11 Logarithmus und allgemeine Potenzen

Größe: px
Ab Seite anzeigen:

Download "11 Logarithmus und allgemeine Potenzen"

Transkript

1 Logarithmus und allgemeine Potenzen Bevor wir uns mit den Eigenschaften von Umkehrfunktionen, und insbesondere mit der Umkehrfunktion der Eponentialfunktion ep : R R + beschäftigen, erinnern wir an den Begriff der strengen Monotonie. Definition.. Eine Funktion f : D R auf einer Menge D R heißt (i) (streng) monoton wachsend, falls für alle, y D mit < y gilt f() f(y) (bzw. f() < f(y) im streng monoton wachsenden Fall), (ii) (streng) monoton fallend, falls für alle, y D mit < y gilt f() f(y) (bzw. f() > f(y) im streng monoton fallenden Fall), (iii) (streng) monoton, falls sie (streng) monoton wachsend oder fallend ist. Streng monotone Funktionen f : D R sind immer injektiv. Für stetige Funktionen auf abgeschlossenen, endlichen Intervallen gilt auch die Umkehrung. Satz.2. Seien a, b R mit a < b. Eine stetige Funktion f : [a, b] R ist streng monoton genau dann, wenn sie injektiv ist. Beweis. Zum Beweis der nicht trivialen Richtung setzen wir voraus, dass f injektiv ist. Wir wollen zeigen, dass f streng monoton ist. Es genügt, den Fall f(a) < f(b) zu betrachten. Denn mit f ist auch f injektiv bzw. streng monoton. Sei also f(a) < f(b). Wir nehmen an, dass f nicht streng monoton ist. Dann gibt es, y [a, b] mit < y und f() f(y). Wegen der vorausgesetzten Injektivität von f ist f() > f(y). Wäre f(y) < f(a), so gäbe es wegen f(y) < f(a) < f(b) nach dem Zwischenwertsatz (0.) ein t ]y, b[ mit f(t) = f(a) im Widerspruch zur Injektivität von f. Also ist f(a) f(y) < f() und mit dem Zwischenwertsatz würde folgen, dass ein t [a, ] eistiert mit f(t) = f(y). Wegen < y widerspricht auch dies der Injektivität von f. Also war die Annahme, dass f nicht streng monoton ist, falsch. Nach Satz 7.3 ist die Eponentialfunktion ep : R R + streng monoton wachsend und damit injektiv. Im Beweis von Korollar 0.2 haben wir mit dem Zwischenwertsatz gezeigt, dass ep(r) = R + ist. Als bijektive Funktion hat ep : R R + eine Umkehrfunktion ep : R + R, ep (y) =, falls R ist mit ep() = y. Wir schreiben log = ep : R + R 56

2 für die Umkehrfunktion der Eponentialfunktion. Für a R + und p Z gilt (siehe Satz 7.) a p = ep(log a) p = ep(p log a). Da die rechte Seite für beliebige reelle Zahlen p Sinn macht, kann man umgekehrt versuchen, Potenzen mit beliebigen reellen Eponenten durch die obige Formel zu definieren. Definition.3. (a) Die Umkehrfunktion der Eponentialfunktion log = ep : R + R heißt der (natürliche) Logarithmus. (b) Für a > 0 und R definiert man a = ep( log a). (c) Für a > 0 und q N setzt man (vergleiche Korollar 0.2) q a = a q = ep ( q log a ) Wir hatten die Eulersche Zahl e definiert durch e = ep(). Mit Teil (a) und Teil (b) der obigen Definition folgt daher, dass e = ep( log e) = ep() für alle R gilt. Satz.4. Seien a, b R mit a < b und sei f : [a, b] R stetig und streng monoton wachsend (bzw. fallend). Dann gilt mit A = f(a), B = f(b): (a) f bildet [a, b] bijektiv auf [A, B] (bzw. auf [B, A]) ab. (b) Die Umkehrfunktion f : [A, B] [a, b] (bzw. f : [B, A] [a, b]) ist stetig und streng monoton wachsend (bzw. fallend). Beweis. Der Teil (a) folgt direkt aus der strengen Monotonie und dem Zwischenwertsatz (0.) (siehe auch Korollar 0.5). Da f (y) = ( f) ( y) für alle y f([a, b]) gilt, genügt es, Teil (b) zu beweisen für den Fall, dass f streng monoton wächst. Mit f ist auch f streng monoton wachsend. Denn sind y, y 2 [A, B] mit y < y 2, so würde aus der Annahme, dass (f )(y ) (f )(y 2 ) ist, der Widerspruch y = f(f (y )) f(f (y 2 )) = y 2 folgen. Bleibt noch die Stetigkeit von f zu zeigen. Sei dazu (y n ) n N eine Folge in [A, B], die gegen ein y [A, B] konvergiert. Seien n [a, b] die eindeutigen Zahlen mit f( n ) = y n und f() = y. Es genügt zu zeigen, dass lim n n = ist. Wir nehmen an, dass dies falsch ist. Mit dem Satz von Bolzano-Weierstraß (5.6) und mit Satz 5.7 folgt, dass ( n ) n N einen Häufungspunkt 57

3 besitzt. Nach Satz 4.3 hat ( n ) n N eine konvergente Teilfolge ( kn ) n N mit Limes. Da f stetig in ist, erhalten wir f( ) = lim f( k n ) = lim y k n = y = f() n n im Widerspruch zur Injektivität von f. Also konvergiert (f (y n )) n N = ( n ) n N gegen = f (y). Damit ist die Stetigkeit von f gezeigt. Als Anwendung erhalten wir insbesondere die Stetigkeit der Umkehrfunktion der Eponentialfunktion. Satz.5. Der natürliche Logarithmus log : R + log() = 0 und R ist stetig und streng monoton wachsend mit (i) log(y) = log + log y für alle, y > 0, (ii) lim 0 log =, lim log =, (iii) log für alle > 0. Beweis. Aus Satz 7.3 folgt, dass R + = ]ep( n), ep(n)[. n= Da die Stetigkeit nach Bemerkung 0.7 (b) eine lokale Eigenschaft ist, genügt es zum Beweis der Stetigkeit des Logarithmus zu zeigen, dass log : [ep( n), ep(n)] R stetig ist für alle n N. Die Stetigkeit dieser Funktionen folgt aber direkt aus Satz.4. Es genügt diesen Satz anzuwenden auf die stetigen streng monoton wachsenden Funktionen ep : [ n, n] R. Das gleiche Argument zeigt auch, dass der Logarithmus streng monoton wächst. Teil (i) folgt wegen der Injektivität der Eponentialfunktion aus der Beobachtung, dass für alle, y > 0 gilt ep(log + log y) = ep(log ) ep(log y) = y = ep(log(y)). Zum Beweis des ersten Teils von (ii) fiieren wir eine Folge ( n ) n N in R + mit lim n n = 0. Würde (log n ) n N nicht gegen konvergieren, so gäbe es ein R > 0 mit log n R für unendlich viele n N. Hieraus würde folgen, dass n = ep(log n ) ep( R) > 0 wäre für unendlich viele n N im Widerspruch zur Voraussetzung, dass ( n ) gegen 0 konvergiert. Also gilt lim 0 log =. Völlig analog folgt, dass lim log = ist. Für den Beweis der Ungleichungen in (iii) dürfen wir voraussetzen, dass ist. Sei > und sei y =. Dann ist: e = + ( ) + n=2 ( ) n!. 58

4 Da log monoton wächst, folgt = log(e ) log. Wegen > ist y ], 0[ und e y y n ( ) ( ) y 2 = + y + n! = + y + y 3 y 4 + y y > 0. 2! 3! 4! 5! Folglich gilt und daher n=2 e = e y + y = = log e ( ) log. Damit sind für > beide Ungleichungen in (iii) gezeigt. Für 0 < < ist > und daher = ( ) log = log =. Damit ist auch in diesem Fall die Gültigkeit beider Ungleichungen bewiesen. Satz.6. (Allgemeine Potenzen) Es gilt: (a) Für a > 0 ist die Funktion R R, a stetig. (b) Für R ist die Funktion R + R, a a stetig. (c) Für, y R und a, b > 0 gilt a a y = a +y, (a ) y = a y, ( ) a b = (ab), = a = a a. Beweis. Da nach Satz 9.2 (c) Kompositionen stetiger Funktionen stetig sind, folgen die Teile (a) und (b) aus der Stetigkeit von Eponentialfunktion und Logarithmus und der Darstellung a = ep( log a). Zum Beweis von (c) beachte man, dass für, y R und a > 0 gilt a a y = ep( log a) ep(y log a) = ep(( + y) log a) = a +y. Wegen a = ep( log a) ist log(a ) = log a und daher Für a, b > 0 und R folgt mit Satz.5 (i), dass (a ) y = ep(y log(a )) = ep(y log a) = a y. a b = ep( log a) ep( log b) = ep((log a + log b)) = ep( log(ab)) = (ab) 59

5 und ( ) ( = ep log ) = ep(( ) log a) = a = a a ep( log a) = a. Damit sind alle Teile von Satz.6 bewiesen. Wir beenden diesen Abschnitt mit der Berechnung einiger wichtiger Grenzwerte. e Wichtige Grenzwerte.7. (a) Für alle k N ist lim =. k Beweis. Für > 0 gilt e k+ ( ) k (k+)!. k (b) Für alle k N ist lim k e = 0. Beweis. Es gilt k e = /(e / k ) ( ) 0 nach Teil (a). (c) Für jedes α R + gilt lim 0 α = 0 und lim 0 α =. Beweis. Mit der Kettenregel für Grenzwerte (Satz 9.9) erhält man 0 < α = ep(α log ) ( 0) 0, denn nach Satz.5 ist lim 0 (α log ) = und nach Satz 7.3 gilt lim ep = 0. Die zweite Behauptung folgt aus der ersten (d) Für jedes α R + gilt lim log α = 0. Beweis. Wir schreiben log α = α α = α ( 0). mit f : R + R, f() = α log und h : R R, h() = lim f() = und lim aus der Kettenregel für Grenzwerte (Satz 9.9). (e) Für jedes α R + ist lim 0 ( α log ) = 0. α log ep(α log ) = α h(f()) ep(). Dann folgt die Behauptung wegen (b) h() = 0 Beweis. Die Behauptung folgt aus der Kettenregel (Satz 9.9) unter Benutzung von Teil (d) e (f) Es gilt lim 0 =. 0 Beweis. Nach Satz 7.3 (iv) gilt für 0 < e α log = log( ) ( )α ( 0) 0. e ( 0) 0. 60

6 (g) Es ist lim n n n =. Beweis. Dies folgt aus Teil (d), denn n n = ep ( n log n ) (n ) ep(0) =. (h) Für jede reelle Zahl c > 0 gilt lim n n c =. Beweis. Für c > 0 ist lim n n c = lim n ep ( n log c) = ep(0) =. log (i) Es gilt lim =. Beweis. Nach Teil (iii) in Satz.5 gilt für alle > 0. Folglich gilt für > und für (0, ) log log log. Wegen lim = erhalten wir die Behauptung zunächst für die einseitigen Grenzwerte log lim = = lim log. Mit dem ɛ-δ-kriterium für Grenzwerte (Satz 0.6 (a)) folgt hierhaus leicht die Behauptung. 6

Monotone Funktionen. Definition Es sei D R. Eine Funktion f : D R heißt. (ii) monoton fallend, wenn für alle x, x D gilt. x < x f (x) f (x ).

Monotone Funktionen. Definition Es sei D R. Eine Funktion f : D R heißt. (ii) monoton fallend, wenn für alle x, x D gilt. x < x f (x) f (x ). Monotone Funktionen Definition 4.36 Es sei D R. Eine Funktion f : D R heißt (i) monoton wachsend, wenn für alle x, x D gilt x < x f (x) f (x ). Wenn sogar die strikte Ungleichung f (x) < f (x ) folgt,

Mehr

3 Grenzwert und Stetigkeit 1

3 Grenzwert und Stetigkeit 1 3 Grenzwert und Stetigkeit 3. Grenzwerte bei Funktionen In diesem Abschnitt gilt: I ist immer ein beliebiges Intervall, 0 I oder einer der Endpunkte. 3.. Definition Sei I Intervall, 0 IR und 0 I oder Endpunkt

Mehr

Stetigkeit. Definitionen. Beispiele

Stetigkeit. Definitionen. Beispiele Stetigkeit Definitionen Stetigkeit Sei f : D mit D eine Funktion. f heißt stetig in a D, falls für jede Folge x n in D (d.h. x n D für alle n ) mit lim x n a gilt: lim f x n f a. Die Funktion f : D heißt

Mehr

Vorlesungen Analysis von B. Bank

Vorlesungen Analysis von B. Bank Vorlesungen Analysis von B. Bank vom 23.4.2002 und 26.4.2002 Zunächst noch zur Stetigkeit von Funktionen f : D(f) C, wobei D(f) C. (Der Text schliesst unmittelbar an die Vorlesung vom 19.4.2002 an.) Auf

Mehr

15 Hauptsätze über stetige Funktionen

15 Hauptsätze über stetige Funktionen 15 Hauptsätze über stetige Funktionen 15.1 Extremalsatz von Weierstraß 15.2 Zwischenwertsatz für stetige Funktionen 15.3 Nullstellensatz von Bolzano 15.5 Stetige Funktionen sind intervalltreu 15.6 Umkehrfunktionen

Mehr

Ferienkurs Stetigkeit und Konvergenz Seite 1. Technische Universität München Ferienkurs Analysis 1. Musterlösung = lim.

Ferienkurs Stetigkeit und Konvergenz Seite 1. Technische Universität München Ferienkurs Analysis 1. Musterlösung = lim. Ferienkurs Stetigkeit und Konvergenz Seite Technische Universität München Ferienkurs Analysis Hannah Schamoni Stetigkeit und Konvergenz Musterlösung 6.03.20. Grenzwerte I Berechnen Sie lim f(), lim f()

Mehr

4.4 Umkehrfunktion 77. Sei o.b.d.a. f(a) > 0 und f(b) < 0, setzen M = {y [a, b] mit f(x) > 0 für alle x [a, y]}

4.4 Umkehrfunktion 77. Sei o.b.d.a. f(a) > 0 und f(b) < 0, setzen M = {y [a, b] mit f(x) > 0 für alle x [a, y]} . Umkehrfunktion 77 B e w e i s : Sei o.b.d.a. fa) > und fb) für alle [a, y] M a M), M beschränkt y b) Aiom V ξ [a, b] : ξ sup M fa) f) n.z.z. : i) fξ) ii) ξ a, b) zu i):

Mehr

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie (KIT) WS 202/3 Institut für Analysis 26..202 Prof. Dr. Tobias Lamm Dr. Patrick Breuning Höhere Mathematik I für die Fachrichtung Physik 7. Übungsblatt Aufgabe Untersuchen

Mehr

Analysis I. 6. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 6. Übungsstunde. Steven Battilana. battilana.uk/teaching Analysis I 6. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching April 26, 2017 1 Erinnerung Eine Abbildung f : X Y heisst injektiv, falls 1, 2 X : 1 2 f( 1 ) f( 2 ). (In Worten:

Mehr

13 Die trigonometrischen Funktionen

13 Die trigonometrischen Funktionen 13 Die trigonometrischen Funktionen Wir schreiben die Werte der komplexen Exponentialfunktion im Folgenden auch als e z = exp(z) (z C). Geometrisch definiert man üblicherweise die Werte der Winkelfunktion

Mehr

Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i

Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i 3 Kompaktheit In der Analysis I zeigt man, dass stetige Funktionen f : [a, b] R auf abgeschlossenen, beschränkten Intervallen [a, b] gleichmäßig stetig und beschränkt sind und dass sie ihr Supremum und

Mehr

f(x 0 ) = lim f(b k ) 0 0 ) = 0

f(x 0 ) = lim f(b k ) 0 0 ) = 0 5.10 Zwischenwertsatz. Es sei [a, b] ein Intervall, a < b und f : [a, b] R stetig. Ist f(a) < 0 und f(b) > 0, so existiert ein x 0 ]a, b[ mit f(x 0 ) = 0. Wichtig: Intervall, reellwertig, stetig Beweis.

Mehr

heißt Exponentialreihe. Die durch = exp(1) = e (Eulersche Zahl). n! + R m+1(x) R m+1 (x) = n! m m + 2

heißt Exponentialreihe. Die durch = exp(1) = e (Eulersche Zahl). n! + R m+1(x) R m+1 (x) = n! m m + 2 9 DIE EXPONENTIALREIHE 48 absolut konvergent. Beweis. Wegen x n+ n! n + )!x n = x n + < 2 für n 2 x folgt dies aus dem Quotientenkriterium 8.9). Definition. Die Reihe x n heißt Exponentialreihe. Die durch

Mehr

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen Skript zur Analysis 1 Kapitel 3 Stetigkeit / Grenzwerte von Funktionen von Prof. Dr. J. Cleven Fachhochschule Dortmund Fachbereich Informatik Oktober 2003 2 Inhaltsverzeichnis 3 Stetigkeit und Grenzwerte

Mehr

sign: R R, sign(x) := 0 falls x = 0 1 falls x < 0 Diese ist im Punkt x 0 = 0 nicht stetig, denn etwa zu ε = 1 finden wir kein δ > 0

sign: R R, sign(x) := 0 falls x = 0 1 falls x < 0 Diese ist im Punkt x 0 = 0 nicht stetig, denn etwa zu ε = 1 finden wir kein δ > 0 ANALYSIS FÜR PHYSIK UND VERWANDTE FÄCHER I 81 3. Stetigkeit 3.1. Stetigkeit. Im Folgenden sei D R eine beliebige nichtleere Teilmenge. Typischerweise wird D ein allgemeines Intervall sein, siehe Abschnitt

Mehr

8 Reelle Funktionen. 16. Januar

8 Reelle Funktionen. 16. Januar 6. Januar 9 54 8 Reelle Funktionen 8. Reelle Funktion: Eine reelle Funktion f : D f R ordnet jedem Element x D f der Menge D f R eine reelle Zahl y R zu, und man schreibt y = f(x), x D. Die Menge D f heißt

Mehr

a 0, a 1, a 2, a 3,... Dabei stehen die drei Pünktchen für unendlich oft so weiter.

a 0, a 1, a 2, a 3,... Dabei stehen die drei Pünktchen für unendlich oft so weiter. 7 Folgen 30 7 Folgen Wir betrachten nun (unendliche) Folgen von Zahlen a 0, a, a 2, a 3,.... Dabei stehen die drei Pünktchen für unendlich oft so weiter. Bezeichnung Wir bezeichnen mit N die Menge der

Mehr

Klausur zur Analysis I WS 01/02

Klausur zur Analysis I WS 01/02 Klausur zur Analysis I WS 0/0 Prof. Dr. E. Kuwert. Februar 00 Aufgabe (4 Punkte) Berechnen Sie unter a) und b) jeweils die Ableitung von f für x (0, ): a) f(x) = e sin x b) f(x) = x α log x a) f (x) =

Mehr

5 Stetigkeit und Differenzierbarkeit

5 Stetigkeit und Differenzierbarkeit 5 Stetigkeit und Differenzierbarkeit 5.1 Stetigkeit und Grenzwerte von Funktionen f(x 0 ) x 0 Graph einer stetigen Funktion. Analysis I TUHH, Winter 2006/2007 Armin Iske 127 Häufungspunkt und Abschluss.

Mehr

Analysis I - Stetige Funktionen

Analysis I - Stetige Funktionen Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt

Mehr

$Id: stetig.tex,v /06/26 15:40:18 hk Exp $

$Id: stetig.tex,v /06/26 15:40:18 hk Exp $ $Id: stetig.tex,v 1.11 2012/06/26 15:40:18 hk Exp $ 9 Stetigkeit 9.1 Eigenschaften stetiger Funktionen Am Ende der letzten Sitzung hatten wir eine der Grundeigenschaften stetiger Funktionen nachgewiesen,

Mehr

Stetigkeit von Funktionen

Stetigkeit von Funktionen 9 Stetigkeit von Funktionen Definition 9.1 : Sei D R oder C und f : D R, C. f stetig in a D : ε > 0 δ > 0 mit f(z) f(a) < ε für alle z D, z a < δ. f stetig auf D : f stetig in jedem Punkt a D. f(a) ε a

Mehr

{, wenn n gerade ist,, wenn n ungerade ist.

{, wenn n gerade ist,, wenn n ungerade ist. 11 GRENZWERTE VON FUNKTIONEN UND STETIGKEIT 60 Mit anderen Worten, es ist lim f(x) = b lim f (, a)(x) = b, x a x a wobei f (, a) die Einschränkung von f auf (, a) ist. Entsprechendes gilt für lim x a.

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl WS 008/09 Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge

Mehr

Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version A)

Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version A) Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, 10.1.009 (Version A) Kennwort: Übungsgruppe: (Sie können ein beliebiges Kennwort wählen, um Ihre Anonymität zu wahren! Da die Probeklausur

Mehr

Lösungen zum Übungsblatt 7

Lösungen zum Übungsblatt 7 Lösungen zum Übungsblatt 7 Mirko Getzin Universität Bielefeld Fakultät für Mathematik 5. Dezember 203 Ich gebe keine Gewähr auf eine vollständige Richtigkeit der Lösungen zu den Übungsaufgaben. Das Dokument

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2015 Folgen und Reihen

Vorbereitungskurs Mathematik zum Sommersemester 2015 Folgen und Reihen Vorbereitungskurs Mathematik zum Sommersemester 2015 Folgen und Reihen Susanna Pohl Vorkurs Mathematik TU Dortmund 12.03.2015 Folgen und Reihen Folgen und Grenzwerte Rechenregeln für konvergente Folgen

Mehr

LS Informatik 4 & Funktionen. Buchholz / Rudolph: MafI 2 88

LS Informatik 4 & Funktionen. Buchholz / Rudolph: MafI 2 88 4. Funktionen Buchholz / Rudolph: MafI 2 88 Kapitelgliederung 4.1 Grundlegende Denitionen 4.2 Polynome und rationale Funktionen 4.3 Beschränkte und monotone Funktionen 4.4 Grenzwerte von Funktionen 4.5

Mehr

3 Folgen, Reihen und stetige Funktionen

3 Folgen, Reihen und stetige Funktionen Höhere Mathematik 101 3 Folgen, Reihen und stetige Funktionen 3.1 Folgen und Reihen: Definitionen und Beispiele Eine reelle oder komplexe Zahlenfolge ist eine Abbildung, die jeder natürlichen Zahl n eine

Mehr

1 Einleitung. 2 Reelle Zahlen. 3 Konvergenz von Folgen

1 Einleitung. 2 Reelle Zahlen. 3 Konvergenz von Folgen 1 Einleitung Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis 1 aus dem Wintersemester 2008/09

Mehr

(b) Man nennt die Menge M beschränkt, wenn sie nach oben und unten beschränkt ist.

(b) Man nennt die Menge M beschränkt, wenn sie nach oben und unten beschränkt ist. 8 Punktmengen Für die Menge M = { 1 n ; n N } ist 1 = max(m), denn 1 M und 1 n 1 für alle n N. Die Menge M besitzt aber kein Minimum, denn zu jeder Zahl x = 1 n M existiert ein y M mit y < x, etwa y =

Mehr

Lösungsvorschlag zum 2. Übungsblatt zur Vorlesung Analysis II im Sommersemester Mai 2018

Lösungsvorschlag zum 2. Übungsblatt zur Vorlesung Analysis II im Sommersemester Mai 2018 Institut für Analysis Prof. Dr. Michael Plum M.Sc. Jonathan Wunderlich Lösungsvorschlag zum. Übungsblatt zur Vorlesung Analysis II im Sommersemester 08 3. Mai 08 Aufgabe 5 (K: Es seien n N und A R n eine

Mehr

Mathematik M 1/Di WS 2001/02 1. Sei f : D R eine Funktion mit nichtleerem Definitionsbereich D. Sei a D. f heißt stetig in a, falls gilt

Mathematik M 1/Di WS 2001/02 1. Sei f : D R eine Funktion mit nichtleerem Definitionsbereich D. Sei a D. f heißt stetig in a, falls gilt Mathematik M 1/Di WS 2001/02 1 b) Stetigkeit Sei f : D R eine Funktion mit nichtleerem Definitionsbereich D Sei a D f heißt stetig in a, falls gilt lim f() = f(a) a f heißt stetig auf D, wenn f in jedem

Mehr

Grundkurs Mathematik II

Grundkurs Mathematik II Prof. Dr. H. Brenner Osnabrück SS 2017 Grundkurs Mathematik II Vorlesung 53 Die rationalen Exponentialfunktionen Zu einer positiven Zahl b K aus einem angeordenten Körper K haben wir in der 27. Vorlesung

Mehr

19.2 Mittelwertsatz der Differentialrechnung

19.2 Mittelwertsatz der Differentialrechnung 19 Mittelwertsätze der Differentialrechnung mit Anwendungen 19.1 Satz von Rolle 19.2 Mittelwertsatz der Differentialrechnung 19.4 Globaler Wachstumssatz 19.6 Verallgemeinerter Mittelwertsatz der Differentialrechnung

Mehr

Analysis I. Guofang Wang Universität Freiburg

Analysis I. Guofang Wang Universität Freiburg Universität Freiburg 13.1.016 Zwischenwertsatz und klassische Funktionen In diesem Abschnitt haben wir es mit Funktionen zu tun, die auf einem Intervall definiert sind. Eine Menge I R ist genau dann ein

Mehr

Analysis I. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching Analysis I 7. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching April 26, 207 Erinnerung Satz. (Zwischenwertsatz) Sei f : [a, b] R stetig mit f(a) f(b). Dann gibt es zu jedem

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 2. Folgen Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies Grundlagen Mathematik

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0 KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 03/4 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 0. Übungsblatt Aufgabe

Mehr

θ für alle n n 0, 0, dann divergiert a n. θ n, also die mit a n0 θ n 0

θ für alle n n 0, 0, dann divergiert a n. θ n, also die mit a n0 θ n 0 6 REIHEN 6. Konvergenzkriterien - 19 - Wenn man im Majorantenkriterium die geometrische Reihe als Majorante nimmt, erhält man das (6..18) Quotientenkriterium : Sei (a n ) n N0 eine Folge in C. Es gebe

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel IV SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

Kapitel 3: Folgen und Reihen

Kapitel 3: Folgen und Reihen Kapitel 3: und Reihen Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika (KO) Kapitel 3: und Reihen 1 / 29 Gliederung 1 Grundbegriffe 2 Abbildungen und elementare

Mehr

Das O-Tutorial. 1 Definition von O, Ω, Θ, o und ω

Das O-Tutorial. 1 Definition von O, Ω, Θ, o und ω Definition von O, Ω, Θ, o und ω Das O-Tutorial Seien f und g zwei Funktionen von N nach R 0. Hierbei bezeichne R 0 die nicht-negativen reellen Zahlen. Die Funktionsmengen O, Ω, Θ, o und ω sind wie folgt

Mehr

Klausur zur Vorlesung Analysis I für Lehramtskandidaten. (Sommersemester 2008) Dr. C. Lange, J. Schütz

Klausur zur Vorlesung Analysis I für Lehramtskandidaten. (Sommersemester 2008) Dr. C. Lange, J. Schütz Klausur zur Vorlesung Analysis I für Lehramtskandidaten (Sommersemester 008) Dr. C. Lange, J. Schütz Beginn: 17. Juli 008, 10:00 Uhr Ende: 17. Juli 008, 11:30 Uhr Name: Matrikelnummer: Ich studiere: Bachelor

Mehr

Thema 4 Limiten und Stetigkeit von Funktionen

Thema 4 Limiten und Stetigkeit von Funktionen Thema 4 Limiten und Stetigkeit von Funktionen Wir betrachten jetzt Funktionen zwischen geeigneten Punktmengen. Dazu wiederholen wir einige grundlegende Begriffe und Schreibweisen aus der Mengentheorie.

Mehr

Lösungen Klausur. k k (n + 1) n. für alle n N. Lösung: IA: Für n = 1 ist 1. k k + (n + 1) n+1. k k = k=1. k=1 kk = 1 1 = 1 2 = 2 1.

Lösungen Klausur. k k (n + 1) n. für alle n N. Lösung: IA: Für n = 1 ist 1. k k + (n + 1) n+1. k k = k=1. k=1 kk = 1 1 = 1 2 = 2 1. Lösungen Klausur Aufgabe (3 Punkte) Zeigen Sie, dass n k k (n + ) n k für alle n N. IA: Für n ist k kk 2 2. IV: Es gilt n k kk (n + ) n für ein n N. IS: Wir haben n+ k k k n k k + (n + ) n+ k IV (n + )

Mehr

IV. Stetige Funktionen. Grenzwerte von Funktionen

IV. Stetige Funktionen. Grenzwerte von Funktionen IV. Stetige Funktionen. Grenzwerte von Funktionen Definition. Seien X und Y metrische Räume und E X sowie f : X Y eine Abbildung und p ein Häufungspunkt von E. Wir schreiben lim f(x) = q, x p falls es

Mehr

ANALYSIS 1 Kapitel 6: Stetige Funktionen

ANALYSIS 1 Kapitel 6: Stetige Funktionen ANALYSIS 1 Kapitel 6: Stetige Funktionen MAB.01012UB MAT.101UB Vorlesung im WS 2017/18 Günter LETTL Institut für Mathematik und wissenschaftliches Rechnen Karl-Franzens-Universität Graz 6.1 Grundbegrie

Mehr

KAPITEL 2. Folgen und Reihen

KAPITEL 2. Folgen und Reihen KAPITEL 2 Folgen und Reihen 1. Konvergenz und Divergenz Definition 2.1 (Folgen). Eine Abbildung a : N R (bzw. a : N 0 R) nennt man Folge. Statt a : N R schreibt man meist (a n ) n N und a n statt a(n).

Mehr

Analysis 2 für Mathematiker, Wirtschaftsmathematiker und Gymnasiallehrer Übungsblatt 3 vom

Analysis 2 für Mathematiker, Wirtschaftsmathematiker und Gymnasiallehrer Übungsblatt 3 vom Analysis 2 für Mathematiker, Wirtschaftsmathematiker und Gymnasiallehrer Übungsblatt 3 vom 26.04.2012 Die Aufgaben werden immer am Donnerstag gestellt und sind am Donnerstag der darauf folgenden Woche

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 22 3. Funktionen. Grenzwerte.

Mehr

Kapitel 6. Exponentialfunktion

Kapitel 6. Exponentialfunktion Kapitel 6. Exponentialfunktion 6.1. Potenzreihen In Kap. 4 haben wir Reihen ν=0 a ν studiert, wo die Glieder feste Zahlen sind. Die Summe solcher Reihen ist wieder eine Zahl, z.b. die Eulersche Zahl e.

Mehr

4. Folgen von (reellen und komplexen) Zahlen [Kö 5]

4. Folgen von (reellen und komplexen) Zahlen [Kö 5] 20 4. Folgen von (reellen und komplexen) Zahlen [Kö 5] 4.1 Grundbegriffe Definition 1. a) Eine Folge (reeller bzw. komplexer) Zahlen ist eine Abbildung a: Z k C mit einem k Z. Schreibweise: a(n) = a n

Mehr

Folgen, Reihen, Potenzreihen, Exponentialfunktion

Folgen, Reihen, Potenzreihen, Exponentialfunktion Ferienkurs Seite 1 Technische Universität München Ferienkurs Analysis 1 Hannah Schamoni Wintersemester 2011/12 Folgen, Reihen, Potenzreihen, Exponentialfunktion 20.03.2012 Inhaltsverzeichnis 1 Folgen 2

Mehr

Thema 3 Folgen, Grenzwerte

Thema 3 Folgen, Grenzwerte Thema 3 Folgen, Grenzwerte Definition Eine Folge von reellen Zahlen ist eine Abbildung von N in R d.h. jedem n N ist eine Zahl a n zugeordnet. Wir schreiben für eine solche Folge. Beispiele. (a n ) n N

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz WS 04/05 0..04 Höhere Mathematik für die Fachrichtung Physik Lösungsvorschläge zum 7. Übungsblatt

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 16 Der Zwischenwertsatz Wir interessieren uns dafür, was unter einer stetigen Abbildung f :R R mit einem Intervall passiert.

Mehr

Ferienkurs Seite 1. Technische Universität München Ferienkurs Analysis 1 Stetigkeit, Konvergenz, Topologie

Ferienkurs Seite 1. Technische Universität München Ferienkurs Analysis 1 Stetigkeit, Konvergenz, Topologie Ferienkurs Seite Technische Universität München Ferienkurs Analysis Hannah Schamoni Stetigkeit, Konvergenz, Topologie Lösung 2.03.202. Gleichmäßige Konvergenz Entscheiden Sie, ob die folgenden auf (0,

Mehr

Analysis I. Guofang Wang , Universität Freiburg

Analysis I. Guofang Wang , Universität Freiburg Universität Freiburg 10.1.2017, 11.1.2017 Definition 1.1 (Ableitung) Die Funktion f : I R n hat in x 0 I die Ableitung a R n (Notation: f (x 0 ) = a), falls gilt: f(x) f(x 0 ) lim = a. (1.1) x x 0 x x

Mehr

Analysis I. Vorlesung 13. Gleichmäßige Stetigkeit

Analysis I. Vorlesung 13. Gleichmäßige Stetigkeit Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analysis I Vorlesung 13 Gleichmäßige Stetigkeit Die Funktion f: R + R +, x 1/x, ist stetig. In jedem Punkt x R + gibt es zu jedem ǫ > 0 ein δ > 0 mit f(u (x,δ))

Mehr

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren Ferienkurs Analysis 1 - Wintersemester 2014/15 Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis

Mehr

Vorlesung Analysis I WS 07/08

Vorlesung Analysis I WS 07/08 Vorlesung Analysis I WS 07/08 Erich Ossa Vorläufige Version 07/12/04 Ausdruck 8. Januar 2008 Inhaltsverzeichnis 1 Grundlagen 1 1.1 Elementare Logik.................................. 1 1.1.A Aussagenlogik................................

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f.

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f. Stetige Funktionen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume), spielen eine zentrale Rolle in der Mathematik. In der Analysis sind Abbildungen

Mehr

Kapitel 5. Die trigonometrischen Funktionen Die komplexen Zahlen Folgen und Reihen in C

Kapitel 5. Die trigonometrischen Funktionen Die komplexen Zahlen Folgen und Reihen in C Kapitel 5. Die trigonometrischen Funktionen 5.1. Die komplexen Zahlen 5.. Folgen und Reihen in C 5.10. Definition. Eine Folge (c n n N komplexer Zahlen heißt konvergent gegen c C, falls zu jedem ε > 0

Mehr

n 1, n N \ {1}, 0 falls x = 0,

n 1, n N \ {1}, 0 falls x = 0, IV.1. Stetige Funktionen 77 IV. Stetigkeit IV.1. Stetige Funktionen Stetige Funktionen R R sind vielen sicher schon aus der Schule bekannt. Dort erwirbt man sich die naive Vorstellung, dass eine stetige

Mehr

Kapitel 5 Trigonometrie

Kapitel 5 Trigonometrie Mathematischer Vorkurs TU Dortmund Seite / 7 Schenkel Winkelbereich Scheitel S α Winkel werden in Grad oder im Bogenmaß (auch Rad) angegeben: 360 =. y cot α r = sin α α cos α tan α x Durch diese Betrachtungen

Mehr

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen Topologische Grundbegriffe I Vortrag zum Proseminar Analysis, 26.04.2010 Nina Neidhardt und Simon Langer Im Folgenden soll gezeigt werden, dass topologische Konzepte, die uns schon für die Reellen Zahlen

Mehr

Klausur - Analysis I Lösungsskizzen

Klausur - Analysis I Lösungsskizzen Klausur - Analysis I Lösungsskizzen Aufgabe 1.: 5 Punkte Entscheiden Sie, ob folgende Aussagen wahr oder falsch sind. Kennzeichnen Sie wahre Aussagen mit W und falsche Aussagen mit F. Es sind keine Begründungen

Mehr

Analysis I. Vorlesung 13. Der Zwischenwertsatz

Analysis I. Vorlesung 13. Der Zwischenwertsatz Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analysis I Vorlesung 13 Der Zwischenwertsatz Wir interessieren uns dafür, was unter einer stetigen Abbildung f: R R mit einem Intervall passiert. Der Zwischenwertsatz

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 4. Übungsblatt

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 4. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 0/4 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 4. Übungsblatt Aufgabe

Mehr

Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version C)

Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version C) Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, 14..009 (Version C Vokabelbuch In diesem Teil soll getestet werden, inwieweit Sie in der Lage sind, wichtige Definitionen aus der Vorlesung

Mehr

4. Folgen und Grenzwerte 4.2 Grenzwertsätze für Folgen

4. Folgen und Grenzwerte 4.2 Grenzwertsätze für Folgen 4. Folgen und Grenzwerte 4.2 Grenzwertsätze für Folgen Rechenregeln für konvergente Folgen Satz 4.11 Die Folgen (a n ) und (b n ) seien konvergent mit dem Grenzwert a bzw. b. Dann gilt: 1 lim (a n + b

Mehr

Übungen zu Einführung in die Analysis

Übungen zu Einführung in die Analysis Übungen zu Einführung in die Analysis (Nach einer Zusammengestellung von Günther Hörmann) Sommersemester 2011 Vor den folgenden Aufgaben werden in den ersten Wochen der Übungen noch jene zur Einführung

Mehr

Die komplexe Exponentialfunktion und die Winkelfunktionen

Die komplexe Exponentialfunktion und die Winkelfunktionen Die komplexe Exponentialfunktion und die Winkelfunktionen In dieser Zusammenfassung werden die für uns wichtigsten Eigenschaften der komplexen und reellen Exponentialfunktion sowie der Winkelfunktionen

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 17 Potenzreihen Definition 17.1. Es sei (c n ) n N eine Folge von reellen Zahlen und x eine weitere reelle Zahl. Dann heißt

Mehr

c < 1, (1) c k x k0 c k = x k0

c < 1, (1) c k x k0 c k = x k0 4.14 Satz (Quotientenkriterium). Es sei (x k ) Folge in K. Falls ein k 0 existiert, so dass für k k 0 gilt x k 0 und x k+1 x k c < 1, (1) so ist x k absolut konvergent. Beweis. Aus (1) folgt mit vollständiger

Mehr

3.2 Konvergenzkriterien für reelle Folgen

3.2 Konvergenzkriterien für reelle Folgen 3.2 Konvergenzkriterien für reelle Folgen Definition: Eine reelle Folge a n ) n N heißt monoton wachsend : n < m : a n a m streng monoton wachsend : n < m : a n < a m nach oben beschränkt : C R : n : a

Mehr

4.2 Grenzwerte und Stetigkeit reeller Funktionen

4.2 Grenzwerte und Stetigkeit reeller Funktionen 4. Grenzwerte und Stetigkeit reeller Funktionen 73 4. Grenzwerte und Stetigkeit reeller Funktionen Definition 4.. Gegeben sei eine Funktion y = mit D(f). (i) Sei D(f). heißt stetig in, falls es für alle

Mehr

Funktionsgrenzwerte, Stetigkeit

Funktionsgrenzwerte, Stetigkeit Funktionsgrenzwerte, Stetigkeit Häufig tauchen in der Mathematik Ausdrücke der Form lim f(x) auf. x x0 Derartigen Ausdrücken wollen wir jetzt eine präzise Bedeutung zuweisen. Definition. b = lim f(x) wenn

Mehr

Mathematik I für Studierende der Geophysik/Ozeanographie, Meteorologie und Physik Vorlesungsskript

Mathematik I für Studierende der Geophysik/Ozeanographie, Meteorologie und Physik Vorlesungsskript Mathematik I für Studierende der Geophysik/Ozeanographie, Meteorologie und Physik Vorlesungsskript Janko Latschev Fachbereich Mathematik Universität Hamburg www.math.uni-hamburg.de/home/latschev Hamburg,

Mehr

Cauchy-Folgen und Kompaktheit. 1 Cauchy-Folgen und Beschränktheit

Cauchy-Folgen und Kompaktheit. 1 Cauchy-Folgen und Beschränktheit Vortrag zum Seminar zur Analysis, 10.05.2010 Michael Engeländer, Jonathan Fell Dieser Vortrag stellt als erstes einige Sätze zu Cauchy-Folgen auf allgemeinen metrischen Räumen vor. Speziell wird auch das

Mehr

2 Folgen und Reihen. 2.1 Folgen in C Konvergenz von Folgen. := f(n)

2 Folgen und Reihen. 2.1 Folgen in C Konvergenz von Folgen. := f(n) 2 Folgen und Reihen 2.1 Folgen in C 2.1.1 Konvergenz von Folgen Eine Folge komplexer Zahlen ist eine Funktion f : N C. Mit a n schreibt man (a n ) n=1, (a n ) oder auch a 1, a 2,.... := f(n) (a n ) heißt

Mehr

17 Logarithmus und allgemeine Potenz

17 Logarithmus und allgemeine Potenz 7 Logarithmus und allgemeine Potenz 7. Der natürliche Logarithmus 7.3 Die allgemeine Potenz 7.4 Die Exponentialfunktion zur Basis a 7.5 Die Potenzfunktion zum Exponenten b 7.6 Die Logarithmusfunktion zur

Mehr

12. Trennungssätze für konvexe Mengen 83

12. Trennungssätze für konvexe Mengen 83 12. Trennungssätze für konvexe Mengen 83 C_1 C_2 a Abbildung 12.4. Trennung konvexer Mengen durch eine Hyperebene mit Normalenvektor a Dann ist int(c) nicht leer (warum?) und [als Minkowski-Summe von C

Mehr

,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5

,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5 3 Folgen 3.1 Definition und Beispiele Eine Abbildung a : Æ Ê heißt (reelle) Zahlenfolge. Statt a(n) schreiben wir kürzer a n und bezeichnen die ganze Folge mit (a n ) n Æ oder einfach (a n ), was aber

Mehr

Mathematischer Vorkurs NAT-ING II

Mathematischer Vorkurs NAT-ING II Mathematischer Vorkurs NAT-ING II (0.09.03 0.09.03) Dr. Jörg Horst WS 03-04 Mathematischer Vorkurs TU Dortmund Seite / 5 Mathematischer Vorkurs TU Dortmund Seite 6 / 5 Schenkel Winkelbereich Scheitel S

Mehr

(alternierendes Vorzeichen) a n := ( 1)n n + 1 a n := 3n 2 7n a n := n(n 1)(n 2), n 3

(alternierendes Vorzeichen) a n := ( 1)n n + 1 a n := 3n 2 7n a n := n(n 1)(n 2), n 3 ANALYSIS FÜR PHYSIK UND VERWANDTE FÄCHER I 43 2. Folgen und Reihen Folgen und Reihen werden in jedem Analysislehrbuch besprochen, siehe etwa [H, Kapitel III], [K, Kapitel 5], [J2, Kapitel 23] oder [M,

Mehr

Das höhere Mathematikon

Das höhere Mathematikon Das höhere Mathematikon Christian Huber Diese Zusammenfassung ist ein Mix aus dem Skript von Herr Dr. Peer Kunstmann, der allseits beliebten Wikipedia, diversen anderen Onlinequellen und letztendlich meiner

Mehr

Übungsaufgaben zur Vorlesung ANALYSIS I (WS 12/13) Lösungsvorschlag Serie 12

Übungsaufgaben zur Vorlesung ANALYSIS I (WS 12/13) Lösungsvorschlag Serie 12 Humboldt-Universität zu Berlin Institut für Mathematik Prof. A. Griewank Ph.D.; Dr. A. Hoffkamp; Dipl.Math. T.Bosse; Dipl.Math. L. Jansen Übungsaufgaben zur Vorlesung ANALYSIS I (WS 2/3) Lösungsvorschlag

Mehr

Folgen und Reihen. Thomas Blasi

Folgen und Reihen. Thomas Blasi Folgen und Reihen Thomas Blasi 02.03.2009 Inhaltsverzeichnis Folgen und Grenzwerte 2. Definitionen und Bemerkungen............................. 2.2 Konvergenz und Beschränktheit.............................

Mehr

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08)

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) 1 Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) Kapitel 4: Konvergenz und Stetigkeit Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 22. November 2007) Folgen Eine Folge

Mehr

Die Lösungen der Gleichung b x = log b (x)

Die Lösungen der Gleichung b x = log b (x) Die Lösungen der Gleichung b = log b () wgnedin@math.uni-koeln.de 17. Januar 2014 In der ersten Vorlesung des Wintersemesters wurde folgende Frage gestellt: Wieviele Lösungen hat die Gleichung ( ) 1 =

Mehr

Analysis I. 7. Beispielklausur mit Lösungen

Analysis I. 7. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 7. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Eine surjektive Abbildung f: L M. () Ein archimedisch

Mehr

Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 14

Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 14 Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark 03.02.2019 Dr. Markus Lange Analysis 1 Aufgabenzettel 14 Dieser Zettel wird in der letzten Übung des Semesters am 08.02.2019 besprochen Aufgabe

Mehr

Lösungen 4.Übungsblatt

Lösungen 4.Übungsblatt Karlsruher Institut für Technology (KIT) WS 2011/2012 Institut für Analysis Priv.-Doz. Dr. Gerd Herzog Dipl.-Math.techn. Rainer Mandel Lösungen 4.Übungsblatt Aufgabe 13 (K) Bestimmen Sie sämtliche Häufungswerte

Mehr

11 Stetige Funktionen

11 Stetige Funktionen $Id: stetig.tex,v 1.24 2015/01/30 13:12:37 hk Exp $ 11 Stetige Funktionen 11.3 Stetige Funktionen Im letzten Abschitt hatten wir gesehen, dass bei einer Potenzreihe f über K = R oder K = C in jedem Punkt

Mehr

D-INFK Analysis I FS 2017 Prof. Dr. Özlem Imamoglu. MC-Fragen Serie 1. Einsendeschluss: Freitag, der :00 Uhr

D-INFK Analysis I FS 2017 Prof. Dr. Özlem Imamoglu. MC-Fragen Serie 1. Einsendeschluss: Freitag, der :00 Uhr D-INFK Analysis I FS 2017 Prof. Dr. Özlem Imamoglu MC-Fragen Serie 1 Einsendeschluss: Freitag, der 26.09.2014 12:00 Uhr 1. Welche der folgenden Aussagen sind richtig? (a) Eine divergente Folge ist nicht

Mehr

4. Folgen. Folge in R 2 mit Grenzwert (1, 1 2 ).

4. Folgen. Folge in R 2 mit Grenzwert (1, 1 2 ). 8 4. Folgen Im Folgenden sei X = K n (oder ein K-Vektorraum) mit der Norm.(Eslangtvöllig,sichden Fall X = R 2 vorzustellen.) Auf R bzw. C verwenden wir als Norm stets den Betrag. 4.. Definition. Eine Folge

Mehr

f(x nk ) = lim y nk ) = lim Bemerkung 2.14 Der Satz stimmt nicht mehr, wenn D nicht abgeschlossen oder nicht beschränkt ist, wie man z.b.

f(x nk ) = lim y nk ) = lim Bemerkung 2.14 Der Satz stimmt nicht mehr, wenn D nicht abgeschlossen oder nicht beschränkt ist, wie man z.b. Proposition.13 Sei f : D R stetig und D = [a, b] R. Dann ist f(d) beschränkt. Außerdem nimmt f sein Maximum und Minimum auf D an, d.h. es gibt x max D und ein x min D, so dass f(x max ) = sup f(d) und

Mehr