Da der Nenner immer positiv ist, folgt. g (x) > 0 2x(2 x) > 0 0 < x < 2 g (x) < 0 2x(2 x) < 0 x < 0 oder x > 2

Größe: px
Ab Seite anzeigen:

Download "Da der Nenner immer positiv ist, folgt. g (x) > 0 2x(2 x) > 0 0 < x < 2 g (x) < 0 2x(2 x) < 0 x < 0 oder x > 2"

Transkript

1 Da der Nenner immer positiv ist, folgt g (x) > 0 x( x) > 0 0 < x < g (x) < 0 x( x) < 0 x < 0 oder x > Also ist g auf (0,) streng monoton wachsend sowie auf (,0) und auf (, ) strengmonotonfallend.außerdemistg (0) = 0 = g ()unddiessinddieeinzigen Nullstellen von g (x). An dieser Stelle ist Vorsicht geboten, denn es gibt Funktionen, die auf einem Intervall streng monoton wachsend sind, obwohl die Ableitung dort nicht überall positiv ist. Beispiel 5.10 Die Funktion f(x) = x 3 ist streng monoton wachsend auf R, aber die Ableitung f (x) = 3x ist nicht überall positiv. Wenn eine Funktion von wachsend in fallend übergeht, so liegt dort ein lokales Maximum vor. 74

2 Lokale/Globale Extremwerte: Sei f : D R eine Funktion. Dann hat f an der Stelle x 0 D ein lokales (relatives) Maximum (bzw. lokales (relatives) Minimum), wenn eine kleineumgebungvonx 0 nochimdefinitionsbereichvonf liegtundf(x 0 )mindestens so groß(bzw. klein) ist wie alle anderen Funktionswerte in dieser Umgebung von x 0. Genauer: wenn es ein ε > 0 gibt, so dass gilt (x 0 ε, x 0 +ε) D und f(x 0 ) f(x) für alle x 0 ε < x < x 0 +ε bzw. f(x 0 ) f(x) für alle x 0 ε < x < x 0 +ε. 75

3 Die Funktion f hat an der Stelle x 0 ein globales Maximum (bzw. globales Minimum), falls f(x 0 ) f(x) (bzw. f(x 0 ) f(x)) für alle x D. Gilt dabei in den Ungleichungen nur für x 0 Gleichheit, so sprechen wir von isolierten lokalen oder globalen Maxima und Minima. DieStellex 0 heißtinalldiesenfällenlokale(bzw.globale)minimalstelle oder Maximalstelle oder einfach Extremalstelle. Der Punkt (x 0,f(x 0 )) auf dem Graphen heißt lokales (bzw. globales) Minimum oder Maximum oder einfach Extremum. Beispiel A: Die Überlegungen zum Monotonieverhalten zeigen, dass x 0 = 0 eine isolierte lokale Minimalstelle und x 1 = eine isolierte lokale Maximalstelle ist. Zugehöriges Minimum und Maximum sind die Punkte (0,g(0)) = (0, 1), (,g()) = (,1). Beispiel Die Funktion f : [0,1] R mit f(x) = x hat in x 0 = 1 ein isoliertes globales Maximum aber kein lokales Maximum, denn es gibt kein ǫ > 0 mit (1 ǫ,1+ǫ) [0,1]. 76

4 . Die konstante Funktion f : R R mit f(x) = 5 hat an der Stelle x 0 = ein lokales Maximum, aber kein isoliertes lokales Maximum. Ebenso hat sie an jeder anderen Stelle ein lokales Maximum, welches kein isoliertes lokales Maximum ist. Die gleichen Aussagen gelten auch, wenn man Maximum durch Minimum ersetzt. 3. Die Funktion f(x) = x 3 x x+ x hat ein lokales Maximum zwischen 1 und 0 sowie ein lokales Minimum zwischen 1 und. Die genauen Werte lassen sich (manchmal) über die Ableitung bestimmen. 77

5 Notwendiges Kriterium für lokale Extrema: Sei f : D R differenzierbar, und sei x 0 D eine lokale Extremalstelle von f. Dann gilt: f (x 0 ) = 0. DieNullstellenvonf heißenkritische Punkteoderauchstationäre Punkte von f. In Beispiel ist f (x) = 3x 4x 1. Die Nullstellen sind gegeben durch ,55, 7 3 0,. An diesen Stellen liegen daher die beiden lokalen Extrema. Dies bestätigt auch der Graph. Die Koordinaten von Maximum und Minimum sind ( 7 3 (+ 7 3, ) ( 0.,.11). 7, ) (1.55, 0.63) 7 78

6 Die Umkehrung der obigen Aussage gilt nicht, siehe Beispiel Um sicher zu sein, ob eine Nullstelle der Ableitung zu einem lokalen Extremum gehört, muss man auch noch die weiteren Ableitungen auswerten. Hinreichendes Kriterium für lokale Extrema: Sei f : (a,b) R eine n-mal differenzierbare Funktion und sei x 0 (a,b). Weiterhin gebe es ein m N mit m n, so dass f (x 0 ) = f (x 0 ) = = f (m 1) (x 0 ) = 0 f (m) (x 0 ). Ist m gerade, dann besitzt f an der Stelle x 0 ein isoliertes lokales Extremum und zwar ein isoliertes lokales Maximum falls f (m) (x 0 ) < 0 ein isoliertes lokales Minimum falls f (m) (x 0 ) > 0 Ist m ungerade, so hat f in x 0 kein isoliertes lokales Extremum; der Punkt (x 0,f(x 0 )) heißt in diesem Fall Sattelpunkt. Beispiel 5.1 Sei f(x) = x n. 1. Ist n = 3, so ist f (x) = 3x, f (x) = 6x, f (x) = 6. Daher ist der Punkt 79

7 (0,0) ein Sattelpunkt von f. Dies gilt ebenso für alle ungeraden n, da stets f (n 1) = n! x und f (n) = n!. Istn = 4,soistf (3) = 4! xundf (4) = 4! = 4.Somitist(0,0)einisoliertes lokales Minimum von f. Dies gilt ebenso für alle anderen geraden n. Beispiel A: Nach der Quotientenregel ist Also ist g (x) = (4 4x)(x x+) (x x+) 4 + (x x+)(x )(4x x ) (x x+) 4 = 4(x3 3x +) (x x+) = 4(x 1)(x x ) 3 (x x+) 3 g (0) = 1 > 0, g () = 1 < 0. Auf Seite 74 hatten wir bereits g (0) = g () = 0 festgstellt. Folglich hat g an der Stelle x 0 = 0 ein isoliertes lokales Minimum und an der Stelle x 1 = ein isoliertes lokales Maximum, was wir auch schon auf Seite 76 festgestellt hatten. 80

8 Beispiel 5.13 Sei f(x) = (x 3 x)ex. Zur Bestimmung eventueller lokaler Extrema bestimmen wir die erste Ableitung f (x) = (x 3 )ex +(x 3 x)ex Folglich sind die kritischen Punkte Mit der zweiten Ableitung = (x + 1 x 3 )ex = (x 1) ( x+ 3 x 0 = 1 und x 1 = 3. ) e x f (x) = (x+ 1 )ex +(x + 1 x 3 )ex = (x + 5 x 1)ex erhalten wir f (1) = 5 e > 0, f ( 3) 5 = e 3 < 0. AlsoliegteinisolierteslokalesMinimumanderStellex 0 = 1vorundeinisoliertes lokalesmaximumanderstellex 1 = 3.DieungefährenKoordinatenderisolierten Extrema sind (1, 1.36) und ( 1.5, 1). 81

9 Man erkennt außerdem f (x) > 0 für x (1, ) oder x (, 3 ), f (x) < 0 für x ( 3,1). Damit ist die Funktion f auf (1, ) sowie (, 3 ) streng monoton wachsend und auf ( 3,1) streng monoton fallend. Hier ist der Graph x So wie wir es gerade getan haben, lassen sich allgemein die kritischen Punkte anhand des Vorzeichenverhaltens der ersten Ableitung klassifizieren. 8

10 Sei f : D R differenzierbar, und sei x 0 D mit f (x 0 ) = 0. Gibt es ein ε > 0 mit { f > 0 für x 0 ε < x < x 0, (x) < 0 für x 0 < x < x 0 +ε, so besitzt f in x 0 ein isoliertes lokales Maximum. Ist { f < 0 für x 0 ǫ < x < x 0, (x) > 0 für x 0 < x < x 0 +ǫ. so besitzt f in x 0 ein isoliertes lokales Minimum. Besitzt die Ableitung f keinen Vorzeichenwechsel im Punkt x 0, dann hat f an der Stelle x 0 kein isoliertes lokales Extremum. Zur Bestimmung der globalen Extrema einer Funktion f : I R, wobei I ein abgeschlossenes oder halboffenes Intervall ist, ist es immer notwendig, die Funktionswerte an den Intervallgrenzen zu bestimmen und mit den Werten an den lokalen Extrema vergleichen. Beispiel Sei f : [ 4,] R mit f(x) = x + x. Dann ist f( 4) = 10 und f() = 4. Außerdem ist f (x) = x + 1, also x 0 = 1 ein kritischer Punkt. Wegen f (x) = > 0 für alle x liegt an der Stelle x 0 83

11

12 ein isoliertes lokales Minimum mit den Koordinaten ( 1, 9 4). Dies muss dann auch ein globales Minimum (auf [ 4,]) sein, denn an den Rändern sind die Funktionswerte größer und weitere lokale Minima gibt es nicht. Die Funktion hat keine isolierten lokalen Maxima. Ein globales Maximum liegt am linken Rand x 1 = 4 vor.. Die Funktion f : (0, ) R mit f(x) = 1 x und kein globales Minimum. hat kein globales Maximum 4. Krümmungsverhalten und Wendepunkte Das Krümmungsverhalten einer Funktion liefert Aussagen darüber, wie stark sich das Wachstum auf einem Intervall ändert. Beispiel A: Wir wissen bereits, dass die Funktion g zwischen 0 und wachsend ist. Der Graph zeigt darüberhinaus, dass er bei 0 ansteigt und irgendwo zwischen 0undamsteilstenistunddanndasWachstumlangsamerwirdumschließlichan der Extremstelle eine waagerechte Tangente zu haben. Dies Phänomen lässt sich auch mit Sekanten an den Graphen beschreiben. Auf einigen Intervallen liegt der Graph von f stets oberhalb von all seinen Sekanten, auf anderen stets unterhalb. 84

13 Konvex, Konkav, Wendepunkt: Sei f : D R eine Funktion und sei I D ein Intervall. Gilt für alle x 1,x I f ( x1 +x ) f(x 1)+f(x ), dann heißt f konvex (linksgekrümmt) in I. Gilt für alle x 1,x I f ( x1 +x ) f(x 1)+f(x ), dann heißt f konkav (rechtsgekrümmt) in I. Die Funktion f heißt konvex bzw. konkav, wenn diese Bedingung für I = D erfüllt ist. Ein Punkt x 0 D heißt Wendestelle von f, wenn die Funktion an diesem Punkt ihr Konvexitätsverhalten ändert, d.h. es gibt ein ε > 0, so dass f in [x 0 ε,x 0 ] konvex (aber nicht konkav) ist, und in [x 0,x 0 +ε] konkav (aber nicht konvex) ist, bzw. umgekehrt. Der Punkt (x 0,f(x 0 )) heißt dann Wendepunkt von f. Im Falle einer zweimal differenzierbaren Funktion lässt sich das Krümmungsverhalten anhand der zweiten Ableitung feststellen. 85

14

15 Konvexitätsverhalten: Es sei f : D R eine zweimal differenzierbare Funktion und sei I D ein Intervall. Dann ist f in I genau dann konvex (bzw. konkav), wenn gilt f (x) 0 (bzw. f (x) 0) für alle x I. Gibt es eine ungerade Zahl m N mit m 3 und f (x 0 ) = f (3) (x 0 ) = f (m 1) (x 0 ) = 0 f (m) (x 0 ), dann besitzt die Funktion f an der Stelle x 0 einen Wendepunkt. Beispiel A: Die zweite Ableitung von g hatten wir bereits berechnet: g (x) = 4(x 1)(x x ) (x x+) 3. Nun ist wegen x x > 0 für alle x g (x) = 0 x 1 = 0 oder x x = 0 x = 1 oder x = 1+ 3 oder x =

16 Damit wechselt g (x) nur an diesen drei Stellen das Vorzeichen. Durch Einsetzen von x-werten aus den 4 Intervallen (, 1 3), (1 3, 1), (1,1+ 3) und (1+ 3, ) erhält man das Vorzeichen von g (x) und damit das Krümmungsverhalten von g auf dem jeweiligen Intervall. Wegen 3 1,7 betrachten wir folgende Werte g ( 1) = 8 15 < 0, g (0) = 1 > 0, g () = 1 < 0, g (3) = 8 15 > 0. Also ist g auf (, 1 3) sowie (1,1 + 3) konkav und auf (1 3, 1) sowie (1+ 3, ) konvex. Die Stellen x 0 = 1 3, x 1 = 1, x = 1+ 3 sind demnach Wendestellen (da wir direkt den Wechsel des Krümmungsverhaltens festgestellt haben, müssen wir nicht mehr die nächste Ableitung überprüfen). Die Wendepunkte haben die Koordinaten ( 1 3, 3 ) ( 3 ), (1,0), 1+ 3, Beispiel 5.15 Wir betrachten wieder die Funktion f(x) = (x 3 x)ex. Die 87

17 zweite Ableitung war in Beispiel 5.13 berechnet worden und ist f (x) = (x + 5 x 1)ex. Lösen der quadratischen Gleichung x + 5 x 1 = 0 liefert die Nullstellen x 0 = ,85, x 1 = ,35. Das sind also mögliche Wendestellen der Funktion f. Da nur an diesen Stellen f (x) das Vorzeichen ändert, könen wir wieder das Vorzeichen von f (x) auf den Intervallen ( ) (, , 5 ) ( 41 4, und , ) durch Einsetzen geeigneter x-werte ermitteln: f ( 3) = 0,5e 3 > 0, f (0) = 1 < 0, f (1) =,5 e > 0. Also ist f auf ( ) (, sowie auf , ) konvex und auf ( ) konkav. Die Wendepunkte habe die ungefähren Koordinaten , (.85, 0.7) und (0.35, 0.57). 88

18 5. Asymptotisches Verhalten Hierunter versteht man das Verhalten des Funktionsgraphen an den Rändern des Definitionsbereichs. Das ist lim f(x) oder lim f(x), x x falls ein Intervall der Form (,a) oder (b, ) im Definitionsbreich von f enthalten ist. Das kann aber auch das Grenzwertverhalten lim f(x) oder lim f(x) xցx 0 xրx0 sein,fallseseinintervall(x 0,b)oder(a,x 0 )imdefinitionsbereichvonf gibt.letzteres trifft typischererweise auf Definitionslücken von f zu. Die Bestimmung solcher Grenzwerte war in Abschnitt.6 behandelt worden. Hierbei können ggf. die Regeln von l Hospital hilfreich sein. Beispiel A: Für die Funktion g ist D(g) = R und es sind nur die Grenzwerte für x ± zu bestimmen. Das liefert in diesem Fall x lim g(x) = lim x x ± x ± 1 x + = 0. x 89

19 Jetzt haben wir genügend viel qualitative Information, um eine Skizze des Funktionsgraphen anzufertigen. Im folgenden Bild sind die Extrema als und die Wendepunkte als eingetragen x Vergleichen Sie noch mal den Verlauf des Graphen mit den gefundenen Monotonieund Krümmungsaussagen. Beispiel 5.16 Istf(x) = ln(x) x 1,soistderDefinitionsbereichD(f) = R +\{1}. 90

bestimmt werden. Allein die Regel (5.4) würde wegen g(x) = 2, folglich erhalten wir den korrekten lim

bestimmt werden. Allein die Regel (5.4) würde wegen g(x) = 2, folglich erhalten wir den korrekten lim bestimmt werden. Allein die Regel (5.4) würde wegen f (x) lim x g (x) = lim 2e 2x = lim x e x x 2ex = 0 dengrenzwert0für(5.5)liefern.dasistaberfalsch,dennwegen lim 0 ist lim x g(x) = 2, folglich erhalten

Mehr

Im Falle einer zweimal differenzierbaren Funktion lässt sich das Krümmungsverhalten anhand der zweiten Ableitung feststellen.

Im Falle einer zweimal differenzierbaren Funktion lässt sich das Krümmungsverhalten anhand der zweiten Ableitung feststellen. Konvex, Konkav, Wendepunkt: Sei f : D R eine Funktion und sei I D ein Intervall. Gilt für alle x 1,x 2 I f ( x1 +x ) 2 2 f(x 1)+f(x 2 ), 2 dann heißt f konvex (linksgekrümmt) in I. Gilt für alle x 1,x

Mehr

2 Differenzialrechnung für Funktionen einer Variablen

2 Differenzialrechnung für Funktionen einer Variablen 2 Differenzialrechnung für Funktionen einer Variablen Ist f eine ökonomische Funktion, so ist oft wichtig zu wissen, wie sich die Funktion bei kleinen Änderungen verhält. Beschreibt etwa f einen Wachstumsprozess,

Mehr

4. Anwendung der Differentialrechnung: Kurvendiskussion 4.1. Maxima und Minima einer Funktion.

4. Anwendung der Differentialrechnung: Kurvendiskussion 4.1. Maxima und Minima einer Funktion. 4. Anwendung der Differentialrechnung: Kurvendiskussion 4.1. Maxima und Minima einer Funktion. Definition 4.3. Es sei f : R D R eine auf D erklarte Funktion. Die Funktion f hat in a D eine globales oder

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 7 Anwendungen der Differentialrechnung 7.1 Maxima und Minima einer Funktion................. 141 7.2 Mittelwertsatz............................ 144 7.3 Kurvendiskussion..........................

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 5 Anwendungen der Differentialrechnung 5.1 Maxima und Minima einer Funktion......................... 80 5.2 Mittelwertsatz.................................... 82 5.3 Kurvendiskussion..................................

Mehr

x e x sin(x) lim oder lim bestimmen lassen.

x e x sin(x) lim oder lim bestimmen lassen. Es folgt nun noch ein Nachtrag zum Thema Grenzwerte von Funktionen. Wir hatten in Abschnitt 2.6 Beispiele von Funktionen gesehen, bei denen die üblichen Grenzwertregeln nicht weiterhelfen, etwa bei Quotienten

Mehr

Mathematischer Vorbereitungskurs für das MINT-Studium

Mathematischer Vorbereitungskurs für das MINT-Studium Mathematischer Vorbereitungskurs für das MINT-Studium Dr. B. Hallouet b.hallouet@mx.uni-saarland.de SS 2017 Vorlesung 7 MINT Mathkurs SS 2017 1 / 25 Vorlesung 7 (Lecture 7) Differentialrechnung differential

Mehr

Unter Kurvendiskussion versteht man die Untersuchung einer gegebenen Funktion auf bestimmte Merkmale und Eigenschaften:

Unter Kurvendiskussion versteht man die Untersuchung einer gegebenen Funktion auf bestimmte Merkmale und Eigenschaften: 1 KURVENDISKUSSION Unter Kurvendiskussion versteht man die Untersuchung einer gegebenen Funktion auf bestimmte Merkmale und Eigenschaften: 1.1 Definitionsbereich Zuerst bestimmt man den maximalen Definitionsbereich

Mehr

3.2 Funktionsuntersuchungen mittels Differentialrechnung

3.2 Funktionsuntersuchungen mittels Differentialrechnung 3. Funktionsuntersuchungen mittels Differentialrechnung 46 3. Funktionsuntersuchungen mittels Differentialrechnung In diesem Abschnitt betrachten wir Funktionen f: D, welche je nach Bedarf zumindest ein-

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 6. (n+1)!. Daraus folgt, dass e 1/x < (n+

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 6. (n+1)!. Daraus folgt, dass e 1/x < (n+ D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger Lösung - Serie 6 1. MC-Aufgaben (Online-Abgabe) 1. Für alle ganzen Zahlen n 1 gilt... (a) e 1/x = o(x n ) für x 0 + (b) e 1/x = o(x n ) für x 0 + (c)

Mehr

Kurvendiskussion. Mag. Mone Denninger 10. Oktober Extremwerte (=Lokale Extrema) 2. 5 Monotonieverhalten 3. 6 Krümmungsverhalten 4

Kurvendiskussion. Mag. Mone Denninger 10. Oktober Extremwerte (=Lokale Extrema) 2. 5 Monotonieverhalten 3. 6 Krümmungsverhalten 4 Mag. Mone Denninger 10. Oktober 2004 Inhaltsverzeichnis 1 Definitionsmenge 2 1.1 Verhalten am Rand und an den Lücken des Definitionsbereichs............................ 2 2 Nullstellen 2 3 Extremwerte

Mehr

streng monoton steigend. streng monoton fallend. Ist f eine in einem Intervall stetige und im Innern des Intervalls differenzierbare Funktion mit

streng monoton steigend. streng monoton fallend. Ist f eine in einem Intervall stetige und im Innern des Intervalls differenzierbare Funktion mit 3. Anwendungen ================================================================= 3.1 Monotonie Eine Funktion f heißt in ihrem Definitionsbereich D monoton steigend, wenn für alle x 1, x 2 D mit x 1 < x

Mehr

Mathematik I Herbstsemester 2018 Kapitel 4: Anwendungen der Differentialrechnung

Mathematik I Herbstsemester 2018 Kapitel 4: Anwendungen der Differentialrechnung Mathematik I Herbstsemester 2018 Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 55 4. Anwendungen der Differentialrechnung Monotonie Krümmung Linearisierung einer Funktion Extremwerte

Mehr

R. Brinkmann Seite

R. Brinkmann   Seite R. Brinkmann http://brinkmann-du.de Seite 1 1.08.016 Kurvendiskussion Vorbetrachtungen Um den Graphen einer Funktion zeichnen und interpretieren zu können, ist es erforderlich einiges über markante Punkte

Mehr

Funktionen untersuchen

Funktionen untersuchen Funktionen untersuchen Mögliche Fragestellungen Definition: lokale und globale Extrema Monotonie und Extrema Notwendige Bedingung für Extrema Hinreichende Kriterien, Vergleich Krümmungsverhalten Neumann/Rodner

Mehr

Abb lokales Maximum und Minimum

Abb lokales Maximum und Minimum .13 Lokale Extrema, Monotonie und Konvexität Wir kommen nun zu den ersten Anwendungen der Dierentialrechnung. Zwischen den Eigenschaten einer Funktion, dem Verlau des zugehörigen Graphen und den Ableitungen

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Wirtschatsmathematik ür die Betriebswirtschatslehre (B.Sc.) Sommersemester 017 Dr. rer. nat. habil. E-mail: adam-georg.balogh@h-da.de 1 Kurvendiskussion / Analyse von Funktionen Anwendung der Dierentialrechnung

Mehr

Mathematischer Vorkurs NAT-ING II

Mathematischer Vorkurs NAT-ING II Mathematischer Vorkurs NAT-ING II (02.09.2013 20.09.2013) Dr. Jörg Horst WS 2013-2014 Mathematischer Vorkurs TU Dortmund Seite 1 / 252 Kapitel 7 Differenzierbarkeit Mathematischer Vorkurs TU Dortmund Seite

Mehr

Differentialrechnung. Mathematik W14. Christina Sickinger. Berufsreifeprüfung. v 1 Christina Sickinger Mathematik W14 1 / 79

Differentialrechnung. Mathematik W14. Christina Sickinger. Berufsreifeprüfung. v 1 Christina Sickinger Mathematik W14 1 / 79 Mathematik W14 Christina Sickinger Berufsreifeprüfung v 1 Christina Sickinger Mathematik W14 1 / 79 Die Steigung einer Funktion Wir haben bereits die Steigung einer linearen Funktion kennen gelernt! Eine

Mehr

Kapitel 5: Differentialrechnung

Kapitel 5: Differentialrechnung Kapitel 5: Differentialrechnung Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika (KO) Kapitel 5: Differentialrechnung 1 / 23 Gliederung 1 Grundbegriffe 2 Abbildungen

Mehr

Eigenschaften von Funktionen

Eigenschaften von Funktionen Eigenschaften von Funktionen Mag. Christina Sickinger HTL v 1 Mag. Christina Sickinger Eigenschaften von Funktionen 1 / 48 Gegeben sei die Funktion f (x) = 1 4 x 2 1. Berechnen Sie die Steigung der Funktion

Mehr

Polynome. Ein Term der Form. mit n und a 0 heißt Polynom. Die Zahlen a, a, a,... heißen Koeffizienten des Polynoms.

Polynome. Ein Term der Form. mit n und a 0 heißt Polynom. Die Zahlen a, a, a,... heißen Koeffizienten des Polynoms. Polynome Ein Term der Form a x + a x + a x + a x +... + a x + a x + a n n 1 n 2 n 3 2 1 2 3 4 n 2 n 1 n mit n und a 0 heißt Polynom. 1 Die Zahlen a, a, a,... heißen Koeffizienten des Polynoms. 1 2 3 Als

Mehr

GF MA Differentialrechnung A2

GF MA Differentialrechnung A2 Kurvendiskussion Nullstellen: Für die Nullstellen x i ( i! ) einer Funktion f gilt: Steigen bzw. Fallen: f ( x i ) = 0 f '( x) > 0 im Intervall I f ist streng monoton wachsend in I f '( x) < 0 im Intervall

Mehr

Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 11. und 12. Übung

Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 11. und 12. Übung TU Bergakademie Freiberg Vorl. Frau Prof. Dr. Swanhild Bernstein Übung Dipl.-Math. Daniel Lorenz Freiberg, WS 017/18 Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 11. und 1. Übung

Mehr

Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x.

Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x. Skripten für die Oberstufe Kurvendiskussion x 3 f (x) x f (x)dx = e x H. Drothler 0 www.drothler.net Kurvendiskussion Zusammenfassung Seite Um Funktionsgraphen möglichst genau zeichnen zu können, werden

Mehr

Monotonie, Konkavität und Extrema

Monotonie, Konkavität und Extrema Kapitel 8 Monotonie, Konkavität und Extrema Josef Leydold Auffrischungskurs Mathematik WS 2017/18 8 Monotonie, Konkavität und Extrema 1 / 55 Monotonie Eine Funktion f heißt monoton steigend, falls x 1

Mehr

Monotonie, Konkavität und Extrema

Monotonie, Konkavität und Extrema Kapitel 8 Monotonie, Konkavität und Extrema Josef Leydold Auffrischungskurs Mathematik WS 2017/18 8 Monotonie, Konkavität und Extrema 1 / 55 Monotonie Eine Funktion f heißt monoton steigend, falls x 1

Mehr

Tiefpunkt = relatives Minimum hinreichende Bedingung:

Tiefpunkt = relatives Minimum hinreichende Bedingung: R. Brinkmann http://brinkmann-du.de Seite 1 0.0.01 Kurvendiskussion Vorbetrachtungen Um den Graphen einer Funktion zeichnen und interpretieren zu können, ist es erforderlich einiges über markante Punkte

Mehr

Satz: Eine Funktion f ist monoton wachsend auf einem Intervall ]a, b[, wenn gilt: f (x) < 0 x ]a, b[

Satz: Eine Funktion f ist monoton wachsend auf einem Intervall ]a, b[, wenn gilt: f (x) < 0 x ]a, b[ Monotonie und erste Ableitung: Satz: Eine Funktion f ist monoton wachsend auf einem Intervall ]a, b[, wenn gilt: f (x) 0 x ]a, b[ Eine Funktion f ist monoton fallend auf einem Intervall ]a, b[, wenn gilt:

Mehr

Der Differenzenquotient

Der Differenzenquotient Der Differenzenquotient Von den linearen Funktionen kennen wir den Begriff des Differenzenquotienten k = y 2 y 1 x 2 x 1 mit dem die Steigung einer Geraden festgelegt wird. Der Begriff des Differentialkoeffizienten

Mehr

Kurvendiskussion von Polynomfunktionen

Kurvendiskussion von Polynomfunktionen Kurvendiskussion von Polynomfunktionen Theorie: Für die weiteren Berechnungen benötigen wie die 1. f (x) und 2. f (x) Ableitung der zu untersuchenden Funktion f (x). Wir werden viele Gleichungen lösen

Mehr

I. Verfahren mit gebrochen rationalen Funktionen:

I. Verfahren mit gebrochen rationalen Funktionen: I. Verfahren mit gebrochen rationalen Funktionen: 1. Definitionslücken bestimmen: Nenner wird gleich 0 gesetzt! 2. Prüfung ob eine hebbare Definitionslücke vorliegt: Eine hebbare Definitionslücke liegt

Mehr

Übungsaufgaben zur Kurvendiskussion

Übungsaufgaben zur Kurvendiskussion SZ Neustadt Mathematik Torsten Warncke FOS 12c 30.01.2008 Übungsaufgaben zur Kurvendiskussion 1. Gegeben ist die Funktion f(x) = x(x 3) 2. (a) Untersuchen Sie die Funktion auf Symmetrie. (b) Bestimmen

Mehr

Übersicht. 1. Motivation. 2. Grundlagen

Übersicht. 1. Motivation. 2. Grundlagen Übersicht 1. Motivation 2. Grundlagen 3. Analysis 3.1 Folgen, Reihen, Zinsen 3.2 Funktionen 3.3 Differentialrechnung 3.4 Extremwertbestimmung 3.5 Nichtlineare Gleichungen 3.6 Funktionen mehrerer Variabler

Mehr

Basistext Kurvendiskussion

Basistext Kurvendiskussion Basistext Kurvendiskussion In einer Kurvendiskussion sollen zu einer vorgegebenen Funktion (bzw. Funktionsschar) Aussagen über ihrem Verlauf gemacht werden. Im Nachfolgenden werden die einzelnen Untersuchungspunkte

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 5. x 1 2x 3 = lim 6x

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 5. x 1 2x 3 = lim 6x D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie 5. MC-Aufgaben Online-Abgabe. Durch zweifache Anwendung der Regel von Bernoulli-de l Hôpital folgt Stimmt diese Überlegung? lim x x 3 +

Mehr

Zusammenfassung der Kurvendiskussion

Zusammenfassung der Kurvendiskussion Zusammenfassung der Kurvendiskussion Diskussionspunkte 1 Größtmögliche Definitionsmenge D f 2 Symmetrieeigenschaften des Graphen G f 3 Nullstellen, Polstellen, Schnittpunkte mit der y-achse, Vielfachheit

Mehr

Ableitungen höherer Ordnung: Sei f : D R eine differenzierbare Funktion. Ist die Ableitung f : D R ihrerseits in jedem Punkt x D differenzierbar, dann

Ableitungen höherer Ordnung: Sei f : D R eine differenzierbare Funktion. Ist die Ableitung f : D R ihrerseits in jedem Punkt x D differenzierbar, dann Ableitungen höherer Ordnung: Sei f : D R eine differenzierbare Funktion. Ist die Ableitung f : D R ihrerseits in jedem Punkt x D differenzierbar, dann heißt f (x) = (f ) (x) die zweite Ableitung von f

Mehr

Mathematik I Herbstsemester 2014 Kapitel 4: Anwendungen der Differentialrechnung

Mathematik I Herbstsemester 2014 Kapitel 4: Anwendungen der Differentialrechnung Mathematik I Herbstsemester 2014 Kapitel 4: Anwendungen der Differentialrechnung www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

2015, MNZ. Jürgen Schmidt. Vorkurs. Mathematik. Ableiten. Tag WS 2015/16

2015, MNZ. Jürgen Schmidt. Vorkurs. Mathematik. Ableiten. Tag WS 2015/16 Vorkurs 4. Mathematik Ableiten WS 2015/16 Tag Einführendes Beispiel Vernachlässigen wir den Luftwiderstand, so können wir in hinreichender Näherung für den freien Fall eines Körpers s(t) = 5t 2 als Weg-Zeit-Abhängigkeit

Mehr

1 Höhere Ableitungen 2. 2 Mittelwertsatz und Monotonie 3. 3 Konvexe und konkave Funktionen 5. 4 Lokale und globale Extremalstellen 7

1 Höhere Ableitungen 2. 2 Mittelwertsatz und Monotonie 3. 3 Konvexe und konkave Funktionen 5. 4 Lokale und globale Extremalstellen 7 Universität Basel 4 Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematik 1 Dr. Thomas Zehrt Kurvendiskussionen Inhaltsverzeichnis 1 Höhere Ableitungen 2 2 Mittelwertsatz und

Mehr

9. Übungsblatt zur Vorlesung Mathematik I für Informatik

9. Übungsblatt zur Vorlesung Mathematik I für Informatik Fachbereich Mathematik Prof. Dr. Thomas Streicher Dr. Sven Herrmann Dipl.-Math. Susanne Pape 9. Übungsblatt zur Vorlesung Mathematik I für Informatik Wintersemester 2009/2010 8./9. Dezember 2009 Gruppenübung

Mehr

Übungen zur Vorlesung Mathematik im Querschnitt Lösungsvorschlag

Übungen zur Vorlesung Mathematik im Querschnitt Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner WS 06/7 Blatt 4 5..06 Übungen zur Vorlesung Mathematik im Querschnitt Lösungsvorschlag 3. Die gegebene Polynomfunktion f : R R, f(x, y) =

Mehr

C. Eicher Analysis Study Center ETH Zürich HS Extremwerte

C. Eicher Analysis Study Center ETH Zürich HS Extremwerte C. Eicher Analysis Study Center ETH Zürich HS 05 Extremwerte Gelöste Aufgabenbeispiele:. Bestimme die lokalen und globalen Extrema der Funktion f(x) = x x + x auf dem Intervall [ 4, ]. a. Bestimmung der

Mehr

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0!

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 25.02.2004 Aufgabe 5 Gegeben ist die Funktion f(x) = 2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 06.08.2003 Aufgabe 5 Gegeben ist

Mehr

6. ANWENDUNGEN DER ABLEITUNG

6. ANWENDUNGEN DER ABLEITUNG 48 Dieses Skript ist ein Auszug mit Lücken aus Einführung in die mathematische Behandlung der Naturwissenschaften I von Hans Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie das Buch auch

Mehr

x 1 keinen rechtsseitigen Grenzwert x 0+ besitzen. (Analog existiert der linksseitige Grenzwert nicht.)

x 1 keinen rechtsseitigen Grenzwert x 0+ besitzen. (Analog existiert der linksseitige Grenzwert nicht.) Differentialrechnung 1 Grenzwerte Gegeben sei ein Intervall I R, a I {, } und f : I\{a} R. Die Funktion f kann sehr wohl auch an der Stelle x = a erklärt sein, wir wollen aber nur wissen wie sich die Funktion

Mehr

6 Die Bedeutung der Ableitung

6 Die Bedeutung der Ableitung 6 Die Bedeutung der Ableitung 24 6 Die Bedeutung der Ableitung Wir wollen in diesem Kapitel diskutieren, inwieweit man aus der Kenntnis der Ableitung Rückschlüsse über die Funktion f ziehen kann Zunächst

Mehr

Kurvendiskussion von Funktionsscharen

Kurvendiskussion von Funktionsscharen Kurvendiskussion von Funktionsscharen Die Untersuchung von Funktionsscharen unterscheidet sich nicht von der Untersuchung von normalen Funktionen. Einzig die Bestimmung der Ortskurven von Extremstellen

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Serie 6

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Serie 6 D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger Serie 6 Die erste Aufgabe ist eine Multiple-Choice-Aufgabe (MC-Aufgabe), die online gelöst wird. Bitte schicken Sie Ihre Lösungen zu den Online MC-Fragen

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik

Mehr

Zum Schluss berechnen wir die Steigung, indem wir

Zum Schluss berechnen wir die Steigung, indem wir Einführung Grafisches Differenzieren (auch grafische Ableitung genannt) gibt uns zum einen die Möglichkeit, die Steigung des Graphen einer Funktion in einem bestimmten Punkt zu ermitteln, ohne dass wir

Mehr

Dierentialrechnung mit einer Veränderlichen

Dierentialrechnung mit einer Veränderlichen Dierentialrechnung mit einer Veränderlichen Beispiel: Sei s(t) die zum Zeitpunkt t zurückgelegte Wegstrecke. Dann ist die durchschnittliche Geschwindigkeit zwischen zwei Zeitpunkten t 1 und t 2 gegeben

Mehr

3.3 Linkskurve, Rechtskurve Wendepunkte

3.3 Linkskurve, Rechtskurve Wendepunkte 166 FUNKTIONSUNTERSUCHUNGEN 3.3 Linkskurve, Rechtskurve Wendepunkte Einführung (1) Anschauliche Erklärung des Begriffs Wendepunkt Bei Motorradrennen lässt sich beobachten, wie sich die Motorradfahrer beim

Mehr

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf.

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Arbeitsblätter zur Vergleichsklausur EF Arbeitsblatt I.1 Nullstellen Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Beachte den Satz: Ein Produkt wird null, wenn einer der

Mehr

12 Extremwerte und Monotonie

12 Extremwerte und Monotonie 5 II. Differentialrechnung 1 Extremwerte und Monotonie Lernziele: Resultate: Existenz von Maxima und Minima stetiger Funktionen auf kompakten Intervallen, Monotoniesatz Kompetenzen: Bestimmung lokaler

Mehr

13. Übungsblatt zur Mathematik I für Maschinenbau

13. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 3. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 00/ 07.0.-.0. Aufgabe G Stetigkeit) a) Gegeben

Mehr

Tutorium Mathematik ITB1(B), WI1(B)

Tutorium Mathematik ITB1(B), WI1(B) Tutorium Mathematik ITB(B), WI(B) Aufgabenblatt D Differenzialrechnung Prof Dr Peter Plappert Fachbereich Grundlagen Die Aufgaben dieses Aufgabenblattes sollen ohne die Benutzung von Taschenrechnern bearbeitet

Mehr

1 Q12: Lösungen bsv 2.2

1 Q12: Lösungen bsv 2.2 Q: Lösungen bsv... 3. 4. Graphisches Bestimmen einer Integralfunktion a) Nullstellen (laut Graph): x = 0; x = VZT x < 0 x = 0 0 < x < x > f(x) - 0 + 0 - G Io TIP HOP b) Aus der Abbildung ergibt sich: VZT

Mehr

Zusammenfassung: Differenzialrechnung 2

Zusammenfassung: Differenzialrechnung 2 LGÖ Ks M 11 Schuljahr 17/18 Zusammenfassung: Differenzialrechnung Inhaltsverzeichnis Etrem- und Wendepunkte... 1 Etremwertprobleme... 8 Etrem- und Wendepunkte Definition: Ist eine reelle Zahl, dann heißt

Mehr

SBP Mathe Grundkurs 2 # 0 by Clifford Wolf. SBP Mathe Grundkurs 2

SBP Mathe Grundkurs 2 # 0 by Clifford Wolf. SBP Mathe Grundkurs 2 SBP Mathe Grundkurs 2 # 0 by Clifford Wolf SBP Mathe Grundkurs 2 # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das

Mehr

Check-out: Klausurvorbereitung Selbsteinschätzung

Check-out: Klausurvorbereitung Selbsteinschätzung Check-out: Klausurvorbereitung Selbsteinschätzung Checkliste Ganzrationale Funktionen. Ich kann zu einem Funktionsgraphen den Graphen seiner Ableitungsfunktion skizzieren.. Ich kann Extrempunkte von Graphen

Mehr

3.6 Verhalten an den Polstellen

3.6 Verhalten an den Polstellen 44 Kapitel 3. Gebrochen-rationale Funktionen Beispiel 3.5.3. f(x) = 2x2 + 5 2x 1 f(0) = 2 02 + 5 2 0 1 = 5 1 = 5 3.6 Verhalten an den Polstellen Die Polstellen teilen den Graph in mehrere Teile. Da der

Mehr

Kompetenz: Verinnerlichung des Mittelwertsatzes Daraus ergibt sich leicht der wichtige Mittelwertsatz der Differentialrechnung:

Kompetenz: Verinnerlichung des Mittelwertsatzes Daraus ergibt sich leicht der wichtige Mittelwertsatz der Differentialrechnung: 16 Mittelwertsätze und Anwendungen 71 16 Mittelwertsätze und Anwendungen Lernziele: Konzepte: Konvexität und Konkavität Resultate: Mittelwertsätze der Differentialrechnung Methoden: Regeln von de l Hospital

Mehr

Höhere Mathematik I für Ingenieurinnen und Ingenieure Beispiele zur 11. Übung

Höhere Mathematik I für Ingenieurinnen und Ingenieure Beispiele zur 11. Übung TU Bergakademie Freiberg Vorl. Frau Prof. Dr. Swanhild Bernstein Übung Dipl.-Math. Daniel Lorenz Freiberg, 06. Dezember 06 Höhere Mathematik I für Ingenieurinnen und Ingenieure Beispiele zur. Übung In

Mehr

Wirtschaftsmathematik: Formelsammlung (V1.40)

Wirtschaftsmathematik: Formelsammlung (V1.40) Wirtschaftsmathematik: Formelsammlung (V.40) Grundlagen n! = 2 3... n = 0! = n i für n N, n 0, i= pq-formel Lösung von x 2 + px + q = 0 x /2 = p p 2 ± 2 4 q abc-formel Lösung von ax 2 + bx + c = 0 Binomische

Mehr

2 Wiederholung der Ableitungsregeln und höhere Ableitungen

2 Wiederholung der Ableitungsregeln und höhere Ableitungen 2 Wiederholung der Ableitungsregeln und höhere Ableitungen In der Abbildung sehen Sie die Graphen der Funktionen f und g mit f (x) = x 2 und g (x) = _ 1 x 2 4 sowie die Graphen der Ableitungsfunktionen

Mehr

Arbeitsblätter Förderplan EF

Arbeitsblätter Förderplan EF Arbeitsblätter Förderplan EF I.1 Nullstellen bestimmen Lösungen I.2 Parabeln: Nullstellen, Scheitelpunkte,Transformationen Lösungen I.3 Graphen und Funktionsterme zuordnen Lösungen II.1 Transformationen

Mehr

Univariate Analysis. Analysis und nichtlineare Modelle Sommersemester

Univariate Analysis. Analysis und nichtlineare Modelle Sommersemester Analysis und nichtlineare Modelle Sommersemester 9 5 Univariate Analysis C. Berechnen Sie ohne Taschenrechner(!). Runden Sie die Ergebnisse auf ganze Zahlen. (a) 7 :, (b) 795 :.. Berechnen Sie ohne Taschenrechner(!):

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Mathemathik-Prüfungen

Mathemathik-Prüfungen M. Arend Stand Juni 2005 Seite 1 1980: Mathemathik-Prüfungen 1980-2005 1. Eine zur y-achse symmetrische Parabel 4.Ordnung geht durch P 1 (0 4) und hat in P 2 (-1 1) einen Wendepunkt. 2. Diskutieren Sie

Mehr

Aufgaben zur e-funktion

Aufgaben zur e-funktion Aufgaben zur e-funktion 1.0 Gegeben ist die reelle Funktion f(x) = 2x 2x e 1 x2 mit x R (Abitur 2000 AII). 1.1 Untersuchen Sie das Symmetrieverhalten des Graphen der Funktion f und bestimmen Sie die Nullstellen

Mehr

Schwerpunktaufgaben zur Vorbereitung auf die Leistungsfeststellung

Schwerpunktaufgaben zur Vorbereitung auf die Leistungsfeststellung Schwerpunktaufgaben zur Vorbereitung auf die Leistungsfeststellung 1. Lösen Sie folgendes Gleichungssystem mit Hilfe des Gauß-Verfahrens. Überprüfen Sie Ihr Ergebnis mit dem Taschenrechner. ganzzahlig

Mehr

(Quelle Abitur BW 2004) Gegeben sind die Schaubilder der Funktion mit, ihrer Ableitungsfunktion, einer Stammfunktion von und der Funktion mit.

(Quelle Abitur BW 2004) Gegeben sind die Schaubilder der Funktion mit, ihrer Ableitungsfunktion, einer Stammfunktion von und der Funktion mit. Aufgabe A5/04 Die Abbildung zeigt das Schaubild der Ableitungsfunktion einer Funktion. Welche der folgenden Aussagen über die Funktion sind wahr, falsch oder unentscheidbar? (1) ist streng monoton wachsend

Mehr

5.10. Mehrdimensionale Extrema und Sattelpunkte

5.10. Mehrdimensionale Extrema und Sattelpunkte 5.1. Mehrdimensionale Extrema und Sattelpunkte Zur Erinnerung: Eine Funktion f von einer Teilmenge A des R n nach R hat im Punkt a ein (strenges) globales Maximum, falls f( x ) f( a ) (bzw. f( x ) < f(

Mehr

Diskussion einzelner Funktionen

Diskussion einzelner Funktionen Diskussion einzelner Funktionen. Wir betrachten die Funktion f mit f() = cos sin (a) Berechne f() für { π, π, π, π, } 5π und zeichne den Grafen von f im - Intervall [ π, ] 5π. Einheiten: cm auf der y-achse,

Mehr

Mathematik für Studierende der Biologie Wintersemester 2017/18. Grundlagentutorium 4 Lösungen

Mathematik für Studierende der Biologie Wintersemester 2017/18. Grundlagentutorium 4 Lösungen Mathematik für Studierende der Biologie Wintersemester 207/8 Grundlagentutorium 4 Lösungen Sebastian Groß Termin Mittwochs 5:45 7:45 Großer Hörsaal Biozentrum (B00.09) E-Mail gross@bio.lmu.de Sprechzeiten

Mehr

Eigenschaften stetiger Funktionen Buch Kap. 2.5

Eigenschaften stetiger Funktionen Buch Kap. 2.5 Eigenschaften stetiger Funktionen Buch Kap. 2.5 Satz 2.6: (Nullstellensatz) Ist f : [a, b] R stetig und haben f (a) und f (b) unterschiedliche Vorzeichen, so besitzt f in (a, b) mindestens eine Nullstelle.

Mehr

1. Aufgabe (6 Punkte) Zeigen Sie mit Hilfe der vollständigen Induktion, dass folgende Gleichheit gilt für alle n N, n 2. k (k + 1)! = 1 1 n!.

1. Aufgabe (6 Punkte) Zeigen Sie mit Hilfe der vollständigen Induktion, dass folgende Gleichheit gilt für alle n N, n 2. k (k + 1)! = 1 1 n!. . Aufgabe (6 Punte) Zeigen Sie mit Hilfe der vollständigen Indution, dass folgende Gleichheit gilt für alle n N, n 2 n ( + )! n!. [6P] Ind. Anfang: n 2 oder l.s. ( + )! 2 r.s. 2! 2. ( + )! 2! 2! 2 2 2

Mehr

Analysis II 14. Übungsblatt

Analysis II 14. Übungsblatt Jun.-Prof. PD Dr. D. Mugnolo Wintersemester 01/13 F. Stoffers 04. Februar 013 Analysis II 14. Übungsblatt 1. Aufgabe (8 Punkte Man beweise: Die Gleichung z 3 + z + xy = 1 besitzt für jedes (x, y R genau

Mehr

4.2 Differentialrechnung III

4.2 Differentialrechnung III 4. Differentialrechnung III Inhaltsverzeichnis 1 Überblick Extremal- und Wendepunkte Monotonie und erste Ableitung 3 Krümmung und zweite Ableitung 6 4 Extremalpunkte 7 5 Wendepunkte 1 6 Anwendungsaufgaben

Mehr

Prüfungsteil 1, Aufgabe 2. Analysis. Nordrhein-Westfalen 2012LK. Aufgabe a (1) Aufgabe a (2) Aufgabe a (3) Abitur Mathematik: Musterlösung

Prüfungsteil 1, Aufgabe 2. Analysis. Nordrhein-Westfalen 2012LK. Aufgabe a (1) Aufgabe a (2) Aufgabe a (3) Abitur Mathematik: Musterlösung Abitur Mathematik: Prüfungsteil 1, Aufgabe 2 Nordrhein-Westfalen 2012LK Aufgabe a (1) Anhand der Graphen ist erkennbar, dass sowohl in der Stadt als auch auf Land die Ozonbelastung im Verlauf des Morgens

Mehr

Höhere Mathematik II für BWIW, BNC, BAI, BGIP, GTB, Ma Hausaufgaben zum Übungsblatt 5 - Lösung

Höhere Mathematik II für BWIW, BNC, BAI, BGIP, GTB, Ma Hausaufgaben zum Übungsblatt 5 - Lösung TU Bergakademie Freiberg Sommersemester Dr. Gunter Semmler Dr. Anja Kohl Höhere Mathematik II für BWIW, BNC, BAI, BGIP, GTB, Ma Hausaufgaben zum Übungsblatt 5 - Lösung Differentialrechnung für Funktionen

Mehr

Lösungsblatt zu: Gebrochen rationale, Exponential- und Logarithmus Funktionen

Lösungsblatt zu: Gebrochen rationale, Exponential- und Logarithmus Funktionen Lösungsblatt zu: Gebrochen rationale, Exponential- und Logarithmus Funktionen Das hast du schon gelernt: Aufgabe : a) Definitionsbereich TIPP: Definitionsbereich Nenner darf nicht Null werden x 0 x

Mehr

Standards Differentialrechnung (Vorschlag erarbeitet von Melanie Schönauer im Rahmen einer FBA/ 0809; Betreuung der FBA durch Dr.

Standards Differentialrechnung (Vorschlag erarbeitet von Melanie Schönauer im Rahmen einer FBA/ 0809; Betreuung der FBA durch Dr. Standards Differentialrechnung (Vorschlag erarbeitet von Melanie Schönauer im Rahmen einer FBA/ 0809; Betreuung der FBA durch Dr. Walter Mayer) 1. Der Punkt P(1/y) liegt auf dem Graphen der Funktion f(x)

Mehr

1 Höhere Ableitungen 2. 2 Mittelwertsatz und Monotonie 3. 3 Konvexe und konkave Funktionen 5. 4 Lokale und globale Extremalstellen 7

1 Höhere Ableitungen 2. 2 Mittelwertsatz und Monotonie 3. 3 Konvexe und konkave Funktionen 5. 4 Lokale und globale Extremalstellen 7 Universität Basel 4 Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematik 1 Dr. Thomas Zehrt Kurvendiskussionen Inhaltsverzeichnis 1 Höhere Ableitungen 2 2 Mittelwertsatz und

Mehr

Extrema multivariater Funktionen

Extrema multivariater Funktionen Extrema multivariater Funktionen Ist f (x ) ein Minimum (Maximum) einer stetig differenzierbaren skalaren Funktion f auf einer Umgebung U von x, so gilt grad f (x ) = (0,..., 0) t. Extrema multivariater

Mehr

Numerische Ableitung

Numerische Ableitung Numerische Ableitung Die Ableitung kann angenähert werden durch den Differentenquotient: f (x) f(x + h) f(x) h oder f(x + h) f(x h) 2h für h > 0, aber h 0. Beim numerischen Rechnen ist folgendes zu beachten:

Mehr

Analysis f(x) = x 2 1. (x D f )

Analysis f(x) = x 2 1. (x D f ) Analysis 15 www.schulmathe.npage.de Aufgaben 1. Gegeben ist die Funktion f mit f(x) = x3 x 1 (x D f ) a) Geben Sie den maximalen Definitionsbereich der Funktion f an. Zeigen Sie, dass der Graph der Funktion

Mehr

LÖSUNGEN Kurvendiskussion

LÖSUNGEN Kurvendiskussion M. Sc.Petra Clauÿ Wintersemester 2015/16 Mathematische Grundlagen und Analysis 24. November 2015 LÖSUNGEN Kurvendiskussion Aufgabe 1. Bestimmen Sie die Gleichung der Tangente an den Graphen folgender Funktionen

Mehr

Kapitel 16 : Differentialrechnung

Kapitel 16 : Differentialrechnung Kapitel 16 : Differentialrechnung 16.1 Die Ableitung einer Funktion 16.2 Ableitungsregeln 16.3 Mittelwertsätze und Extrema 16.4 Approximation durch Taylor-Polynome 16.5 Zur iterativen Lösung von Gleichungen

Mehr

Vorlesung: Analysis I für Ingenieure

Vorlesung: Analysis I für Ingenieure Vorlesung: Analysis I für Ingenieure Michael Karow Thema: Satz von Taylor Die Taylor-Entwicklung I Satz von Taylor. Sei f : R D R an der Stelle x n-mal differenzierbar. Dann gilt für x D, n f (k) (x )

Mehr

QUADRATISCHE FUNKTIONEN

QUADRATISCHE FUNKTIONEN QUADRATISCHE FUNKTION DARSTELLUNG MIT DER FUNKTIONSGLEICHUNG Allgemeine Form - Vorzeichen von a gibt an, ob die Funktion nach oben (+) oder unten (-) geöffnet ist. Der Wert (Betrag) von gibt an, ob die

Mehr

von Prof. Dr. Ing. Dirk Rabe Hochschule Emden/Leer

von Prof. Dr. Ing. Dirk Rabe Hochschule Emden/Leer von Prof. Dr. Ing. Dirk Rabe Hochschule Emden/Leer Überblick Tangentensteigung einer Funktion Extremstellen Sattelstellen Extremstellen: notwendige und hinreichende Bedingung lokale bzw. relative und absolute

Mehr

Analysis: Klausur Analysis

Analysis: Klausur Analysis Analysis Klausur zu Ableitung, Extrem- und Wendepunkten, Interpretation von Graphen von Ableitungsfunktionen, Tangenten und Normalen (Bearbeitungszeit: 90 Minuten) Gymnasium J Alexander Schwarz www.mathe-aufgaben.com

Mehr

In der nachstehenden Abbildung ist der Graph einer Polynomfunktion f dargestellt.

In der nachstehenden Abbildung ist der Graph einer Polynomfunktion f dargestellt. Polynomfunktion In der nachstehenden Abbildung ist der Graph einer Polynomfunktion f dargestellt. f(), f (),5 f,5,5,5,5,5 Skizzieren Sie in der obigen Abbildung den Graphen der Ableitungsfunktion f von

Mehr

Lösungen zu den Vermischten Aufgaben Kapitel 5

Lösungen zu den Vermischten Aufgaben Kapitel 5 Band 10 - Einführungsphase NRW Lösungen zu den Vermischten Aufgaben Kapitel 5 1. Qualitative Skizzen der Füllgraphen (oben) und der zugehörigen Geschwindigkeitsgraphen (unten). a) b) c) d). a) IV) b) II)

Mehr

Übung 5, Analytische Optimierung

Übung 5, Analytische Optimierung Übung 5, 5.7.2011 Analytische Optimierung Aufgabe 5.1 Bei der Herstellung von Konserven werden für Boden und Deckel bzw. für den Konservenmantel verschiedene Materialien verwendet, die g 1 = bzw. g 2 =

Mehr