Der harmonische Oszillator anhand eines Potentials

Größe: px
Ab Seite anzeigen:

Download "Der harmonische Oszillator anhand eines Potentials"

Transkript

1 Quantenmechanikvorlesung, Prof. Lang, SS04 Der harmonische Oszillator anhand eines Potentials Christine Krasser - Tanja Sinkovic - Sibylle Gratt - Stefan Schausberger - Klaus Passler

2 Einleitung In der klassischen Mechanik ist der (eindimensionale) harmonische Oszillator ein Teilchen der Masse m, das durch eine elastische Kraft mit der Federkonstantek an den Ort x = 0 gebunden ist; er wird also definiert durch ein Parabelpotential V (x) = k x Die Gesamtenergie des harmonischen Oszillator ist daher Die Bewegungsgleichung lautet: mit der klassischen Lösung E h.o. = p m + k c m x t + k x = 0 x(t) = A cos(ωt + δ) wobei die Eigenfrequenz ω mit der Federkonstante k verknüpft ist durch Damit ist der Impuls k = mω p(t) = mω A sin(ωt + δ) und wir können die Amplitude ausdrücken durch x und p A = x + p m ω Der klassische Zugang des harmonischen Oszillators ist nur für kleine Schwingungen durch das Parabelpotential des harmonischen Oszillators zu approximieren. Nach der klassischen Behandlung eines Potentials wollen wir nun, anhand eines gegebenen Potentials, den harmonischen Oszillator quantenmechanisch behandeln. 1

3 Quantenmechanische Beschreibung Das Potential hat folgende Gestalt: V (x) = { kx / bei x > 0 bei 0 Im Bereich x 0 verschwindet die Wellenfunktion. Um das Potential zu beschreiben, benötigen wir die klassische Hamiltonfunktion des eindimensionalen harmonischen Oszillators: H kl (p, x) = p m + mω x Der Oszillator ist bestimmt durch die Masse m und die Eigenfrequenz ω. Dies entspricht einer Federkonstanten f = mω. Der Übergang in die quantenmechanische Beschreibung erfolgt weiters durch: p P = i x Nun können wir den Hamiltonoperator wie folgt anschreiben: H = m + mω x Die Schrödingergleichung hat folgende Form: HΨ = EΨ Wir setzen nun unseren Hamilton in die Schrödingergleichung ein und erhalten folgende Eigenwertgleichung: m x + mω x )Ψ(x) = EΨ(x) (1)

4 Anzumerken ist noch, dass die Wellenfunktion den Normierungsbedingungen genügen müssen. + dx Ψ n (x) = 1 Die Lösung der Schrödingergleichung kann nun auf zwei Arten erfolgen: nach den Regeln für Differentialgleichungen auf dem algebraischer Weg über Operatoren Zum besseren Verständis unseres Oszillatorpotentials wollen wir beide Lösungsvarianten besprechen: Lösung der Schrödingergleichung auf dem algebraischen Weg Wir schreiben nun die Amplitude gemäß A = x + A = (x + ip ip (x mω mω )) p m ω formal um: Wir verwenden nun p P = i x um neue Operatoren anzuschreiben: a = ω (ωx + ip m ) a = ω (ωx ip m ) wobei der Impulsoperator P gemäß P = i x zu verstehen ist, also: a = ω (ωx + m x ) a = ω (ωx m x ) Diese beiden Operatoren sind nicht hermitisch da a a entsprechen also keiner Observablen, keiner Messgröße! Trotzdem werden sie uns überaus nützlich sein. Um mit Operatoren einfach rechnen zu können, müssen wir ihre Vertauschungsregeln kennen. Wir fragen daher zunächst nach dem Kommutator [a, a ]. Einsetzen der Definitionen ergibt: [a, a ] = m ω [ωx + ip m, ωx ip m ] 3

5 Da für die Kommutatoren das Distributionsgesetz der Algebra gilt und da jeder Operator mit sich selbst kommutiert, können wir dies zu: [a, a ] = m ω {iω m [P, x] iω [x, P ]} m vereinfachen. Mit der fundamentalen Gleichung x P P x = i folgt: [a, a ] = i Als nächstes drücken wir den Energieoperator ( den Hamiltonoperator ) aus a = ω (ωx + ip m ) a = ω (ωx ip m ) durch die neuen Operatoren a und a aus; dazu kehren wir zunächst die beiden obigen beiden Gleichungen um und erhalten: x = 1 mω (a + a ) ω P = i (a + a ) Im Hamiltonoperator kommen x und P jeweils quadratisch vor, wir müssen also die beiden oberen Formeln unter Beachtung der Nichtvertauschbarkeit quadrieren: x = 1 mω (a + a + a a + a a) P = mω (a + a a a a a) Damit erhalten wir den Hamiltonoperator für den eindimensionalen harmonischen Oszillator: H h.o. = P m + m ω x = ω (a a + a a) oder unter Berücksichtigung der Vertauschungsregel: H h.o. = ω (a a + ) Der Hamilitonoperator nimmt also mit den Operatoren a und a eine ganz einfache Form an. Daher können wir nun auch ganz leicht die Vertauschungsregeln dieser Operatoren mit dem Hamiltonoperator bestimmen: [H h.o., a] = ω[a a, a] = ω[a, a]a 4

6 und mit den Vertauschungsregeln: [H h.o., a ] = ω[a a, a ] = ωa [a, a ] [H h.o., a] = ω a [H h.o., a ] = ω a Damit haben wir durch die Vertauschungsregeln die Operatoren a und a als Leitoperatoren identifiziert. Nach den Gesetzen der Leitoperatoren folgt die Definition des Grundzustandes. Unser Grundzustand wird damit zu und aus H h.o. = ω (a a + ) folgt: a Ψ 0 (x) H h.o. Ψ 0 (x) = ω Ψ 0(x) Damit wird das Eigenwertspektrum des linearen, harmonischen Oszillator gemäß ω n = ω 0 + n ω und [H h.o., a] = ω a E n = ω(n + 1 ) Wir haben nun wirklich beweisen können, dass das Spektrum des harmonischen Oszillator äquidistante Eigenwerte aufweist. Besondere Beachtung verdient die Grundzustandsenergie E 0 = ω Für einen klassischen, harmonischen Oszillator ist der Grundzustand selbstverständlich der Ruhezustand mit der Energie 0. Quantenmechanisch ist dies aber unmöglich, da in einem solchen Zustand sowohl der Ort (x=0) als auch der Impuls (p=0) exakt bekannt wären, was der Unschärfrelation widerspräche!!! Die Nullpunktenergie ist also die direkte, messbare Konsequenz der Unschärferelation und zeigt deutlich, dass es sich dabei nicht um eine Grenze handelt, die aus unseren Möglichkeiten folgt, sondern dass es sich dabei um eine höchst realen, physikalischen Effekt handelt! Da die Leitoperatoren a und a um Energiezustand des harmonischen Oszillators jeweils um ein Quantum ω hinzufügen oder abziehen, werden sie auch Erzeugungs- und Vernichtungsoperatoren genannt. Wir wollen nun noch die Eigenfunktion des harmonischen Oszillators zuwenden: Wie wir bereits wissen, gilt für den Grundzustand: a Ψ 0 (x) = 0 oder ωx + m x Ψ 0(x) = 0 5

7 Die Lösung dieser linearen, totalen Differentialgleichung ist leicht zu finden: Ψ 0 (x) = C e mωx wobei die Konstante C aus der Normierungsbedingung + zu bestimmen ist. Dazu benutzen wir die bekannte Integralformel: + e λx dx = π λ dx Ψ n (x) = 1 und erhalten C = mω 1/4 e iα π mit einer unbestimmten Phase α, die wir aber ohne Beschränkung der Allgemeinheit 0 setzen dürfen, da sie aus allen physikalisch relevanten Größen herausfällt. Somit erhalten wir die Wellenfunktion des Grundzustandes des harmonischen Oszillators Ψ 0 (x) = ( mω 1/4 mωx )e π Es handelt sich dabei um eine Gaußschen Glockenkurve. Wir wollen auch angeregte Zustände mathematisch darstellen, so benutzen wir E ± = c n±1 u n±1 um mittels Erzeugungsoperatoren die Leiter der Zustände hinaufsteigen: Ψ n+1 (x) = c n a Ψ n (x) Wir nehmen an, dass die Eigenfunktion Ψ n schon normiert ist und verlangen die Normierung und auch für Ψ n+1. Somit erhalten wir mit Ψ n+1 (x) = c n a Ψ n (x) + dx Ψ n+1 (x) = c n + Aus H h.o. = ω (a a + ) und [aa = ] folgt: Ψ n(x)aa Ψ n (x) = 1 aa = 1 ω H h.o. + Setzen wir dies ein, können wir die Eigenwertgleichung ausnutzen und berechnen wegen E 0 = ω und der Normierungsbedingung: c n + dx Ψ n(x)[ 1 ω H h.o. + ]Ψ n(x) = c n[ 1 ω E n + ] = c n(n + 1) = 1 6

8 Damit erhalten wir eine Rekursionsformel für die Eigenfunktionen ( wobei wir der Einfachheit n + 1 durch n ersetzt haben ): Ψ n (x) = 1/4 )e mωx ω n (x mω x )Ψ n 1(x) Mit Ψ 0 (x) = ( mω π können wir daraus alle Eigenfunktionen durch einfache Differentiation errechnen. Die resultierenden Funktionen sind die so genannten Hermite - Polynome, multipliziert mit der Exponentialfunktion des Grundzustandes. Lösung der Schrödingergleichung nach den Regeln der Differentialgleichungen Wir lösen die Eigenwertgleichung HΨ = EΨ, mit H = m + kx d [ m dx + 1 kx ]Ψ(x) = EΨ(x) m x + 1 kx )Ψ = EΨ Geeignete Eigenfunktionen dieser Gleichung sind wobei bx Ψ n = N n H n (x)e ), N der Normierungsfaktor, H n (x) das Hermitesche Polynom vom Grad n und b eine Konstante ist. Für die Hermiteschen Polynome gilt H 0 (x) = 1, H 1 (x) = bx und H n+1 (x) = bxh n (x) nh n 1 (x). 7

9 bx Einsetzen von Ψ 0 = N 0 H 0 (x)e ) in die Schrödingergleichung ergibt m x (N 0e bx ) ) + 1 kx N 0 e bx ) = E 0 N 0 e bx ) bx (e ) ) + 1 m x kx bx e ) bx = E 0 e ) bx (bxe ) ) + 1 m x kx bx e ) bx = E 0 e ) m (b / e bx b x e bx / ) + 1 kx e bx / = E 0 e bx / m b / e bx m b x e bx / + 1 kx e bx / = E 0 e bx / Da die Energie E 0 eine Konstante, also unabhängig von x sein soll, müssen die beiden x-abhängigen Terme auf der linken Seite zusammen Null ergeben. Daraus erhält man die Konstante b = m b x e bx / + 1 kx e bx / = 0 1 kx e bx / = m b x e bx / 1 k = m b b = km km und E 0 = m b = km m = 1 Mit dem klassischen Ergebnis für die Frequenz f = 1 Ergebnis für die Frequenz f = 1 π k m und = h π E 0 = 1 hf. k m π k m ergibt sich: Mit dem klassischen Analog erhält man mit Ψ 1 = N 1 bx bxe ) den Energieeigenwert E 1 = (1 + 1 )hf, mit Ψ = N (4bx bx )e ) den Energieeigenwert E = ( + 1 )ω, 8

10 Daraus folgt E n = (n + 1 )ω Wenn man die allgemeine Form der Hermiteschen Polynome in die Lösung der Schrödingergleichung einsetzt erhält man: Ψ n (x) = nmω H n(x)e bx ) Analyse der Lösungen anhand des gegebnen Potentials Wir wollen uns nun nochmals an unser Potential erinnern: und an unsere Lösung des harmonischen Oszillators: Ψ n (x) = ω n (x mω E n = ω(n + 1 ) x )Ψ n 1(x) Die graphische Auswertung des eindimensionalen Oszillators für unterschiedliche n hat folgende Gestalt: 9

11 Es sind hier die Wellenfunktionen, Aufenthaltswahrscheinlichkeiten und Energieniveaus aufgetragen. Wenn wir nun unseren Potentialtopf anschauen, erkennen wir, dass auf der negativen x - Achse unser Potential 0 ist. Dadurch muss auch die Wellenfunktion an der y - Achse verschwinden. Aus diesem Grund kommen für uns nur jene Wellenfunktionen in Frage, an denen die Funktion an der y - Achse verschwindet. Dies ist bei ungeraden n der Fall! Die graphische Auswertung reduziert sich hier nur mehr auf den x - positiven Teil. Da wir wie erwähnt nur die ungeraden Wellenfunktionen brauchen, reduziert sich die Graphik auf: Dies entspricht die Lösung unseres Potentialtopfes 10

6 Der Harmonische Oszillator

6 Der Harmonische Oszillator 6 Der Harmonische Oszillator Ein Teilchen der Masse m bewege sich auf der x-achse unter dem Einfluß der Rückstellkraft Fx = mω x. 186 Die Kreisfrequenz ω bzw. die Federkonstante k := mω ist neben der Masse

Mehr

Theoretische Physik II Quantenmechanik

Theoretische Physik II Quantenmechanik Michael Czopnik Bielefeld, 11. Juli 014 Fakultät für Physik, Universität Bielefeld Theoretische Physik II Quantenmechanik Sommersemester 014 Lösung zur Probeklausur Aufgabe 1: (a Geben Sie die zeitabhängige

Mehr

6.7 Delta-Funktion Potentialbarriere

6.7 Delta-Funktion Potentialbarriere Skript zur 9. Vorlesung Quantenmechanik, Montag den 6. Mai, 0. 6.7 Delta-Funktion Potentialbarriere Betrachten wir nun eine negative) δ-funktion Potentialbarriere mit dem Potential V) = v 0 δ a). V 0 a

Mehr

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 4. Vorlesung. Pawel Romanczuk WS 2016/17

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 4. Vorlesung. Pawel Romanczuk WS 2016/17 Theoretical Biophysics - Quantum Theory and Molecular Dynamics 4. Vorlesung Pawel Romanczuk WS 2016/17 Zusammenfassung letzte VL Orts- und Impulsdarstellung Gaussches Wellenpacket Unendl. Potentialtopf

Mehr

k m = 2 f (Frequenz) k = 2 m gilt näherungsweise für alle Schwingungen, falls die Auslenkungen klein genug sind (ähnliches Potential ähnliche Kraft)

k m = 2 f (Frequenz) k = 2 m gilt näherungsweise für alle Schwingungen, falls die Auslenkungen klein genug sind (ähnliches Potential ähnliche Kraft) 8. Der lineare harmonische Oszillator (1D) klass.: E = k m = f (Frequenz) x k = m U = k x = m x m größer -> ω kleiner (deuterierte Moleküle) gilt näherungsweise für alle Schwingungen, falls die Auslenkungen

Mehr

Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie

Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie Sebastian Wild Freitag, 6.. Inhaltsverzeichnis Die WKB-Näherung. Grundlegendes............................. Tunnelwahrscheinlichkeit.......................

Mehr

Beispiele: Harmonischer Oszillator und Kastenpotential

Beispiele: Harmonischer Oszillator und Kastenpotential Beispiele: Harmonischer Oszillator und Kastenpotential Ramona Wohlleb Mathematische Strukturen der Quantenmechanik Sommersemester 011 1 Der harmonische Oszillator In Analogie zum klassischen harmonischen

Mehr

Ferienkurs Quantenmechanik - Probeklausur

Ferienkurs Quantenmechanik - Probeklausur Seite Ferienkurs Quantenmechanik - Sommersemester 5 Fabian Jerzembeck und Sebastian Steinbeiÿer Fakultät für Physik Technische Universität München Aufgabe FRAGEN ( BE): a) Wie lautet die zeitabhängige

Mehr

ν und λ ausgedrückt in Energie E und Impuls p

ν und λ ausgedrückt in Energie E und Impuls p phys4.011 Page 1 8.3 Die Schrödinger-Gleichung die grundlegende Gleichung der Quantenmechanik (in den bis jetzt diskutierten Fällen) eine Wellengleichung für Materiewellen (gilt aber auch allgemeiner)

Mehr

(a) Warum spielen die Welleneigenschaften bei einem fahrenden PKW (m = 1t, v = 100km/h) keine Rolle?

(a) Warum spielen die Welleneigenschaften bei einem fahrenden PKW (m = 1t, v = 100km/h) keine Rolle? FK Ex 4-07/09/2015 1 Quickies (a) Warum spielen die Welleneigenschaften bei einem fahrenden PKW (m = 1t, v = 100km/h) keine Rolle? (b) Wie groß ist die Energie von Lichtquanten mit einer Wellenlänge von

Mehr

Harmonischer Oszillator und 3d-Schrödingergleichung

Harmonischer Oszillator und 3d-Schrödingergleichung Harmonischer Oszillator und d-schrödingergleichung Tutoren: Jinming Lu, Konrad Schönleber 7.02.09 D-Harmonischer Oszillator Für die Entwicklung der Quantenmechanik spielte der harmonische Oszillator eine

Mehr

Ferienkurs Quantenmechanik. Schrödingergleichung und Potentialprobleme

Ferienkurs Quantenmechanik. Schrödingergleichung und Potentialprobleme Seite 1 Ferienkurs Quantenmechanik Sommersemester 014 Fabian Jerzembeck und Christian Kathan Fakultät für Physik Technische Universität München Schrödingergleichung und Potentialprobleme Die Quantenmechanik

Mehr

Der quantenmechanische harmonische Oszillator

Der quantenmechanische harmonische Oszillator 88 Kapitel 0 Der quantenmechanische harmonische Oszillator In diesem Kapitel befassen wir uns mit den quantenmechanischen Eigenschaften eines der grundlegenden Modelle der Physik, dem harmonischen Oszillator.

Mehr

Wigner-Funktion und kohärente Zustände

Wigner-Funktion und kohärente Zustände Wigner-Funktion und kohärente Zustände Daniel Kavajin Seminar zur Theorie der Atome, Kerne und kondensierten Materie 21.11.2012 Einleitung Ein klassischer Zustand wird durch einen Punkt im Phasenraum repräsentiert.

Mehr

5 Der quantenmechanische Hilbertraum

5 Der quantenmechanische Hilbertraum 5 Der quantenmechanische Hilbertraum 5.1 Die Wellenfunktion eines Teilchens Der Bewegungs- Zustand eines Teilchens Elektrons zu einem Zeitpunkt t, in der klassischen Mechanik das Wertepaar r,p von Ort

Mehr

4.9 Der Harmonische Oszillator

4.9 Der Harmonische Oszillator 4.9 Der Harmonische Oszillator Zum harmonischen Oszillator gehört klassisch die Hamiltonfunktion H = p m + k x. 4.58) Damit wird z.b. näherungsweise die Bewegung von einzelnen Atomen in einem Festkörper

Mehr

Musterlösung 01/09/2014

Musterlösung 01/09/2014 Musterlösung 1/9/14 1 Quickies (a) Warum spielen die Welleneigenschaften bei einem fahrenden PKW (m = 1t, v = 1km/h) keine Rolle? (b) Wie groß ist die Energie von Lichtquanten mit einer Wellenlänge von

Mehr

8.2. Der harmonische Oszillator, quantenmechanisch

8.2. Der harmonische Oszillator, quantenmechanisch 8.. Der harmonische Oszillator, quantenmechanisch Quantenmechanische Behandlung Klassisch: Rückstellkraft für ein Teilchen der Masse m sei zur Auslenkung : 0.5 0.0 0.5 D m Bewegungsgleichung: m D F -D

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Robert Binder (rbinder@theochem.uni-frankfurt.de) Jan von Cosel (janvoncosel@gmx.de) Haleh

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Robert Binder (rbinder@theochem.uni-frankfurt.de) Jan von Cosel (jvcosel@theochem.uni-frankfurt.de)

Mehr

Das Deuteronen Potential

Das Deuteronen Potential Das Deuteronen Potential N. Dorfinger, S. Gerber, G. Heinrich, O. Huber, N. Stevanecz, J. Weingrill 29. Mai 2004 Gesucht ist die Lösung des folgenden Potentials: 1 Aufgabenstellung Abbildung 1: Das Potential

Mehr

Moderne Theoretische Physik II. V: Prof. Dr. D. Zeppenfeld, Ü: Dr. M. Rauch. Klausur 2 Lösung. 04. April 2017, 11:00-13:00 Uhr

Moderne Theoretische Physik II. V: Prof. Dr. D. Zeppenfeld, Ü: Dr. M. Rauch. Klausur 2 Lösung. 04. April 2017, 11:00-13:00 Uhr KIT WS 6/7 Moderne Theoretische Physik II V: Prof. Dr. D. Zeppenfeld, Ü: Dr. M. Rauch Klausur Lösung 4. April 7, :-: Uhr Aufgabe : Störung zum zweidimensionalen harmonischen Oszillator ++7 Punkte a Die

Mehr

Ferienkurs Quantenmechanik

Ferienkurs Quantenmechanik PHYSIKDEPARTMENT TECHNISCHE UNIVERSITÄT MÜNCHEN Felix Rucker, Matthias Herzog Übungsklausur 9.9. Kurze Fragen (6 Punkte) Ferienkurs Quantenmechanik Übungsklausur a) Wie ist ein quantenmechanischer Drehimpuls

Mehr

Ferienkurs Quantenmechanik. Zeitabhängige Schrödingergleichung und der harmonische Oszillator

Ferienkurs Quantenmechanik. Zeitabhängige Schrödingergleichung und der harmonische Oszillator Seite 1 Ferienkurs Quantenmechanik Sommersemester 015 Fabian Jerzembeck und Sebastian Steinbeisser Fakultät für Physik Technische Universität München Zeitabhängige Schrödingergleichung und der harmonische

Mehr

7 Zwei- und Dreidimensionale Probleme in kartesischen Koordinaten

7 Zwei- und Dreidimensionale Probleme in kartesischen Koordinaten 7 Zwei- und Dreidimensionale Probleme in kartesischen Koordinaten 7.1 Das Teilchen im -Dimensionalen Kasten Slide 119 Das Teilchen im Kasten Das Teilchen soll sich zwischen = 0 und = L und = 0 und = L

Mehr

Die Bewegungsgleichungen eines geladenen Teilchens im externen elektromagnetischen Feld sind bekannt d dt m v = e E + e [

Die Bewegungsgleichungen eines geladenen Teilchens im externen elektromagnetischen Feld sind bekannt d dt m v = e E + e [ Vorlesung 4 Teilchen im externen Elektromagnetischen Feld Die Bewegungsgleichungen eines geladenen Teilchens im externen elektromagnetischen Feld sind bekannt d dt m v = e E + e v B c ]. 1) Das elektrische

Mehr

Störungstheorie. Kapitel Motivation. 8.2 Zeitunabhängige Störungstheorie (Rayleigh-Schrödinger) nicht-entartete Störungstheorie

Störungstheorie. Kapitel Motivation. 8.2 Zeitunabhängige Störungstheorie (Rayleigh-Schrödinger) nicht-entartete Störungstheorie Kapitel 8 Störungstheorie 8.1 Motivation Die meisten quantenmechanischen Problemstellungen lassen sich (leider) nicht exakt lösen. So kommt zum Beispiel der harmonische Oszillator in der Natur in Reinform

Mehr

Vorlesung "Molekülphysik/Festkörperphysik" Wintersemester 2013/2014

Vorlesung Molekülphysik/Festkörperphysik Wintersemester 2013/2014 Vorlesung "Molekülhysik/Festkörerhysik" Wintersemester 13/14 Prof. Dr. F. Kremer Übersicht der Vorlesung am 8.1.13 Die Schrödingergleichung für einen harmonischen Oszillator Die Nullunktsenergie des harmonischen

Mehr

Quantentheorie für Nanoingenieure Klausur Lösung

Quantentheorie für Nanoingenieure Klausur Lösung 07. April 011 PD Dr. H. Kohler Quantentheorie für Nanoingenieure Klausur Lösung K1. Ja Nein Fragen (8P) Jede richtige Antwort liefert einen Punkt, jede falsche Antwort liefert einen Minuspunkt. Eine nicht

Mehr

r r : Abstand der Kerne

r r : Abstand der Kerne Skript zur 10. Vorlesung Quantenmechanik, Freitag den 0. Mai, 011. 7.6 Anwendung Kernschwingungen in einem zweiatomigen Molekül. V ( r ) r 0 V 0 h ω 1 h ω r r : Abstand der Kerne Für Schwingungen kleiner

Mehr

Exakte Lösungen der stationären Schrödingergleichung

Exakte Lösungen der stationären Schrödingergleichung Teil III Exakte Lösungen der stationären Schrödingergleichung Inhaltsangabe 6 Eindimensionale Probleme 43 6.1 Das Teilchen im unendlich tiefen Kasten.......... 44 6.1.1 Modell und Lösung der Schrödingergleichung...

Mehr

Aufgabe 1: Wellenfunktion und Aufenthaltswahrscheinlichkeit

Aufgabe 1: Wellenfunktion und Aufenthaltswahrscheinlichkeit Lösungsvorschlag Übung 8 Aufgabe : Wellenfunktion und Aufenthaltswahrscheinlichkeit a) Die Wahrscheinlichkeitsdichte ist eine Wahrscheinlichkeit pro Volumenelement. Die Wahrscheinlichkeit selbst ist eine

Mehr

Das Unschärfeprodukt x p in der klassischen Mechanik Seminar zur Theorie der Atome, Kerne und kondensierten Materie. Jonas Lübke

Das Unschärfeprodukt x p in der klassischen Mechanik Seminar zur Theorie der Atome, Kerne und kondensierten Materie. Jonas Lübke Das Unschärfeprodukt x p in der klassischen Mechanik Seminar zur Theorie der Atome, Kerne und kondensierten Materie Jonas Lübke 7. November 013 Inhaltsverzeichnis 1 Einführung 1 Beziehung zwischen klassischer

Mehr

Übungen zur Modernen Theoretischen Physik I SS 14

Übungen zur Modernen Theoretischen Physik I SS 14 Karlsruher Institut für Technologie Übungen zur Modernen Theoretischen Physik I SS 4 Institut für Theoretische Festkörperphysik Prof. Dr. Gerd Schön Blatt 8 Andreas Heimes, Dr. Andreas Poenicke Besprechung

Mehr

Die Schrödingergleichung

Die Schrödingergleichung Die Schrödingergleichung Wir werden in dieser Woche die grundlegende Gleichung der Quantenmechanik kennenlernen, die Schrödingergleichung. Sie beschreibt das dynamische Verhalten von Systemen in der Natur.

Mehr

Die Schrödingergleichung

Die Schrödingergleichung Vortrag im Rahmen der Vorlesung zu Spektralmethoden Magdalena Sigg Wanja Chresta 20. Mai 2008 Zusammenfassung ist die zentrale Gleichung der Quantenmechanik. Mit ihrer Hilfe werden Teilchen in gegebenen

Mehr

Vorlesung 17. Quantisierung des elektromagnetischen Feldes

Vorlesung 17. Quantisierung des elektromagnetischen Feldes Vorlesung 17 Quantisierung des elektromagnetischen Feldes Wir wissen, dass man das elektromagnetische Feld als Wellen oder auch als Teilchen die Photonen beschreiben kann. Die Verbindung zwischen Wellen

Mehr

Klausur: Quantentheorie I, WS 07/08

Klausur: Quantentheorie I, WS 07/08 Klausur: Quantentheorie I, WS 7/8 Prof. Dr. R. Friedrich 1 Aufgabe 1: Stern-Gerlach Experiment Betrachten Sie ein neutrales Teilchen mit Spin 1/ (z. B. ein Neuton) in einem inhomogenen Magnetfeld B = b(

Mehr

Ferienkurs Theoretische Quantenmechanik 2010

Ferienkurs Theoretische Quantenmechanik 2010 Fakultät für Physik Michael Schrapp Technische Universität München Vorlesung Ferienkurs Theoretische Quantenmechanik 010 1 dimensionale Probleme Inhaltsverzeichnis 1 Die Schrödingergleichung 1.1 Wiederholung

Mehr

2 Einführung in die Prinzipien der Quantenmechanik

2 Einführung in die Prinzipien der Quantenmechanik Einführung in die Prinzipien der Quantenmechanik.1 Bedeutung von Axiomen (Postulaten) Axiome (Axiom griechisch für Grundsatz) sind Postulate, die nicht beweisbar sind, mit denen aber durch logische Folgerungen

Mehr

Festkörperelektronik 3. Übung

Festkörperelektronik 3. Übung Festkörperelektronik 3. Übung Felix Glöckler 02. Juni 2006 1 Übersicht Themen heute: Motivation Ziele Rückblick Quantenmechanik Aufgabentypen/Lösungsmethoden in der QM Stückweise konstante Potentiale Tunneln

Mehr

Ferienkurs Quantenmechanik 2009

Ferienkurs Quantenmechanik 2009 Ferienkurs Quantenmechanik 2009 Grundlagen der Quantenmechanik Vorlesungsskript für den 3. August 2009 Christoph Schnarr Inhaltsverzeichnis 1 Axiome der Quantenmechanik 2 2 Mathematische Struktur 2 2.1

Mehr

UNIVERSITÄT LEIPZIG INSTITUT FÜR THEORETISCHE PHYSIK

UNIVERSITÄT LEIPZIG INSTITUT FÜR THEORETISCHE PHYSIK UNIVERSITÄT LEIPZIG INSTITUT FÜR THEORETISCHE PHYSIK Quantenmechanik II Übungsblatt 10 Solutions 7. Wenn die zeitabhängige Störung periodisch in der Zeit ist, V = αx cos(ωt), mit einer Zahl α und einem

Mehr

WKB-Methode. Jan Kirschbaum

WKB-Methode. Jan Kirschbaum WKB-Methode Jan Kirschbaum Westfälische Wilhelms-Universität Münster Fachbereich Physik Seminar zur Theorie der Atome, Kerne und kondensierten Materie 1 Einleitung Die WKB-Methode, unabhängig und fast

Mehr

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016 Analysis D-BAUG Dr. Cornelia Busch FS 2016 Serie 13 1. Prüfungsaufgabe 4, Winter 2014. Bestimmen Sie die Funktion, für die gilt: An jeder Stelle des Definitionsbereichs ist die Steigung des Graphen der

Mehr

UNIVERSITÄT LEIPZIG, ITP Quantenmechanik II, WS2009/2010

UNIVERSITÄT LEIPZIG, ITP Quantenmechanik II, WS2009/2010 UNIVERSITÄT LEIPZIG, ITP Quantenmechanik II, WS009/00 Übungsblatt 5: Musterlösungen Aufgabe 3 Die Lösung des ungestörten Problems ist wohl bekannt; wir führen die dimensionslose Koordinate: und finden

Mehr

Ferienkurs Quantenmechanik. Schrödingergleichung und Potentialprobleme. 1 Zeitentwicklung und Schrödingergleichung

Ferienkurs Quantenmechanik. Schrödingergleichung und Potentialprobleme. 1 Zeitentwicklung und Schrödingergleichung Seite 1 Ferienkurs Quantenmechanik Sommersemester 013 Daniel Rosenblüh und Florian Häse Fakultät für Physik Technische Universität München Schrödingergleichung und Potentialprobleme Für die Physik interessant

Mehr

Theoretische Physik II: Quantenmechanik

Theoretische Physik II: Quantenmechanik Theoretische Physik II: Quantenmechanik Hans-Werner Hammer Marcel Schmidt (mschmidt@theorie.ikp.physik.tu-darmstadt.de) Wintersemester 2016/17 Probeklausur 12./13. Januar 2017 Name: Matrikelnummer: Studiengang:

Mehr

H LS = W ( r) L s, (2)

H LS = W ( r) L s, (2) Vorlesung 5 Feinstruktur der Atomspektren Wir betrachten ein Wasserstoffatom. Die Energieeigenwerte des diskreten Spektrums lauten E n = mα c n, (1 wobei α 1/137 die Feinstrukturkonstante, m die Elektronmasse

Mehr

Grundlagen und Formalismus

Grundlagen und Formalismus Seite 1 Ferienkurs Quantenmechanik - Aufgaben Sommersemester 2014 Fabian Jerzembeck und Christian Kathan Fakultät für Physik Technische Universität München Grundlagen und Formalismus Aufgabe 1 (*) Betrachte

Mehr

PC III Aufbau der Materie

PC III Aufbau der Materie PC III Aufbau der Materie Kapitel 3 Einfache Anwendungen Vorlesung: http://www.pci.tu-bs.de/aggericke/pc3 Übung: http://www.pci.tu-bs.de/aggericke/pc3/uebungen Die Schrödingergleichung zeitunabhängige

Mehr

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Horst Laschinsky 12. Oktober 1999 Inhaltsverzeichnis 1 Gewöhnliche lineare homogene Differentialgleichungen 2. Ordnung mit konstanten

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Robert Binder (rbinder@theochem.uni-frankfurt.de) Madhava Niraghatam (niraghatam@chemie.uni-frankfurt.de)

Mehr

Seminar zur Theorie der Atome, Kerne und kondensierten Materie. Kohärente Zustände des harmonischen Oszillators. Thomas Biekötter

Seminar zur Theorie der Atome, Kerne und kondensierten Materie. Kohärente Zustände des harmonischen Oszillators. Thomas Biekötter Seminar zur Theorie der Atome, Kerne und kondensierten Materie Kohärente Zustände des harmonischen Oszillators Thomas Biekötter 16.11.011 QUANTENMECHANISCHER HARMONISCHER OSZILLATOR 1 Klassischer harmonischer

Mehr

Physik IV - Schriftliche Sessionsprüfung Sommer 2009

Physik IV - Schriftliche Sessionsprüfung Sommer 2009 Physik IV - Schriftliche Sessionsprüfung Sommer 2009 9:00 11:00, Samstag, 8. August 2009, HG F1 & HG F3 Bitte zur Kenntnis nehmen: Es befinden sich insgesamt SECHS Aufgaben auf VIER SEITEN. Es können insgesamt

Mehr

Probeklausur zu Physikalische Chemie II für Lehramt

Probeklausur zu Physikalische Chemie II für Lehramt Department Chemie Dr. Don C. Lamb http://www.cup.uni-muenchen.de/pc/lamb Probeklausur zu Physikalische Chemie II für Lehramt Zur Bearbeitung der Klausur ist nur der freie Platz dieser vor Ihnen liegenden

Mehr

Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil

Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil 1. Grundlagen der Quantenmechanik (a) Wellenfunktion: Die Wellenfunktion Ψ(x, t) beschreibt den quantenmechanischen Zustand eines Teilchens am Ort x zur

Mehr

Übungen zur Modernen Theoretischen Physik I SS 14. (a) (1 Punkt) Zunächst schauen wir uns die Zeitableitung der Wahrscheinlichkeitsdichte

Übungen zur Modernen Theoretischen Physik I SS 14. (a) (1 Punkt) Zunächst schauen wir uns die Zeitableitung der Wahrscheinlichkeitsdichte Karlsruher Institut für Technologie Institut für Theoretische Festkörperphysik Übungen zur Modernen Theoretischen Physik I SS 14 Prof. Dr. Gerd Schön Lösungen zu Blatt 2 Andreas Heimes, Dr. Andreas Poenicke

Mehr

Ferienkurs Quantenmechanik Sommer 2009

Ferienkurs Quantenmechanik Sommer 2009 Physikdepartment Technische Universität München Max Knötig Blatt 4 Ferienkurs Quantenmechanik Sommer 009 Quantenmechanik mit Näherungsmethoden Mehrteilchensystem(** Zwei identische Bosonen werden in einem

Mehr

2.1 Die Heisenbergschen Vertauschungsrelationen

2.1 Die Heisenbergschen Vertauschungsrelationen Kapitel 2 Die Schrödinger-Gleichung Einführung Im Formalismus der Quantenmechanik werden Observablen z. B. Ort, Impuls oder Energie eines Teilchens im Allgemeinen nicht durch Zahlen x, p x, E, etc. oder

Mehr

PC-II-04 Seite 1 von 8 WiSe 09/10

PC-II-04 Seite 1 von 8 WiSe 09/10 PC-II-04 Seite 1 von 8 WiSe 09/10 Nachdem wir uns mit dem Teilchen im ein- und dreidimensionalen Kasten beschftigt haben, und Wellenfunktionen finden konnten, wollen wir das gleiche Problem nun fr ein

Mehr

Im Folgenden finden Sie den Text der am geschriebenen Theorie D-Klausur, sowie Lösungen zu den einzelnen Aufgaben. Diese Lösungen sind

Im Folgenden finden Sie den Text der am geschriebenen Theorie D-Klausur, sowie Lösungen zu den einzelnen Aufgaben. Diese Lösungen sind Im Folgenden finden Sie den Text der am 28.7.2010 geschriebenen Theorie D-Klausur, sowie Lösungen zu den einzelnen Aufgaben. Diese Lösungen sind unter Umständen nicht vollständig oder perfekt, und sie

Mehr

Theorie der Kondensierten Materie I WS 2017/2018

Theorie der Kondensierten Materie I WS 2017/2018 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theorie der Kondensierten Materie I WS 17/18 Prof. Dr. A. Mirlin, PD Dr. I. Gornyi Blatt 3 Dr. N. Kainaris, Dr. S. Rex,

Mehr

10. Das Wasserstoff-Atom Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell:

10. Das Wasserstoff-Atom Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell: phys4.016 Page 1 10. Das Wasserstoff-Atom 10.1.1 Das Spektrum des Wasserstoff-Atoms im Bohr-Modell: Bohr-Modell liefert eine ordentliche erste Beschreibung der grundlegenden Eigenschaften des Spektrums

Mehr

Schrödingergleichung und Potentialprobleme. 1 Zeitentwicklung und Schrödingergleichung

Schrödingergleichung und Potentialprobleme. 1 Zeitentwicklung und Schrödingergleichung Seite 1 Ferienkurs Quantenmechanik - Aufgaben Sommersemester 014 Fabian Jerzembeck und Christian Kathan Fakultät für Physik Technische Universität München Schrödingergleichung und Potentialprobleme 1 Zeitentwicklung

Mehr

Quasi-exakt lösbare quantenmechanische Potentiale

Quasi-exakt lösbare quantenmechanische Potentiale Quasi-exakt lösbare quantenmechanische Potentiale Ausarbeitung zum Seminar zur Theorie der Atome, Kerne und kondensierten Materie vom.10.014 Philipp Marauhn p_mara01@uni-muenster.de Inhaltsverzeichnis

Mehr

Nachklausur: Quantentheorie I, WS 07/08

Nachklausur: Quantentheorie I, WS 07/08 Nachklausur: Quantentheorie I, WS 7/8 Prof. Dr. R. Friedrich Aufgabe : [ P.] Betrachten Sie die Bewegung eines Teilchens im konstanten Magnetfeld B = [,, b] a)[p.] Zeigen Sie, dass ein zugehöriges Vektorpotential

Mehr

D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Alexander Dabrowski. Serie 9

D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Alexander Dabrowski. Serie 9 D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Alexander Dabrowski Serie 9 Best Before: 24.5/25.5, in den Übungsgruppen (2 wochen) Koordinatoren: Alexander Dabrowski, HG G 52.1, alexander.dabrowski@sam.math.ethz.ch

Mehr

Vertiefende Theoretische Chemie Übungen

Vertiefende Theoretische Chemie Übungen Universität eipzig Studiengang Chemie (Bachelor) Sommersemester 5 Vertiefende Theoretische Chemie Übungen Inhaltsverzeichnis Teilchen im Kasten. Translation: Teilchen im Kasten............................................

Mehr

Lösungsvorschlag zum Übungsblatt Nr.4

Lösungsvorschlag zum Übungsblatt Nr.4 Lösungsvorschlag zum Übungsblatt Nr.4 Aufgabe 6 a. Die stationäre Schrödingergleichung für einen Hamiltonoperator Ĥx, y, z in drei Dimensionen lautet Ĥx, y, zψx, y, z = W ψx, y, z, 1 mit dem Energieeigenwert

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 4 - Lösung Technische Universität München 1 Fakultät für Physik 1 Zwei Kugeln und der Satz von Steiner Nehmen Sie zwei Kugeln mit identischem Radius R und

Mehr

Eindimensionale Potentialprobleme

Eindimensionale Potentialprobleme Kapitel 3 Eindimensionale Potentialprobleme 3.1 Problemstellung Fragestellung. Es soll die quantenmechanische Beschreibung eines Teilchens in einer Dimension, das ein Potential V sieht (Abbildung 3.1),

Mehr

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 3. Vorlesung. Pawel Romanczuk WS 2017/18

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 3. Vorlesung. Pawel Romanczuk WS 2017/18 Theoretical Biophysics - Quantum Theory and Molecular Dynamics 3. Vorlesung Pawel Romanczuk WS 2017/18 1 Zusammenfassung letzte VL Quantenzustände als Wellenfunktionen (Normierung) Operatoren (Orts-, Impuls

Mehr

Ŵ schreiben, wobei einerseits. 2m m!2ˆx 2, einen eindimensionalen harmonischen Oszillator beschreibt, dessen Eigenenergien. ~! (VIII.

Ŵ schreiben, wobei einerseits. 2m m!2ˆx 2, einen eindimensionalen harmonischen Oszillator beschreibt, dessen Eigenenergien. ~! (VIII. 0 Näherungsmethoden in der Quantenmechanik VIII.. c :::::::: :::::::::::::::::::::::::::::::::::::: Beispiel: anharmonischer Oszillator Als Beispiel für die in den vorigen Paragraphen entwickelten Störungsrechnung

Mehr

r, t 2 r,t = r,t 2 d 3 r =

r, t 2 r,t = r,t 2 d 3 r = 3. Wellenfunktion, Schrödingergleichung und Operatoren Der Zustand eines QM Systemes wird durch eine Wellenfunktion beschrieben. ψ(r,t)=wellenfunktion=zustandsfunktion Die Wahrscheinlichkeitsdichte ein

Mehr

Ferienkurs Theoretische Mechanik 2009 Hamilton Formalismus und gekoppelte Systeme

Ferienkurs Theoretische Mechanik 2009 Hamilton Formalismus und gekoppelte Systeme Fakultät für Physik Technische Universität München Michael Schrapp Übungsblatt 3 Ferienkurs Theoretische Mechanik 009 Hamilton Formalismus und gekoppelte Systeme Hamilton-Mechanik. Aus Doctoral General

Mehr

Einführung in die Supersymmetrie

Einführung in die Supersymmetrie Einführung in die Supersymmetrie Zusammenfassung zum Vortrag vom 02.02.2011 Peter Kettmann 26. März 2011 Inhaltsverzeichnis 1 Einleitung 3 2 Das einfachste Modell 4 2.1 SUSY-Operatoren................................

Mehr

7.3 Der quantenmechanische Formalismus

7.3 Der quantenmechanische Formalismus Dieter Suter - 389 - Physik B3 7.3 Der quantenmechanische Formalismus 7.3.1 Historische Vorbemerkungen Die oben dargestellten experimentellen Hinweise wurden im Laufe der ersten Jahrzehnte des 20. Jahrhunderts

Mehr

Ferienkurs Quantenmechanik 2009

Ferienkurs Quantenmechanik 2009 Ferienkurs Quantenmechanik 9 Quantenmechanik mit Näherungsmethoden, oder: Wie rechne ich etwas aus? Vorlesungskript für den 6. August 9 Max Knötig Inhaltsverzeichnis Einführung Zeitunabhängige, nicht-entartete

Mehr

Lösungsvorschlag Übung 9

Lösungsvorschlag Übung 9 Lösungsvorschlag Übung 9 Aufgabe 1: Wellenfunktion und Aufenthaltswahrscheinlichkeit a Die Wahrscheinlichkeitsdichte ist eine Wahrscheinlichkeit pro Volumenelement. Die Wahrscheinlichkeit selbst ist eine

Mehr

X. Quantisierung des elektromagnetischen Feldes

X. Quantisierung des elektromagnetischen Feldes Hamiltonian des freien em. Feldes 1 X. Quantisierung des elektromagnetischen Feldes 1. Hamiltonian des freien elektromagnetischen Feldes Elektromagnetische Feldenergie (klassisch): Modenentwicklung (Moden

Mehr

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator VL 9 VL8. VL9. Das Wasserstoffatom in der Klass. Mechanik 8.1. Emissions- und Absorptionsspektren der Atome 8.2. Quantelung der Energie (Frank-Hertz Versuch) 8.3. Bohrsches Atommodell 8.4. Spektren des

Mehr

Ferienkurs Quantenmechanik. Grundlagen und Formalismus

Ferienkurs Quantenmechanik. Grundlagen und Formalismus Ferienkurs Quantenmechanik Sommersemester 203 Seite Daniel Rosenblüh und Florian Häse Fakultät für Physik Technische Universität München Grundlagen und Formalismus In der Quantenmechanik werden Zustände

Mehr

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator VL 9 VL8. VL9. Das Wasserstoffatom in der Klass. Mechanik 8.1. Emissions- und Absorptionsspektren der Atome 8.2. Quantelung der Energie (Frank-Hertz Versuch) 8.3. Bohrsches Atommodell 8.4. Spektren des

Mehr

Theoretische Physik 2 (Theoretische Mechanik)

Theoretische Physik 2 (Theoretische Mechanik) Theoretische Physik 2 (Theoretische Mechanik Prof. Dr. Th. Feldmann 21. Januar 2014 Kurzzusammenfassung Vorlesung 23 vom 21.1.2014 Satz von Liouville Der Fluß eines Hamilton schen Systems im Phasenraum

Mehr

7 Die Hamilton-Jacobi-Theorie

7 Die Hamilton-Jacobi-Theorie 7 Die Hamilton-Jacobi-Theorie Ausgearbeitet von Rolf Horn und Bernhard Schmitz 7.1 Einleitung Um die Hamilton schen Bewegungsgleichungen q k = H(q, p) p k ṗ k = H(p, q) q k zu vereinfachen, führten wir

Mehr

Aufgabe 2: Quantenmechanisches Modell für pseudolineare Polyene

Aufgabe 2: Quantenmechanisches Modell für pseudolineare Polyene Lösungsvorschlag Übung 10 Aufgabe 1: Ein Teilchen im eindimensionalen Kasten a Die Energiedifferenz zwischen zwei aufeinanderfolgenden Energie-Eigenwerten ist E n,n+1 = E n+1 E n ml n + 1 n 1.1 n + 1.

Mehr

Klausur zur T1 (Klassische Mechanik)

Klausur zur T1 (Klassische Mechanik) Klausur zur T1 (Klassische Mechanik) WS 2006/07 Bearbeitungsdauer: 120 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

1.4. Die Wahrscheinlichkeitsinterpretation

1.4. Die Wahrscheinlichkeitsinterpretation 1.4. Die Wahrscheinlichkeitsinterpretation 1.4.1. Die Heisenbergsche Unschärferelation Wie kann der Welle-Teilchen-Dualismus in der Quantenmechanik interpretiert werden? gibt die Wahrscheinlichkeit an,

Mehr

Ein Lehrbuch für Studierende der Chemie im 2. Studienabschnitt

Ein Lehrbuch für Studierende der Chemie im 2. Studienabschnitt Atom- und Molekülbau Ein Lehrbuch für Studierende der Chemie im 2. Studienabschnitt Von Peter C. Schmidt und Konrad G. Weil 147 Abbildungen, 19 Tabellen Georg Thieme Verlag Stuttgart New York 1982 Vorwort

Mehr

T2 Quantenmechanik Lösungen 4

T2 Quantenmechanik Lösungen 4 T2 Quantenmechanik Lösungen 4 LMU München, WS 17/18 4.1. Lösungen der Schrödinger-Gleichung Beweisen Sie die folgenden Aussagen. Prof. D. Lüst / Dr. A. Schmi-May version: 06. 11. a) Die Separationskonstante

Mehr

5. Vorlesung Wintersemester

5. Vorlesung Wintersemester 5. Vorlesung Wintersemester 1 Bewegung mit Stokes scher Reibung Ein dritter Weg, die Bewegungsgleichung bei Stokes scher Reibung zu lösen, ist die 1.1 Separation der Variablen m v = αv (1) Diese Methode

Mehr

Walter Greiner THEORETISCHE PHYSIK. Ein Lehr-und Übungsbuch für Anfangssemester. Band 4: Quantenmechanik. Eine Einführung

Walter Greiner THEORETISCHE PHYSIK. Ein Lehr-und Übungsbuch für Anfangssemester. Band 4: Quantenmechanik. Eine Einführung Walter Greiner THEORETISCHE PHYSIK Ein Lehr-und Übungsbuch für Anfangssemester Band 4: Quantenmechanik Eine Einführung Mit zahlreichen Abbildungen, Beispielen und Aufgaben mit ausführlichen Lösungen 2.,

Mehr

7.4 Gekoppelte Schwingungen

7.4 Gekoppelte Schwingungen 7.4. GEKOPPELTE SCHWINGUNGEN 333 7.4 Gekoppelte Schwingungen Als Beispiel für 2 gekoppelte Schwingungen betrachten wir das Doppelpendel, das in Abb. 7.19 dargestellt ist. Zunächst vernachlässigen wir die

Mehr

I. Grundlagen der Quantenphysik I.1 Einleitung I.2 Historisches I.3 Die Schrödinger-Gleichung I.4 Die Wellenfunktion I.5 Das freie quantenmechanische

I. Grundlagen der Quantenphysik I.1 Einleitung I.2 Historisches I.3 Die Schrödinger-Gleichung I.4 Die Wellenfunktion I.5 Das freie quantenmechanische I. Grundlagen der Quantenphysi I.1 Einleitung I. Historisches I.3 Die Schrödinger-Gleichung I.4 Die Wellenfuntion I.5 Das freie quantenmechanische Eletron I.6 Erwartungswerte Quantenmechanische Erwartungswerte

Mehr

Methoden der Quantenmechanik mit Mathematica

Methoden der Quantenmechanik mit Mathematica James M. Feagin Methoden der Quantenmechanik mit Mathematica Übersetzt von Felix Pahl Mit einem Geleitwort von S. Brandt und H.D. Dahmen Mit 80 Abbildungen, zahlreichen Übungen und einer 3V 2 "-Diskette

Mehr

Schrödingergleichung und Potentialprobleme. 1 Zeitentwicklung und Schrödingergleichung

Schrödingergleichung und Potentialprobleme. 1 Zeitentwicklung und Schrödingergleichung Seite 1 Ferienkurs Quantenmechanik - Aufgaben Sommersemester 13 Daniel Rosenblüh und Florian Häse Fakultät für Physik Technische Universität München Schrödingergleichung und Potentialprobleme 1 Zeitentwicklung

Mehr

D-MATH Numerische Methoden FS 2017 Dr. Vasile Gradinaru Luc Grosheintz. Serie 10

D-MATH Numerische Methoden FS 2017 Dr. Vasile Gradinaru Luc Grosheintz. Serie 10 D-MATH Numerische Methoden FS 2017 Dr. Vasile Gradinaru Luc Grosheintz Serie 10 Abgabedatum: 23.5/24.5, in den Übungsgruppen Koordinatoren: Luc Grosheintz, HG G 46, luc.grosheintz@sam.math.ethz.ch Webpage:

Mehr