11 Logarithmus und allgemeine Potenzen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "11 Logarithmus und allgemeine Potenzen"

Transkript

1 Logarithmus und allgemeine Potenzen Bevor wir uns mit den Eigenschaften von Umkehrfunktionen, und insbesondere mit der Umkehrfunktion der Eponentialfunktion ep : R R + beschäftigen, erinnern wir an den Begriff der strengen Monotonie. Definition.. Eine Funktion f : D R auf einer Menge D R heißt (i) (streng) monoton wachsend, falls für alle, y D mit < y gilt f() f(y) (bzw. f() < f(y) im streng monoton wachsenden Fall), (ii) (streng) monoton fallend, falls für alle, y D mit < y gilt f() f(y) (bzw. f() > f(y) im streng monoton fallenden Fall), (iii) (streng) monoton, falls sie (streng) monoton wachsend oder fallend ist. Streng monotone Funktionen f : D R sind immer injektiv. Für stetige Funktionen auf abgeschlossenen, endlichen Intervallen gilt auch die Umkehrung. Satz.2. Seien a, b R mit a < b. Eine stetige Funktion f : [a, b] R ist streng monoton genau dann, wenn sie injektiv ist. Beweis. Zum Beweis der nicht trivialen Richtung setzen wir voraus, dass f injektiv ist. Wir wollen zeigen, dass f streng monoton ist. Es genügt, den Fall f(a) < f(b) zu betrachten. Denn mit f ist auch f injektiv bzw. streng monoton. Sei also f(a) < f(b). Wir nehmen an, dass f nicht streng monoton ist. Dann gibt es, y [a, b] mit < y und f() f(y). Wegen der vorausgesetzten Injektivität von f ist f() > f(y). Wäre f(y) < f(a), so gäbe es wegen f(y) < f(a) < f(b) nach dem Zwischenwertsatz (0.) ein t ]y, b[ mit f(t) = f(a) im Widerspruch zur Injektivität von f. Also ist f(a) f(y) < f() und mit dem Zwischenwertsatz würde folgen, dass ein t [a, ] eistiert mit f(t) = f(y). Wegen < y widerspricht auch dies der Injektivität von f. Also war die Annahme, dass f nicht streng monoton ist, falsch. Nach Satz 7.3 ist die Eponentialfunktion ep : R R + streng monoton wachsend und damit injektiv. Im Beweis von Korollar 0.2 haben wir mit dem Zwischenwertsatz gezeigt, dass ep(r) = R + ist. Als bijektive Funktion hat ep : R R + eine Umkehrfunktion ep : R + R, ep (y) =, falls R ist mit ep() = y. Wir schreiben log = ep : R + R 56

2 für die Umkehrfunktion der Eponentialfunktion. Für a R + und p Z gilt (siehe Satz 7.) a p = ep(log a) p = ep(p log a). Da die rechte Seite für beliebige reelle Zahlen p Sinn macht, kann man umgekehrt versuchen, Potenzen mit beliebigen reellen Eponenten durch die obige Formel zu definieren. Definition.3. (a) Die Umkehrfunktion der Eponentialfunktion log = ep : R + R heißt der (natürliche) Logarithmus. (b) Für a > 0 und R definiert man a = ep( log a). (c) Für a > 0 und q N setzt man (vergleiche Korollar 0.2) q a = a q = ep ( q log a ) Wir hatten die Eulersche Zahl e definiert durch e = ep(). Mit Teil (a) und Teil (b) der obigen Definition folgt daher, dass e = ep( log e) = ep() für alle R gilt. Satz.4. Seien a, b R mit a < b und sei f : [a, b] R stetig und streng monoton wachsend (bzw. fallend). Dann gilt mit A = f(a), B = f(b): (a) f bildet [a, b] bijektiv auf [A, B] (bzw. auf [B, A]) ab. (b) Die Umkehrfunktion f : [A, B] [a, b] (bzw. f : [B, A] [a, b]) ist stetig und streng monoton wachsend (bzw. fallend). Beweis. Der Teil (a) folgt direkt aus der strengen Monotonie und dem Zwischenwertsatz (0.) (siehe auch Korollar 0.5). Da f (y) = ( f) ( y) für alle y f([a, b]) gilt, genügt es, Teil (b) zu beweisen für den Fall, dass f streng monoton wächst. Mit f ist auch f streng monoton wachsend. Denn sind y, y 2 [A, B] mit y < y 2, so würde aus der Annahme, dass (f )(y ) (f )(y 2 ) ist, der Widerspruch y = f(f (y )) f(f (y 2 )) = y 2 folgen. Bleibt noch die Stetigkeit von f zu zeigen. Sei dazu (y n ) n N eine Folge in [A, B], die gegen ein y [A, B] konvergiert. Seien n [a, b] die eindeutigen Zahlen mit f( n ) = y n und f() = y. Es genügt zu zeigen, dass lim n n = ist. Wir nehmen an, dass dies falsch ist. Mit dem Satz von Bolzano-Weierstraß (5.6) und mit Satz 5.7 folgt, dass ( n ) n N einen Häufungspunkt 57

3 besitzt. Nach Satz 4.3 hat ( n ) n N eine konvergente Teilfolge ( kn ) n N mit Limes. Da f stetig in ist, erhalten wir f( ) = lim f( k n ) = lim y k n = y = f() n n im Widerspruch zur Injektivität von f. Also konvergiert (f (y n )) n N = ( n ) n N gegen = f (y). Damit ist die Stetigkeit von f gezeigt. Als Anwendung erhalten wir insbesondere die Stetigkeit der Umkehrfunktion der Eponentialfunktion. Satz.5. Der natürliche Logarithmus log : R + log() = 0 und R ist stetig und streng monoton wachsend mit (i) log(y) = log + log y für alle, y > 0, (ii) lim 0 log =, lim log =, (iii) log für alle > 0. Beweis. Aus Satz 7.3 folgt, dass R + = ]ep( n), ep(n)[. n= Da die Stetigkeit nach Bemerkung 0.7 (b) eine lokale Eigenschaft ist, genügt es zum Beweis der Stetigkeit des Logarithmus zu zeigen, dass log : [ep( n), ep(n)] R stetig ist für alle n N. Die Stetigkeit dieser Funktionen folgt aber direkt aus Satz.4. Es genügt diesen Satz anzuwenden auf die stetigen streng monoton wachsenden Funktionen ep : [ n, n] R. Das gleiche Argument zeigt auch, dass der Logarithmus streng monoton wächst. Teil (i) folgt wegen der Injektivität der Eponentialfunktion aus der Beobachtung, dass für alle, y > 0 gilt ep(log + log y) = ep(log ) ep(log y) = y = ep(log(y)). Zum Beweis des ersten Teils von (ii) fiieren wir eine Folge ( n ) n N in R + mit lim n n = 0. Würde (log n ) n N nicht gegen konvergieren, so gäbe es ein R > 0 mit log n R für unendlich viele n N. Hieraus würde folgen, dass n = ep(log n ) ep( R) > 0 wäre für unendlich viele n N im Widerspruch zur Voraussetzung, dass ( n ) gegen 0 konvergiert. Also gilt lim 0 log =. Völlig analog folgt, dass lim log = ist. Für den Beweis der Ungleichungen in (iii) dürfen wir voraussetzen, dass ist. Sei > und sei y =. Dann ist: e = + ( ) + n=2 ( ) n!. 58

4 Da log monoton wächst, folgt = log(e ) log. Wegen > ist y ], 0[ und e y y n ( ) ( ) y 2 = + y + n! = + y + y 3 y 4 + y y > 0. 2! 3! 4! 5! Folglich gilt und daher n=2 e = e y + y = = log e ( ) log. Damit sind für > beide Ungleichungen in (iii) gezeigt. Für 0 < < ist > und daher = ( ) log = log =. Damit ist auch in diesem Fall die Gültigkeit beider Ungleichungen bewiesen. Satz.6. (Allgemeine Potenzen) Es gilt: (a) Für a > 0 ist die Funktion R R, a stetig. (b) Für R ist die Funktion R + R, a a stetig. (c) Für, y R und a, b > 0 gilt a a y = a +y, (a ) y = a y, ( ) a b = (ab), = a = a a. Beweis. Da nach Satz 9.2 (c) Kompositionen stetiger Funktionen stetig sind, folgen die Teile (a) und (b) aus der Stetigkeit von Eponentialfunktion und Logarithmus und der Darstellung a = ep( log a). Zum Beweis von (c) beachte man, dass für, y R und a > 0 gilt a a y = ep( log a) ep(y log a) = ep(( + y) log a) = a +y. Wegen a = ep( log a) ist log(a ) = log a und daher Für a, b > 0 und R folgt mit Satz.5 (i), dass (a ) y = ep(y log(a )) = ep(y log a) = a y. a b = ep( log a) ep( log b) = ep((log a + log b)) = ep( log(ab)) = (ab) 59

5 und ( ) ( = ep log ) = ep(( ) log a) = a = a a ep( log a) = a. Damit sind alle Teile von Satz.6 bewiesen. Wir beenden diesen Abschnitt mit der Berechnung einiger wichtiger Grenzwerte. e Wichtige Grenzwerte.7. (a) Für alle k N ist lim =. k Beweis. Für > 0 gilt e k+ ( ) k (k+)!. k (b) Für alle k N ist lim k e = 0. Beweis. Es gilt k e = /(e / k ) ( ) 0 nach Teil (a). (c) Für jedes α R + gilt lim 0 α = 0 und lim 0 α =. Beweis. Mit der Kettenregel für Grenzwerte (Satz 9.9) erhält man 0 < α = ep(α log ) ( 0) 0, denn nach Satz.5 ist lim 0 (α log ) = und nach Satz 7.3 gilt lim ep = 0. Die zweite Behauptung folgt aus der ersten (d) Für jedes α R + gilt lim log α = 0. Beweis. Wir schreiben log α = α α = α ( 0). mit f : R + R, f() = α log und h : R R, h() = lim f() = und lim aus der Kettenregel für Grenzwerte (Satz 9.9). (e) Für jedes α R + ist lim 0 ( α log ) = 0. α log ep(α log ) = α h(f()) ep(). Dann folgt die Behauptung wegen (b) h() = 0 Beweis. Die Behauptung folgt aus der Kettenregel (Satz 9.9) unter Benutzung von Teil (d) e (f) Es gilt lim 0 =. 0 Beweis. Nach Satz 7.3 (iv) gilt für 0 < e α log = log( ) ( )α ( 0) 0. e ( 0) 0. 60

6 (g) Es ist lim n n n =. Beweis. Dies folgt aus Teil (d), denn n n = ep ( n log n ) (n ) ep(0) =. (h) Für jede reelle Zahl c > 0 gilt lim n n c =. Beweis. Für c > 0 ist lim n n c = lim n ep ( n log c) = ep(0) =. log (i) Es gilt lim =. Beweis. Nach Teil (iii) in Satz.5 gilt für alle > 0. Folglich gilt für > und für (0, ) log log log. Wegen lim = erhalten wir die Behauptung zunächst für die einseitigen Grenzwerte log lim = = lim log. Mit dem ɛ-δ-kriterium für Grenzwerte (Satz 0.6 (a)) folgt hierhaus leicht die Behauptung. 6

3 Grenzwert und Stetigkeit 1

3 Grenzwert und Stetigkeit 1 3 Grenzwert und Stetigkeit 3. Grenzwerte bei Funktionen In diesem Abschnitt gilt: I ist immer ein beliebiges Intervall, 0 I oder einer der Endpunkte. 3.. Definition Sei I Intervall, 0 IR und 0 I oder Endpunkt

Mehr

Monotone Funktionen. Definition Es sei D R. Eine Funktion f : D R heißt. (ii) monoton fallend, wenn für alle x, x D gilt. x < x f (x) f (x ).

Monotone Funktionen. Definition Es sei D R. Eine Funktion f : D R heißt. (ii) monoton fallend, wenn für alle x, x D gilt. x < x f (x) f (x ). Monotone Funktionen Definition 4.36 Es sei D R. Eine Funktion f : D R heißt (i) monoton wachsend, wenn für alle x, x D gilt x < x f (x) f (x ). Wenn sogar die strikte Ungleichung f (x) < f (x ) folgt,

Mehr

Stetigkeit. Definitionen. Beispiele

Stetigkeit. Definitionen. Beispiele Stetigkeit Definitionen Stetigkeit Sei f : D mit D eine Funktion. f heißt stetig in a D, falls für jede Folge x n in D (d.h. x n D für alle n ) mit lim x n a gilt: lim f x n f a. Die Funktion f : D heißt

Mehr

Vorlesungen Analysis von B. Bank

Vorlesungen Analysis von B. Bank Vorlesungen Analysis von B. Bank vom 23.4.2002 und 26.4.2002 Zunächst noch zur Stetigkeit von Funktionen f : D(f) C, wobei D(f) C. (Der Text schliesst unmittelbar an die Vorlesung vom 19.4.2002 an.) Auf

Mehr

15 Hauptsätze über stetige Funktionen

15 Hauptsätze über stetige Funktionen 15 Hauptsätze über stetige Funktionen 15.1 Extremalsatz von Weierstraß 15.2 Zwischenwertsatz für stetige Funktionen 15.3 Nullstellensatz von Bolzano 15.5 Stetige Funktionen sind intervalltreu 15.6 Umkehrfunktionen

Mehr

4.4 Umkehrfunktion 77. Sei o.b.d.a. f(a) > 0 und f(b) < 0, setzen M = {y [a, b] mit f(x) > 0 für alle x [a, y]}

4.4 Umkehrfunktion 77. Sei o.b.d.a. f(a) > 0 und f(b) < 0, setzen M = {y [a, b] mit f(x) > 0 für alle x [a, y]} . Umkehrfunktion 77 B e w e i s : Sei o.b.d.a. fa) > und fb) für alle [a, y] M a M), M beschränkt y b) Aiom V ξ [a, b] : ξ sup M fa) f) n.z.z. : i) fξ) ii) ξ a, b) zu i):

Mehr

13 Die trigonometrischen Funktionen

13 Die trigonometrischen Funktionen 13 Die trigonometrischen Funktionen Wir schreiben die Werte der komplexen Exponentialfunktion im Folgenden auch als e z = exp(z) (z C). Geometrisch definiert man üblicherweise die Werte der Winkelfunktion

Mehr

Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i

Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i 3 Kompaktheit In der Analysis I zeigt man, dass stetige Funktionen f : [a, b] R auf abgeschlossenen, beschränkten Intervallen [a, b] gleichmäßig stetig und beschränkt sind und dass sie ihr Supremum und

Mehr

f(x 0 ) = lim f(b k ) 0 0 ) = 0

f(x 0 ) = lim f(b k ) 0 0 ) = 0 5.10 Zwischenwertsatz. Es sei [a, b] ein Intervall, a < b und f : [a, b] R stetig. Ist f(a) < 0 und f(b) > 0, so existiert ein x 0 ]a, b[ mit f(x 0 ) = 0. Wichtig: Intervall, reellwertig, stetig Beweis.

Mehr

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen Skript zur Analysis 1 Kapitel 3 Stetigkeit / Grenzwerte von Funktionen von Prof. Dr. J. Cleven Fachhochschule Dortmund Fachbereich Informatik Oktober 2003 2 Inhaltsverzeichnis 3 Stetigkeit und Grenzwerte

Mehr

8 Reelle Funktionen. 16. Januar

8 Reelle Funktionen. 16. Januar 6. Januar 9 54 8 Reelle Funktionen 8. Reelle Funktion: Eine reelle Funktion f : D f R ordnet jedem Element x D f der Menge D f R eine reelle Zahl y R zu, und man schreibt y = f(x), x D. Die Menge D f heißt

Mehr

Klausur zur Analysis I WS 01/02

Klausur zur Analysis I WS 01/02 Klausur zur Analysis I WS 0/0 Prof. Dr. E. Kuwert. Februar 00 Aufgabe (4 Punkte) Berechnen Sie unter a) und b) jeweils die Ableitung von f für x (0, ): a) f(x) = e sin x b) f(x) = x α log x a) f (x) =

Mehr

5 Stetigkeit und Differenzierbarkeit

5 Stetigkeit und Differenzierbarkeit 5 Stetigkeit und Differenzierbarkeit 5.1 Stetigkeit und Grenzwerte von Funktionen f(x 0 ) x 0 Graph einer stetigen Funktion. Analysis I TUHH, Winter 2006/2007 Armin Iske 127 Häufungspunkt und Abschluss.

Mehr

a 0, a 1, a 2, a 3,... Dabei stehen die drei Pünktchen für unendlich oft so weiter.

a 0, a 1, a 2, a 3,... Dabei stehen die drei Pünktchen für unendlich oft so weiter. 7 Folgen 30 7 Folgen Wir betrachten nun (unendliche) Folgen von Zahlen a 0, a, a 2, a 3,.... Dabei stehen die drei Pünktchen für unendlich oft so weiter. Bezeichnung Wir bezeichnen mit N die Menge der

Mehr

Analysis I - Stetige Funktionen

Analysis I - Stetige Funktionen Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt

Mehr

$Id: stetig.tex,v /06/26 15:40:18 hk Exp $

$Id: stetig.tex,v /06/26 15:40:18 hk Exp $ $Id: stetig.tex,v 1.11 2012/06/26 15:40:18 hk Exp $ 9 Stetigkeit 9.1 Eigenschaften stetiger Funktionen Am Ende der letzten Sitzung hatten wir eine der Grundeigenschaften stetiger Funktionen nachgewiesen,

Mehr

Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version A)

Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version A) Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, 10.1.009 (Version A) Kennwort: Übungsgruppe: (Sie können ein beliebiges Kennwort wählen, um Ihre Anonymität zu wahren! Da die Probeklausur

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl WS 008/09 Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge

Mehr

Stetigkeit von Funktionen

Stetigkeit von Funktionen 9 Stetigkeit von Funktionen Definition 9.1 : Sei D R oder C und f : D R, C. f stetig in a D : ε > 0 δ > 0 mit f(z) f(a) < ε für alle z D, z a < δ. f stetig auf D : f stetig in jedem Punkt a D. f(a) ε a

Mehr

1 Einleitung. 2 Reelle Zahlen. 3 Konvergenz von Folgen

1 Einleitung. 2 Reelle Zahlen. 3 Konvergenz von Folgen 1 Einleitung Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis 1 aus dem Wintersemester 2008/09

Mehr

Analysis I. Guofang Wang Universität Freiburg

Analysis I. Guofang Wang Universität Freiburg Universität Freiburg 13.1.016 Zwischenwertsatz und klassische Funktionen In diesem Abschnitt haben wir es mit Funktionen zu tun, die auf einem Intervall definiert sind. Eine Menge I R ist genau dann ein

Mehr

(b) Man nennt die Menge M beschränkt, wenn sie nach oben und unten beschränkt ist.

(b) Man nennt die Menge M beschränkt, wenn sie nach oben und unten beschränkt ist. 8 Punktmengen Für die Menge M = { 1 n ; n N } ist 1 = max(m), denn 1 M und 1 n 1 für alle n N. Die Menge M besitzt aber kein Minimum, denn zu jeder Zahl x = 1 n M existiert ein y M mit y < x, etwa y =

Mehr

Mathematik M 1/Di WS 2001/02 1. Sei f : D R eine Funktion mit nichtleerem Definitionsbereich D. Sei a D. f heißt stetig in a, falls gilt

Mathematik M 1/Di WS 2001/02 1. Sei f : D R eine Funktion mit nichtleerem Definitionsbereich D. Sei a D. f heißt stetig in a, falls gilt Mathematik M 1/Di WS 2001/02 1 b) Stetigkeit Sei f : D R eine Funktion mit nichtleerem Definitionsbereich D Sei a D f heißt stetig in a, falls gilt lim f() = f(a) a f heißt stetig auf D, wenn f in jedem

Mehr

Grundkurs Mathematik II

Grundkurs Mathematik II Prof. Dr. H. Brenner Osnabrück SS 2017 Grundkurs Mathematik II Vorlesung 53 Die rationalen Exponentialfunktionen Zu einer positiven Zahl b K aus einem angeordenten Körper K haben wir in der 27. Vorlesung

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0 KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 03/4 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 0. Übungsblatt Aufgabe

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 2. Folgen Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies Grundlagen Mathematik

Mehr

Thema 4 Limiten und Stetigkeit von Funktionen

Thema 4 Limiten und Stetigkeit von Funktionen Thema 4 Limiten und Stetigkeit von Funktionen Wir betrachten jetzt Funktionen zwischen geeigneten Punktmengen. Dazu wiederholen wir einige grundlegende Begriffe und Schreibweisen aus der Mengentheorie.

Mehr

IV. Stetige Funktionen. Grenzwerte von Funktionen

IV. Stetige Funktionen. Grenzwerte von Funktionen IV. Stetige Funktionen. Grenzwerte von Funktionen Definition. Seien X und Y metrische Räume und E X sowie f : X Y eine Abbildung und p ein Häufungspunkt von E. Wir schreiben lim f(x) = q, x p falls es

Mehr

Lösungen Klausur. k k (n + 1) n. für alle n N. Lösung: IA: Für n = 1 ist 1. k k + (n + 1) n+1. k k = k=1. k=1 kk = 1 1 = 1 2 = 2 1.

Lösungen Klausur. k k (n + 1) n. für alle n N. Lösung: IA: Für n = 1 ist 1. k k + (n + 1) n+1. k k = k=1. k=1 kk = 1 1 = 1 2 = 2 1. Lösungen Klausur Aufgabe (3 Punkte) Zeigen Sie, dass n k k (n + ) n k für alle n N. IA: Für n ist k kk 2 2. IV: Es gilt n k kk (n + ) n für ein n N. IS: Wir haben n+ k k k n k k + (n + ) n+ k IV (n + )

Mehr

KAPITEL 2. Folgen und Reihen

KAPITEL 2. Folgen und Reihen KAPITEL 2 Folgen und Reihen 1. Konvergenz und Divergenz Definition 2.1 (Folgen). Eine Abbildung a : N R (bzw. a : N 0 R) nennt man Folge. Statt a : N R schreibt man meist (a n ) n N und a n statt a(n).

Mehr

Kapitel 6. Exponentialfunktion

Kapitel 6. Exponentialfunktion Kapitel 6. Exponentialfunktion 6.1. Potenzreihen In Kap. 4 haben wir Reihen ν=0 a ν studiert, wo die Glieder feste Zahlen sind. Die Summe solcher Reihen ist wieder eine Zahl, z.b. die Eulersche Zahl e.

Mehr

Thema 3 Folgen, Grenzwerte

Thema 3 Folgen, Grenzwerte Thema 3 Folgen, Grenzwerte Definition Eine Folge von reellen Zahlen ist eine Abbildung von N in R d.h. jedem n N ist eine Zahl a n zugeordnet. Wir schreiben für eine solche Folge. Beispiele. (a n ) n N

Mehr

Folgen, Reihen, Potenzreihen, Exponentialfunktion

Folgen, Reihen, Potenzreihen, Exponentialfunktion Ferienkurs Seite 1 Technische Universität München Ferienkurs Analysis 1 Hannah Schamoni Wintersemester 2011/12 Folgen, Reihen, Potenzreihen, Exponentialfunktion 20.03.2012 Inhaltsverzeichnis 1 Folgen 2

Mehr

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren Ferienkurs Analysis 1 - Wintersemester 2014/15 Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis

Mehr

Analysis I. Vorlesung 13. Gleichmäßige Stetigkeit

Analysis I. Vorlesung 13. Gleichmäßige Stetigkeit Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analysis I Vorlesung 13 Gleichmäßige Stetigkeit Die Funktion f: R + R +, x 1/x, ist stetig. In jedem Punkt x R + gibt es zu jedem ǫ > 0 ein δ > 0 mit f(u (x,δ))

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f.

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f. Stetige Funktionen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume), spielen eine zentrale Rolle in der Mathematik. In der Analysis sind Abbildungen

Mehr

n 1, n N \ {1}, 0 falls x = 0,

n 1, n N \ {1}, 0 falls x = 0, IV.1. Stetige Funktionen 77 IV. Stetigkeit IV.1. Stetige Funktionen Stetige Funktionen R R sind vielen sicher schon aus der Schule bekannt. Dort erwirbt man sich die naive Vorstellung, dass eine stetige

Mehr

Kapitel 5. Die trigonometrischen Funktionen Die komplexen Zahlen Folgen und Reihen in C

Kapitel 5. Die trigonometrischen Funktionen Die komplexen Zahlen Folgen und Reihen in C Kapitel 5. Die trigonometrischen Funktionen 5.1. Die komplexen Zahlen 5.. Folgen und Reihen in C 5.10. Definition. Eine Folge (c n n N komplexer Zahlen heißt konvergent gegen c C, falls zu jedem ε > 0

Mehr

Klausur - Analysis I Lösungsskizzen

Klausur - Analysis I Lösungsskizzen Klausur - Analysis I Lösungsskizzen Aufgabe 1.: 5 Punkte Entscheiden Sie, ob folgende Aussagen wahr oder falsch sind. Kennzeichnen Sie wahre Aussagen mit W und falsche Aussagen mit F. Es sind keine Begründungen

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 4. Übungsblatt

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 4. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 0/4 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 4. Übungsblatt Aufgabe

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 17 Potenzreihen Definition 17.1. Es sei (c n ) n N eine Folge von reellen Zahlen und x eine weitere reelle Zahl. Dann heißt

Mehr

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen Topologische Grundbegriffe I Vortrag zum Proseminar Analysis, 26.04.2010 Nina Neidhardt und Simon Langer Im Folgenden soll gezeigt werden, dass topologische Konzepte, die uns schon für die Reellen Zahlen

Mehr

Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version C)

Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version C) Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, 14..009 (Version C Vokabelbuch In diesem Teil soll getestet werden, inwieweit Sie in der Lage sind, wichtige Definitionen aus der Vorlesung

Mehr

Funktionsgrenzwerte, Stetigkeit

Funktionsgrenzwerte, Stetigkeit Funktionsgrenzwerte, Stetigkeit Häufig tauchen in der Mathematik Ausdrücke der Form lim f(x) auf. x x0 Derartigen Ausdrücken wollen wir jetzt eine präzise Bedeutung zuweisen. Definition. b = lim f(x) wenn

Mehr

Die komplexe Exponentialfunktion und die Winkelfunktionen

Die komplexe Exponentialfunktion und die Winkelfunktionen Die komplexe Exponentialfunktion und die Winkelfunktionen In dieser Zusammenfassung werden die für uns wichtigsten Eigenschaften der komplexen und reellen Exponentialfunktion sowie der Winkelfunktionen

Mehr

4.2 Grenzwerte und Stetigkeit reeller Funktionen

4.2 Grenzwerte und Stetigkeit reeller Funktionen 4. Grenzwerte und Stetigkeit reeller Funktionen 73 4. Grenzwerte und Stetigkeit reeller Funktionen Definition 4.. Gegeben sei eine Funktion y = mit D(f). (i) Sei D(f). heißt stetig in, falls es für alle

Mehr

17 Logarithmus und allgemeine Potenz

17 Logarithmus und allgemeine Potenz 7 Logarithmus und allgemeine Potenz 7. Der natürliche Logarithmus 7.3 Die allgemeine Potenz 7.4 Die Exponentialfunktion zur Basis a 7.5 Die Potenzfunktion zum Exponenten b 7.6 Die Logarithmusfunktion zur

Mehr

Cauchy-Folgen und Kompaktheit. 1 Cauchy-Folgen und Beschränktheit

Cauchy-Folgen und Kompaktheit. 1 Cauchy-Folgen und Beschränktheit Vortrag zum Seminar zur Analysis, 10.05.2010 Michael Engeländer, Jonathan Fell Dieser Vortrag stellt als erstes einige Sätze zu Cauchy-Folgen auf allgemeinen metrischen Räumen vor. Speziell wird auch das

Mehr

Folgen und Reihen. Thomas Blasi

Folgen und Reihen. Thomas Blasi Folgen und Reihen Thomas Blasi 02.03.2009 Inhaltsverzeichnis Folgen und Grenzwerte 2. Definitionen und Bemerkungen............................. 2.2 Konvergenz und Beschränktheit.............................

Mehr

2 Folgen und Reihen. 2.1 Folgen in C Konvergenz von Folgen. := f(n)

2 Folgen und Reihen. 2.1 Folgen in C Konvergenz von Folgen. := f(n) 2 Folgen und Reihen 2.1 Folgen in C 2.1.1 Konvergenz von Folgen Eine Folge komplexer Zahlen ist eine Funktion f : N C. Mit a n schreibt man (a n ) n=1, (a n ) oder auch a 1, a 2,.... := f(n) (a n ) heißt

Mehr

Übungsaufgaben zur Vorlesung ANALYSIS I (WS 12/13) Lösungsvorschlag Serie 12

Übungsaufgaben zur Vorlesung ANALYSIS I (WS 12/13) Lösungsvorschlag Serie 12 Humboldt-Universität zu Berlin Institut für Mathematik Prof. A. Griewank Ph.D.; Dr. A. Hoffkamp; Dipl.Math. T.Bosse; Dipl.Math. L. Jansen Übungsaufgaben zur Vorlesung ANALYSIS I (WS 2/3) Lösungsvorschlag

Mehr

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08)

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) 1 Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) Kapitel 4: Konvergenz und Stetigkeit Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 22. November 2007) Folgen Eine Folge

Mehr

,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5

,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5 3 Folgen 3.1 Definition und Beispiele Eine Abbildung a : Æ Ê heißt (reelle) Zahlenfolge. Statt a(n) schreiben wir kürzer a n und bezeichnen die ganze Folge mit (a n ) n Æ oder einfach (a n ), was aber

Mehr

Die Lösungen der Gleichung b x = log b (x)

Die Lösungen der Gleichung b x = log b (x) Die Lösungen der Gleichung b = log b () wgnedin@math.uni-koeln.de 17. Januar 2014 In der ersten Vorlesung des Wintersemesters wurde folgende Frage gestellt: Wieviele Lösungen hat die Gleichung ( ) 1 =

Mehr

Lösungen 4.Übungsblatt

Lösungen 4.Übungsblatt Karlsruher Institut für Technology (KIT) WS 2011/2012 Institut für Analysis Priv.-Doz. Dr. Gerd Herzog Dipl.-Math.techn. Rainer Mandel Lösungen 4.Übungsblatt Aufgabe 13 (K) Bestimmen Sie sämtliche Häufungswerte

Mehr

f(x nk ) = lim y nk ) = lim Bemerkung 2.14 Der Satz stimmt nicht mehr, wenn D nicht abgeschlossen oder nicht beschränkt ist, wie man z.b.

f(x nk ) = lim y nk ) = lim Bemerkung 2.14 Der Satz stimmt nicht mehr, wenn D nicht abgeschlossen oder nicht beschränkt ist, wie man z.b. Proposition.13 Sei f : D R stetig und D = [a, b] R. Dann ist f(d) beschränkt. Außerdem nimmt f sein Maximum und Minimum auf D an, d.h. es gibt x max D und ein x min D, so dass f(x max ) = sup f(d) und

Mehr

13. Übungsblatt zur Mathematik I für Maschinenbau

13. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 3. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 00/ 07.0.-.0. Aufgabe G Stetigkeit) a) Gegeben

Mehr

Kapitel 5 KONVERGENZ

Kapitel 5 KONVERGENZ Kapitel 5 KONVERGENZ Fassung vom 21. April 2002 Claude Portenier ANALYSIS 75 5.1 Metrische Räume 5.1 Metrische Räume DEFINITION 1 Sei X eine Menge. Eine Abbildung d : X X! R + heißt Metrik oder Distanz

Mehr

Rechenoperationen mit Folgen. Rekursion und Iteration.

Rechenoperationen mit Folgen. Rekursion und Iteration. Rechenoperationen mit Folgen. Die Menge aller Folgen in V bildet einen Vektorraum, V N, für den die Addition und skalare Multiplikation wie folgt definiert sind. (a n ) n N + (b n ) n N := (a n + b n )

Mehr

Die Topologie von R, C und R n

Die Topologie von R, C und R n Die Topologie von R, C und R n Für R haben wir bereits eine Reihe von Strukturen kennengelernt: eine algebraische Struktur (Körper), eine Ordnungsstruktur und eine metrische Struktur (Absolutbetrag, Abstand).

Mehr

20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen

20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen 20 Gleichmäßige Konvergenz für Folgen und Reihen von Funktionen 20.1 Folgen und Reihen von Funktionen 20.3 Die Supremumsnorm 20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen 20.7 Das Cauchy-Kriterium

Mehr

3. Folgen und Reihen. 3.1 Folgen und Grenzwerte. Denition 3.1 (Folge) Kapitelgliederung

3. Folgen und Reihen. 3.1 Folgen und Grenzwerte. Denition 3.1 (Folge) Kapitelgliederung Kapitelgliederung 3. Folgen und Reihen 3.1 Folgen und Grenzwerte 3.2 Rechenregeln für konvergente Folgen 3.3 Monotone Folgen und Teilfolgen 3.4 Ein Algorithmus zur Wurzelberechnung 3.5 Reihen 3.6 Absolut

Mehr

3.3 Konvergenzkriterien für reelle Folgen

3.3 Konvergenzkriterien für reelle Folgen 3.3 Konvergenzkriterien für reelle Folgen Satz: Eine monoton wachsende, nach oben beschränkte reelle Folge a n ) n N ist konvergent mit Grenzwert lim a n = sup{a n n N} Beweis: Sei a n ) n N nach oben

Mehr

Analysis 2, Woche 6. Grundbegriffe I. 6.1 Topologische Begriffe

Analysis 2, Woche 6. Grundbegriffe I. 6.1 Topologische Begriffe A1 Analysis 2, Woche 6 Grundbegriffe I A2 6.1 Topologische Begriffe Wenn man offene Teilmengen von R betrachtet, landet man meistens bald bei Intervallen. Das Intervall (a, b) = R; a < < b} mit a, b R

Mehr

8. Stetigkeit. 8.A Grenzwerte von Funktionen. 8. Stetigkeit 85

8. Stetigkeit. 8.A Grenzwerte von Funktionen. 8. Stetigkeit 85 8. Stetigkeit 85 8. Stetigkeit Nachdem wir uns gerade ausführlich mit Grenzwerten von Folgen und Reihen befasst haben, wollen wir den Grenzwertbegriff nun auf Funktionen einer reellen (oder evtl. kompleen)

Mehr

Vollständigkeit. 1 Konstruktion der reellen Zahlen

Vollständigkeit. 1 Konstruktion der reellen Zahlen Vortrag im Rahmen des Proseminars zur Analysis, 17.03.2006 Albert Zeyer Ziel des Vortrags ist es, die Vollständigkeit auf Basis der Konstruktion von R über die CAUCHY-Folgen zu beweisen und äquivalente

Mehr

Kapitel 7. Exponentialfunktion

Kapitel 7. Exponentialfunktion Kapitel 7. Exponentialfunktion 7.1. Potenzreihen In Kap. 5 haben wir Reihen ν=0 a ν studiert, wo die Glieder feste Zahlen sind. Die Summe solcher Reihen ist wieder eine Zahl, z.b. die Eulersche Zahl e.

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Analysis I für Studierende der Ingenieurwissenschaften Ingenuin Gasser Department Mathematik Universität Hamburg Technische Universität Hamburg Harburg Wintersemester 2008/2009 3.2 Konvergenzkriterien

Mehr

Kapitel 4 Folgen, Reihen & Funktionen

Kapitel 4 Folgen, Reihen & Funktionen Kapitel 4 Folgen, Reihen & Funktionen Inhaltsverzeichnis FOLGEN REELLER ZAHLEN... 3 DEFINITION... 3 GRENZWERT... 3 HÄUFUNGSPUNKT... 4 MONOTONIE... 4 BESCHRÄNKTHEIT... 4 SÄTZE... 4 RECHNEN MIT GRENZWERTEN...

Mehr

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1 24 14 Metrische Räume 14.1 R n als euklidischer Vektorraum Die Menge R n = {(x 1,..., x n ) x i R} versehen mit der Addition und der skalaren Multiplikation x + y = (x 1 + y 1,..., x n + y n ) λx = (λx

Mehr

von Intervallen, wie sie als Definitionsmengen von Funktionen auftreten können. 1 x Q f : R R ; x

von Intervallen, wie sie als Definitionsmengen von Funktionen auftreten können. 1 x Q f : R R ; x 18 Stetigkeit Den Begriff der Funktion oder Abbildung haben wir bereits im ersten Semester kennengelernt und er hat uns stets begleitet. In der Analysis untersucht man reelle Funktionen f : D R mit Definitionsbereich

Mehr

Wenn man eine Folge gegeben hat, so kann man auch versuchen, eine Summe. a 0 + a 1 + a 2 +

Wenn man eine Folge gegeben hat, so kann man auch versuchen, eine Summe. a 0 + a 1 + a 2 + 8 Reihen 38 8 Reihen Wenn man eine Folge gegeben hat, so kann man auch versuchen, eine Summe a 0 + a + a 2 + zu bilden. Wir wollen nun erklären, was wir darunter verstehen wollen. Zunächst kann man die

Mehr

Kap. 10: Folgen und Reihen. Eine Funktion a : N Ñ R

Kap. 10: Folgen und Reihen. Eine Funktion a : N Ñ R Definition: Zahlenfolge Kap. 10: Folgen und Reihen 10.1 Definition: Zahlenfolge Eine Funktion a : N Ñ R poder Cq heißt reelle (oder komplexe) Zahlenfolge. Man nennt a n apnq das n-te Folgenglied und schreibt

Mehr

e. Für zwei reelle Zahlen x,y R gelten die Additionstheoreme sin(x+y) = cos(x) sin(y)+sin(x) cos(y). und f. Für eine reelle Zahl x R gilt e ix = 1.

e. Für zwei reelle Zahlen x,y R gelten die Additionstheoreme sin(x+y) = cos(x) sin(y)+sin(x) cos(y). und f. Für eine reelle Zahl x R gilt e ix = 1. 8. GRENZWERTE UND STETIGKEIT VON FUNKTIONEN 51 e. Für zwei reelle Zahlen x,y R gelten die Additionstheoreme cos(x+y) = cos(x) cos(y) sin(x) sin(y) und sin(x+y) = cos(x) sin(y)+sin(x) cos(y). f. Für eine

Mehr

Von Skalarprodukten induzierte Normen

Von Skalarprodukten induzierte Normen Von Skalarprodukten induzierte Normen Niklas Angleitner 4. Dezember 2011 Sei ein Skalarproduktraum X,, gegeben, daher ein Vektorraum X über C bzw. R mit einer positiv definiten Sesquilinearform,. Wie aus

Mehr

A U F G A B E N A N A L Y S I S. 11. Vorlesung Zeigen Sie, mit Hilfe der ɛ-δ -Sprache, daß die Funktion x, x 0, stetig bei x 0 = 5 ist.

A U F G A B E N A N A L Y S I S. 11. Vorlesung Zeigen Sie, mit Hilfe der ɛ-δ -Sprache, daß die Funktion x, x 0, stetig bei x 0 = 5 ist. A U F G A B E N A N A L Y S I S. Vorlesung. Zeigen Sie, mit Hilfe der ɛ-δ -Sprache, daß die Funktion, 0, stetig bei 0 = 5 ist. Lösung: Es sei 5 < ɛ. () Daraus folgt 5 ɛ < < 5 + ɛ () oder Folglich gilt

Mehr

2. Mathematische Grundlagen

2. Mathematische Grundlagen 2. Mathematische Grundlagen Erforderliche mathematische Hilfsmittel: Summen und Produkte Exponential- und Logarithmusfunktionen 21 2.1 Endliche Summen und Produkte Betrachte n reelle Zahlen a 1, a 2,...,

Mehr

Dem Anschein nach werden diese Zahlen kleiner und kleiner und streben gegen Null. Was sollen sie sonst auch tun? Aber der Begriff

Dem Anschein nach werden diese Zahlen kleiner und kleiner und streben gegen Null. Was sollen sie sonst auch tun? Aber der Begriff 47 5 Irrationales 5.1 Folgen, Konvergenz und Vollständigkeit Eine Abbildung a : N R definiert eine Folge von reellen Werten a 1 = a(1), a 2 = a(2), a 3 = a(3),... Solche Zahlenfolgen werden uns dazu dienen,

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

Analysis I. 4. Beispielklausur mit Lösungen

Analysis I. 4. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 4. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine bijektive Abbildung f: M N. () Ein

Mehr

7 KONVERGENTE FOLGEN 35. inf M = Infimum von M. bezeichnet haben. Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt.

7 KONVERGENTE FOLGEN 35. inf M = Infimum von M. bezeichnet haben. Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt. 7 KONVERGENTE FOLGEN 35 und die größe untere Schranke mit bezeichnet haben. inf M = Infimum von M Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt der Limes superior der Folge, und lim

Mehr

Konvergenz einer Folge. 1-E1 Ma 1 Lubov Vassilevskaya

Konvergenz einer Folge. 1-E1 Ma 1 Lubov Vassilevskaya Konvergenz einer Folge 1-E1 Ma 1 Lubov Vassilevskaya Konvergenz einer Folge: Inhalt Drei Verhaltensmuster von Folgen. Beispiele 1 ) = 1 n, = n n +1, 2 ) = ( 1)n n +1 n und ihre graphischen Darstellungen.,

Mehr

Beispiel. Gegeben sei die Folge (a n ) n N mit. a n := n 2 + 5n + 1 n. Es gilt. (n 2 + 5n + 1) n 2 = n2 + 5n + 1 n) n2 + 5n n, woraus folgt

Beispiel. Gegeben sei die Folge (a n ) n N mit. a n := n 2 + 5n + 1 n. Es gilt. (n 2 + 5n + 1) n 2 = n2 + 5n + 1 n) n2 + 5n n, woraus folgt Beispiel. Gegeben sei die Folge (a n ) n N mit a n := n 2 + 5n + 1 n Es gilt ( ( ) (n 2 + 5n + 1) n 2 = n2 + 5n + 1 n) n2 + 5n + 1 + n, woraus folgt a n = (n2 + 5n + 1) n 2 n2 + 5n + 1 + n = 5n + 1 n2

Mehr

Wichtige Klassen reeller Funktionen

Wichtige Klassen reeller Funktionen 0 Wichtige Klassen reeller Funktionen Monotone Funktionen sind i.a. unstetig, aber man kann etwas über das Grenzwertverhalten aussagen, wenn man nur einseitige Grenzwerte betrachtet. Definition 0. : Sei

Mehr

8 Konvergenzkriterien und Häufungswerte von Folgen in R

8 Konvergenzkriterien und Häufungswerte von Folgen in R 8 Konvergenzkriterien und Häufungswerte von Folgen in R 8.1 Konvergenz monotoner Folgen 8.2 Die Zahl e 8.3 Existenz monotoner Teilfolgen 8.4 Auswahlprinzip von Bolzano-Weierstraß 8.5 Konvergenzkriterium

Mehr

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen:

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen: Klausur zur Analysis I svorschläge Universität Regensburg, Wintersemester 013/14 Prof. Dr. Bernd Ammann / Dr. Mihaela Pilca 0.0.014, Bearbeitungszeit: 3 Stunden 1. Aufgabe [ Punte] Seien X, Y zwei nicht-leere

Mehr

Häufungspunkte und Satz von Bolzano und Weierstraß.

Häufungspunkte und Satz von Bolzano und Weierstraß. Häufungspunkte und Satz von Bolzano und Weierstraß. Definition: Sei (a nk ) k N eine konvergente Teilfolge der Folge (a n ) n N.Dannwirdder Grenzwert der Teilfolge (a nk ) k N als Häufungspunkt der Folge

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 016/17 Dr. K. Rothe Analsis I für Studierende der Ingenieurwissenschaften Hörsaalübung mit Beispielaufgaben zu Blatt 3 Gegeben sei eine Funktion f :

Mehr

Konvergenz von Folgen

Konvergenz von Folgen 6 Konvergenz von Folgen Definition 6.1 Eine Folge in C (oder R) ist eine Abbildung f : N C (oder R). Schreibweise: (a n ) n N, (a n ), a 1, a 2... wobei a n = f(n). Beispiele: 1) (1 + 2 n ) n N, 3 2, 5

Mehr

Der Abschluss D ist die Menge, die durch Hinzunahme der Intervallränder entsteht, in den obigen Beispielen also

Der Abschluss D ist die Menge, die durch Hinzunahme der Intervallränder entsteht, in den obigen Beispielen also Festlegung Definitionsbereich 11.1 Festlegung Definitionsbereich Festlegung: Wir betrachten Funktionen f : D Ñ R, deren Definitionsbereich eine endliche Vereinigung von Intervallen ist, also z.b. D ra,

Mehr

Kapitel 3. Konvergenz von Folgen und Reihen

Kapitel 3. Konvergenz von Folgen und Reihen Kapitel 3. Konvergenz von Folgen und Reihen 3.1. Normierte Vektorräume Definition: Sei V ein Vektorraum (oder linearer Raum) über (dem Körper) R. Eine Abbildung : V [0, ) heißt Norm auf V, falls die folgenden

Mehr

Quiz Analysis 1. Lösungen zu den Aufgaben M1 bis M7 der Probeklausur. Mathematisches Institut, WWU Münster. Karin Halupczok.

Quiz Analysis 1. Lösungen zu den Aufgaben M1 bis M7 der Probeklausur. Mathematisches Institut, WWU Münster. Karin Halupczok. Quiz Analysis 1 Mathematisches Institut, WWU Münster Karin Halupczok WiSe 2011/2012 Lösungen zu den Aufgaben M1 bis M7 der Probeklausur 1 Aufgabe M1: Fragen zu Folgen, Reihen und ihre Konvergenz 2 Aufgabe

Mehr

Ferienkurs Analysis 1, SoSe Unendliche Reihen. Florian Beye August 15, 2008

Ferienkurs Analysis 1, SoSe Unendliche Reihen. Florian Beye August 15, 2008 Ferienkurs Analysis 1, SoSe 2008 Unendliche Reihen Florian Beye August 15, 2008 1 Reihen und deren Konvergenz Definition 1.1. Eine reelle bzw. komplexe Reihe ist eine unendliche Summe über die Glieder

Mehr

$Id: stetig.tex,v /02/10 17:31:38 hk Exp $ $Id: diffb.tex,v /02/10 17:50:21 hk Exp hk $

$Id: stetig.tex,v /02/10 17:31:38 hk Exp $ $Id: diffb.tex,v /02/10 17:50:21 hk Exp hk $ Mathematik für Ingenieure I, WS 008/009 Dienstag 0. $Id: stetig.te,v.5 009/0/0 7:3:38 hk Ep $ $Id: diffb.te,v. 009/0/0 7:50: hk Ep hk $ III. Analysis 3 Stetige Funktionen 3.4 Umkehrfunktionen Zum Abschluss

Mehr

Kapitel 6 Folgen und Stetigkeit

Kapitel 6 Folgen und Stetigkeit Kapitel 6 Folgen und Stetigkeit Mathematischer Vorkurs TU Dortmund Seite 76 / 226 Definition 6. (Zahlenfolgen) Eine Zahlenfolge (oder kurz: Folge) ist eine Funktion f : 0!. Statt f(n) schreiben wir x n

Mehr

6 Die Bedeutung der Ableitung

6 Die Bedeutung der Ableitung 6 Die Bedeutung der Ableitung 24 6 Die Bedeutung der Ableitung Wir wollen in diesem Kapitel diskutieren, inwieweit man aus der Kenntnis der Ableitung Rückschlüsse über die Funktion f ziehen kann Zunächst

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 26 1. Folgen R. Steuding (HS-RM)

Mehr

Das Newton Verfahren.

Das Newton Verfahren. Das Newton Verfahren. Ziel: Bestimme eine Nullstelle einer differenzierbaren Funktion f :[a, b] R. Verwende die Newton Iteration: x n+1 := x n f x n) f x n ) für f x n ) 0 mit Startwert x 0. Das Verfahren

Mehr

Kapitel V. Folgen und Konvergenz. V.1 Konvergenz von Zahlenfolgen

Kapitel V. Folgen und Konvergenz. V.1 Konvergenz von Zahlenfolgen Kapitel V Folgen und Konvergenz V.1 Konvergenz von Zahlenfolgen Wir erinnern an den Begriff der Folge, den wir schon im Kapitel III verwenden. Eine Folge (a n ) n=1 AN in A ist eine Abbildung a ( ) : N

Mehr