Stochastik (SS 2010) Lösungen zu Übungsblatt 4 Aufgabe 1 (lokaler Grenzwertsatz von de Moivre und Laplace und eine Verallgemeinerung)

Mehr

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig) ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels

Mehr

Prof. Dr. Fred Böker

Prof. Dr. Fred Böker Statistik III WS 2004/2005; 8. Übungsblatt: Lösungen 1 Prof. Dr. Fred Böker 07.12.2004 Lösungen zum 8. Übungsblatt Aufgabe 1 Die Zufallsvariablen X 1 X 2 besitzen eine gemeinsame bivariate Normalverteilung

Mehr

Y = g 2 (U 1,U 2 ) = 2 ln U 1 sin 2πU 2

Y = g 2 (U 1,U 2 ) = 2 ln U 1 sin 2πU 2 Bsp. 72 (BOX MÜLLER Transformation) Es seien U 1 und U 2 zwei unabhängige, über dem Intervall [0, 1[ gleichverteilte Zufallsgrößen (U i R(0, 1), i = 1, 2), U = (U 1,U 2 ) T ein zufälliger Vektor. Wir betrachten

Mehr

2 Multivariate Normalverteilung

2 Multivariate Normalverteilung 2 Multivariate Normalverteilung 2. Multivariate Normalverteilung Definition 2.. Normalverteilung Eine univariat normalverteilte Zufallsvariable X besitzt ie Dichte ) (x µ)2 f (x) = exp ( x R. 2π σ 2σ 2

Mehr

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK vom 17. Juli 01 (Dauer: 90 Minuten) Übersicht über

Mehr

Theorie Parameterschätzung Ausblick. Schätzung. Raimar Sandner. Studentenseminar "Statistische Methoden in der Physik"

Theorie Parameterschätzung Ausblick. Schätzung. Raimar Sandner. Studentenseminar Statistische Methoden in der Physik Studentenseminar "Statistische Methoden in der Physik" Gliederung 1 2 3 Worum geht es hier? Gliederung 1 2 3 Stichproben Gegeben eine Beobachtungsreihe x = (x 1, x 2,..., x n ): Realisierung der n-dimensionalen

Mehr

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11.

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11. Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11 Namensschild Dr. Martin Becker Hinweise für die Klausurteilnehmer

Mehr

Übungsblatt 9. f(x) = e x, für 0 x

Übungsblatt 9. f(x) = e x, für 0 x Aufgabe 1: Übungsblatt 9 Basketball. Ein Profi wirft beim Training aus einer Entfernung von sieben Metern auf den Korb. Er trifft bei jedem Wurf mit einer Wahrscheinlichkeit von p = 1/2. Die Zufallsvariable

Mehr

Bootstrap-Methoden zur Ermittlung kritischer Werte für asymptotische FWER-Kontrolle

Bootstrap-Methoden zur Ermittlung kritischer Werte für asymptotische FWER-Kontrolle Bootstrap-Methoden zur Ermittlung kritischer Werte für asymptotische FWER-Kontrolle [Dudoit, van der Laan, Pollard: Multiple Testing. Part I Single-Step Procedures for Control of General Type-I-Error Rates]

Mehr

6.1 Definition der multivariaten Normalverteilung

6.1 Definition der multivariaten Normalverteilung Kapitel 6 Die multivariate Normalverteilung Wir hatten die multivariate Normalverteilung bereits in Abschnitt 2.3 kurz eingeführt. Wir werden sie jetzt etwas gründlicher behandeln, da die Schätzung ihrer

Mehr

Nr. 4: Pseudo-Zufallszahlengeneratoren

Nr. 4: Pseudo-Zufallszahlengeneratoren Proseminar: Finanzmathematische Modelle und Simulationen Martin Dieckmann WS 09/0 Nr. 4: Pseudo-Zufallszahlengeneratoren Begriff Pseudo-Zufallszahl Zufallszahlen im Rechner entstehen letztlich immer durch

Mehr

1. Die gemeinsame Dichtefunktion der Zufallsvariablen X,Y sei. 1 für 0 x 1 und 0 y 1 0 sonst. 1 Volumen über schraffierter Fläche = = 0.

1. Die gemeinsame Dichtefunktion der Zufallsvariablen X,Y sei. 1 für 0 x 1 und 0 y 1 0 sonst. 1 Volumen über schraffierter Fläche = = 0. Übungsbeispiele. Die gemeinsame Dichtefunktion der Zufallsvariablen X,Y sei { für und f(,) sonst (a) Skizzieren Sie die Dichtefunktion. f(,) (b) Berechnen Sie P(.5,.75) Lösung:.75 Volumen über schraffierter

Mehr

OLS-Schätzung: asymptotische Eigenschaften

OLS-Schätzung: asymptotische Eigenschaften OLS-Schätzung: asymptotische Eigenschaften Stichwörter: Konvergenz in Wahrscheinlichkeit Konvergenz in Verteilung Konsistenz asymptotische Verteilungen nicht-normalverteilte Störgrößen zufällige Regressoren

Mehr

Kapitel X - Randverteilung, bedingte Verteilung und Unabhängigkeit von Zufallsvariablen

Kapitel X - Randverteilung, bedingte Verteilung und Unabhängigkeit von Zufallsvariablen Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel X - Randverteilung, bedingte Verteilung und Unabhängigkeit von Zufallsvariablen

Mehr

Bestimmte Zufallsvariablen sind von Natur aus normalverteilt. - naturwissenschaftliche Variablen: originär z.b. Intelligenz, Körpergröße, Messfehler

Bestimmte Zufallsvariablen sind von Natur aus normalverteilt. - naturwissenschaftliche Variablen: originär z.b. Intelligenz, Körpergröße, Messfehler 6.6 Normalverteilung Die Normalverteilung kann als das wichtigste Verteilungsmodell der Statistik angesehen werden. Sie wird nach ihrem Entdecker auch Gaußsche Glockenkurve genannt. Die herausragende Stellung

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 2. Stock, Nordflügel R. 02-429 (Persike) R. 02-431 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psmet03.sowi.uni-mainz.de/

Mehr

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen David Geier und Sven Middelberg RWTH Aachen, Sommersemester 27 Inhaltsverzeichnis Information 2 Aufgabe 4 Aufgabe 2 6 4 Aufgabe

Mehr

Berichte aus der Statistik. Christian Köck. Multivariate Copula-Modelle für Finanzmarktdaten

Berichte aus der Statistik. Christian Köck. Multivariate Copula-Modelle für Finanzmarktdaten Berichte aus der Statistik Christian Köck Multivariate Copula-Modelle für Finanzmarktdaten Eine simulative und empirische Untersuchung D 29 (Diss. Universität Erlangen-Nurnberg) Shaker Verlag Aachen 2008

Mehr

Konvexe Menge. Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, d.h.

Konvexe Menge. Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, d.h. Konvexe Menge Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, dh Kapitel Extrema konvex: h x + h y D für alle h [0, ], und x,

Mehr

Mathematik für Naturwissenschaften, Teil 2

Mathematik für Naturwissenschaften, Teil 2 Lösungsvorschläge für die Aufgaben zur Vorlesung Mathematik für Naturwissenschaften, Teil Zusatzblatt SS 09 Dr. J. Schürmann keine Abgabe Aufgabe : Eine Familie habe fünf Kinder. Wir nehmen an, dass die

Mehr

10 Transformation von Zufallsvariablen

10 Transformation von Zufallsvariablen 10 Transformation von Zufallsvariablen Sei X : Ω R eine Zufallsvariable mit Verteilungsfunktion F X (x) = P(X < x). Wir betrachten eine Funktion g: R R und sei Zufallsvariable Y : Ω R mit Y = g(x). Y :

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Kapitel 9. Verteilungsmodelle. 9.1 Diskrete Verteilungsmodelle Die Gleichverteilung

Kapitel 9. Verteilungsmodelle. 9.1 Diskrete Verteilungsmodelle Die Gleichverteilung Kapitel 9 Verteilungsmodelle Es gibt eine Reihe von Verteilungsmodellen für univariate diskrete und stetige Zufallsvariablen, die sich in der Praxis bewährt haben. Wir wollen uns von diesen einige anschauen.

Mehr

Satz 104 (Skalierung exponentialverteilter Variablen)

Satz 104 (Skalierung exponentialverteilter Variablen) 2.3.1 Eigenschaften der Exponentialverteilung Satz 104 (Skalierung exponentialverteilter Variablen) Sei X eine exponentialverteilte Zufallsvariable mit dem Parameter λ. Für a > 0 ist die Zufallsvariable

Mehr

Kapitel 2 Wahrscheinlichkeitsrechnung

Kapitel 2 Wahrscheinlichkeitsrechnung Definition 2.77: Normalverteilung & Standardnormalverteilung Es sei µ R und 0 < σ 2 R. Besitzt eine stetige Zufallsvariable X die Dichte f(x) = 1 2 πσ 2 e 1 2 ( x µ σ ) 2, x R, so heißt X normalverteilt

Mehr

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion Kapitel 1 Stetige Zufallsvariablen 1.1. Dichtefunktion und Verteilungsfunktion stetig Verteilungsfunktion Trägermenge T, also die Menge der möglichen Realisationen, ist durch ein Intervall gegeben Häufig

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 5. Vorlesung Verteilungsfunktion (VF) Definition 9 Die Verteilungsfunktion (VF) einer Zufallsgröße X ist F : R R definiert als F (x) := P({ω Ω : X (ω) x}) = P( X x ) für jedes x R. Satz 9 - Eigenschaften

Mehr

2 Zufallsvariable und Verteilungsfunktionen

2 Zufallsvariable und Verteilungsfunktionen 8 2 Zufallsvariable und Verteilungsfunktionen Häufig ist es so, dass den Ausgängen eines Zufallexperiments, d.h. den Elementen der Ereignisalgebra, eine Zahl zugeordnet wird. Das wollen wir etwas mathematischer

Mehr

Multivariate Verfahren

Multivariate Verfahren Selbstkontrollarbeit 1 Multivariate Verfahren Musterlösung Aufgabe 1 (40 Punkte) Auf der dem Kurs beigelegten CD finden Sie im Unterverzeichnis Daten/Excel/ die Datei zahlen.xlsx. Alternativ können Sie

Mehr

Inhaltsverzeichnis. 1 Über dieses Buch Zum Inhalt dieses Buches Danksagung Zur Relevanz der Statistik...

Inhaltsverzeichnis. 1 Über dieses Buch Zum Inhalt dieses Buches Danksagung Zur Relevanz der Statistik... Inhaltsverzeichnis 1 Über dieses Buch... 11 1.1 Zum Inhalt dieses Buches... 13 1.2 Danksagung... 15 2 Zur Relevanz der Statistik... 17 2.1 Beispiel 1: Die Wahrscheinlichkeit, krank zu sein, bei einer positiven

Mehr

2 Zufallsvariable, Verteilungen, Erwartungswert

2 Zufallsvariable, Verteilungen, Erwartungswert 2 Zufallsvariable, Verteilungen, Erwartungswert Bisher: Zufallsexperimente beschrieben durch W-Räume (Ω, A, P) Häufig interessiert nur eine zufällige Größe X = X(ω), die vom Ergebnis ω des Zufallsexperiments

Mehr

K8 Stetige Zufallsvariablen Theorie und Praxis

K8 Stetige Zufallsvariablen Theorie und Praxis K8 Stetige Zufallsvariablen Theorie und Praxis 8.1 Theoretischer Hintergrund Wir haben (nicht abzählbare) Wahrscheinlichkeitsräume Meßbare Funktionen Zufallsvariablen Verteilungsfunktionen Dichten in R

Mehr

Verteilungen mehrerer Variablen

Verteilungen mehrerer Variablen Kapitel 3 Verteilungen mehrerer Variablen 3. Eigenschaften von Verteilungen mehrerer Variablen Im allgemeinen muss man Wahrscheinlichkeiten für mehrere Variable, die häufig auch voneinander abhängen, gleichzeitig

Mehr

VERTEILUNGEN VON FUNKTIONEN EINER ZUFALLSVARIABLEN

VERTEILUNGEN VON FUNKTIONEN EINER ZUFALLSVARIABLEN KAPITEL 15 VETEILUNGEN VON FUNKTIONEN EINE ZUFALLSVAIABLEN In diesem Kapitel geht es darum, die Verteilungen für gewisse Funktionen von Zufallsvariablen zu bestimmen. Wir werden uns auf den Fall absolut

Mehr

CERA - Klausur Quantitative Methoden des ERM

CERA - Klausur Quantitative Methoden des ERM CERA - Klausur Quantitative Methoden des ERM 3.05.0 Hinweise: Als Hilfsmittel ist ein Taschenrechner zugelassen. Die Gesamtpunktzahl beträgt 0. Die Klausur ist bestanden, wenn mindestens 48 Punkte erreicht

Mehr

70 Wichtige kontinuierliche Verteilungen

70 Wichtige kontinuierliche Verteilungen 70 Wichtige kontinuierliche Verteilungen 70. Motivation Zufallsvariablen sind nicht immer diskret, sie können oft auch jede beliebige reelle Zahl in einem Intervall [c, d] einnehmen. Beispiele für solche

Mehr

Nachteile: STD existiert nur für Verteilungen mit E(FL 2 ) <, d.h. nicht ansetzbar bei leptokurtischen ( fat tailed ) Verlustverteilungen;

Nachteile: STD existiert nur für Verteilungen mit E(FL 2 ) <, d.h. nicht ansetzbar bei leptokurtischen ( fat tailed ) Verlustverteilungen; Risikomaße basierend auf die Verlustverteilung Sei F L := F Ln+1 die Verteilung der Verlust L n+1. Die Parameter von F Ln+1 werden anhand von historischen Daten entweder direkt oder mit Hilfe der Risikofaktoren

Mehr

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung 2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung Die einfachste Verteilung ist die Gleichverteilung, bei der P(X = x i ) = 1/N gilt, wenn N die Anzahl möglicher Realisierungen von

Mehr

11.4 Korrelation. Def. 44 Es seien X 1 und X 2 zwei zufällige Variablen, für die gilt: 0 < σ X1,σ X2 < +. Dann heißt der Quotient

11.4 Korrelation. Def. 44 Es seien X 1 und X 2 zwei zufällige Variablen, für die gilt: 0 < σ X1,σ X2 < +. Dann heißt der Quotient 11.4 Korrelation Def. 44 Es seien X 1 und X 2 zwei zufällige Variablen, für die gilt: 0 < σ X1,σ X2 < +. Dann heißt der Quotient (X 1,X 2 ) = cov (X 1,X 2 ) σ X1 σ X2 Korrelationskoeffizient der Zufallsgrößen

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Wahrscheinlichkeitstheorie Kapitel X - Randverteilung, bedingte Verteilung und Unabhängigkeit von Zufallsvariablen

Wahrscheinlichkeitstheorie Kapitel X - Randverteilung, bedingte Verteilung und Unabhängigkeit von Zufallsvariablen Wahrscheinlichkeitstheorie Kapitel X - Randverteilung, bedingte Verteilung und Unabhängigkeit von Zufallsvariablen Georg Bol bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

Stochastik Praktikum Markov Chain Monte Carlo Methoden

Stochastik Praktikum Markov Chain Monte Carlo Methoden Stochastik Praktikum Markov Chain Monte Carlo Methoden Humboldt-Universität zu Berlin 14.10.2010 Problemstellung Wie kann eine Zufallsstichprobe am Computer simuliert werden, deren Verteilung aus einem

Mehr

4 Absolutstetige Verteilungen und Zufallsvariablen 215/1

4 Absolutstetige Verteilungen und Zufallsvariablen 215/1 4 Absolutstetige Verteilungen und Zufallsvariablen 215/1 23. Bemerkung Integralbegriffe für Funktionen f : R d R (i) Lebesgue-Integral (Vorlesung Analysis IV). Spezialfall: (ii) Uneigentliches Riemann-Integral

Mehr

Kapitel II Kontinuierliche Wahrscheinlichkeitsräume

Kapitel II Kontinuierliche Wahrscheinlichkeitsräume Kapitel II Kontinuierliche Wahrscheinlichkeitsräume 1. Einführung 1.1 Motivation Interpretation der Poisson-Verteilung als Grenzwert der Binomialverteilung. DWT 1.1 Motivation 211/476 Beispiel 85 Wir betrachten

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungen stetiger Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 4

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 4 TUM, Zentrum Mathematik Lehrstuhl für Mathematische Physik WS 3/4 Prof. Dr. Silke Rolles Thomas Höfelsauer Felizitas Weidner Tutoraufgaben: Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge

Mehr

DWT 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen 330/467 Ernst W. Mayr

DWT 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen 330/467 Ernst W. Mayr 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen Wir betrachten nun ein Verfahren zur Konstruktion von Schätzvariablen für Parameter von Verteilungen. Sei X = (X 1,..., X n ). Bei X

Mehr