Abb lokales Maximum und Minimum

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Abb lokales Maximum und Minimum"

Transkript

1 .13 Lokale Extrema, Monotonie und Konvexität Wir kommen nun zu den ersten Anwendungen der Dierentialrechnung. Zwischen den Eigenschaten einer Funktion, dem Verlau des zugehörigen Graphen und den Ableitungen dieser Funktion bestehen gewisse Zusammenhänge, die im Folgenden analytisch untersucht und geometrisch interpretiert werden sollen. Deinition.13.1: Sei : (a,b) IR eine Funktion. hat in x (a,b) ein lokales Maximum (Minimum), alls ein ε > existiert, so dass gilt: (x ) (x) (bzw. (x ) (x)) ür alle x mit x - x < ε. Trit in der letzten Zeile das Gleichheitszeichen nur ür x = x zu, so nennen wir x ein isoliertes lokales Maximum (Minimum). Neben dem lokalen Maximum bzw. Minimum gibt es das sogenannte absolute Minimum bzw. Maximum. Eine Funktion : D IR hat im Punkt x D ein absolutes Maximum bzw. Minimum, wenn ür alle x D. Abb lokales Maximum und Minimum (x ) x (bzw. (x ) x ) Extremum ist der gemeinsame Oberbegri ür Maximum und Minimum. Anstelle von lokalem Extremum spricht man auch von relativem Extremum.

2 Satz.13.1: Die Funktion : (a,b) IR besitze in x (a,b) ein lokales Extremum und sei an der Stelle x dierenzierbar, dann ist ( x) =. Anschaulich ist dieser Satz leicht einzusehen. Nehmen wir an, besitze im Punkt x ein lokales Maximum, dann muss beim "Anstieg zum Gipel" die Steigung der Tangenten in jedem Punkt des Graphen positiv sein. Beim "Abstieg vom Gipel" ist die Steigung der Tangenten natürlich negativ. Die Steigung der Tangenten wechselt also von positiv nach negativ und muss somit auch Abb..13. Tangentensteigung bei einem lokalen Maximum einmal gleich Null werden. Das ist aber au dem Gipel, d.h. beim Maximum der Fall. Der ormale Beweis dieses Satzes ist genauso einach. Beweis zu Satz.13.1: besitze in x ein lokales Maximum. Dann existiert ein ε >, so dass (x - ε,x + ε) (a,b) und Daraus olgt: (x) (x ) ür alle x (x - ε,x + ε). ( x + ) = lim x x ( x) x x ( x ) ( x) ( x ) und ( x ) = lim. x x x x Da in x dierenzierbar ist, gilt + ( x ) = ( x ) = ( x ); also muss ( x) = sein. Für ein lokales Minimum ist der Satz.13.1 analog zu beweisen. Bemerkung.13.1: (i) Die Bedingung ( x) = ist nur eine notwendige, aber keine hinreichende Bedingung ür ein lokales Extremum; d.h. aus ( x) = olgt nicht, dass an der Stelle x ein lokales Extremum hat. Für die Funktion : IR IR mit (x) = x 3 gilt z.b. ( ) =, sie besitzt aber in kein lokales Extremum (s. Abb..13.3). Abb..13.3: Kubische Funktion mit Ableitung

3 (ii) Mit der Bedingung ( x) = erhält man nur die möglichen Extremwerte im Inneren des Deinitonsbereiches. Wie wir wissen, nimmt jede stetige Funktion : [a,b] IR im abgeschlossenen Intervall [a,b] ihr absolutes Minimum oder Maximum an. Dieses Minimum oder Maximum liegt entweder im Inneren des Intervalls [a,b] oder am Rand. Um das absolute Maximum oder Minimum in einem abgeschlossenen Intervall zu ermitteln, müssen also die inneren Extremwerte mit den Randwerten verglichen werden. Beispielsweise nimmt die Funktion : [,1] IR, x ( x ) = x an der Stelle x = ihr absolutes Minimum und an der Stelle x = 1 ihr absolutes Maximum an. Wegen ( x) = 1, gibt es keine inneren Extremwerte. Satz.13.: Sei : [a,b] IR stetig und in (a,b) dierenzierbar. Wenn ür alle x (a,b) gilt: ( x) ( bzw. ( x) >, ( x), ( x) < ), so ist in [a,b] monoton wachsend (bzw. streng monoton wachsend, monoton allend, streng monoton allend). Satz.13.3: Sei : (a,b) IR eine dierenzierbare Funktion. An der Stelle x (a,b) sei zweimal dierenzierbar und es gelte ( x) = und ( x) > ( bzw. ( x o ) < ). Dann besitzt in x ein isoliertes lokales Minimum (bzw. Maximum). Beweis: Sei ( x) > (der Fall ( x) < ist analog zu beweisen). Da existiert ein ε >, so dass Da ( x) =, olgt daraus: x xo ( x ) = lim ( ) ( ) >, x x x x ( x) ( x ) >, ür alle x (x - ε,x + ε). x x ( x) < ü r x ( x ε, x ), ( x) > ü r x ( x, x + ε ).

4 Nach Satz.13. ist deshalb im Intervall (x - ε,x ) streng monoton allend und im Intervall (x,x + ε) streng monoton wachsend. Damit besitzt in x ein isoliertes Minimum. Bemerkung.13.: Der Satz.13.3 gibt nur eine hinreichende, aber nicht notwendige Bedingung ür ein isoliertes lokales Extremum. Die Funktion (x) = x 4 besitzt z.b. in x = ein isoliertes lokales Minimum. Es ist aber ( ) =. Für Funktionen, die genügend ot dierenzierbar sind, erhalten wir jedoch die olgende Aussage. Abb Graph der Funktion (x) = x 4 Satz.13.4: Die Funktion :[a,b] IR sei im oenen Intervall (a,b) mindestens n-mal dierenzierbar (n ). hat in x ein Extremum, wenn gilt: ( n 1) ( n n ist gerade und ( x ) = ( x) =... = ( x) =, aber ) ( x). Ist ( n ) ( x ) ( n <, so liegt ein isoliertes lokales Maximum vor, ist ) ( x) > ein isoliertes lokales Minimum. Deinition.13.: Sei I IR ein (endliches oder unendliches) Intervall. Eine Funktion : I IR heißt konvex, wenn ür alle x 1, x Ι und alle λ mit < λ < 1 gilt: (λx 1 + (1- λ)x ) λ(x 1 ) + (1 - λ)(x ). Die Funktion heißt konkav, wenn - konvex ist. Die angegebene Konvexitäts- Bedingung bedeutet ür (x 1 < x ), dass der Graph der Funktion im Intervall [x 1,x ] unterhalb der Sekante durch die Punkte (x 1,(x 1 )) und (x,(x )) liegt (s. Abb..13.5). Abb Graphische Darstellung der Konvexitätsbedingung

5 Satz.13.5 Sei I IR ein oenes Intervall und : I IR eine zweimal dierenzierbare Funktion. ist genau dann konvex, wenn ( x) ür alle x Ι Beispiel.13.1: x e e ür alle x IR. (ii) Die Logarithmus-Funktion ist au dem Intervall (,+ ) konkav, da 1 ( ln x) = <. x x (i) Die e-funktion ist konvex au dem Intervall (-,+ ), da ( ) = > Bemerkung.13.3 (i) Ist eine Funktion im Intervall I IR konvex (konkav), so beschreibt der Graph der Funktion im Intervall I eine Linkskurve (Rechtskurve). (ii) An einem Maximum hat der Graph einer Funktion eine Rechtskrümmung, an einem Minimum eine Linkskrümmung. Deinition.13.3: Sei : D IR eine Funktion. hat in x D einen Wendepunkt, wenn der Graph der Funktion sein Krümmungsverhalten ändert (z.b. Übergang von einer Rechts- in eine Linkskrümmung bzw. Wechsel konkav konvex). Satz.13.6: Sei : D IR im Punkt x D dreimal dierenzierbar und es gelte ( x ) = und ( x ), dann hat in x einen Wendepunkt. Ferner gilt: ( x) < Wechsel konvex konkav ( x) > Wechsel konkav konvex. Bemerkung.13.4: (i) Schreiben wir die Bedingung in Satz.13.6 als, ( ) x ) = und ( ) ( x ) ( dann erhalten wir mit Satz.13.3, dass an einem Wendepunkt die erste Ableitung der Funktion ein Extremum hat. Abb (x) = x 5

6 (ii) Der Satz.13.6 gibt nur eine hinreichende Bedingung ür einen Wendepunkt an. Die Funktion (x) = x 5 hat im Punkt x = einen Wendepunkt, es gilt aber ( ) =. Ähnlich wie beim lokalen Extremum, können wir auch hier ür hinreichend ot dierenzierbare Funktionen olgende Aussage machen Satz.13.7: Sei : D IR im Punkt x D mindestens n-mal dierenzierbar (n 3). hat in x einen Wendepunkt, wenn gilt: ( n ( x) = und die erste Ableitung mit ) ( x) ist von ungerader Ordnung. Auch hier gilt: ( n ) ( x ) < Wechsel konvex konkav ( n ) ( x ) > Wechsel konkav konvex. Deinition.13.4: Sei : D IR eine Funktion, die im Punkt x D dierenzierbar ist. hat in (x,(x )) einen Sattelpunkt, wenn in x D einen Wendepunkt hat und außerdem ( x ) = ist. Bemerkung.13.5: An einem Sattelpunkt (x,(x )) hat der -Graph nicht nur einen Extrempunkt, sondern berührt auch die x-achse im Punkt (x,). Demnach hat die Tangente an den -Graph im Sattelpunkt die Steigung Null, ist also zur x-achse parallel. Merke! Ein Sattelpunkt hat eine waagerechte Wendetangente. Beispiel.13.: (i) Wir betrachten die Funktion : IR IR, Es gilt: x ( x + 1) ( 5) ( 1) =, ( 1) =, ( 1) = 1. Abb Sattelpunkt An der Stelle x = -1 hat die Funktion demnach einen Sattelpunkt.

7 (ii) Gegeben sei die Funktion : IR IR, a. Für die ersten drei Ableitungen erhalten wir: ( x) = 3x 4x 15, ( x) = 6x 4, ( x) = 6. Untersuchen wir die Bedingungen ür einen Wendepunkt: 1. ( x) = 6x 4 = x = also =. 3. = 6 >. 3 3 ; Abb Wendepunkt der Funktion (x)=x 3 - x - 15x An der Stelle x = /3 hat die betrachtete Funktion somit einen Wendepunkt. Da ist 3 es kein Sattelpunkt. In den beiden Abbildungen.13.6 und.13.7 sieht man auch graphisch den Unterschied zwischen einem "einachen" Wendepunkt und einem Sattelpunkt. Die Übersicht au der olgenden Seite aßt die vorstehenden Ergebnisse zusammen. Dabei setzen wir voraus, dass die zu untersuchende Funktion genügend ot dierenzierbar ist.

8 Graph von Funktion Notwendig e Bedingung Kurve steigt im Intervall [a,b] Kurve ällt im Intervall [a,b] Rechtskrümmung im Intervall [a,b] Linkskrümmung im Intervall [a,b] Hochpunkt in (x,(x )) Tiepunkt in (x,(x )) Funktionswerte steigen in [a,b] (streng monoton wachsend) Funktionswerte allen in [a,b] (streng monoton allend) Links- Rechtskrümmung Wendepunkt in x konvex konkav Rechts- Linkskrümmung Wendepunkt in x konkav konvex Hinreichende Bedingung ( x) ( x) >, x (a,b) ( x) ( x) <, x (a,b) ist konkav in [a,b] ( x) ( x), x (a,b) ist konvex in [a,b] ( x) ( x), x (a,b) ( x) = ; lokales Maximum in ( x) = erste Ableitung mit x ( n ) ( x ) < ist von gerader Ordnung ( x) = ; lokales Minimum in ( x) = erste Ableitung mit x ( n ) ( x ) > ist von gerader Ordnung ( x) = ; ( x) = erste Ableitung mit ( n ) ( x ) < ist von ungerader Ordnung ( x) = ; ( x) = erste Ableitung mit ( n ) ( x ) > ist von ungerader Ordnung Achsenschnittpunkt Nullstelle (x ) = (x ) =

4. Anwendung der Differentialrechnung: Kurvendiskussion 4.1. Maxima und Minima einer Funktion.

4. Anwendung der Differentialrechnung: Kurvendiskussion 4.1. Maxima und Minima einer Funktion. 4. Anwendung der Differentialrechnung: Kurvendiskussion 4.1. Maxima und Minima einer Funktion. Definition 4.3. Es sei f : R D R eine auf D erklarte Funktion. Die Funktion f hat in a D eine globales oder

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 5 Anwendungen der Differentialrechnung 5.1 Maxima und Minima einer Funktion......................... 80 5.2 Mittelwertsatz.................................... 82 5.3 Kurvendiskussion..................................

Mehr

13 3. a) Uhrzeit Wasseranstieg (in cm pro Stunde)

13 3. a) Uhrzeit Wasseranstieg (in cm pro Stunde) 1 Funktionen als mathematische Modelle Noch it in Dierenzialrechnung? 1 1. a) Höhenänderung zwischen 0 m und 1 00 m (in der Horizontalen): ca. 800 m 600 m = 00 m durchschnittliche Änderungsrate im Intervall

Mehr

Kurvendiskussion. Mag. Mone Denninger 10. Oktober Extremwerte (=Lokale Extrema) 2. 5 Monotonieverhalten 3. 6 Krümmungsverhalten 4

Kurvendiskussion. Mag. Mone Denninger 10. Oktober Extremwerte (=Lokale Extrema) 2. 5 Monotonieverhalten 3. 6 Krümmungsverhalten 4 Mag. Mone Denninger 10. Oktober 2004 Inhaltsverzeichnis 1 Definitionsmenge 2 1.1 Verhalten am Rand und an den Lücken des Definitionsbereichs............................ 2 2 Nullstellen 2 3 Extremwerte

Mehr

Da der Nenner immer positiv ist, folgt. g (x) > 0 2x(2 x) > 0 0 < x < 2 g (x) < 0 2x(2 x) < 0 x < 0 oder x > 2

Da der Nenner immer positiv ist, folgt. g (x) > 0 2x(2 x) > 0 0 < x < 2 g (x) < 0 2x(2 x) < 0 x < 0 oder x > 2 Da der Nenner immer positiv ist, folgt g (x) > 0 x( x) > 0 0 < x < g (x) < 0 x( x) < 0 x < 0 oder x > Also ist g auf (0,) streng monoton wachsend sowie auf (,0) und auf (, ) strengmonotonfallend.außerdemistg

Mehr

Mathematik I Herbstsemester 2014 Kapitel 4: Anwendungen der Differentialrechnung

Mathematik I Herbstsemester 2014 Kapitel 4: Anwendungen der Differentialrechnung Mathematik I Herbstsemester 2014 Kapitel 4: Anwendungen der Differentialrechnung www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

Funktionen untersuchen

Funktionen untersuchen Funktionen untersuchen Mögliche Fragestellungen Definition: lokale und globale Extrema Monotonie und Extrema Notwendige Bedingung für Extrema Hinreichende Kriterien, Vergleich Krümmungsverhalten Neumann/Rodner

Mehr

1 Die zweite Ableitung

1 Die zweite Ableitung Schülerbuchseite 5 Lösungen vorläuig und deren Graphen Die zweite Ableitung S. Um den Graphen der Ableitung zu skizzieren, sucht man zuerst die Punkte mit waagrechten Tangenten. so erhält man die Nullstellen

Mehr

Tiefpunkt = relatives Minimum hinreichende Bedingung:

Tiefpunkt = relatives Minimum hinreichende Bedingung: R. Brinkmann http://brinkmann-du.de Seite 1 0.0.01 Kurvendiskussion Vorbetrachtungen Um den Graphen einer Funktion zeichnen und interpretieren zu können, ist es erforderlich einiges über markante Punkte

Mehr

Dierentialrechnung mit einer Veränderlichen

Dierentialrechnung mit einer Veränderlichen Dierentialrechnung mit einer Veränderlichen Beispiel: Sei s(t) die zum Zeitpunkt t zurückgelegte Wegstrecke. Dann ist die durchschnittliche Geschwindigkeit zwischen zwei Zeitpunkten t 1 und t 2 gegeben

Mehr

Basistext Kurvendiskussion

Basistext Kurvendiskussion Basistext Kurvendiskussion In einer Kurvendiskussion sollen zu einer vorgegebenen Funktion (bzw. Funktionsschar) Aussagen über ihrem Verlauf gemacht werden. Im Nachfolgenden werden die einzelnen Untersuchungspunkte

Mehr

Mathemathik-Prüfungen

Mathemathik-Prüfungen M. Arend Stand Juni 2005 Seite 1 1980: Mathemathik-Prüfungen 1980-2005 1. Eine zur y-achse symmetrische Parabel 4.Ordnung geht durch P 1 (0 4) und hat in P 2 (-1 1) einen Wendepunkt. 2. Diskutieren Sie

Mehr

Wendepunkte. Jutta Schlumberger

Wendepunkte. Jutta Schlumberger Wendepunkte Jutta Schlumberger Ausarbeitung zum Vortrag im Proseminar Überraschungen und Gegenbeispiele in der Analysis (Sommersemester 2009, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: In dieser Ausarbeitung

Mehr

23 Konvexe Funktionen und Ungleichungen

23 Konvexe Funktionen und Ungleichungen 23 Konvexe Funktionen und Ungleichungen 231 Konvexe Funktionen 232 Kriterien für Konvexität 233 Streng konvexe Funktionen 235 Wendepunkte 237 Ungleichung von Jensen 2310 Höldersche Ungleichung 2311 Minkowskische

Mehr

Aufgaben zum Aufstellen von Funktionen aus gegebenen Bedingungen

Aufgaben zum Aufstellen von Funktionen aus gegebenen Bedingungen Augaben zum Austellen von Funktionen aus gegebenen Bedingungen 1. Die Parabel Gp ist der Graph der quadratischen Funktion p(. Diese Parabel schneidet die x-achse im Punkt N(6/0). Ihr Scheitelpunkt S(/yS)

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

6. ANWENDUNGEN DER ABLEITUNG

6. ANWENDUNGEN DER ABLEITUNG 48 Dieses Skript ist ein Auszug mit Lücken aus Einführung in die mathematische Behandlung der Naturwissenschaften I von Hans Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie das Buch auch

Mehr

I. Verfahren mit gebrochen rationalen Funktionen:

I. Verfahren mit gebrochen rationalen Funktionen: I. Verfahren mit gebrochen rationalen Funktionen: 1. Definitionslücken bestimmen: Nenner wird gleich 0 gesetzt! 2. Prüfung ob eine hebbare Definitionslücke vorliegt: Eine hebbare Definitionslücke liegt

Mehr

von Prof. Dr. Ing. Dirk Rabe Hochschule Emden/Leer

von Prof. Dr. Ing. Dirk Rabe Hochschule Emden/Leer von Prof. Dr. Ing. Dirk Rabe Hochschule Emden/Leer Überblick Tangentensteigung einer Funktion Extremstellen Sattelstellen Extremstellen: notwendige und hinreichende Bedingung lokale bzw. relative und absolute

Mehr

1 Höhere Ableitungen 2. 2 Mittelwertsatz und Monotonie 3. 3 Konvexe und konkave Funktionen 5. 4 Lokale und globale Extremalstellen 7

1 Höhere Ableitungen 2. 2 Mittelwertsatz und Monotonie 3. 3 Konvexe und konkave Funktionen 5. 4 Lokale und globale Extremalstellen 7 Universität Basel 4 Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematik 1 Dr. Thomas Zehrt Kurvendiskussionen Inhaltsverzeichnis 1 Höhere Ableitungen 2 2 Mittelwertsatz und

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 5 6. Semester ARBEITSBLATT 5. Kurvendiskussion

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 5 6. Semester ARBEITSBLATT 5. Kurvendiskussion ARBEITSBLATT 5 Kurvendiskussion Die mathematische Untersuchung des Graphen einer Funktion heißt Kurvendiskussion. Die Differentialrechnung liefert dabei wichtige Dienste. Intuitive Erfassung der Begriffe

Mehr

7.9. Kurvendiskussion

7.9. Kurvendiskussion 7.9. Kurvendiskussion Bei der systematischen Untersuchung einer gegebenen Funktion und der durch sie dargestellten Kurve interessiert man sich vor allem für die folgenden Charakteristika, die einen guten

Mehr

Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x.

Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x. Skripten für die Oberstufe Kurvendiskussion x 3 f (x) x f (x)dx = e x H. Drothler 0 www.drothler.net Kurvendiskussion Zusammenfassung Seite Um Funktionsgraphen möglichst genau zeichnen zu können, werden

Mehr

Monotonie, Konkavität und Extrema

Monotonie, Konkavität und Extrema Kapitel 8 Monotonie, Konkavität und Extrema Josef Leydold Auffrischungskurs Mathematik WS 2017/18 8 Monotonie, Konkavität und Extrema 1 / 55 Monotonie Eine Funktion f heißt monoton steigend, falls x 1

Mehr

Kurvendiskussion. Gesetzmäßigkeiten. Lineare Funktionen. Funktionsgleichung

Kurvendiskussion. Gesetzmäßigkeiten. Lineare Funktionen. Funktionsgleichung Kurvendiskussion Gesetzmäßigkeiten Lineare Funktionen Funktionsgleichung y = mx + c m: Steigung c: y-achsenabschnitt (Funktionswert für y, bei dem der Graph die y-achse schneidet Beispiel : y = x 3 mit

Mehr

3.3 Linkskurve, Rechtskurve Wendepunkte

3.3 Linkskurve, Rechtskurve Wendepunkte 166 FUNKTIONSUNTERSUCHUNGEN 3.3 Linkskurve, Rechtskurve Wendepunkte Einführung (1) Anschauliche Erklärung des Begriffs Wendepunkt Bei Motorradrennen lässt sich beobachten, wie sich die Motorradfahrer beim

Mehr

( 0 ( x) d) Die Funktionsgleichung der Funktion 1 lautet: f( Für x 2 = 0 : Wähle die Werte -1 und 1. Überprüfe x1 = 1,

( 0 ( x) d) Die Funktionsgleichung der Funktion 1 lautet: f( Für x 2 = 0 : Wähle die Werte -1 und 1. Überprüfe x1 = 1, Differentialrechnung IV (Wendepunkte) (Kap 7) (Haben Sie Probleme bei der Bearbeitung dieser Aufgaben versuchen Sie diese in Ihrer Kleingruppe mit Hilfe des Arbeitsbuchs Mathematik zu klären Führt dies

Mehr

2 Wiederholung der Ableitungsregeln und höhere Ableitungen

2 Wiederholung der Ableitungsregeln und höhere Ableitungen 2 Wiederholung der Ableitungsregeln und höhere Ableitungen In der Abbildung sehen Sie die Graphen der Funktionen f und g mit f (x) = x 2 und g (x) = _ 1 x 2 4 sowie die Graphen der Ableitungsfunktionen

Mehr

Station 1: Funktionen beschreiben

Station 1: Funktionen beschreiben Station 1: Funktionen beschreiben Betrachte folgende Funktion und versuche, die unten gestellten Fragen zu beantworten. Bei jeder Antwortmöglichkeit steht ein Buchstabe, den du in die dafür vorgesehenen

Mehr

5.5. Prüfungsaufgaben zur graphischen Integration und Differentiation

5.5. Prüfungsaufgaben zur graphischen Integration und Differentiation 5.5. Prüfungsaufgaben zur graphischen Integration und Differentiation Aufgabe : Verschiebung und Streckung trigonometrischer Funktionen (5) a) Bestimmen Sie die Periode p sowie die Nullstellen der Funktion

Mehr

GF MA Differentialrechnung A2

GF MA Differentialrechnung A2 Kurvendiskussion Nullstellen: Für die Nullstellen x i ( i! ) einer Funktion f gilt: Steigen bzw. Fallen: f ( x i ) = 0 f '( x) > 0 im Intervall I f ist streng monoton wachsend in I f '( x) < 0 im Intervall

Mehr

Hauptprüfung Fachhochschulreife Baden-Württemberg

Hauptprüfung Fachhochschulreife Baden-Württemberg Hauptprüung Fachhochschulreie 204 Baden-Württemberg Augabe 2 Analysis Hilsmittel: graikähiger Taschenrechner Beruskolleg Alexander Schwarz www.mathe-augaben.com September 204 Gegeben ist die Funktion mit

Mehr

existiert (endlich oder unendlich). f x h f x Dableitbar, wenn sie in jedem Punkt aus E ableitbar ist. f x h f x ':, ' lim

existiert (endlich oder unendlich). f x h f x Dableitbar, wenn sie in jedem Punkt aus E ableitbar ist. f x h f x ':, ' lim Ableitbare Funktionen. Ableitungen De. Sei die Funktion : D und Dein Häuungspunkt. Die Funktion ist genau dann an der Stelle eistiert und endlich ist. Die Funktion hat genau dann an der Stelle Grenzwert

Mehr

Zusammenfassung der Kurvendiskussion

Zusammenfassung der Kurvendiskussion Zusammenfassung der Kurvendiskussion Diskussionspunkte 1 Größtmögliche Definitionsmenge D f 2 Symmetrieeigenschaften des Graphen G f 3 Nullstellen, Polstellen, Schnittpunkte mit der y-achse, Vielfachheit

Mehr

Lösungen zu den Vermischten Aufgaben Kapitel 5

Lösungen zu den Vermischten Aufgaben Kapitel 5 Band 10 - Einführungsphase NRW Lösungen zu den Vermischten Aufgaben Kapitel 5 1. Qualitative Skizzen der Füllgraphen (oben) und der zugehörigen Geschwindigkeitsgraphen (unten). a) b) c) d). a) IV) b) II)

Mehr

x 1 keinen rechtsseitigen Grenzwert x 0+ besitzen. (Analog existiert der linksseitige Grenzwert nicht.)

x 1 keinen rechtsseitigen Grenzwert x 0+ besitzen. (Analog existiert der linksseitige Grenzwert nicht.) Differentialrechnung 1 Grenzwerte Gegeben sei ein Intervall I R, a I {, } und f : I\{a} R. Die Funktion f kann sehr wohl auch an der Stelle x = a erklärt sein, wir wollen aber nur wissen wie sich die Funktion

Mehr

4 x x kleinste6 Funktionswert für alle x aus einer Umgebung von x 1 ist.

4 x x kleinste6 Funktionswert für alle x aus einer Umgebung von x 1 ist. Differenzialrechnung 51 1.2.2 Etrempunkte Die Funktion f mit f () = 1 12 3 7 4 2 + 10 + 17 3 beschreibt näherungsweise die wöch entlichen Verkaufszahlen von Rasenmähern. Dabei ist die Zeit in Wochen nach

Mehr

Ableitungsfunktion einer linearen Funktion

Ableitungsfunktion einer linearen Funktion Ableitungsfunktion einer linearen Funktion Aufgabennummer: 1_009 Prüfungsteil: Typ 1! Typ 2 " Aufgabenformat: Konstruktionsformat Grundkompetenz: AN 3.1! keine Hilfsmittel! gewohnte Hilfsmittel möglich

Mehr

Analysis: Klausur Analysis

Analysis: Klausur Analysis Analysis Klausur zu Ableitung, Extrem- und Wendepunkten, Interpretation von Graphen von Ableitungsfunktionen, Tangenten und Normalen (Bearbeitungszeit: 90 Minuten) Gymnasium J Alexander Schwarz www.mathe-aufgaben.com

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Funktionen mehrerer Variabler Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Funktionen mehrerer Variabler Übersicht Funktionsbegriff 1 Funktionsbegriff Beispiele Darstellung Schnitte 2 Partielle Ableitungen

Mehr

Taylor-Entwicklung der Exponentialfunktion.

Taylor-Entwicklung der Exponentialfunktion. Taylor-Entwicklung der Exponentialfunktion. Betrachte die Exponentialfunktion f(x) = exp(x). Zunächst gilt: f (x) = d dx exp(x) = exp(x). Mit dem Satz von Taylor gilt um den Entwicklungspunkt x 0 = 0 die

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik

Mehr

1.3 Berechnen Sie die Koordinaten der Wendepunkte des Schaubildes der Funktion f mit f( x) x 6x 13

1.3 Berechnen Sie die Koordinaten der Wendepunkte des Schaubildes der Funktion f mit f( x) x 6x 13 Musteraufgaben ab 08 Pflichtteil Aufgabe Seite / BEISPIEL A. Geben Sie Lage und Art der Nullstellen der Funktion f mit f( x) ( x ) ( x ) ; x IR an.. Bestimmen Sie die Gleichung der Tangente in P( f ())

Mehr

(Unvollständige) Zusammenfassung Analysis Grundkurs

(Unvollständige) Zusammenfassung Analysis Grundkurs (Unvollständige) Zusammenfassung Analysis Grundkurs. Ableitungs und Integrationsregeln (Folgende 0 Funktionen sind alles Funktionen aus dem Zentralabitur Grundkurs.) a) f(t) = 0,0t e 0,t b) f(t) = t 3

Mehr

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf.

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Arbeitsblätter zur Vergleichsklausur EF Arbeitsblatt I.1 Nullstellen Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Beachte den Satz: Ein Produkt wird null, wenn einer der

Mehr

Extrempunkte eine Einführung

Extrempunkte eine Einführung Extrempunkte eine Einführung Kurzer Überblick Grundsätzlich ist ein Extrempunkt der entweder ein Hochpunkt oder ein Tiefpunkt sein kann ein Punkt am Graphen einer Funktion, dessen Wert (y- Koordinate)

Mehr

Konvexe Menge. Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, d.h.

Konvexe Menge. Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, d.h. Konvexe Menge Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, dh Kapitel Extrema konvex: h x + h y D für alle h [0, ], und x,

Mehr

Im Falle einer zweimal differenzierbaren Funktion lässt sich das Krümmungsverhalten anhand der zweiten Ableitung feststellen.

Im Falle einer zweimal differenzierbaren Funktion lässt sich das Krümmungsverhalten anhand der zweiten Ableitung feststellen. Konvex, Konkav, Wendepunkt: Sei f : D R eine Funktion und sei I D ein Intervall. Gilt für alle x 1,x 2 I f ( x1 +x ) 2 2 f(x 1)+f(x 2 ), 2 dann heißt f konvex (linksgekrümmt) in I. Gilt für alle x 1,x

Mehr

ARBEITSBLATT 6-5. Kurvendiskussion

ARBEITSBLATT 6-5. Kurvendiskussion ARBEITSBLATT 6-5 Kurvendiskussion Die mathematische Untersuchung des Graphen einer Funktion heißt Kurvendiskussion. Die Differentialrechnung liefert dabei wichtige Dienste. Intuitive Erfassung der Begriffe

Mehr

Übungsaufgaben zur Kurvendiskussion

Übungsaufgaben zur Kurvendiskussion SZ Neustadt Mathematik Torsten Warncke FOS 12c 30.01.2008 Übungsaufgaben zur Kurvendiskussion 1. Gegeben ist die Funktion f(x) = x(x 3) 2. (a) Untersuchen Sie die Funktion auf Symmetrie. (b) Bestimmen

Mehr

2 Differenzialrechnung für Funktionen einer Variablen

2 Differenzialrechnung für Funktionen einer Variablen 2 Differenzialrechnung für Funktionen einer Variablen Ist f eine ökonomische Funktion, so ist oft wichtig zu wissen, wie sich die Funktion bei kleinen Änderungen verhält. Beschreibt etwa f einen Wachstumsprozess,

Mehr

Beispielklausur für zentrale Klausuren

Beispielklausur für zentrale Klausuren Seite von 5 Beispielklausur für zentrale Klausuren Mathematik Aufgabenstellung Gegeben ist die Funktion f mit f ( = 0,5 x 4,5 x + x 9. Die Abbildung zeigt den zu f gehörigen Graphen. Abbildung a) Ermitteln

Mehr

Mathematik für Wirtschaftswissenschaftler Kapitel 4-6. Universität Trier Wintersemester 2013 / 2014

Mathematik für Wirtschaftswissenschaftler Kapitel 4-6. Universität Trier Wintersemester 2013 / 2014 Mathematik für Kapitel 4-6 Universität Trier Wintersemester 2013 / 2014 Kapitel 4 1. Extremwerte 2. Lokale Optimalpunkte 3. Wendepunkte 2 Kapitel 4.1 EXTREMWERTE 3 Extrempunkte und Extremwerte 4 Strikte

Mehr

Taylor-Entwicklungen und Taylor-Polynome.

Taylor-Entwicklungen und Taylor-Polynome. Taylor-Entwicklungen und Taylor-Polynome. Ausgangsfrage: Wie kann manf(x) in der Nähe vonx 0 approximieren? 0. Antwort:f(x) f(x 0 ) fürx x 0. 1. Antwort: Ist f differenzierbar, so gilt f(x) = f(x 0 )+f

Mehr

Lösungen der Aufgaben zu Kapitel 9

Lösungen der Aufgaben zu Kapitel 9 Lösungen der Aufgaben zu Kapitel 9 Abschnitt 9. Aufgabe a) Wir bestimmen die ersten Ableitungen von f, die uns dann das Aussehen der k-ten Ableitung erkennen lassen: fx) = x + e x xe x, f x) = e x e x

Mehr

Mathematische Behandlung der Natur- und Wirtschaftswissenschaften I. f(x) := e x + x.

Mathematische Behandlung der Natur- und Wirtschaftswissenschaften I. f(x) := e x + x. Technische Universität München WS 009/0 Fakultät für Mathematik Prof. Dr. J. Edenhofer Dipl.-Ing. W. Schultz Übung Lösungsvorschlag Mathematische Behandlung der Natur- und Wirtschaftswissenschaften I Aufgabe

Mehr

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0!

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 25.02.2004 Aufgabe 5 Gegeben ist die Funktion f(x) = 2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 06.08.2003 Aufgabe 5 Gegeben ist

Mehr

Mathe-Abitur ab 2004: Fundus für den Pflichtbereich Lösungen (1)

Mathe-Abitur ab 2004: Fundus für den Pflichtbereich Lösungen (1) Mathe-Abitur ab 24: Fundus für den Pflichtbereich Lösungen () Die Autoren übernehmen keine Garantie für die Richtigkeit der Lösungen. Auch wurde sicher nicht immer der kürzeste und eleganteste Lösungsweg

Mehr

Hinweis: Dieses Aufgabeblatt enthält auch Teilaufgaben zum grafischen Integrieren. Tipp: NEW-Regel anwenden für alle Aufgaben.

Hinweis: Dieses Aufgabeblatt enthält auch Teilaufgaben zum grafischen Integrieren. Tipp: NEW-Regel anwenden für alle Aufgaben. Dokument mit 33 Aufgaben Hinweis: Dieses Aufgabeblatt enthält auch Teilaufgaben zum grafischen Integrieren. Tipp: NEW-Regel anwenden für alle Aufgaben. Aufgabe A1 gegründet Stellung. (1) besitzt im Intervall

Mehr

5.5. Abituraufgaben zu ganzrationalen Funktionen

5.5. Abituraufgaben zu ganzrationalen Funktionen .. Abituraufgaben zu ganzrationalen Funktionen Aufgabe : Kurvendiskussion, Fläche zwischen zwei Schaubildern () Untersuchen Sie f(x) x x und g(x) x auf Symmetrie, Achsenschnittpunkte, Extrempunkts sowie

Mehr

Heinrich-Hertz-Oberschule, Berlin

Heinrich-Hertz-Oberschule, Berlin Reellwertige Funktionen mehrerer Variabler Teilnehmer: Maximilian Ringleb Jakob Napiontek Kay Makowsky Mallku Schlagowski Trung Duc Nguyen Alexander Reinecke Herder-Oberschule, Berlin Heinrich-Hertz-Oberschule,

Mehr

Grundfunktion Wendepunkt Extrempunkt Nullstelle 1. Ableitung Extrempunkt Nullstelle - 2. Ableitung Nullstelle - -

Grundfunktion Wendepunkt Extrempunkt Nullstelle 1. Ableitung Extrempunkt Nullstelle - 2. Ableitung Nullstelle - - KURVENDISKUSSION Vorüberlegungen Die Kurvendiskussion ist ein wichtiges Teilgebiet der Mathematik, das speziell für die Matura von großer Bedeutung ist. Dabei untersucht man einen Graphen auf dessen geometrische

Mehr

Beispielklausur für zentrale Klausuren Mathematik Unterlagen für die Lehrkraft - Modelllösungen

Beispielklausur für zentrale Klausuren Mathematik Unterlagen für die Lehrkraft - Modelllösungen ZK M A (mit CAS) Seite von 5 Nr. Beispielklausur für zentrale Klausuren Mathematik Unterlagen für die Lehrkraft - Modelllösungen Punkte a Nullstellen von f: f ( = 0 x = x = x = + Lokale Extrempunkte:,7

Mehr

Mathematik I ITB. Funktionen mit mehreren reellen Variablen. Prof. Dr. Karin Melzer

Mathematik I ITB. Funktionen mit mehreren reellen Variablen. Prof. Dr. Karin Melzer Funktionen mit mehreren reellen Variablen 11.05.09 Beispiel: Funktionsgebirge Das Beispiel zeigt die Funktion z = y sin(x 2 ) Schnittkurven: Beispiel Kegelschnitte Schnittkurve: Kurve, die aus dem Schnitt

Mehr

LMU MÜNCHEN. Mathematik für Studierende der Biologie Wintersemester 2016/17. GRUNDLAGENTUTORIUM 5 - Lösungen. Anmerkung

LMU MÜNCHEN. Mathematik für Studierende der Biologie Wintersemester 2016/17. GRUNDLAGENTUTORIUM 5 - Lösungen. Anmerkung LMU MÜNCHEN Mathematik für Studierende der Biologie Wintersemester 2016/17 GRUNDLAGENTUTORIUM 5 - Lösungen Anmerkung Es handelt sich hierbei um eine Musterlösung so wie es von Ihnen in einer Klausur erwartet

Mehr

Rückblick auf die letzte Vorlesung. Bemerkung

Rückblick auf die letzte Vorlesung. Bemerkung Bemerkung 1) Die Bedingung grad f (x 0 ) = 0 T definiert gewöhnlich ein nichtlineares Gleichungssystem zur Berechnung von x = x 0, wobei n Gleichungen für n Unbekannte gegeben sind. 2) Die Punkte x 0 D

Mehr

differenzierbare Funktionen

differenzierbare Funktionen Kapitel IV Differenzierbare Funktionen 18 Differenzierbarkeit und Rechenregeln für differenzierbare Funktionen 19 Mittelwertsätze der Differentialrechnung mit Anwendungen 20 Gleichmäßige Konvergenz von

Mehr

Differenzialrechnung. Mathematik-Repetitorium

Differenzialrechnung. Mathematik-Repetitorium Differenzialrechnung 5.1 Die Ableitung 5.2 Differentiation elementarer Funktionen 5.3 Differentiationsregeln 5.4 Höhere Ableitungen 5.5 Partielle Differentiation 5.6 Anwendungen Differenzialrechnung 1

Mehr

Didaktik der Mathematik der Sekundarstufe II

Didaktik der Mathematik der Sekundarstufe II Didaktik der Mathematik der Sekundarstufe II Teil 8: Satz von Rolle - Mittelwertsatz - Monotoniekriterium Humboldt-Universität zu Berlin, Institut für Mathematik Sommersemester 2010/11 Internetseite zur

Mehr

Differenzialrechnung

Differenzialrechnung Mathe Differenzialrechnung Differenzialrechnung 1. Grenzwerte von Funktionen Idee: Gegeben eine Funktion: Gesucht: y = f(x) lim f(x) = g s = Wert gegen den die Funktion streben soll (meist 0 oder ) g =

Mehr

1 Q12: Lösungen bsv 2.2

1 Q12: Lösungen bsv 2.2 Q: Lösungen bsv... 3. 4. Graphisches Bestimmen einer Integralfunktion a) Nullstellen (laut Graph): x = 0; x = VZT x < 0 x = 0 0 < x < x > f(x) - 0 + 0 - G Io TIP HOP b) Aus der Abbildung ergibt sich: VZT

Mehr

Abkürzungen & Begriffe

Abkürzungen & Begriffe A Bedeutungen Abkürzungen & Begriffe Abzisse ist ein normaler x-wert [ Ordinate] arcsin, arccos, arctan sind die korrekten Bezeichnungen für: sin -, cos -, tan -. [Die üblichen Bezeichnungen sin -, cos

Mehr

Differentialrechnung

Differentialrechnung Differentialrechnung Um Funktionen genauer zu untersuchen bzw. sie zu analysieren, ist es notwenig, etwas über ihren Verlauf, as qualitative Verhalten er Funktion, sagen zu können. Das heisst, wir suchen

Mehr

Alte Klausuraufgaben zu Kapitel 8

Alte Klausuraufgaben zu Kapitel 8 1 Alte Klausuraufgaben zu Kapitel 8 (WS 2002/03 - III 2013) von Prof. Dr. Fred Böker Institut für Statistik und Ökonometrie Universität Göttingen Platz der Göttinger Sieben 5 37073 Göttingen Tel. 0551-394604;

Mehr

Übungen mit dem Applet Grundfunktionen und ihre Ableitungen

Übungen mit dem Applet Grundfunktionen und ihre Ableitungen Grundfunktionen und ihre Ableitungen 1 Übungen mit dem Applet Grundfunktionen und ihre Ableitungen 1 Ziele des Applets... Überblick über die Funktionen....1 Sinusfunktion y = f(x) = a sin(bx + c).... Cosinusfunktion

Mehr

Aufgabenanalyse Pflichtaufgabe 2 Ganzrationale Funktionen Seite 1 von 10

Aufgabenanalyse Pflichtaufgabe 2 Ganzrationale Funktionen Seite 1 von 10 Aufgabenanalyse Pflichtaufgabe Ganzrationale Funktionen Seite von Allgemeines zur Aufgabenstellung: Die Aufgabenstellung gibt in der Regel eine kubische Funktion in ihrer allgemeinen Form oder in ihrer

Mehr

Univariate Analysis. Analysis und nichtlineare Modelle Sommersemester

Univariate Analysis. Analysis und nichtlineare Modelle Sommersemester Analysis und nichtlineare Modelle Sommersemester 9 5 Univariate Analysis C. Berechnen Sie ohne Taschenrechner(!). Runden Sie die Ergebnisse auf ganze Zahlen. (a) 7 :, (b) 795 :.. Berechnen Sie ohne Taschenrechner(!):

Mehr

Kurvendiskussion einer ganzrationalen Funktion

Kurvendiskussion einer ganzrationalen Funktion Kurvendiskussion einer ganzrationalen Funktion Lernzuflucht 24. November 20 L A TEX M. Neumann Folgende Funktion soll in einer Kurvendiskussion bearbeitet werden: f(x) = x 4 2x 2 ; D = R () Diese Funktion

Mehr

KOMPETENZHEFT ZUM DIFFERENZIEREN, II. d) s(x) = 5 x x e) k(x) = 2 x 3. f) q(x) = 4 x 3 6 x 2 24 x + 31

KOMPETENZHEFT ZUM DIFFERENZIEREN, II. d) s(x) = 5 x x e) k(x) = 2 x 3. f) q(x) = 4 x 3 6 x 2 24 x + 31 KOMPETENZHEFT ZUM DIFFERENZIEREN, II 1. Aufgabenstellungen Aufgabe 1.1. Berechne die Punkte, an denen die Funktion eine waagrechte Tangente besitzt, sowie das globale Minimum bzw. Maximum der Funktion

Mehr

Aufgaben für Analysis in der Oberstufe. Robert Rothhardt

Aufgaben für Analysis in der Oberstufe. Robert Rothhardt Aufgaben für Analysis in der Oberstufe Robert Rothhardt 14. Juni 2011 2 Inhaltsverzeichnis 1 Modellierungsaufgaben 5 1.1 Musterabitur S60................................ 5 1.2 Musterabitur 3.1.4 B / S61..........................

Mehr

Wichtige Klassen reeller Funktionen

Wichtige Klassen reeller Funktionen 0 Wichtige Klassen reeller Funktionen Monotone Funktionen sind i.a. unstetig, aber man kann etwas über das Grenzwertverhalten aussagen, wenn man nur einseitige Grenzwerte betrachtet. Definition 0. : Sei

Mehr

)e2 (3 x2 ) a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen Sie das Verhalten von f für x.

)e2 (3 x2 ) a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen Sie das Verhalten von f für x. Analysis Aufgabe aus Abiturprüfung Bayern GK (abgeändert). Gegeben ist die Funktion f(x) = ( x )e ( x ). a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen

Mehr

und geben Sie die Gleichungen und Art aller Asymptoten an. an, bestimmen Sie die Koordinaten der Achsenschnittpunkte von G f auflösen x x 2 2 ( 2/ 0)

und geben Sie die Gleichungen und Art aller Asymptoten an. an, bestimmen Sie die Koordinaten der Achsenschnittpunkte von G f auflösen x x 2 2 ( 2/ 0) Abiturprüfung Berufliche Oberschule Mathematik Nichttechnik - A II - Lösung Teilaufgabe. x Gegeben ist die Funktion f( x) ( x ) in ihrer maximalen Definitionsmenge D f IR. Der zugehörige Graph heißt. Teilaufgabe.

Mehr

Modul Grundbildung Analysis WiSe 10/11. A.: Wurde in diesem Kapitel behandelt. C.: Weitere Fragen (Nicht nur für die Klausur interessant)

Modul Grundbildung Analysis WiSe 10/11. A.: Wurde in diesem Kapitel behandelt. C.: Weitere Fragen (Nicht nur für die Klausur interessant) Modul Grundbildung Analysis WiSe 10/11 Im Folgenden bedeutet A: Wurde in diesem Kapitel behandelt B: Interessante Aufgaben C: Weitere Fragen (Nicht nur für die Klausur interessant) V1 Konvergenz, Grenzwert

Mehr

Analysis 5.

Analysis 5. Analysis 5 www.schulmathe.npage.de Aufgaben Gegeben ist die Funktion f durch f(x) = 2 e 2 x 2 (x D f ) a) Geben Sie den größtmöglichen Definitionsbereich der Funktion f an und führen Sie für die Funktion

Mehr

Pflichtteilaufgaben zu Funktionenkompetenz. Baden-Württemberg

Pflichtteilaufgaben zu Funktionenkompetenz. Baden-Württemberg Pflichtteilaufgaben zu Funktionenkompetenz Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com September 016 1 Übungsaufgaben: Ü1: Die Abbildung zeigt

Mehr

Multivariate Analysis

Multivariate Analysis Kapitel Multivariate Analysis Josef Leydold c 6 Mathematische Methoden I Multivariate Analysis / 38 Lernziele Funktionen in mehreren Variablen Graph und Niveaulinien einer Funktion in zwei Variablen Partielle

Mehr

Differenzial- und Integralrechnung II

Differenzial- und Integralrechnung II Differenzial- und Integralrechnung II Rainer Hauser Dezember 011 1 Einleitung 1.1 Ableitung Die Ableitung einer Funktion f: R R, x f(x) ist definiert als f (x) = df(x) dx = d f(x + h) f(x) f(x) = lim dx

Mehr

Analysis II 14. Übungsblatt

Analysis II 14. Übungsblatt Jun.-Prof. PD Dr. D. Mugnolo Wintersemester 01/13 F. Stoffers 04. Februar 013 Analysis II 14. Übungsblatt 1. Aufgabe (8 Punkte Man beweise: Die Gleichung z 3 + z + xy = 1 besitzt für jedes (x, y R genau

Mehr

Diskutiere die Funktion f(x) - Nullstellen, Extremwerte, Wendepunkte, Graph. f ( x) = 1 8 ( x3 +3 x 2 9 x+5) x f ( x) = 3 8 ( x2 +2 x 3)

Diskutiere die Funktion f(x) - Nullstellen, Extremwerte, Wendepunkte, Graph. f ( x) = 1 8 ( x3 +3 x 2 9 x+5) x f ( x) = 3 8 ( x2 +2 x 3) Kurvendiskussion Diskutiere die Funktion f(x) - Nullstellen, Extremwerte, Wendepunkte, Graph f ( x) = 1 8 x3 + 3 8 x2 9 8 x+5 8 Zuerst berechne ich die Ableitungen. Außerdem hebe ich so weit wie möglich

Mehr

8 Blockbild und Hohenlinien

8 Blockbild und Hohenlinien Mathematik fur Ingenieure Institut fur Algebra, Zahlentheorie und Diskrete Mathematik Dr. Dirk Windelberg Universitat Hannover Stand: 18. August 008 http://www.iazd.uni-hannover.de/windelberg/teach/ing

Mehr

Quiz Analysis 1. Lösungen zu den Aufgaben M1 bis M7 der Probeklausur. Mathematisches Institut, WWU Münster. Karin Halupczok.

Quiz Analysis 1. Lösungen zu den Aufgaben M1 bis M7 der Probeklausur. Mathematisches Institut, WWU Münster. Karin Halupczok. Quiz Analysis 1 Mathematisches Institut, WWU Münster Karin Halupczok WiSe 2011/2012 Lösungen zu den Aufgaben M1 bis M7 der Probeklausur 1 Aufgabe M1: Fragen zu Folgen, Reihen und ihre Konvergenz 2 Aufgabe

Mehr

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0.

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0. Mehrdimensionale Dierenzialrechnung 9 Optimierung 9 Optimierung Definition Seien U R n oen, f : U R, x U x heiÿt lokales Maximum, falls eine Umgebung V U von x existiert mit y V : fx fy x heiÿt lokales

Mehr

Grundlagen der Mathematik - Lösungsskizze zur Aufgabensammlung

Grundlagen der Mathematik - Lösungsskizze zur Aufgabensammlung Grundlagen der Mathematik - Lösungsskizze zur Aufgabensammlung Dr. Claudia Vogel WS 01/013 Im folgenden nden Sie die Endergebnisse der Übungsaufgaben. Bei Fragen zum Rechenweg können Sie sich gern an mich

Mehr

Zum Schluss berechnen wir die Steigung, indem wir

Zum Schluss berechnen wir die Steigung, indem wir Einführung Grafisches Differenzieren (auch grafische Ableitung genannt) gibt uns zum einen die Möglichkeit, die Steigung des Graphen einer Funktion in einem bestimmten Punkt zu ermitteln, ohne dass wir

Mehr

V.1 Konvergenz, Grenzwert und Häufungspunkte

V.1 Konvergenz, Grenzwert und Häufungspunkte V.1 Konvergenz, Grenzwert und Häufungspunkte S. 108 110 A. Bereits bekannt: Folge Extrem wichtig: Grenzwert bzw. Konvergenz: a n a oder lim n a n = a : ε R, ε > 0 n 0 N : a n a < ε n n 0 Begriffe: Fast

Mehr

2 Stetigkeit und Differenzierbarkeit

2 Stetigkeit und Differenzierbarkeit 2.1) Sei D R. a) x 0 R heißt Häufungspunkt von D, wenn eine Folge x n ) n N existiert mit x n D,x n x 0 und lim n x n = x 0. D sei die Menge der Häufungspunkte von D. b) x 0 D heißt innerer Punkt von D,

Mehr

Mathematik I Internationales Wirtschaftsingenieurwesen

Mathematik I Internationales Wirtschaftsingenieurwesen Mathematik I Internationales Wirtschaftsingenieurwesen Dierenzialrechnung einer reellen Veränderlichen 10.11.08 Grenzwerte von Zahlenfolgen Grenzwerte und Stetigkeit von Funktionen Folgen Denition: Folgen

Mehr

Übungsaufgaben II zur Klausur 1

Übungsaufgaben II zur Klausur 1 Übungsaufgaben II zur Klausur. Ableitungen 0. Führen Sie für g mit f ( +,9 8 eine vollständige Kurvendiskussion (siehe S. 9f durch. Markieren Sie alle von Ihnen bestimmten Punkte in der abschließenden

Mehr