Network Layer (= Internet Protocol)

Größe: px
Ab Seite anzeigen:

Download "Network Layer (= Internet Protocol)"

Transkript

1 Layer 3: Network Layer (= Internet Protocol) Aufgabe: Weltweite Vernetzung zum Internet. Das geschieht durch die Koppelung von einzelnen LANs (Local Area Networks) zu WANs (Wide Area Networks). Neue Adressen: IP-Adressen (verbundene Geräte haben ähnliche Adressen) Uni-Innsbruck Versionen: IPv4: aktuell IPv6: wird immer häufiger eingesetzt IPv4: Adressen haben 32 Bit, oder 4 Bytes, Sie werden byteweise dezimal angegeben und mit Punkten getrennt: Institutsserver mat Instituts-WWW-Server techmath bei der Definition der IPv4-Adressen wurden 5 Klassen von IP-Adressen eingeführt. Das 1. Byte der Adresse entscheidet über die Klassenzugehörigkeit: A-Klasse: 0 bis 127, die letzten 3 Bytes für Hosts (16 Mio.) im Netzwerk es gibt 128 A-Klasse-Netzwerke B-Klasse: 128 bis 191, die letzten 2 Bytes für Hosts (65000) es gibt ca B-Klasse Netzwerke (128.0 bis ) C-Klasse: 192 bis 223, das letzte Byte für Hosts (256 Adressen) es gibt ca. 4 Mio. Netzwerke ( bis ) D-Klasse: : Multicast-Adressen E-Klasse: : reserviert, die einzige verwendete Adresse ist limited Broadcast-Adresse Aufbau: Classfull IPv4: Bytes 1, 1+2, bilden die Netzwerkadresse der Klassen A, B, C, die restlichen Bytes die Interface-Adresse (= Node), zusammen sind es immer 4 Bytes A-Klasse: 1 Netz + 3 Nodes B-Klasse: 2 Netz + 2 Nodes C-Klasse: 3 Netz + 1 Nodes wenig LANs, diese sind riesig nur LANs à Hosts 4 Mio. LANs mit maximal 256 Hosts

2 IPv6: 16 Bytes, nur hexadezimale Angabe, keine Klasseneinteilung Kommando: "ping" "tracert" Verbindungstest (Win) Routenverfolgung "traceroute" (Unix) Routenverfolgung Praktisches Beispiel: 2 PCs ("2 PCs.pkt") An diesem Beispiel kann man unterschiedliche Twisted-Pair Kabeln austesten. Eine falsche Wahl verhindert, dass die Anschlüsse hochfahren (LEDs bleiben rot). Anschließend konfigurieren wir die PCs auf die 2 angegebenen IPv4-Adressen und lassen den Rest auf Default stehen. Die 2 PCs sollten sich erreichen können (ping-kommando). Startet man auf dem PC einen Web-Browser, sollte dieser Webseiten des Servers abrufen können.

3 Im Simulationsmodus ist eine genaue Verfolgung aller Pakete möglich. Vorher muss man die ganze Konfiguration neu starten, damit alles auf Null gestellt wird: PC0: ping (den Server): 1) Es wird ein ping-paket (vom Typ ICMP) erzeugt, das aber noch unvollständig ist, da die MAC-Adresse des Servers nicht bekannt ist! Man sieht, dass die entsprechenden Felder im Layer 2 noch leer sind. 2) Um die MAC-Adresse des Servers zu bestimmen, wird das ARP-Protokoll (Address Resolution Protocol) verwendet (Address schreibt man im Englischen tatsächlich mit Doppel-d!!). Dies ist ein Layer-2 Protokoll, das an die L2-Broadcastadresse ff:ff:ff:ff:ff:ff sendet (an alle) mit der Bitte, dass sich der richtige Empfänger (der die richtige IP-Adresse besitzt) melden möge (ARP-Request). Der Host mit der gesuchten IP-Adresse soll sich beim Anfrager melden (ARP-Reply) und diesem seine MAC-Adresse mitteilen. 3) Der ARP-Request geht an den Switch und wird auf allen Leitungen (Broadcast) weitergesendet. Der angesprochene Server sendet daraufhin seine MAC-Adresse in einem ARP-Antwortpaket an den anfragenden PC0. Dieses Paket ist ein Unicast (siehe die Destination-MAC) und wird vom Switch nur an die richtige Leitung weitergeleitet.

4 4) Nach dem Eintreffen der MAC-Adresse wird das ICMP-ping-Paket (ICMP Message Type 8) fertig aufgebaut und abgesendet. Es erreicht auf direktem Weg den Server, der ein Antwortpaket (pong: Type 0) zurücksendet. Der PC gibt am Bildschirm eine Empfangsbestätigung aus mit zusätzlichen Timing-Informationen (Ping-Zeit). Ein niedriger Wert bedeutet eine gute, latenzarme Verbindung. Das ganze wird unter Windows noch 3 Mal wiederholt, UNIX versendet bis zum Programmabbruch laufend ping-pakete. 5) Ändert man die Subnetzmaske (Subnet Mask) auf das in Innsbruck verwendete (/26) bei einem oder bei beiden PCs, so ist keine Kommunikation mehr möglich. Subnetzmaske: legt fest, welche IP-Adressen zum eigenen LAN gehören. Normalerweise denkt ein Host, dass das gesamte Netzwerk, aus dem er eine IP-Adresse besitzt, direkt auf Layer 2 (d.h. nur über Switches) verbunden ist, also in seinem LAN liegt. Vielfach ist so ein Netzwerk infolge von zu großen Distanzen oder von zu vielen PCs unmöglich oder nicht wünschenswert. Der Netzwerk-Administrator kann daher sein Netzwerk weiter in sogenannte Subnetzwerke unterteilen. Alle diese Subnetzwerke müssen auf Layer 2 jetzt wirklich verbunden sein, also in sich jeweils ein physikalisches LAN bilden. Die Subnetzmaske definiert nun für jeden Host die Größe seines eigenen Subnetzwerkes. Sie markiert jene Bits durch die Binärziffer 1, die in der eigenen und der fremden Adresse übereinstimmen müssen, um im selben Subnetz zu liegen. Ist z.b. die Subnetzmaske (32 Bits), so müssen die eigenen und die fremde Adresse in der ersten 5 Bits (dort wo die Einser stehen) übereinstimmen (das Beispiel ist sicher nicht praxisnah und nur zur Veranschaulichung). Die Subnetzmaske wird entweder wie eine IP-Adresse angegeben (obwohl sie eigentlich keine ist) oder aber in der Suffix-Schreibweise: Man gibt nur die Anzahl der Einser 1 an, die am Anfang stehen müssen. gültige Subnetzmasken sind z.b.

5 binär (mit Punkten nach 8 Bits!) IPv4 Suffix / /8 Standard in Klasse A /16 Standard in Klasse B /24 Standard in Klasse C /26 Uni Innsbruck Es gibt also nur 33 mögliche Subnetzmasken (/0 bis /32). Bei Masken ist es nicht erlaubt, Nullen und Einser zu mischen, was bei normalen IPv4-Adressen natürlich gestattet ist. Interpretation der Subnetz-Maske /n: Stimmt die Zieladresse auf den ersten n Bits mit der eigenen IP-Adresse überein, so liegt sie im selben LAN. Andernfalls liegt sie nicht selben LAN und ist u.u. nicht direkt erreichbar. Betrachten wir z.b. die IPv4-Adressen von PC0 und dem Server: = = Man sieht, dass die binären Darstellungen sich an der 18. Ziffer von links unterscheiden! Maske /16 oder : Adressen stimmen in den ersten 16 Bit überein -> selbes LAN: Also wir die Kommunikation versucht und kommt auch zustande. Maske /26 oder : Adressen stimmen nicht überein -> unterschiedliche LANs. Der betreffende PC versucht erst gar keine Kommunikation, da er annimmt, dass sich das Ziel nicht im selben LAN befindet und daher nicht auf Layer 2 erreichbar ist. Aufgrund unterschiedlicher Masken kann das Ergebnis der Überprüfung zu anderen Resultaten führen. Deshalb funktioniert die Kommunikation einmal, das andere Mal nicht! 1) Adressen im selben LAN: Es wird versucht, über reine L2-Kommunikation das Paket zu versenden, d.h. es wird mittels ARP die MAC-Adresse des Ziels ermittelt und das Paket versendet. 2) Adressen nicht im selben LAN: Es muss ein Gateway bekannt sein, das das Paket weiterleiten kann (eine Zwischenstation). Dieses Gateway muss im selben LAN liegen und das Paket wird an dieses Gateway per L2-Kommunikation versendet (das IP- Paket selbst bleibt unberührt, nur der L2-Frame wird an das Gateway adressiert!). PCs verwenden normalerweise dasselbe Gateway für alle Adressen, die nicht im eigenen Subnetz liegen. Deshalb heißt dieses Gateway dann auch Standardgateway oder auch Default Gateway.

6 Beispiel 2: 2 PCs + Router ("2 PCs + Router.pkt") Statt der Verbindung zwischen den Switches wird ein Router dazwischen platziert. Beide PCs erhalten die richtige Subnetzmaske für Innsbruck (/26). Der Router0 besitzt 2 Netzwerk-Schnittstellen, die an die zu verbindenden Netzwerke angeschlossen wurden. Traditionell bekommen diese Schnittstellen die höchstmöglichen Adressen (das sind die vorletzen Adressen, da die letzte Adresse als Broadcast dient) im jeweiligen Netzwerk, das sind (siehe eigenen PC) und Die Routerinterfaces müssen außerdem (Cisco-Eigenheit) erst aktiviert werden, bevor sie aktiv werden. Ein ping von PC0 zu Laptop0 funktioniert noch genauso wenig wie ohne Router. Sie können sich nicht erreichen und es fehlr das Standard-Gateway. Erst wenn man auf PC0 als Gateway die Routeradresse einträgt, kann der PC0 den Laptop0 erreichen. Allerdings kommt die Antwort (das pong-paket) noch nicht zurück, da man auch auf dem Server das Gateway konfigurieren muss:

7 Erst jetzt funktioniert das Ping. Mit dem Kommando tracert (Windows) bzw. traceroute (Unix) kann man alle Zwischenstationen (Router) auf dem Weg zum Zielrechnen herausfinden: Reservierte Netzwerke und IP-Adressen: /32 unspezifizierte IP-Adresse /8 reserviert für private Netzwerke /8 loopback Netzwerk ( : localhost (der Host selbst!)) /16 reserviert für link local Adressen (Microsoft: APIPA-Adressen) /16 reserviert für private Netzwerke /16 reserviert für private Netzwerke /24 reserviert für private Netzwerke /24 reserviert für private Netzwerke /32 limited Broadcast Außerdem sind in jedem Netzwerk und in jedem Subnetzwerk die niedrigste (dient als Adresse des ganzen (Sub-) Netzwerks und die höchste Adresse (dient als Broadcast-Adresse für dieses (Sub-) Netzwerk) reserviert. Diese Adressen dürfen daher niemals an Hosts vergeben werden. z.b mit Netmask /26: liegt im Subnetz / Adresse des gesamten Subnetzes erste zulässige Host-Adresse letzte zulässige Hostadresse Broadcast-Adresse des gesamten Subnetzes Uni Innsbruck: / Das gesamte Uni-Ibk Netz Broadcast für die gesamte Uni Innsbruck

8 Private Netzwerke: Diese Adressen wurden ausdrücklich für private Netzwerke freigegeben. Solche Adressen dürfen im verbundenen Internet nicht verwendet werden. Jedes Paket von einer privaten Adresse oder an eine private Adresse wird im Internet nicht befördert (wird vom ersten Router ohne Rückmeldung vernichtet). Alle Privaten Netze dürfen daher beliebig oft verwendet werden, da sie nicht über das Internet direkt verbunden sind (siehe NAT unten). TTL: Time To Live Jedes IP-Paket besitzt dieses Feld. Befördert ein Router ein Paket weiter, zieht er 1 vom Inhalt ab. Wird die TTL dadurch zu 0, wird das Paket verworfen und der Absender informiert (mittels eines ICMP-Pakets). Diesen Umstand macht sich das traceroute (tracert unter Windows) zu Nutze. Es sendet Pakete mit TTL=1, dann TTL=2, dann TTL=3 usw. an den Zielhost. Je nach TTL verwirft der 1. Router oder der 2. Router oder 3. Router usw. Router das Paket und meldet dies per ICMP dem Absender. Dadurch weiß dieser die Route, die sein Paket genommen hat. NAT (Network Address Translation), Masquerading: Verwendet ein Netzwerk private Adressen, so muss sein Router beim Übergang zum Internet diese privaten Adressen durch nichtprivate IP- Adressen ersetzen. Dazu bedient er sich seiner (einzigen) nichtprivaten Adresse, die er besitzt, nämlich die IP-Adresse seiner Netzwerkschnittstelle zum Internet. Für das Internet ist daher der Router der eigentliche Absender, hinter seiner Adresse versteckt sich das ganze private Netzwerk, er maskiert es sozusagen. Senden mehrere Hosts aus dem privaten Netzwerk Pakete ins Internet, muss der Router sich merken, von wem ursprünglich das übersetzte Paket gekommen ist. Er verwendet dazu Informationen aus dem Kopf des höherwertigen Paketinhaltes (z.b. des ICMP- Headers oder des TCP-Headers), um diese Information intern zu speichern. Beispiel 3: WiFi + NAT ("WiFi + NAT.pkt") In diesem Beispiel wurde der Linksys WRT300N eingesetzt, um den "öffentlichen" Server mat1 an das private Netzwerk (bestehend aus PC0 und dem unverbundenen Laptop) zu koppeln. Der Wlan Router verwendet dazu das private Netz /24 und ist DHCP Server für dieses Netz (d.h. er verteilt IP-Adressen automatisch, siehe später). Der PC0 (der nach dem Start keine Netzwerk-Konfiguration besitzt), kann sich nun eine IP-Adresse per DHCP (er bekommt ) besorgen und anschließend die mat1 pingen ("ping "). Untersucht man dieses Paket am Wlan-Router, erkennt man: ursprüngliches Paket: > weitergeleitetes Paket: > Der Router ersetzt also die "private" Absenderadresse durch seine eigene "öffentliche" Adresse. Für den Server ist also der Router die eigentliche Datenquelle und er sendet seine Antwort an diesen. Dort geschieht genau der umgekehrte Vorgang: Der Router ersetzt seine "öffentliche" Adresse durch die "private" Adresse des PCs und leitet das Paket an diesen weiter. In Wirklichkeit ist das Ganze etwas komplizierter als hier dargestellt, weil der Router auch über alle NAT-Vorgänge Buch führen muss.

9 Um gleichzeitig mehrere Netzwerkverbindungen des Layer 4 (TCP oder UDP) per NAT ins Internet zu senden, muss der Router auch dir L4-Parameter (die Ports) verändern: PAT: Port Address Translation. Daher versteht man unter NAT eigentlich die Kombination NAT/PAT. CGN: Carrier Grade NAT Die IPv4 Adressenknappheit zwingt Provider, die mehr Kunden als IPv4 Adressen haben, zu diesem Schritt: Der Kunde bekommt nur mehr eine private IP-Adresse (meist 10.x.x.x) für seinen Router und muss sein Heimnetz (meist x.0) per NAT auf diese private IP- Adresse umsetzen. Der Provider setzt seinerseits NAT ein, um diese 10.x.x.x Adressen auf offizielle IP- Adressen umzusetzen. Dieser doppelte NAT-Aufwand ist dank schneller Hardware kaum spürbar, die ganze Sache hat aber für den Kunden mehrere Nachteile: Er hat keine offizielle IPv4-Adresse mehr. Fast immer verwenden mehrere Kunden dieselbe offizielle IPv4-Adresse eines Providers. Mehrere gleichzeitige L4-Verbindungen eines einzigen Kunden können im Internet durchaus mit verschiedenen IPv4-Absenderadressen des Providers unterwegs sein. Port-Forwarding aus dem Internet ist nur mehr über den Provider möglich (in der Praxis also unmöglich). Das bedeutet, dass kein IPv4-Serverbetrieb möglich ist. L3-Protokolle lassen sich meist nicht per NAT weiterleiten. Alle auf solchen Protokollen basierenden Dienste sind für den Kunden nicht möglich (z.b. IPv6-Tunnel, manche ICMP- Nachrichten, ) Routing: Unter Routing versteht man die Weiterleitung eines Paketes. Kann man den Zielhost per Layer 2 erreichen (das ist an dessen IP-Adresse, der eigenen IP-Adresse und der eigenen Subnetzmaske erkennbar), wird das Paket per L2-Transport an diesen gesendet (ARP usw.). Ist der Zielhost nicht direkt erreichbar, muss das Paket an eine andere Empfangsstelle (= Router) weitergeleitet werden. Dieser übernimmt den Weitertransport des Pakets usw., bis es schließlich am Zielhost eintrifft. Jeder Router sollte das Paket näher zum eigentlichen Ziel bringen, wozu natürlich genaue Kenntnis der Netzwerkverbindungen (Netzwerk-Topologie) erforderlich ist. Jeder Router verfügt über Tabellen, in denen alle Netzwerke und der beste Weg dahin gespeichert sind. Diese Tabellen werden nicht mehr händisch verwaltet. Vielmehr lernen die Router untereinander durch den Austausch von Router-Informationen (= Routing-Protokolle). Im Grunde macht die Verwaltung des Internets dank hochintelligenter Protokolle oft weniger Arbeit als die Verwaltung eines Heimnetzes. Leider weisen aber selbst diese ausgeklügelten Routingprotokolle noch

10 Sicherheitslücken auf bzw. sind die Implementierungen in den Routern fehlerhaft, sodass es auch heute noch zu Internetausfällen infolge Software-Bugs kommen kann (zuletzt 2009 geschehen, als ein kleiner slowakischer Provider praktisch alle Cisco-Router weltweit lahmgelegt hat). Am PC ist diese Tabelle übrigens auch vorhanden, allerdings in einer stark abgekürzten Variante: Sende alles im selben Subnetz direkt an den Empfänger, alles übrige an das Default Gateway. Kommando: "route print" (Windows) bzw. "route [-n]" (Unix)

Layer 3: Network Layer (hier: Internet Protocol Version 4)

Layer 3: Network Layer (hier: Internet Protocol Version 4) Layer 3: Network Layer (hier: Internet Protocol Version 4) Aufgabe: Weltweite Vernetzung zum Internet. Das geschieht durch die Koppelung von einzelnen LANs (Local Area Networks) zu WANs (Wide Area Networks)

Mehr

Layer 3: Network Layer (hier: Internet Protocol Version 6)

Layer 3: Network Layer (hier: Internet Protocol Version 6) Layer 3: Network Layer (hier: Internet Protocol Version 6) IPv6-Adressen: Die neuen IPv6-Adressen sind 16 Bytes lang (IPv4: 4) und werden immer hexadezimal angegeben (IPv4: dezimale Punktnotation). Jedes

Mehr

Kommunikation im lokalen Netz

Kommunikation im lokalen Netz Kommunikation im lokalen Netz Ein einfaches lokales Netz stellt man sich als Gebilde vor, in dem mehrere Computer oder andere Netzwerk-Endgeräte über einen oder mehrere e miteinander verbunden sind. In

Mehr

Netzwerk Linux-Kurs der Unix-AG

Netzwerk Linux-Kurs der Unix-AG Netzwerk Linux-Kurs der Unix-AG Benjamin Eberle 13. Juli 2016 Netzwerke mehrere miteinander verbundene Geräte (z. B. Computer) bilden ein Netzwerk Verbindung üblicherweise über einen Switch (Ethernet)

Mehr

Übung - Anzeigen von Host-Routing-Tabellen

Übung - Anzeigen von Host-Routing-Tabellen Topologie Lernziele Teil 1: Zugriff auf eine Host-Routing-Tabelle Teil 2: Prüfen der Einträge einer IPv4-Host-Routing-Tabelle Teil 3: Prüfen der Einträge einer IPv6-Host-Routing-Tabelle Hintergrund / Szenario

Mehr

Gruppen Di-T14 / Mi-T25

Gruppen Di-T14 / Mi-T25 Gruppen Di-T14 / Mi-T25 Tutorübung zu Grundlagen: echnernetze und Verteilte Systeme (SS 16) Michael Schwarz Institut für Informatik Technische Universität München 27.06 / 28.06.2016 1/1 In Kapitel 3 haben

Mehr

Technische Praxis der Computersysteme I 2. Vorlesung

Technische Praxis der Computersysteme I 2. Vorlesung Technische Praxis der Computersysteme I 2. Vorlesung Bernhard Lamel Universität Wien, Fakultät für Mathematik WS 2007 Outline Das Adressierungsschema in IPv4 Beispiel Jeder Host hat eine eindeutige IP

Mehr

Das Internet-Protocol. Aufteilung von Octets. IP-Adressformat. Class-A Netzwerke. Konventionen für Hostadressen

Das Internet-Protocol. Aufteilung von Octets. IP-Adressformat. Class-A Netzwerke. Konventionen für Hostadressen Das Internet-Protocol Das Internet Protocol (IP) geht auf das Jahr 1974 zurück und ist die Basis zur Vernetzung von Millionen Computern und Geräten weltweit. Bekannte Protokolle auf dem Internet Protokoll

Mehr

Erkenntnisleitende Fragestellungen zu CIDR, VLSM, Subnetting und Netzgrundlagen

Erkenntnisleitende Fragestellungen zu CIDR, VLSM, Subnetting und Netzgrundlagen Erkenntnisleitende Fragestellungen zu CIDR, VLSM, Subnetting und Netzgrundlagen 1 Was stellt die Schlüsselfunktion der Vermittlungsschichtprotokolle dar? 2 Welche IP Version verwenden wir noch? 3 Welche

Mehr

2.1 Adressierung im Internet

2.1 Adressierung im Internet 2.1 Adressierung im Internet Netzwerkadressen IPv4 4 Byte-Namen 32 Bit (IPv4) Adresse 128.10.2.30 besteht aus 4 Oktetts Schreibweise ist dotted dezimal Jedes Oktett entspricht einem Byte (0-255) 10000000.00001010.000000010.00011110

Mehr

CCNA Exploration Network Fundamentals. Chapter 6 Subnetze

CCNA Exploration Network Fundamentals. Chapter 6 Subnetze CCNA Exploration Network Fundamentals Chapter 6 Subnetze Chapter 6: Zu erwerbende Kenntnisse Wissen über: Rechnen / Umrechnen im binären Zahlensystem Strukturteile einer IP-Adresse Spezielle IPv4-Adressen

Mehr

NAT Network Adress Translation

NAT Network Adress Translation FTP-Server 203.33.238.126 Web-Server 203.33.238.125 FTP-Server 203.33.238.126 Web-Server 203.33.238.125 IP Adressbereiche im privaten Netzwerk: FTP-Server 203.33.238.126 Web-Server 203.33.238.125 IP Adressbereiche

Mehr

2.1 Adressierung im Internet

2.1 Adressierung im Internet 2.1 Adressierung im Internet Netzwerkadressen IPv4 4 Byte-Namen 32 Bit (IPv4) Adresse 128.10.2.30 besteht aus 4 Oktetts Schreibweise ist dotted dezimal Jedes Oktett entspricht einem Byte (0-255) 10000000.00001010.000000010.00011110

Mehr

Statisches Routing. Jörn Stuphorn Bielefeld, den Juni Juni Universität Bielefeld Technische Fakultät

Statisches Routing. Jörn Stuphorn Bielefeld, den Juni Juni Universität Bielefeld Technische Fakultät Statisches Routing Jörn Stuphorn stuphorn@rvs.uni-bielefeld.de Universität Bielefeld Technische Fakultät Stand der Veranstaltung 13. April 2005 Unix-Umgebung 20. April 2005 Unix-Umgebung 27. April 2005

Mehr

Übung 11. Tutorübung zu Grundlagen: Rechnernetze und Verteilte Systeme (Gruppen Mo-T2 / Fr-T1 SS2017)

Übung 11. Tutorübung zu Grundlagen: Rechnernetze und Verteilte Systeme (Gruppen Mo-T2 / Fr-T1 SS2017) Übung 11 Tutorübung zu Grundlagen: echnernetze und Verteilte Systeme (Gruppen Mo-T2 / Fr-T1 SS2017) Dennis Fischer dennis.fischer@tum.de http://home.in.tum.de/fischerd Institut für Informatik Technische

Mehr

Adressierung eines Kommunikationspartners in der TCP/IP-Familie

Adressierung eines Kommunikationspartners in der TCP/IP-Familie Adressierung eines Kommunikationspartners in der TCP/IP-Familie! Wenn Daten geroutet werden, müssen sie: 1. zu einem bestimmten Netzwerk 2. zu einem bestimmten Host in diesem Netzwerk 3. zu einem bestimmten

Mehr

Hochschule Bonn-Rhein-Sieg. Prof. Dr. Kerstin Uhde Hochleistungsnetze u. Mobilkommunikation. Modul 5: IPv6. Netze, BCS, 2.

Hochschule Bonn-Rhein-Sieg. Prof. Dr. Kerstin Uhde Hochleistungsnetze u. Mobilkommunikation. Modul 5: IPv6. Netze, BCS, 2. Modul 5: IPv6 Folie 1 IPv6 Motivation: Adressknappheit durch starkes Abwachsen des Internet (abgemildert durch verschiedene kurzfristige Lösungsansätze) in wesentlichen Teilen seit 1998 standardisiert

Mehr

Übung Prüfen von Ethernet-Rahmen mit Wireshark

Übung Prüfen von Ethernet-Rahmen mit Wireshark Topologie Lernziele Teil 1: Prüfen der Header-Felder in einem Ethernet-II-Rahmen Teil 2: Analysieren und Erfassen von Ethernet-Rahmen mit Wireshark Hintergrund / Szenario Wenn höhere Schichtprotokolle

Mehr

Lösung von Übungsblatt 10. (Router, Layer-3-Switch, Gateway)

Lösung von Übungsblatt 10. (Router, Layer-3-Switch, Gateway) Lösung von Übungsblatt 10 Aufgabe 1 (Router, Layer-3-Switch, Gateway) 1. Welchen Zweck haben Router in Computernetzen? (Erklären Sie auch den Unterschied zu Layer-3-Switches.) Router verbinden logische

Mehr

Vorlesung: Netzwerke (TK) WS 2009/10 Input für Praktikum: Versuch Nr. 2 IP-Netze / Router und Subnetting

Vorlesung: Netzwerke (TK) WS 2009/10 Input für Praktikum: Versuch Nr. 2 IP-Netze / Router und Subnetting Vorlesung: Netzwerke (TK) WS 2009/10 Input für Praktikum: Versuch Nr. 2 IP-Netze / Router und Subnetting Prof. Dr. Michael Massoth [Stand: 09.11.2009] 7-1 Problem: Adressierung 7-2 7-2 MAC-Adresse (Erinnerung)

Mehr

Gruppen Di-T14 / Mi-T25

Gruppen Di-T14 / Mi-T25 Gruppen Di-T14 / Mi-T25 Tutorübung zu Grundlagen: Rechnernetze und Verteilte Systeme (SS 16) Michael Schwarz Institut für Informatik Technische Universität München 31.05 / 01.06.2016 1/2 Subnetting IPv6

Mehr

Übungsblatt 4. (Router, Layer-3-Switch, Gateway) Aufgabe 2 (Kollisionsdomäne, Broadcast- Domäne)

Übungsblatt 4. (Router, Layer-3-Switch, Gateway) Aufgabe 2 (Kollisionsdomäne, Broadcast- Domäne) Übungsblatt 4 Aufgabe 1 (Router, Layer-3-Switch, Gateway) 1. Welchen Zweck haben Router in Computernetzen? (Erklären Sie auch den Unterschied zu Layer-3-Switches.) 2. Welchen Zweck haben Layer-3-Switches

Mehr

Layer 4: Transport Layer

Layer 4: Transport Layer Layer 4: Transport Layer Der Layer 4 hat folgende 2 Aufgaben: 1) Bereitstellung von vielen Kommunikations-Endpunkten pro Host (damit verschiedene Anwendungen und auch verschiedene User gleichzeitig das

Mehr

Tutorübung zur Vorlesung Grundlagen Rechnernetze und Verteilte Systeme Übungsblatt 6 (27. Mai 31. Mai 2013)

Tutorübung zur Vorlesung Grundlagen Rechnernetze und Verteilte Systeme Übungsblatt 6 (27. Mai 31. Mai 2013) Technische Universität München Lehrstuhl Informatik VIII Prof. Dr.-Ing. Georg Carle Dipl.-Ing. Stephan Günther, M.Sc. Nadine Herold, M.Sc. Dipl.-Inf. Stephan Posselt Tutorübung zur Vorlesung Grundlagen

Mehr

Vernetzte Systeme Network Layer Vermittlungsschicht Schicht 3 Netzwerk Schicht

Vernetzte Systeme Network Layer Vermittlungsschicht Schicht 3 Netzwerk Schicht Network Layer Vermittlungsschicht Schicht 3 Netzwerk Schicht Vorüberlegungen: Die Aufgabe der Netzwerkschicht ist die Wegefindung (Routing). OSI- Schichtenmodell. Exemplarisch wollen wir dies mit Hilfe

Mehr

Übungsblatt 4. (Router, Layer-3-Switch, Gateway) Aufgabe 2 (Kollisionsdomäne, Broadcast- Domäne)

Übungsblatt 4. (Router, Layer-3-Switch, Gateway) Aufgabe 2 (Kollisionsdomäne, Broadcast- Domäne) Übungsblatt 4 Aufgabe 1 (Router, Layer-3-Switch, Gateway) 1. Welchen Zweck haben Router in Computernetzen? (Erklären Sie auch den Unterschied zu Layer-3-Switches.) 2. Welchen Zweck haben Layer-3-Switches

Mehr

4.4 statisches Routen 4.5 Routing- Algorithmen. 4.1 Einleitung 4.2 Aufbau eines Routers 4.3 IP Internet Protocol. 4.6 Routing im Internet

4.4 statisches Routen 4.5 Routing- Algorithmen. 4.1 Einleitung 4.2 Aufbau eines Routers 4.3 IP Internet Protocol. 4.6 Routing im Internet Kapitel 4: Netzwerkschicht 4.1 Einleitung 4.2 Aufbau eines Routers 4.3 IP Internet Protocol Datagrammformat IPv4-Adressierung ICMP IPv6 4.4 statisches Routen 4.5 Routing- Algorithmen Link State Distance

Mehr

7. OSI-Modell als Rollenspiel

7. OSI-Modell als Rollenspiel 7.1 Rollen Mit Hilfe eines Rollenspiels soll der gesamte Ablauf der Anfrage einer Webseite bei einem Web-Server dargestellt werden. An einer Web-Anfrage sind folgende Rollen beteiligt: 1. User 2. Browser

Mehr

Packet Tracer - Subnetzbildung Szenario 2 Topologie

Packet Tracer - Subnetzbildung Szenario 2 Topologie Topologie Dieses Dokument ist eine öffentlich zugängliche Information von Cisco. Seite 1 von 6 Adressierungstabelle Gerät Schnittstelle IP-Adresse Subnetzmaske Default Gateway R1 R2 S0/0/1 k. A. R3 S0/0/1

Mehr

Lösung von Übungsblatt 10. (Router, Layer-3-Switch, Gateway)

Lösung von Übungsblatt 10. (Router, Layer-3-Switch, Gateway) Lösung von Übungsblatt 10 Aufgabe 1 (Router, Layer-3-Switch, Gateway) 1. Welchen Zweck haben Router in Computernetzen? (Erklären Sie auch den Unterschied zu Layer-3-Switches.) Router verbinden logische

Mehr

Grundlagen Rechnernetze und Verteilte Systeme IN0010, SoSe 2017

Grundlagen Rechnernetze und Verteilte Systeme IN0010, SoSe 2017 Grundlagen Rechnernetze und Verteilte Systeme IN0010, SoSe 2017 Übungsblatt 8 26. Juni 30. Juni 2017 Hinweis: Mit * gekennzeichnete Teilaufgaben sind ohne Lösung vorhergehender Teilaufgaben lösbar. Aufgabe

Mehr

Berufsbildende Schulen Osnabrück Brinkstraße

Berufsbildende Schulen Osnabrück Brinkstraße Name: Klasse: Berufsbildende Schulen Osnabrück Brinkstraße IP-Subnetze Blatt: Datum: Hintergrund: In dieser Übung erhalten Sie grundlegende Informationen zu IP- Subnetzmasken und deren Einsatz in TCP/IP-Netzen.

Mehr

Grundlagen Rechnernetze und Verteilte Systeme IN0010, SoSe 2018

Grundlagen Rechnernetze und Verteilte Systeme IN0010, SoSe 2018 Grundlagen Rechnernetze und Verteilte Systeme IN0010, SoSe 2018 Übungsblatt 7 4. Juni 8. Juni 2018 Hinweis: Mit * gekennzeichnete Teilaufgaben sind ohne Lösung vorhergehender Teilaufgaben lösbar. Aufgabe

Mehr

Themen. Vermittlungsschicht. Routing-Algorithmen. IP-Adressierung ARP, RARP, BOOTP, DHCP

Themen. Vermittlungsschicht. Routing-Algorithmen. IP-Adressierung ARP, RARP, BOOTP, DHCP Themen outing-algorithmen IP-Adressierung AP, AP, OOTP, DHCP echnernetze Schicht 3 des OSI-, sowie TCP/IP-Modells Aufgaben: Vermittlung von Paketen von einer Quelle zum Ziel Finden des optimalen Weges

Mehr

2.1 Adressierung im Internet

2.1 Adressierung im Internet 2.1 Adressierung im Internet Netzwerkadressen IPv4 4 Byte-Namen 32 Bit (IPv4) Adresse 128.10.2.30 besteht aus 4 Oktetts Schreibweise ist dotted dezimal Jedes Oktett entspricht einem Byte (0-255) 10000000.00001010.000000010.00011110

Mehr

Von PetA. Datum 25.8.2006 Version 1.0 PetA

Von PetA. Datum 25.8.2006 Version 1.0 PetA Von Vorwort: Dieses Dokument befasst sich im Großteil mit den Internet Adressen von IPv4. Zum Schluss wird noch kurz auf IPv6 Adressen eingegangen. Um alles richtig verstehen zu können, muss man sich mit

Mehr

Routing im Internet Wie findet ein IP Paket den Weg zum Zielrechner?

Routing im Internet Wie findet ein IP Paket den Weg zum Zielrechner? Wie findet ein IP Paket den Weg zum Zielrechner? Bildung von Subnetzen, welche über miteinander verbunden sind. Innerhalb einer Collision Domain (eigenes Subnet): Rechner startet eine ARP (Address Resolution

Mehr

VLAN. Virtuelle Netzwerke Frank Muchowski

VLAN. Virtuelle Netzwerke Frank Muchowski 4.3.2016 VLAN Virtuelle Netzwerke Frank Muchowski Inhalt VLANs -virtuelle Netzwerke... 2 VLAN-Kennung, Tags... 2 Trunks... 2 Verkehr zwischen VLANs... 3 VLAN-Transport, Trunk zum Router... 4 Vorteile der

Mehr

Systeme II 4. Die Vermittlungsschicht

Systeme II 4. Die Vermittlungsschicht Systeme II 4. Die Vermittlungsschicht Christian Schindelhauer Technische Fakultät Rechnernetze und Telematik Albert-Ludwigs-Universität Freiburg Version 07.06.2016 1 Adressierung und Hierarchisches Routing

Mehr

Netzwerk Teil 1 Linux-Kurs der Unix-AG

Netzwerk Teil 1 Linux-Kurs der Unix-AG Netzwerk Teil 1 Linux-Kurs der Unix-AG Andreas Teuchert 5. Januar 2015 Wiederholung: OSI-Schichtenmodell Layer 1: Physical Layer (Kabel, Funk) Layer 2: Data Link Layer (Ethernet, WLAN) Layer 3: Network

Mehr

Einführung in IP, ARP, Routing. Wap WS02/03 Ploner, Zaunbauer

Einführung in IP, ARP, Routing. Wap WS02/03 Ploner, Zaunbauer Einführung in IP, ARP, Routing Wap WS02/03 Ploner, Zaunbauer - 1 - Netzwerkkomponenten o Layer 3 o Router o Layer 2 o Bridge, Switch o Layer1 o Repeater o Hub - 2 - Layer 3 Adressierung Anforderungen o

Mehr

Thomas Schön Albert-Ludwigs-Universität Freiburg

Thomas Schön Albert-Ludwigs-Universität Freiburg Thomas Schön Albert-Ludwigs-Universität Freiburg Address Resolution Protocol 1) Funktionsweise a) Der ARP Cache b) Paketformat 2) Spezielle Formen a) Proxy ARP b) Gratuitous ARP c) Reverse ARP (RARP) 3)

Mehr

Übung - Mit Wireshark eine UDP-DNS-Aufzeichnung untersuchen

Übung - Mit Wireshark eine UDP-DNS-Aufzeichnung untersuchen Übung - Mit Wireshark eine UDP-DNS-Aufzeichnung untersuchen Topologie Lernziele Teil 1: Wireshark für das Erfassen von Paketen vorbereiten Auswahl einer geeigneten Netzwerk-Schnittstelle, um Pakete zu

Mehr

Kü /Info Oberstufe Netzwerke SJ. 2014/2015

Kü /Info Oberstufe Netzwerke SJ. 2014/2015 Der Switch Video: o http://perm.ly/kommunikation-in-netzwerken-switche Der Switch wird in Filius auf folgende Weise dargestellt: In der Regel hat ein Switch viele sogenannte Ports, an die die Endgeräte

Mehr

Domain Name Service (DNS)

Domain Name Service (DNS) Domain Name Service (DNS) Aufgabe: den numerischen IP-Adressen werden symbolische Namen zugeordnet Beispiel: 194.94.127.196 = www.w-hs.de Spezielle Server (Name-Server, DNS) für Listen mit IP-Adressen

Mehr

Version: Das Versionsfeld gibt an ob es sich um IPv4 oder um IPv6 handelt.

Version: Das Versionsfeld gibt an ob es sich um IPv4 oder um IPv6 handelt. Folie 1 Folie 2 Folie 3 Version: Das Versionsfeld gibt an ob es sich um IPv4 oder um IPv6 handelt. IHL (IP Header Length) Im IHL-Feld wird ein vielfaches von 32 Bit angegeben. Die Summe gibt die Größe

Mehr

8. TCP-IP Modell als Rollenspiel

8. TCP-IP Modell als Rollenspiel 8.1 Rollen Mit Hilfe eines Rollenspiels soll der gesamte Ablauf der Anfrage einer Webseite bei einem Web-Server dargestellt werden. An einer Web-Anfrage sind folgende Rollen beteiligt: 1. User 2. Browser

Mehr

Peer-to-Peer- Netzwerke

Peer-to-Peer- Netzwerke Peer-to-Peer- Netzwerke Christian Schindelhauer Sommersemester 2006 2. Vorlesung 27.04.2006 schindel@informatik.uni-freiburg.de 1 Organisation Web-Seite http://cone.informatik.uni-freiburg.de/ teaching/vorlesung/peer-to-peer-s96/

Mehr

Dynamic Host Configuration Protocol

Dynamic Host Configuration Protocol Dynamic Host Configuration Protocol Felix Ruzzoli Albert-Ludwigs-Universität Freiburg 11. Dezember 2007 F. Ruzzoli (Uni Freiburg) DHCP 11. Dezember 2007 1 / 40 Motivation Wozu Autokonfiguration? 1 Motivation

Mehr

Vermittlungsschicht im Internet - Bsp. Forschungseinrichtungen DFN als Provider für Hochschulen und Universitäten Kopplung von Providernetzen zum

Vermittlungsschicht im Internet - Bsp. Forschungseinrichtungen DFN als Provider für Hochschulen und Universitäten Kopplung von Providernetzen zum Vermittlungsschicht im Internet - Bsp. Forschungseinrichtungen DFN als Provider für Hochschulen und Universitäten Kopplung von Providernetzen zum Internet - IP definiert Regeln, wie Pakete von Sender zum

Mehr

www.microsoft.de www.google.de www.gbg-seelze.de www.facebook.de

www.microsoft.de www.google.de www.gbg-seelze.de www.facebook.de www.microsoft.de www.google.de www.gbg-seelze.de www.facebook.de Was ist IP? Was ist eine Subnet mask? Was ist ein Default Gateway? Was ist DHCP? Was ist DNS? Wie funktioniert die Kommunikation? Hauptbestandteil

Mehr

Informations- und Kommunikationssysteme

Informations- und Kommunikationssysteme Informations- und Kommunikationssysteme TCP/IP: Transport und Vermittlung im Karl Meier karl.meier@kasec.ch Agenda 1 2 3 4 5 6 7 und Protokolle, IP Adressierung Die Transportprotokolle UDP und TCP ISO/OSI

Mehr

Tutorübung zur Vorlesung Grundlagen Rechnernetze und Verteilte Systeme Übungsblatt 10 (24. Juni 28. Juni 2013)

Tutorübung zur Vorlesung Grundlagen Rechnernetze und Verteilte Systeme Übungsblatt 10 (24. Juni 28. Juni 2013) Technische Universität München Lehrstuhl Informatik VIII Prof. Dr.-Ing. Georg Carle Dipl.-Ing. Stephan Günther, M.Sc. Nadine Herold, M.Sc. Dipl.-Inf. Stephan Posselt Tutorübung zur Vorlesung Grundlagen

Mehr

IP routing und traceroute

IP routing und traceroute IP routing und traceroute Seminar Internet-Protokolle Dezember 2002 Falko Klaaßen fklaasse@techfak.uni-bielefeld.de 1 Übersicht zum Vortrag Was ist ein internet? Was sind Router? IP routing Subnet Routing

Mehr

Prof. Dr. Kerstin Uhde Hochleistungsnetze u. Mobilkommunikation. Hochschule Bonn-Rhein-Sieg. Modul 4: IPv4

Prof. Dr. Kerstin Uhde Hochleistungsnetze u. Mobilkommunikation. Hochschule Bonn-Rhein-Sieg. Modul 4: IPv4 Modul 4: IPv4 4.1 IPv4-Adressierung 4.2 IPv4-Paket 4.3 Subnetzbildung 4.4 Address Resolution Protocol (ARP) 4.5 Internet Control Message Protocol (ICMP) Folie 1 Allgemeines IP ist ein verbindungsloser

Mehr

Computer Praktikum COPR Netzwerk. DI (FH) Levent Öztürk

Computer Praktikum COPR Netzwerk. DI (FH) Levent Öztürk Computer Praktikum COPR Netzwerk DI (FH) Levent Öztürk Lokales Netzwerk u. Internet WLAN Notebook1 IP-Adresse SWITCH WLAN ROUTER MODEM Notebook2 IP-Adresse IP-Adresse Private IP-Adresse Public PROVIDER

Mehr

Grundkurs Computernetzwerke

Grundkurs Computernetzwerke Grundkurs Computernetzwerke Eine kompakte Einführung in Netzwerk- und Internet-Technologien / 2Auflage 2. Autor Buchtitel Vieweg+TeubnerPLUS Zusatzinformationen ti zu Medien des Vieweg+Teubner Verlags

Mehr

Verteilte Systeme Übung T5

Verteilte Systeme Übung T5 Verteilte Systeme Übung T5 IP- Multicast Exkurs W M-Übertragung an der ETH Nachbesprechung T5 Vorbesprechung T6 Ziele IP-Multicast Exkurs Eine praxistaugliche Technologie aufzeigen I P -Multicast = rel.

Mehr

Grundlagen der Rechnernetze. Internetworking

Grundlagen der Rechnernetze. Internetworking Grundlagen der Rechnernetze Internetworking Übersicht Grundlegende Konzepte Internet Routing Limitierter Adressbereich SS 2012 Grundlagen der Rechnernetze Internetworking 2 Grundlegende Konzepte SS 2012

Mehr

Computernetzwerke. Von den Grundlagen zur Funktion und Anwendung. von Rüdiger Schreiner. 2., überarbeitete Auflage. Hanser München 2007

Computernetzwerke. Von den Grundlagen zur Funktion und Anwendung. von Rüdiger Schreiner. 2., überarbeitete Auflage. Hanser München 2007 Computernetzwerke Von den Grundlagen zur Funktion und Anwendung von Rüdiger Schreiner 2, überarbeitete Auflage Hanser München 2007 Verlag CH Beck im Internet: wwwbeckde ISBN 978 3 446 41030 5 Zu Inhaltsverzeichnis

Mehr

IRF2000 Application Note Port - Weiterleitung

IRF2000 Application Note Port - Weiterleitung Version 2.0 Original-Application Note ads-tec GmbH IRF2000 Application Note Port - Weiterleitung Stand: 28.10.2014 ads-tec GmbH 2014 Big-LinX 2 Inhaltsverzeichnis 1 Einführung... 3 1.1 Weiterleitung...

Mehr

Konfiguration für den Betrieb über LAN Interface

Konfiguration für den Betrieb über LAN Interface Konfiguration für den Betrieb über LAN Interface Die folgende Anleitung ist durchzuführen, nachdem die LAN-SDR Software auf Ihrem PC installiert wurde. LAN-SDR ist ausgeschaltet. Bitte merken Sie sich

Mehr

PC PC PC. Computernetze. Netzstruktur für kleine Netze -abgeschlossenes Netz LAN=Local Area Network. Fachhochschule Dortmund

PC PC PC. Computernetze. Netzstruktur für kleine Netze -abgeschlossenes Netz LAN=Local Area Network. Fachhochschule Dortmund Computernetze Netzstruktur für kleine Netze -abgeschlossenes Netz LAN=Local Area Network Hub, Switch oder Access Point PC PC PC PC Einf. in die WI 1, DV-Infrastruktur, WS 03/04 1 LAN Technologie LAN mit

Mehr

Adressen im Internet (Wdh.)

Adressen im Internet (Wdh.) Subnetze und Routen Subnetze werden benötigt, um die nutzbaren IP-Adressen weiter zu strukturieren. Die Diskriminierung erfolgt über die Netzmaske. Zwischen Subnetzen muss per Gateway bzw. Router vermittelt

Mehr

Hamnet Einstieg: Technik und Konfiguration des eigenen Zugangs

Hamnet Einstieg: Technik und Konfiguration des eigenen Zugangs Amateurfunktagung München 12./13. März 2016 Hamnet Einstieg: Technik und Konfiguration des eigenen Zugangs Thomas Emig DL7TOM Agenda Netzwerke Grundlagen IP Adressen Netzmaske Standartgateway NAT DHCP

Mehr

Version Deutsch In diesem HOWTO wird die grundlegende Netzwerk-Infrastruktur der IACBOX beschrieben.

Version Deutsch In diesem HOWTO wird die grundlegende Netzwerk-Infrastruktur der IACBOX beschrieben. Version 2.0.1 Deutsch 14.05.2014 In diesem HOWTO wird die grundlegende Netzwerk-Infrastruktur der IACBOX beschrieben. Inhaltsverzeichnis...1 1. Hinweise...2 2. Netzwerkintegration...3 3. Interfaces...4

Mehr

Übung 7. Tutorübung zu Grundlagen: Rechnernetze und Verteilte Systeme (Gruppen Mo-T1 / Di-T11 SS 2016) Dennis Fischer

Übung 7. Tutorübung zu Grundlagen: Rechnernetze und Verteilte Systeme (Gruppen Mo-T1 / Di-T11 SS 2016) Dennis Fischer Übung 7 Tutorübung zu Grundlagen: Rechnernetze und Verteilte Systeme (Gruppen Mo-T1 / Di-T11 SS 2016) Dennis Fischer Technische Universität München Fakultät für Informatik 06.06.2016 / 07.06.2016 1/7 Aufgabe

Mehr

TCP/IP. Protokolle Lokale Netze und Internet. Michael Kalinka

TCP/IP. Protokolle Lokale Netze und Internet. Michael Kalinka TCP/IP Protokolle Lokale Netze und Internet 1 Protokolle Informationsaustausch findet geregelt statt Ein Satz Regeln heißt Protokoll Für verschiedene Aufgaben gibt es verschiedene Protokolle Austausch

Mehr

Übung 6. Tutorübung zu Grundlagen: Rechnernetze und Verteilte Systeme (Gruppen MI-T7 / DO-T5 SS 2015) Michael Schwarz

Übung 6. Tutorübung zu Grundlagen: Rechnernetze und Verteilte Systeme (Gruppen MI-T7 / DO-T5 SS 2015) Michael Schwarz Übung 6 Tutorübung zu Grundlagen: Rechnernetze und Verteilte Systeme (Gruppen MI-T7 / DO-T5 SS 2015) Michael Schwarz Fakultät für Informatik 03.06.2015 / FEIERTAG 1/1 IPv6 Routing Routing Table 172.16.0.254/24

Mehr

DNÜ-Tutorium HS Niederrhein, WS 2014/2015. Probeklausur

DNÜ-Tutorium HS Niederrhein, WS 2014/2015. Probeklausur Probeklausur Aufgabe 1 (Allgemeine Verständnisfragen): 1. Wie nennt man die Gruppe von Dokumenten, in welchen technische und organisatorische Aspekte (bzw. Standards) rund um das Internet und TCP/IP spezifiziert

Mehr

Verbindungslose Netzwerk-Protokolle

Verbindungslose Netzwerk-Protokolle Adressierung Lokales Netz jede Station kennt jede Pakete können direkt zugestellt werden Hierarchisches Netz jede Station kennt jede im lokalen Bereich Pakete können lokal direkt zugestellt werden Pakete

Mehr

IP Internet Protokoll

IP Internet Protokoll IP Internet Protokoll Adressierung und Routing fürs Internet von Stephan Senn Inhalt Orientierung: Die Netzwerkschicht (1min) Aufgabe des Internet Protokolls (1min) Header eines Datenpakets (1min) Fragmentierung

Mehr

Übung 3 - Ethernet Frames

Übung 3 - Ethernet Frames Übung 3 - Musterlösung 1 Übung 3 - Ethernet Frames Booten Sie auf dem Security-Lab PC das Windows XP Betriebsystem und tätigen Sie ein Login mit: Username: Password: 1 MAC Adressen seclab strongswan Bestimmen

Mehr

PCAN-Gateway Schnellstart-Anleitung

PCAN-Gateway Schnellstart-Anleitung PCAN-Gateway Schnellstart-Anleitung Herzlichen Glückwunsch...... zu Ihrem neuen PCAN Gateway von PEAK System Technik. Diese Anleitung beschreibt die grundlegende Konfiguration und den Betrieb der PCAN-GatewayProduktfamilie.

Mehr

KNX IP Router 750. WEINZIERL ENGINEERING GmbH. Bedien- und Montageanleitung. Anwendung

KNX IP Router 750. WEINZIERL ENGINEERING GmbH. Bedien- und Montageanleitung. Anwendung 750 Bedien- und Montageanleitung 1.0.0 2.0.0 1.1.0 1.2.0 2.1.0 2.2.0 1.2.1 2.2.1 1.2.2 2.1.2 2.2.2 Anwendung 1.2.3 1.2.4 2.1.3 2.1.4 2.2.3 2.2.4 Der - ermöglicht die Weiterleitung von Telegrammen zwischen

Mehr

Übertragungsprotokolle TCP/IP Ethernet-Frames / network layer

Übertragungsprotokolle TCP/IP Ethernet-Frames / network layer Ethernet-Frames / network layer Jedes Frame enthält am Anfang zwei Adressen (MAC Adressen) zu je 48 bit, anschliessend folgen die eigentlichen Daten. Die Adressen sind diejenige des Interfaces, welches

Mehr

Internet Protocol. Fragmentierung Kontrollprotokoll Adressabbildung. Adressierung Subnetting Datagramm-Aufbau

Internet Protocol. Fragmentierung Kontrollprotokoll Adressabbildung. Adressierung Subnetting Datagramm-Aufbau Internet Protocol Adressierung Subnetting Datagramm-Aufbau Fragmentierung Kontrollprotokoll Adressabbildung 1 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt Aufgaben von IP Protokolldienst

Mehr

Windows Server 2008 R2. Martin Dausch 1. Ausgabe, Juni Erweiterte Netzwerkadministration W2008R2EN

Windows Server 2008 R2. Martin Dausch 1. Ausgabe, Juni Erweiterte Netzwerkadministration W2008R2EN Windows Server 2008 R2 Martin Dausch 1. Ausgabe, Juni 2010 Erweiterte Netzwerkadministration W2008R2EN Inhalt Windows Server 2008 R2 - Erweiterte Netzwerkadministration I 1 Informationen zu diesem Buch...

Mehr

Projektierung und Betrieb von Rechnernetzen

Projektierung und Betrieb von Rechnernetzen Projektierung und Betrieb von Rechnernetzen Versuch : Router-Konfiguration Vorbetrachtungen Im Rahmen des Praktikums sind einige Begriffe bzw. Fragen zum Thema Router zu klären: Was ist ein Router? Router

Mehr

Praktikum Informations- und Medientechnik

Praktikum Informations- und Medientechnik Institut für Organisation und Management von Informationssystemen Praktikum Informations- und Medientechnik Sommersemester 2007 Gruppe 4: Adelheid Grob & Christian Renz durchgeführt am: 2. Mai 2007 1 Fragen

Mehr

Netzwerk Teil 1 Linux-Kurs der Unix-AG

Netzwerk Teil 1 Linux-Kurs der Unix-AG Netzwerk Teil 1 Linux-Kurs der Unix-AG Zinching Dang 30. November 2015 OSI-Schichtenmodell Layer 1: Physical Layer (Koaxial-Kabel, Cat5/6-Kabel, Luft für Funkübertragung) Layer 2: Data Link Layer (Ethernet,

Mehr

Stefan Dahler. 1. Konfiguration von Extended Routing. 1.1 Einleitung

Stefan Dahler. 1. Konfiguration von Extended Routing. 1.1 Einleitung 1. Konfiguration von Extended Routing 1.1 Einleitung Im Folgenden wird die Konfiguration von Extended Routing beschrieben. Die Verbindungen ins Internet werden über 2 unterschiedliche Internet Strecken

Mehr

IP Adressen & Subnetzmasken

IP Adressen & Subnetzmasken IP Adressen & Subnetzmasken Jörn Stuphorn stuphorn@rvs.uni-bielefeld.de Universität Bielefeld Technische Fakultät Stand der Veranstaltung 13. April 2005 Unix-Umgebung 20. April 2005 Unix-Umgebung 27. April

Mehr

PCAN-Gateway Schnellstart-Anleitung

PCAN-Gateway Schnellstart-Anleitung PCAN-Gateway Schnellstart-Anleitung Herzlichen Glückwunsch...... zu Ihrem neuen PCAN Gateway. Diese Anleitung beschreibt die grundlegende Konfiguration und den Betrieb der PCAN-Gateway-Produktfamilie.

Mehr

IPv6 Neu sind nicht nur 128-bit aber eigentlich bleibt doch alles beim Alten

IPv6 Neu sind nicht nur 128-bit aber eigentlich bleibt doch alles beim Alten IPv6 Neu sind nicht nur 128-bit aber eigentlich bleibt doch alles beim Alten fzahn Chaos Computer Club Mannheim e.v. 2017-03-03 Was ist IPv6 Layer 3 Protokoll zur Übertragung von Daten in paketvermittelten

Mehr

DHCP DY NA M I C H O S T C O NF I G UR AT I O N P R OTO C O L. A u t o m a t isc h e Ve r ga b e v o n I P - A d r e sse n a n C lie n t s

DHCP DY NA M I C H O S T C O NF I G UR AT I O N P R OTO C O L. A u t o m a t isc h e Ve r ga b e v o n I P - A d r e sse n a n C lie n t s Thomas Mattern I n t e r n e t - P r o t okol l e 25. 1 1. 20 14 DHCP DY NA M I C H O S T C O NF I G UR AT I O N P R OTO C O L A u t o m a t isc h e Ve r ga b e v o n I P - A d r e sse n a n C lie n t

Mehr

Inhaltsverzeichnis. Teil I TCP/IP-Grundlagen Einführung... 11

Inhaltsverzeichnis. Teil I TCP/IP-Grundlagen Einführung... 11 Einführung...................................... 11 Teil I TCP/IP-Grundlagen............................... 15 1 Das TCP/IP- und OSI-Netzwerkmodell............... 17 1.1 Die TCP/IP-Architektur............................

Mehr

Tutorübung zur Vorlesung Grundlagen Rechnernetze und Verteilte Systeme Übungsblatt 5 (18. Mai 22. Mai 2015)

Tutorübung zur Vorlesung Grundlagen Rechnernetze und Verteilte Systeme Übungsblatt 5 (18. Mai 22. Mai 2015) Technische Universität München Lehrstuhl Informatik VIII Prof. Dr.-Ing. Georg Carle Dipl.-Ing. Stephan Günther, M.Sc. Johannes Naab, M.Sc. Tutorübung zur Vorlesung Grundlagen Rechnernetze und Verteilte

Mehr

ICMP Protokoll & Anwendung Einige Risiken von ICMP erkennen und verstehen! FRITZ Gerald

ICMP Protokoll & Anwendung Einige Risiken von ICMP erkennen und verstehen! FRITZ Gerald ICMP Protokoll & Anwendung Einige Risiken von ICMP erkennen und verstehen! FRITZ Gerald Übersicht Betrachtungen auf Protokollebene ICMP, Begriffsdefinition, warum/wozu ICMP Message Types ICMP TYPE Field

Mehr

ARP, ICMP, ping. Jörn Stuphorn Bielefeld, den 4. Mai Mai Universität Bielefeld Technische Fakultät

ARP, ICMP, ping. Jörn Stuphorn Bielefeld, den 4. Mai Mai Universität Bielefeld Technische Fakultät ARP, ICMP, ping Jörn Stuphorn stuphorn@rvs.uni-bielefeld.de Universität Bielefeld Technische Fakultät TCP/IP Data Link Layer Aufgabe: Zuverlässige Übertragung von Rahmen über Verbindung Funktionen: Synchronisation,

Mehr

Migration IPv4 auf IPv6. Untersuchung verschiedener Methoden für die Migration von IPv4 auf Ipv6 Tobias Brunner, 9.7.2008

Migration IPv4 auf IPv6. Untersuchung verschiedener Methoden für die Migration von IPv4 auf Ipv6 Tobias Brunner, 9.7.2008 Migration IPv4 auf IPv6 Untersuchung verschiedener Methoden für die Migration von IPv4 auf Ipv6 Tobias Brunner, 9.7.2008 1 Agenda Kurzer Überblick über das Protokoll IPv6 Vorstellung Migrationsmethoden

Mehr

Tele-Prof II als Router betreiben. IP-Adresse

Tele-Prof II als Router betreiben. IP-Adresse Tele-Prof II als Router betreiben Wollen Sie TELE-Prof II als Router betreiben, so ist etwas Grundkenntnis über, Subnetmask und Gateway erforderlich. In den folgenden Zeilen eine kurze Erklärung. IP-Adresse

Mehr

Herausforderung Multicast IPTV

Herausforderung Multicast IPTV Track 3B Herausforderung Multicast IPTV Stefan Rüeger Leiter Technik, Studerus AG IPTV Agenda Multicast IGMP Konfiguration Netzwerkkomponenten Stolpersteine im Umgang mit IPTV Aktuelle Einsatz-Szenarien

Mehr

ICMP Internet Control Message Protocol. Michael Ziegler

ICMP Internet Control Message Protocol. Michael Ziegler ICMP Situation: Komplexe Rechnernetze (Internet, Firmennetze) Netze sind fehlerbehaftet Viele verschiedene Fehlerursachen Administrator müsste zu viele Fehlerquellen prüfen Lösung: (ICMP) Teil des Internet

Mehr

Netzwerkgrundlagen. OSI-Modell. Layer 1 Physikal Layer. Layer 2 Data Link Layer. Layer 3 Network Layer

Netzwerkgrundlagen.  OSI-Modell. Layer 1 Physikal Layer. Layer 2 Data Link Layer. Layer 3 Network Layer Netzwerkgrundlagen http://de.wikipedia.org/wiki/ethernet OSI-Modell http://de.wikipedia.org/wiki/osi-modell Das OSI-Modell beschreibt modellhaft eine Art der Datenübertragung für die Kommunikation offener,

Mehr

Übungsblatt 10. (Router, Layer-3-Switch, Gateway) Aufgabe 2 (Adressierung in der Vermittlungsschicht)

Übungsblatt 10. (Router, Layer-3-Switch, Gateway) Aufgabe 2 (Adressierung in der Vermittlungsschicht) Übungsblatt 10 Aufgabe 1 (Router, Layer-3-Switch, Gateway) 1. Welchen Zweck haben Router in Computernetzen? (Erklären Sie auch den Unterschied zu Layer-3-Switches.) 2. Welchen Zweck haben Layer-3-Switches

Mehr

Adressierung und Routing

Adressierung und Routing Adressierung und Routing Dr. Hannes P. Lubich Bank Julius Bär Zürich IP Next Generation - Adressierung und Routing (1) Eckpunkte der Adressierungsarchitektur Adresse bezeichnet ein Interface eindeutig

Mehr