7. Potenzreihen und Taylor-Reihen

Größe: px
Ab Seite anzeigen:

Download "7. Potenzreihen und Taylor-Reihen"

Transkript

1 7. Potezreihe ud Taylor-Reihe Potezreihe ud Taylor-Reihe Mit Hilfe der Cauchysche Itegralformel wolle wir u i diesem Kapitel ei weiteres sehr zetrales Resultat der Fuktioetheorie herleite, ämlich dass sich holomorphe Fuktioe stets lokal um jede Pukt als eie Potezreihe schreibe lasse. Aus diesem Grud werde Potezreihe i dieser Vorlesug letztlich auch eie weit größere Rolle spiele als i der reelle Aalysis (i der keie derartige Aussage gilt). Zu Begi beötige wir aber zuächst eiige grudlegede Eigeschafte vo Potezreihe, die im Komplexe geauso wie im Reelle gelte ud die wir zur Erierug aus de Grudlage der Mathematik kurz wiederhole wolle. Defiitio 7. (Potezreihe). Es sei z 0 C. Eie Potezreihe um z 0 ist ei Ausdruck der Form a (z z 0 ) für gewisse a C. Ma et z 0 auch de Etwicklugspukt der Reihe. Bemerkug 7.2 (Kovergez vo Potezreihe). Am wichtigste ist bei eier Potezreihe zuächst die Frage, für welche Werte z C sie kovergiert ud für welche divergiert. Aus de Grudlage der Mathematik wisse wir dazu bereits, dass die Reihe eie Kovergezradius r R 0 {} besitzt, so dass gilt [G2, Satz 7.25 ud 8.38]: (a) Für alle z C im Kovergezkreis {z C : z z 0 < r} kovergiert die Reihe f (z) absolut. Auf jedem dari ethaltee kompakte Kreis {z C : z z 0 R} mit R < r ist diese Kovergez sogar gleichmäßig. (b) Für alle z C mit z z 0 > r divergiert die Reihe f (z). Auf dem Rad des Kovergezkreises, also für z z 0 = r, ka je ach der betrachtete Reihe i mache Pukte Kovergez ud i adere Divergez auftrete. diverget absolut koverget Aus dem Wurzelkriterium i Bemerkug.7 (d) erhält ma außerdem, dass sich der Kovergezradius eier Potezreihe mit Hilfe der sogeate Formel vo Cauchy-Hadamard r = limsup a bereche lässt, da die Potezreihe ja kovergiert bzw. divergiert, we der Ausdruck lim sup a (z z 0 ) = limsup a z z 0 = z z 0 r kleier bzw. größer als ist, also z z 0 < r bzw. z z 0 > r gilt [G2, Satz 7.25]. Die Formel vo Cauchy-Hadamard ist auch awedbar, we der dort betrachtete Limes superior gleich 0 oder (ud der Kovergezradius damit bzw. 0) ist. Geauso sieht ma mit dem Quotietekriterium, dass r = lim gilt, falls dieser Grezwert existiert [G2, Satz 7.27]. Im Fall der Nichtexistez dieses Grezwerts lässt sich der Kovergezradius mit diesem Kriterium jedoch icht bereche. a a + z 0 r C

2 40 Adreas Gathma Beispiel 7.3. (a) Die Potezreihe = 7.2 de Kovergezradius ( ) + (z ) hat ach der Quotieteformel aus Bemerkug lim / /( + ) =, kovergiert also absolut auf der Kreisscheibe D = {z C : z < } ud divergiert für alle z mit z >. Auf dem Rad D des D Kovergezkreises tritt uterschiedliches Verhalte auf: so ist z. B. f (2) = ( ) + = die kovergete alterierede harmoische Reihe ud f (0) = = die divergete harmoische 2 Reihe. (b) Die Reihe z hat ach der gleiche Formel de Kovergezradius lim + =. Vergleiche wir dies mit der Formel vo Cauchy-Hadamard, so erhalte wir also = limsup, ud damit limsup =. Da zusätzlich atürlich für alle ud damit auch limif gilt, folgt hieraus, dass lim = ist was vermutlich eie der eifachste Arte ist, diese spezielle, i der Aalysis oft betrachtete Grezwert zu bereche [G2, Beispiel 7.28 (b)]. Bemerkug 7.4 (Formale Ableituge vo Potezreihe). Es sei a (z z 0 ) eie Potezreihe mit Kovergezradius r. Wir defiiere ihre formale Ableitug als die Potezreihe g(z) = = a (z z 0 ) ud erwarte, dass dies im Kovergezkreis auch wirklich die Ableitug der Fuktio f : z f (z) ist, also dass Potezreihe holomorphe Fuktioe darstelle ud gliedweise differeziert werde köe. I der Tat wisse wir dies für reelle Potezreihe auch scho aus de Grudlage der Mathematik [G2, Folgerug 0.26]. Der dort üblicherweise gegebee Beweis verwedet jedoch de Mittelwertsatz ud lässt sich damit icht wörtlich auf de komplexe Fall übertrage. Wir wolle diese komplexe Fall daher jetzt auf de reelle zurückführe. Als Erstes erier wir us dazu dara, dass die formale Ableitug g zumidest de gleiche Kovergezradius r wie die ursprügliche Reihe f hat [G2, Aufgabe 7.30]. Am schellste erhält ma dieses Resultat vermutlich aus der Formel vo Cauchy-Hadamard: der Kovergezradius der Reihe g(z) = a (z z 0 ) ist atürlich derselbe wie der der Reihe (z z 0 )g(z) = a (z z 0 ), also limsup a = lim limsup a = r, da der Grezwert lim ach Beispiel 7.3 (b) gleich ist. Das gewüschte Resultat, dass die formale Ableitug eier Potezreihe gleich ihrer gewöhliche Ableitug ist, ergibt sich damit u aus dem folgede Satz über die Vertauschbarkeit vo Differetiatio ud Grezwertbildug. Satz 7.5 (Vertauschbarkeit vo Differetiatio ud Grezwertbildug). Es seie D C offe ud ( f ) eie Folge holomorpher Fuktioe auf D, die puktweise gege eie Grezfuktio f : D C kovergiere. Weiterhi ehme wir a, dass die Ableituge f : D C stetig sid ud auf D gleichmäßig kovergiere. Da ist auch die Grezfuktio f auf D holomorph, ud für ihre Ableitug gilt f = lim f. Differetiatio ud Grezwertbildug köe i diesem Fall also vertauscht werde.

3 7. Potezreihe ud Taylor-Reihe 4 Beweis. Für reelle Fuktioe ist die aaloge Aussage bereits aus de Grudlage der Mathematik bekat [G2, Satz 0.25]. Wir führe de Beweis u i C, idem wir ih auf de reelle Fall zurückführe. Dazu schreibe wir f = u + iv mit u = Re f ud v = Im f für N. Aalog setze wir f = u + iv für die Grezfuktio. Die Koordiate i D seie wie üblich z = x + iy. Betrachte wir u die Fuktioe u ud fasse sie bei festgehalteem y als Fuktioe eier reelle Variable x auf, so köe wir auf diese Fuktioe offesichtlich die reelle Vertauschbarkeit vo Differetiatio ud Grezwertbildug awede ud sehe, dass u ach x partiell differezierbar ist mit u = lim u. Da wir außerdem vorausgesetzt habe, dass die Ableituge u stetig sid ud gleichmäßig gege u u kovergiere, ist darüber hiaus ach [G2, Bemerkug (b)] stetig. Also ist f = u+iv: D R 2 R 2 stetig partiell differezierbar ud damit ach [G2, Satz 25.7] auch total differezierbar. Außerdem sid alle f ach Voraussetzug holomorph ud erfülle somit die Cauchy-Riemasche Differetialgleichuge aus Satz 2.9, d. h. es gilt u = v y ud u y = v für alle. Damit folgt u = lim u = lim v y = v y ud aalog v = u y. Also erfüllt auch f die Cauchy-Riemasche Differetialgleichuge ud ist somit ach Satz 2.9 holomorph mit Ableitug f = u + i v ( = lim u + i v ) = lim f. Folgerug 7.6 (Differezierbarkeit vo Potezreihe). Jede Potezreihe a (z z 0 ) ist i ihrem Kovergezkreis holomorph. Ihre Ableitug stimmt dort mit der formale Ableitug überei, d. h. es gilt f (z) = = a (z z 0 ). Beweis. Nach Bemerkug 7.4 habe die ursprügliche Reihe f ud ihre formale Ableitug g(z) = = a (z z 0 ) deselbe Kovergezradius r. Es sei u R < r beliebig; ach Bemerkug 7.2 kovergiere beide Potezreihe da sogar gleichmäßig auf der kompakte Mege {z C : z z 0 R} ud damit atürlich auch auf D := {z C : z z 0 < R}. Awede vo Satz 7.5 auf die Partialsumme vo f bzw. g liefert damit die behauptete Aussage auf D. Da R < r beliebig war, folgt die Behauptug da auch auf dem gesamte Kovergezkreis. ( ) + Beispiel 7.7. Wir betrachte och eimal die Potezreihe = (z ) aus Beispiel 7.3 (a). Nach Folgerug 7.6 ist f im Kovergezkreis D = {z : z < } holomorph mit Ableitug f (z) = = ( ) + (z ) = ( ) (z ) = ( z) = z. 06 Wir kee ach Aufgabe 3.3 (a) aber scho eie weitere Fuktio auf D, dere Ableitug z ist, ämlich de komplexe Logarithmus logz. Die Fuktio z f (z) logz ist also holomorph mit Ableitug 0 i D. Aus Folgerug 5.2 (a) ergibt sich damit, dass f (z) logz auf D kostat ist. Eisetze vo z = zeigt, dass diese Kostate 0 sei muss. Damit ist logz auf D. Ma beachte hierbei isbesodere, dass der Logarithmus zwar auf dem viel größere Gebiet C\R 0 defiiert ud holomorph ist, aber ur im Kreis D (bzw. evtl. och a eiige Pukte auf D) durch die Potezreihe f dargestellt wird! Wir köe Folgerug 7.6 u atürlich sofort auf die höhere (komplexe) Ableituge f () eier Potezreihe f verallgemeier:

4 42 Adreas Gathma Folgerug 7.8 (Taylor-Formel für Potezreihe). Es sei a (z z 0 ) eie Potezreihe mit Kovergezkreis D. Da ist f auf D beliebig oft komplex differezierbar, ud alle Ableituge köe gliedweise berechet werde. Weiterhi gilt a = f () (z 0 ) für alle ud damit für alle z D. f () (z 0 ) (z z 0 ) (Taylor-Formel) Beweis. Durch iterierte Awedug vo Folgerug 7.6 ergibt sich sofort, dass alle höhere Ableituge vo f existiere ud gliedweise berechet werde köe. Führt ma diese Differetiatioe aus, so erhält ma für alle k N f (k) (z) = =k ( ) ( k + )a (z z 0 ) k, durch Eisetze vo z = z 0 also f (k) (z 0 ) = k! a k ud damit a k = f (k) (z 0 ) k!. Bemerkug 7.9 (Aalytische Fuktioe). Die Taylor-Formel aus Folgerug 7.8 gilt geauso auch im Reelle [G2, Satz.9]. Sie ist allerdigs zuächst ur eie Aussage über Potezreihe ud icht über (uedlich oft) differezierbare Fuktioe. I der Tat gibt es im Reelle uedlich oft differezierbare Fuktioe, die sich icht als Potezreihe schreibe lasse ud für die demzufolge isbesodere auch die Taylor-Formel aus Folgerug 7.8 icht gilt: so ist z. B. die reelle Fuktio {e x f : R R, x 2 für x 0, 0 für x = 0 aus Aufgabe 2.8 (a) uedlich oft differezierbar mit f () (0) = 0 für alle [G2, Aufgabe.3]. Die Fuktio läuft sozusage uedlich flach i de Nullpukt hiei, d. h. die etsprechede Taylor-Reihe f () (0) x ist die Nullfuktio ud damit icht gleich der ursprügliche Fuktio f. f (x) x Fuktioe, die sich (lokal) als Potezreihe schreibe lasse (ud für die demzufolge die Taylor- Formel gilt), werde i der Literatur als aalytische Fuktioe bezeichet. Die aalytische Fuktioe bilde also im Reelle ach dem obige Beispiel eie echte Teilmege der uedlich oft differezierbare Fuktioe. Im Komplexe higege fuktioiert das obige Gegebeispiel icht, weil die Fuktio e z 2 dort ach Aufgabe 2.8 (a) icht eimal stetig i de Nullpukt fortsetzbar ist. I der Tat wird der folgede Satz wie bereits ageküdigt zeige, dass die komplexe Situatio hier wieder eimal viel schöer als die reelle ist: i der Fuktioetheorie ist jede holomorphe Fuktio automatisch aalytisch, also i eie Potezreihe etwickelbar! Dies ist atürlich sehr ageehm, weil es sich mit Potezreihe oft viel eifacher reche lässt als mit dem allgemeie Kozept eier differezierbare Fuktio. Satz 7.0 (Taylor-Etwicklug holomorpher Fuktioe). Es seie D C offe ud f : D C eie holomorphe Fuktio. Ferer seie z 0 D ud r > 0, so dass der offee Kreis U = {z : z z 0 < r} mit Mittelpukt z 0 ud Radius r gaz i D liegt. Da gilt:

5 7. Potezreihe ud Taylor-Reihe 43 (a) f ist i U darstellbar als eie Potezreihe um z 0 (dere Kovergezradius midestes r ist). Isbesodere ist f i U ach Folgerug 7.6 also uedlich oft komplex differezierbar, ud es gilt die Taylor-Formel für alle z U. f () (z 0 ) (z z 0 ) (b) Die höhere Ableituge vo f erfülle die verallgemeierte Cauchysche Itegralformel f () (z 0 ) = f (z) dz 2πi (z z 0 ) + für alle N, wobei γ eie beliebige Kreisliie i U um z 0 ist. Beweis. Es seie z U ud γ wie im Bild ute rechts eie Kreisliie mit Mittelpukt z 0, die um de Pukt z herumläuft ud och gaz i U liegt. Da gilt ach der Cauchysche Itegralformel aus Satz 6.7 2πi γ f (w) w z dw = 2πi γ f (w) w z 0 z z 0 Weil für alle w auf dem Itegratiosweg w z 0 > z z 0 gilt ud der Betrag vo z z 0 damit dort kleier als ist, köe wir de zweite Faktor im Itegral i die geometrische Reihe etwickel ud erhalte ( ) f (w) z z0 2πi γ w z 0 dw. w z 0 We w auf dem Itegratiosweg etlag läuft, ist der Ausdruck f (w) beschräkt, ud z z 0 hat eie kostate Betrag kleier als. Daher ist die Reihe im Itegrade gleichmäßig koverget i w. Wir köe die Summe also mit dem Itegral vertausche [G2, Satz 2.37] ud erhalte ( ) f (w) dw (z z 2πi (w z 0 ) + 0 ). γ Weil der Ausdruck i der große Klammer uabhägig vo z ist, habe wir f damit i der Tat auf U als Potezreihe i z um z 0 geschriebe. Da die Koeffiziete der Potezreihe ach Folgerug 7.8 außerdem gleich f () (z 0 ) sei müsse, ist damit auch die verallgemeierte Cauchysche Itegralformel bewiese. Beispiel 7.. Wir betrachte die holomorphe Fuktio f : C\{±i} C, z z 2 + ud de Etwicklugspukt z 0 =. Der größte offee Kreis mit Mittelpukt z 0, der och im Defiitiosgebiet vo f liegt, ist offesichtlich U = {z C : z < 2}. Also kovergiert die Taylor-Reihe f () (z 0 ) (z z 0 ) ach Satz 7.0 auf U gege f, d. h. ihr Kovergezradius ist midestes 2. Adererseits ka der Kovergezradius aber auch icht größer als 2 sei, de sost würde die Pukte ±i och im Iere des Kovergezkreises liege was bedeute würde, dass die Taylor- Reihe (die ja auf U mit f übereistimmt) die Fuktio f auf U i die Pukte ±i stetig fortsetze würde. Dies ist wege lim z ±i aber atürlich umöglich. Also ist der Kovergezradius der Taylor-Reihe geau gleich 2. Beachte, dass wir hier de Kovergezradius der Taylor-Reihe bestimme kote, ohe die Reihe überhaupt explizit higeschriebe zu habe γ dw. i i z z 0 U U γ

6 44 Adreas Gathma Bemerkug 7.2. Aufgrud der Homotopieivariaz des Wegitegrals (siehe Folgerug 5.3 (a)) köe wir de Itegratiosweg i der verallgemeierte Cauchysche Itegralformel vo Satz 7.0 (b) atürlich geauso gut durch eie i D\{z 0 } homotope Weg ersetze. Isbesodere kommt es bei der Itegratio über eie Kreisliie also icht darauf a, dass z 0 wirklich der Mittelpukt der Kreisliie ist, soder ur darauf, dass z 0 im Iere des Kreises liegt. Wir köe die verallgemeierte Cauchysche Itegralformel also auch aalog zur gewöhliche i Satz 6.7 aufschreibe als f () (z) = 2πi K f (w) dw, (w z) + wobei K D ei (abgeschlosseer) Kreis ud z K ei beliebiger Pukt im Iere dieses Kreises ist. Usere ursprügliche Cauchysche Itegralformel ergibt sich hieraus offesichtlich für de Fall = 0. I dieser Form sieht ma also, dass diese Formel icht ur die Fuktioswerte, soder auch alle Ableituge vo f im Iere eies Kreises bereche ka, we ma ur die Werte vo f auf dem Rad des Kreises ket. Wie i Beispiel 6.9 (b) ist dieses Resultat oft zur Berechug geschlosseer Wegitegrale ützlich: wolle wir z. B. das Itegral e z z 2 dz z =2 bereche, so folgt mit der verallgemeierte Cauchysche Itegralformel für = ud e z ohe weitere komplizierte Rechuge e z 2πi dz = z2! f (0) = 2πi e 0 = 2πi, z =2 da die Nullstelle 0 des Neers im Iere des Itegratioskreises liegt. e z Aufgabe 7.3. Bereche die Itegrale z = z 3 ( z) dz ud z 2 z = 3 e z dz. Aufgabe 7.4. Bereche de Kovergezradius der folgede Potezreihe: (a) die Taylor-Reihe der Fuktio 2 z 5 zum Etwicklugspukt z 0 = 4 ; (b) ϕ()z, wobei = (c) ϕ() := {m =,..., : m ist teilerfremd zu } die z. B. aus der Zahletheorie bekate Eulersche ϕ-fuktio ist; z (2). = Aufgabe 7.5. Es sei p ei komplexes Polyom vom Grad d N. (a) Bestimme de Kovergezradius der Potezreihe p()z. (b) Zeige, dass sich f im Kovergezkreis i der Form g(z) für ei Polyom g schreibe ( z) d+ lässt. Aufgabe 7.6. Für z C\R 0 ud a C defiiere wir die (allgemeie) komplexe Potez aalog zum reelle Fall als z a := e alogz mit dem komplexe Logarithmus logz wie i Aufgabe 3.3.

7 7. Potezreihe ud Taylor-Reihe 45 (a) Beweise für z < die allgemeie biomische Formel ( ) a ( + z) a = z, wobei ( a) := a(a ) (a +). (b) Ihr seid Übugsleiter für die Fuktioetheorie ud bekommt die folgede Abgabe eies Studete. Was sagt ihr dazu? Eierseits ist adererseits aber auch (e 2+2πi ) 2+2πi = (e 2 e 2πi ) 2+2πi = (e 2 ) 2+2πi = e 4+4πi = e 4, (e 2+2πi ) 2+2πi = e (2+2πi)2 = e 4+8πi 4π2 = e 4 e 4π2, also folgt e 4 = e 4 e 4π2 ud damit e 4π2 =. Aufgabe 7.7. Es sei D C offe mit 0 D. Zeige, dass es keie holomorphe Fuktio f : D C gibt mit f () (0) = 2 für alle N.

3.2 Potenzreihen und komplexe Taylorentwicklung

3.2 Potenzreihen und komplexe Taylorentwicklung 40 Kapitel 3. Holomorphe Fuktioe 3.2 Potezreihe ud komplexe Tayloretwicklug Wede wir us u de Reiheetwickluge vo Fuktioe zu. 3.2. Defiitio Uter eier Potezreihe um de Pukt z 0 C versteht ma eie Reihe der

Mehr

Resultate: Vertauschbarkeit von Grenzprozessen, Konvergenzverhalten von Potenzreihen

Resultate: Vertauschbarkeit von Grenzprozessen, Konvergenzverhalten von Potenzreihen 26 Gleichmäßige Kovergez ud Potezreihe 129 26 Gleichmäßige Kovergez ud Potezreihe Lerziele: Kozepte: Puktweise ud gleichmäßige Kovergez Resultate: Vertauschbarkeit vo Grezprozesse, Kovergezverhalte vo

Mehr

3. Taylorformel und Taylorreihen

3. Taylorformel und Taylorreihen Prof Dr Siegfried Echterhoff Aalysis Vorlesug SS 9 3 Taylorformel ud Taylorreihe Sei I R ei Itervall ud sei f : I R eie Fuktio Ziel: Wolle utersuche, wa sich die Fuktio f i eier Umgebug vo eiem Pukt I

Mehr

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man:

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man: Gleichmäßige Kovergez Wir betrachte im Folgede Abbilduge f : M N, wobei M eie Mege ud N ei metrischer Raum ist. Isbesodere iteressiere ud Folge f vo solche Abbilduge. Eie solche Folge bestimmt für jedes

Mehr

$Id: komplex.tex,v /04/13 15:09:53 hk Exp $

$Id: komplex.tex,v /04/13 15:09:53 hk Exp $ Mathematik für Igeieure IV, SS 206 Mittwoch 3.4 $Id: komplex.tex,v.2 206/04/3 5:09:53 hk Exp $ Komplexe Zahle I diesem Kapitel wolle wir erst eimal zusammestelle was aus de vorige Semester über die komplexe

Mehr

4. Reihen Definitionen

4. Reihen Definitionen 4. Reihe 4.1. Defiitioe Addiere wir die Glieder eier reelle Zahlefolge (a k ), so heißt diese Summe S (uedliche) (Zahle-) Reihe S (Folge: Fuktio über N; Reihe: 1 Zahl): S := a 1 + a 2 + a 3 +... := Σ a

Mehr

Analysis I - Zweite Klausur

Analysis I - Zweite Klausur Aalysis I - Zweite Klausur Witersemester 2004-2005 Vorame: Name: Aufgabe Aufgabe 2 Aufgabe 3 Aufgabe 4 Aufgabe 5 Aufgabe 6 Aufgabe 7 Aufgabe 8 Aufgabe 9 Summe Aufgabe 4 Pukte Bestimme Sie (mit Beweis)

Mehr

4 Konvergenz von Folgen

4 Konvergenz von Folgen 4 Kovergez vo Folge Defiitio 4.. Sei M eie Mege. Ist 0 Z ud für jedes Z mit 0 ei a M gegebe, so et ma die Abbildug { Z; 0 } M, a eie Folge i M. Abkürzed schreibt ma für eie solche Abbildug auch a ) 0 oder

Mehr

Index. Majorante, 24 Minorante, 23. Partialsumme, 17

Index. Majorante, 24 Minorante, 23. Partialsumme, 17 Folge, Reihe Idex Kovergezkriterie Hauptkriterium, Leibiz-Kriterium, Majoratekriterium, 4 Mioratekriterium, otwediges Kriterium, 0 Quotietekriterium, teleskopierede Summe, Wurzelkriterium, Majorate, 4

Mehr

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $ Mathematik für Iformatiker B, SS 202 Doerstag 4.6 $Id: reihe.tex,v.9 202/06/4 3:59:06 hk Exp $ 7 Reihe 7.4 Kovergezkriterie für Reihe 7.4. Alterierede Reihe Wir hatte gesehe das die harmoische Reihe divergiert,

Mehr

Analysis I für M, LaG/M, Ph 8.Übungsblatt

Analysis I für M, LaG/M, Ph 8.Übungsblatt Aalysis I für M, LaG/M, Ph 8Übugsblatt Fachbereich Mathematik Sommersemester 200 Dr Robert Haller-Ditelma 0206200 David Bücher Christia Bradeburg Gruppeübug Aufgabe G (Kovergezkriterie/Kovergezradie) (a)

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 05/06 7..05 Höhere Mathematik für die Fachrichtug Physik Lösugsvorschläge zum 5. Übugsblatt Aufgabe

Mehr

Wir wiederholen zunächst das Majorantenkriterium aus Satz des Vorlesungsskripts Analysis von W. Kimmerle und M. Stroppel.

Wir wiederholen zunächst das Majorantenkriterium aus Satz des Vorlesungsskripts Analysis von W. Kimmerle und M. Stroppel. Uiversität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dr. D. Zimmerma MSc. J. Köller MSc. R. Marczizik FDSA 4 Höhere Mathematik II 30.04.2014 el, kyb, mecha, phys 1 Kovergezkriterie

Mehr

Kompaktheit und gleichgradige Stetigkeit. 1 Einführung in die Kompaktheit in C 0

Kompaktheit und gleichgradige Stetigkeit. 1 Einführung in die Kompaktheit in C 0 Kompaktheit ud gleichgradige Stetigkeit Vortrag zum Prosemiar zur Aalysis, 14.06.2010 Mao Wiescherma Matthias Klupsch Dieser Vortrag beschäftigt sich mit Kompaktheit vo Teilräume vom Raum der stetige Abbilduge

Mehr

Es gibt verschiedene Möglichkeiten eine Folge zu definieren. Die zwei häufigsten Methoden

Es gibt verschiedene Möglichkeiten eine Folge zu definieren. Die zwei häufigsten Methoden Folge ud Reihe Folge Eie Folge ist eie Abbildug der atürliche Zahle N = {0, 1,,...} i die Mege der (zumidest i de meiste Fälle) reelle Zahle R. I diesem Fall ka ma sich eie Folge als Pukte i eiem Koordiatesystem

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 1

Technische Universität München Zentrum Mathematik. Übungsblatt 1 Techische Uiversität Müche Zetrum Mathematik Mathematik (Elektrotechik) Prof. Dr. Ausch Taraz Dr. Michael Ritter Übugsblatt Hausaufgabe Aufgabe. Bestimme Sie de Kovergezbereich M der folgede Reihe für

Mehr

Dirichlet-Reihen II. 1 Konvergenzeigenschaften von Dirichlet-Reihen

Dirichlet-Reihen II. 1 Konvergenzeigenschaften von Dirichlet-Reihen Vortrag zum Semiar zur Fuktioetheorie, 7.2.2007 Holger Witermayr I diesem Vortrag werde wir Kovergezeigeschafte vo Dirichlet-Reihe erarbeite ud eie Vergleich zu Potezreihe ziehe. Ei weiteres Ziel dieses

Mehr

n (n + 1) = 1(1 + 1)(1 + 2) 3 Induktionsschritt: Angenommen die Gleichung gilt für n N. Dann folgt: 1 2 = 2 =

n (n + 1) = 1(1 + 1)(1 + 2) 3 Induktionsschritt: Angenommen die Gleichung gilt für n N. Dann folgt: 1 2 = 2 = Aufgabe 1: (6 Pukte) Zeige Sie für alle N die Formel: 1 2 + 2 3 + 3 4 +... + ( + 1) = ( + 1)( + 2). 3 Lösug: Beweis durch vollstädige Iduktio. Iduktiosafag: Für = 1 gilt: 1 2 = 2 = 1(1 + 1)(1 + 2) 3 Iduktiosschritt:

Mehr

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10. 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.000, 1 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Defiitio: Eie

Mehr

KAPITEL 8. Zahlenreihen. 8.1 Geometrische Reihe Konvergenzkriterien Absolut konvergente Reihen

KAPITEL 8. Zahlenreihen. 8.1 Geometrische Reihe Konvergenzkriterien Absolut konvergente Reihen KAPITEL 8 Zahlereihe 8. Geometrische Reihe................................. 53 8.2 Kovergezkriterie................................. 54 8.3 Absolut kovergete Reihe............................ 64 Lerziele

Mehr

n=0 f(x) = log(1 + x) = n=1

n=0 f(x) = log(1 + x) = n=1 Potez - Reihe Machmal ist es praktisch eie Fuktio f() mir Hilfe ihrer Potezreihe auszudrücke. Eie Potezreihe um de Etwicklugspukt 0 sieht im Allgemeie so aus a ( 0 ) Fuktioe, für die eie Potezreihe eistiert,

Mehr

8. Übungsblatt Aufgaben mit Lösungen

8. Übungsblatt Aufgaben mit Lösungen 8. Übugsblatt Aufgabe mit Lösuge Aufgabe 36: Bestimme Sie alle z C, für die die folgede Potezreihe kovergiere: z z a, b! +, c z +. = = Lösug 36: Wir bezeiche de Kovergezradius mit r. a Wir wede das Quotietekriterium

Mehr

KAPITEL 3. Zahlenreihen. 3.1 Geometrische Reihe Konvergenzkriterien Absolut konvergente Reihen... 80

KAPITEL 3. Zahlenreihen. 3.1 Geometrische Reihe Konvergenzkriterien Absolut konvergente Reihen... 80 KAPITEL 3 Zahlereihe 3. Geometrische Reihe......................... 7 3.2 Kovergezkriterie......................... 72 3.3 Absolut kovergete Reihe.................... 80 Lerziele 3 Eigeschafte der geometrische

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker II (Sommersemester 004 Lösuge zu Aufgabeblatt 7

Mehr

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $ Mathematik für Iformatiker B, SS 0 Diestag 5.6 $Id: folge.tex,v. 0/06/05 ::8 hk Exp $ 6 Folge 6.4 Folge reeller Zahle I der letzte Sitzug habe wir de Begriff des Grezwerts eier Folge i eiem metrische Raum

Mehr

Lösungsvorschlag zu den Hausaufgaben der 1. Übung

Lösungsvorschlag zu den Hausaufgaben der 1. Übung FAKULTÄT FÜR MATHEMATIK Prof. Dr. Patrizio Neff Christia Thiel 4.04.04 Lösugsvorschlag zu de Hausaufgabe der. Übug Aufgabe : (6 Pukte Bereche Sie für die Fuktio f : R R, f( : ep( a der Stelle 0 0 das Taylorpolyom

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 4. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 4. Übungsblatt UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz. Dr. P. C. Kustma Dipl.-Math. M. Uhl WS 2008/09 Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum 4. Übugsblatt

Mehr

2 Konvergenz von Folgen

2 Konvergenz von Folgen Kovergez vo Folge. Eifache Eigeschafte Defiitio.. Eie Abbildug A : N C heißt Folge. Ma schreibt a statt A) für N ud a ) oder a ) statt A. We a R N, so heißt a ) reelle Folge. Defiitio.. Seie a ) eie Folge

Mehr

Zahlentheoretische Identitäten und die Eisensteinreihe vom Gewicht 2. Inhaltsverzeichnis

Zahlentheoretische Identitäten und die Eisensteinreihe vom Gewicht 2. Inhaltsverzeichnis Zahletheoretische Idetitäte ud die Eisesteireihe vom Gewicht 2 Vortrag zum Semiar zur Fuktioetheorie II, 3.2.203 Lukas Schürhoff Ihaltsverzeichis Wiederholug ud Vorbereitug 2 2 Zahletheoretische Idetitäte

Mehr

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Aufgabe ud Lösuge Ausarbeitug der Übugsstude zur Vorlesug Aalysis I Witersemester 2008/2009 Übug am 09.2.2008 Übug 8 Eileitug Es soll och eimal auf die agebotee Sprechstude higewiese werde, sowie auf mögliche

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 05/06 04..05 Höhere Mathematik für die Fachrichtug Physik Lösugsvorschläge zum 6. Übugsblatt Aufgabe

Mehr

Funktionentheorie. Lösungsvorschläge zum 4. Übungsblatt. (z 2 + 1)(2z + 1) dz. Log(iz 1) z + 4(i + 1) f (z) = e 1

Funktionentheorie. Lösungsvorschläge zum 4. Übungsblatt. (z 2 + 1)(2z + 1) dz. Log(iz 1) z + 4(i + 1) f (z) = e 1 Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Sebastia Schwarz SS 04 6.05.04 Fuktioetheorie Lösugsvorschläge zum 4. Übugsblatt Aufgabe 4 K) a) Bereche Sie das

Mehr

Aufgaben zur Analysis I

Aufgaben zur Analysis I Aufgabe zur Aalysis I Es werde folgede Theme behadelt:. Logik, Iduktio, Mege, Abbilduge 2. Supremum, Ifimum 3. Folge, Fuktioefolge 4. Reihe, Potezreihe 5. Mootoie ud Stetigkeit 6. Differetialrechug 7.

Mehr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Lars Machiek Dipl.-Math. Sebastia Schwarz WS 206/207 03..206 Aalysis I Lösugsvorschläge zum 3. Übugsblatt Abgabe:

Mehr

5-1 Elementare Zahlentheorie

5-1 Elementare Zahlentheorie 5- Elemetare Zahletheorie 5 Noch eimal: Zahletheoretische Fuktioe 5 Der Rig Φ als Rig der formale Dirichlet-Reihe! Erierug: Ei Polyom mit Koeffiziete i eiem Körper K ist ach Defiitio ichts aderes als eie

Mehr

D-ITET Analysis I HS 2018 Prof. Alessandra Iozzi. Musterlösung 6. und berechnen. = lim. = lim. n n. = lim

D-ITET Analysis I HS 2018 Prof. Alessandra Iozzi. Musterlösung 6. und berechnen. = lim. = lim. n n. = lim D-ITET Aalysis I HS 2018 Prof. Alessadra Iozzi Musterlösug 6 1. a) Wir setze a := 1 (3+1) 4 ud bereche a a +1 = 1. ( 3( + 1) + 1 1 3 + 1 3 + 4 3 + 1 ( 3 + 4 ) 4 3 + 1 Der Limes existiert isbesodere ud

Mehr

KAPITEL 7. Zahlenfolgen. 7.1 Konvergente Zahlenfolgen Grenzwertbestimmung Grenzwertbestimmung durch Abschätzung...

KAPITEL 7. Zahlenfolgen. 7.1 Konvergente Zahlenfolgen Grenzwertbestimmung Grenzwertbestimmung durch Abschätzung... KAPITEL 7 Zahlefolge 7. Kovergete Zahlefolge.............................. 30 7.2 Grezwertbestimmug............................... 32 7.3 Grezwertbestimmug durch Abschätzug..................... 35 7.4

Mehr

Analysis I. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching Aalysis I 5. Übugsstude Steve Battilaa steveb@studet.ethz.ch battilaa.uk/teachig March 9, 07 Erierug Satz. Quotietekriterium (bei!,,...) Das Quotietekriterium zeigt absolute Kovergez. lim a +

Mehr

Funktionenreihen. 1-E1 Ma 2 Lubov Vassilevskaya

Funktionenreihen. 1-E1 Ma 2 Lubov Vassilevskaya Fuktioereihe Erst durch Newto wurde die Theorie uedlicher Reihe zu eiem eigestädige Forschugsgebiet i der Mathematik, das da i Britaie besodere Beachtug ud weitere Etwicklug durch Brook Taylor ud Coli

Mehr

Reihen. Konvergenz. Folgen besonderer Art sind unendliche Summen. a k = a 1 + a 2 +..

Reihen. Konvergenz. Folgen besonderer Art sind unendliche Summen. a k = a 1 + a 2 +.. 6 Reihe Folge besoderer Art sid uedliche Summe a k = a + a 2 +... reeller oder komplexer Zahle, dee wir bereits i eiige Beispiele des Abschitts 5.4 begeget sid. Da ma icht sämtliche Glieder eier Folge

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Sebastia Schwarz WS 04/05 0..04 Höhere Mathematik für die Fachrichtug Physik Lösugsvorschläge zum 4. Übugsblatt

Mehr

6 Grenzwerte von Zahlenfolgen

6 Grenzwerte von Zahlenfolgen 6 Grezwerte vo Zahlefolge Ei zetraler Begriff der Aalysis ist der des Grezwertes. Wir begie mit der Betrachtug vo Grezwerte vo Zahlefolge. 6. Zahlefolge 6.. Grudbegriffe Defiitio 6... Eie Fuktio f : Z

Mehr

Musterlösungen zur Klausur Analysis I Verständnisteil

Musterlösungen zur Klausur Analysis I Verständnisteil WS 2008/2009 Prof. Dr. Scheider Musterlösuge zur Klausur Aalysis I Verstädisteil 04.02.2009. a A ist ach Defiitio abzählbar, falls A edlich ist, oder falls carda = cardn gilt. b Ei Pukt x A ist ei ierer

Mehr

13. Übungsblatt zur Vorlesung Mathematik I für Informatik

13. Übungsblatt zur Vorlesung Mathematik I für Informatik Fachbereich Mathematik Prof. Dr. Thomas Streicher Dr. Sve Herrma Dipl.-Math. Susae Pape 3. Übugsblatt zur Vorlesug Mathematik I für Iformatik Witersemester 009/00 6./7. Jauar 00 Gruppeübug Aufgabe G (Reihe)

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 8

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 8 Mathematisches Istitut der Uiversität Müche Prof Dr Peter Otte WiSe 203/4 Lösug 8 032203 Übuge zur Aalysis für Iformatiker ud Statistiker Lösug zu Blatt 8 Aufgabe 8 [8 Pukte] (a) Für alle N sei = (+) Wir

Mehr

4 Andreas Gathmann. x 2 +y 2 x 2 +y 2 x 2 +y 2

4 Andreas Gathmann. x 2 +y 2 x 2 +y 2 x 2 +y 2 4 Adreas Gathma 1. Komplexe Zahle Bevor wir mit der komplexe Aalysis begie, wolle wir uächst die grudlegede Defiitioe ud Eigeschafte der komplexe Zahle och eimal kur wiederhole. Defiitio 1.1. Die Mege

Mehr

KAPITEL 2. Zahlenfolgen

KAPITEL 2. Zahlenfolgen KAPITEL Zahlefolge. Kovergete Zahlefolge...................... 35. Grezwertbestimmug....................... 38.3 Grezwertbestimmug durch Abschätzug............. 4.4 Mootoe Folge..........................

Mehr

Höhere Mathematik 3. Kapitel 12 Differenzengleichungen, z-transformation. Prof. Dr.-Ing. Dieter Kraus

Höhere Mathematik 3. Kapitel 12 Differenzengleichungen, z-transformation. Prof. Dr.-Ing. Dieter Kraus Höhere Mathematik 3 Kapitel 1 Differezegleichuge, z-trasformatio Prof. Dr.-Ig. Dieter Kraus Höhere Mathematik 3 Kapitel 1 Ihaltsverzeichis 1 Differezegleichuge, -Trasformatio...1-1 1.1 Eiführug i Differezegleichuge...1-1

Mehr

Aufgaben und Lösungen Weihnachtsgeschenke zur Vorlesung Analysis I

Aufgaben und Lösungen Weihnachtsgeschenke zur Vorlesung Analysis I Aufgabe ud Lösuge Weihachtsgescheke zur Vorlesug Aalysis I Der Witersemester 008/009 Übug am 4.., 5..008 sowie 0.0.009 Aufgabe. Folge Aufgabe Ma bestimme, ob die Folge (a ) mit a = + 3 + 4 kovergiert ud

Mehr

Scheinklausur Analysis 1 WS 2007 /

Scheinklausur Analysis 1 WS 2007 / Scheiklausur Aalysis 1 WS 2007 / 2008 08.02.2008 Es gibt 11 Aufgabe ud 1 Zusatzaufgabe. Die jeweilige Puktzahl steht am like Rad. Die Gesamtpuktzahl ist 40 Pukte plus 4 Zusatzpukte. Zum Bestehe der Klausur

Mehr

Zahlenfolgen und Konvergenzkriterien

Zahlenfolgen und Konvergenzkriterien www.mathematik-etz.de Copyright, Page of 7 Zahlefolge ud Kovergezkriterie Defiitio: (Zahle-Folge, Grezwert) Eie Folge ist eie Abbildug der atürliche Zahle i die Mege A. Es ist also im Fall A: ; f: mit

Mehr

Tutorial zum Grenzwert reeller Zahlenfolgen

Tutorial zum Grenzwert reeller Zahlenfolgen MAE Mathematik: Aalysis für Igeieure Herbstsemester 206 Dr. Christoph Kirsch ZHAW Witerthur Tutorial zum Grezwert reeller Zahlefolge I diesem Tutorial lere Sie, die logische Aussage i der Defiitio des

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz. Dr. P. C. Kustma Dipl.-Math. M. Uhl WS 8/9 Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum. Übugsblatt

Mehr

Lösungen zur Präsenzübung 6

Lösungen zur Präsenzübung 6 Lösuge zur Präsezübug 6 Mirko Getzi Uiversität Bielefeld Fakultät für Mathematik. Dezember 203 Ich gebe keie Gewähr auf eie vollstädige Richtigkeit der Lösuge zu de Übugsaufgabe. Das Dokumet hat jedoch

Mehr

Musterlösung zu Blatt 8 der Vorlesung Analysis I WS08/09

Musterlösung zu Blatt 8 der Vorlesung Analysis I WS08/09 Musterlösug zu Blatt 8 der Vorlesug Aalysis I WS08/09 Schriftliche Aufgabe Aufgabe. Voraussetzuge: Für alle N setze a : +2 ud b : ( 2. [Amerkug: I der Aufgabestellug heiÿe die Reihe beide gleich. Es steht

Mehr

Denition 27: Die Fakultät ist eine Folge f : N N mit f(1) := 1 und f(n + 1) := (n + 1) f(n) für alle n N. Wir schreiben n! := f(n) für diese Folge.

Denition 27: Die Fakultät ist eine Folge f : N N mit f(1) := 1 und f(n + 1) := (n + 1) f(n) für alle n N. Wir schreiben n! := f(n) für diese Folge. Vorkurs Mathematik, PD Dr. K. Halupczok, WWU Müster Fachbereich Mathematik ud Iformatik 22.9.20 Ÿ3.2 Folge ud Summe (Fortsetzug) Eie wichtige Möglichkeit, wie ma Zahlefolge deiere ka, ist die über eie

Mehr

Probeklausur zur Analysis I WS 11/12 Prof. Dr. G. Wang Dr. A. Magni. Beginn: 8:15 Uhr. Name:...Vorname:... Matr.Nr.:...Studiengang:...

Probeklausur zur Analysis I WS 11/12 Prof. Dr. G. Wang Dr. A. Magni. Beginn: 8:15 Uhr. Name:...Vorname:... Matr.Nr.:...Studiengang:... Probeklausur zur Aalysis I WS / Prof. Dr. G. Wag 3.. Dr. A. Magi Begi: 8:5 Uhr Ede: Name:..........................Vorame:............................ Matr.Nr.:........................Studiegag:.........................

Mehr

24 Konvergente Teilfolgen und Cauchy-Kriterium

24 Konvergente Teilfolgen und Cauchy-Kriterium 120 IV. Uedliche Reihe ud Taylor-Formel 24 Kovergete Teilfolge ud Cauchy-Kriterium Lerziele: Kozepte: Teilfolge, Häufugswerte, Limes superior ud iferior, Cauchy-Folge Resultate: Satz vo Bolzao-Weierstraß,

Mehr

Analysis II für M, LaG und Ph, WS07/08 Übung 2, Lösungsskizze

Analysis II für M, LaG und Ph, WS07/08 Übung 2, Lösungsskizze Gruppeübug Aalysis II für M, LaG ud Ph, WS7/8 Übug, Lösugsskizze G 4 (Zum warm werde). Begrüde die vo Physiker beliebte Näheruge si(x) x, cos(x) ud ta(x) x für kleie x R. Dies folgt direkt aus der Tayloretwicklug

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Istitut für Aalysis Dr. A. Müller-Rettkowski Dr. T. Gauss WS 00/ Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge

Mehr

Beweis des Primzahlsatzes nach Newman

Beweis des Primzahlsatzes nach Newman Beweis des Primzahlsatzes ach Newma Eileitug Aleader Zeilma 3. Jauar 23 Betreut durch Prof. Dr. Folkmar Borema Defiitio : Primzahlfuktio Wir defiiere π) als die Azahl der Primzahle kleier oder gleich :

Mehr

Klausur zur Analysis II

Klausur zur Analysis II Uiversität Würzburg Mathematisches Istitut Prof Jör Steudig SS 007 807007 Klausur zur Aalysis II Aufgabe Die Mege M R 3 sei gegebe durch Zeit: 7:45-9:45 M := { x, y, z R 3 expx + y + z = } a Ist M abgeschlosse?

Mehr

Übungen zur Infinitesimalrechnung 2, H.-C. Im Hof 19. März Blatt 4. Abgabe: 26. März 2010, Nachmittag. e x2 dx + e x2 dx = 2 e x2 dx

Übungen zur Infinitesimalrechnung 2, H.-C. Im Hof 19. März Blatt 4. Abgabe: 26. März 2010, Nachmittag. e x2 dx + e x2 dx = 2 e x2 dx Übuge zur Ifiitesimalrechug, H.-C. Im Hof 9. März Blatt 4 Abgabe: 6. März, Nachmittag Aufgabe. Zeige e x dx π. Beweis. Wir bemerke als erstes, dass e x dx e x dx + e x dx e x dx formal sieht ma dies per

Mehr

4-1 Elementare Zahlentheorie

4-1 Elementare Zahlentheorie 4-1 Elemetare Zahletheorie 4. Dirichlet s Satz über Primzahle i arithmetische Progressioe. Satz (Dirichlet 1837). Seie a, k atürliche Zahle. Sid die Zahle a, k teilerfremd, so gibt es uedlich viele Primzahle

Mehr

n gerade 0 n ungerade (c) x n = a 1 n, a R + (d) x 1 := 2, x n+1 = 2 + x n (e) x n = (f) x n = exp(exp(n)) (g) x n = sin(n)

n gerade 0 n ungerade (c) x n = a 1 n, a R + (d) x 1 := 2, x n+1 = 2 + x n (e) x n = (f) x n = exp(exp(n)) (g) x n = sin(n) Übugsaufgabe Aalysis I Aufgabe. Beweise oder widerlege Sie: a Jede i R kovergete Folge ist beschräkt. b Es gibt Cauchy-Folge im R, die icht kovergiere. c Beschräkte Folge sid koverget. d Folge mit eiem

Mehr

Reihen. Folgen besonderer Art sind unendliche Summen. a k = a 1 + a

Reihen. Folgen besonderer Art sind unendliche Summen. a k = a 1 + a 6 Reihe Folge besoderer Art sid uedliche Summe a k = a + a 2 +... reeller oder komplexer Zahle, dee wir bereits i eiige Beispiele des Abschitts 5-d begeget sid. Da ma icht sämtliche Glieder eier Folge

Mehr

Nennenswertes zur Stetigkeit

Nennenswertes zur Stetigkeit Neeswertes zur Stetigkeit.) Puktweise Stetigkeit: Vo Floria Modler Defiitio der pukteweise Stetigkeit: Eie Fuktio f : D R ist geau da i x D stetig, we gilt: ε > δ >, so dass f ( x) f ( x ) < ε x D mit

Mehr

Tutorium Mathematik I, M Lösungen

Tutorium Mathematik I, M Lösungen Tutorium Mathematik I, M Lösuge 16. November 2012 *Aufgabe 1. Ma utersuche die folgede Reihe auf Kovergez (a) ( 1) (1 ) (b) ( ) 2 +1 (c) (!) 3 10 (3)! (d) (e) (f) 2 +3 3 2 +1 3 ( 2 +1) 2 + 3 ( 2 +3) (g)

Mehr

1. Zahlenfolgen und Reihen

1. Zahlenfolgen und Reihen . Zahlefolge ud Reihe We ma eie edliche Mege vo Zahle hat, ka ma diese i eier bestimmte Reihefolge durchummeriere: {a,a 2,...,a }. Ma spricht vo eier edliche Zahlefolge. Fügt ma immer mehr Zahle hizu,

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. R. Köig Dr. M. Prähofer Zetralübug TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik Z8.. Kriterie für strege Mootoie Mathematik für Physiker 2 (Aalysis ) MA9202 Witersem. 207/8 Lösugsblatt 8

Mehr

Analysis Übungen Hausaufgaben für 4. April

Analysis Übungen Hausaufgaben für 4. April Aalysis Übuge Hausaufgabe für 4. April Reihe sg 1. AN 8.2. c), AN 8.9. a). 2. Beweise die otwedige Bedigug für die Kovergez eier Reihe: we a koverget ist, da lim a = 0. (I der Praxis: we lim a 0, da ist

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 5. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 5. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Istitut für Aalysis Dr A Müller-Rettkowski Dr T Gauss WS 00/ Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum

Mehr

Kapitel 6 Differenzierbarkeit

Kapitel 6 Differenzierbarkeit Kapitel 6 Differezierbarkeit Ihalt 6.1 6.1Die Defiitio 6.2 6.2Die Eigeschafte 6.3 6.3Extremwerte Seite 2 Was heißt differezierbar? Differezierbare Fuktioe sid sid glatte Fuktioe. Wir Wir beschreibe diese

Mehr

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung 6. Übugsblatt Aufgabe mit Lösuge + Selbsttest-Auflösug Aufgabe 6: Utersuche Sie die Folge, dere Glieder ute für N agegebe sid, auf Beschräktheit, Mootoie ud Kovergez bzw. Beschräktheit, Mootoie ud Kovergez

Mehr

1 Lösungen zu Analysis 1/ 12.Übung

1 Lösungen zu Analysis 1/ 12.Übung Lösuge ausgewählter Beispiele zu Aalysis I, G. Bergauer, Seite Lösuge zu Aalysis / 2.Übug. Eileitug Gleichmäßige Kovergez ist eie starke Eigeschaft eier Fuktioefolge. Formuliert ma sie für Netze, statt

Mehr

Modulabschlussprüfung Analysis Musterlösung

Modulabschlussprüfung Analysis Musterlösung Bergische Uiversität Wuppertal Fachbereich C Mathematik ud Naturwisseschafte Prof. Dr. N. Shcherbia SoSe 204 Modulabschlussprüfug Aalysis 2.07.204 Musterlösug. Utersuche Sie folgede Reihe auf Kovergez

Mehr

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Übungsblatt 8. b n := 1 n. a k. k=1

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Übungsblatt 8. b n := 1 n. a k. k=1 D-MATH, D-PHYS, D-CHAB Aalysis I HS 2017 Prof. Mafred Eisiedler Übugsblatt 8 1. Bereche Sie de Grezwert lim a für die Folge (a ) gegebe durch a) a = (2 1/ ) 10 (1 + 1/ 2 ) 10 1 1/ 2 1/, b) a = + 1, c)

Mehr

Analysis I. Prof. Dr. H. Brenner Osnabrück WS 2014/2015. Vorlesung 20. Konvexe Funktionen

Analysis I. Prof. Dr. H. Brenner Osnabrück WS 2014/2015. Vorlesung 20. Konvexe Funktionen Prof. Dr. H. Breer Osabrück WS 2014/2015 Aalysis I Vorlesug 20 Kovexe Fuktioe Eie kovexe Teilmege. Eie ichtkovexe Teilmege. Defiitio 20.1. Eie Teilmege T R heißt kovex, we mit je zwei Pukte P, Q T auch

Mehr

Höhere Mathematik I für die Fachrichtung Physik

Höhere Mathematik I für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr Christoph Schmoeger Dipl-Math Sebastia Schwarz WS 4/5 45 Höhere Mathematik I für die Fachrichtug Physik Lösugsvorschläge zur Übugsklausur Aufgabe

Mehr

n=1 b n, deren Summe n=1 (a n + b n ) eine konvergente Reihe ist. Die Aussage ist WAHR, ein mögliches Beispiel sind die divergenten Reihen 1

n=1 b n, deren Summe n=1 (a n + b n ) eine konvergente Reihe ist. Die Aussage ist WAHR, ein mögliches Beispiel sind die divergenten Reihen 1 ANALYSIS WS 08/09 Vorlesug: Prof. Dr. P. Ullrich Übuge: Dr. I. Kharif/ Dr. M. Steihauer 9. ÜBUNGSBLATT- LÖSUNGSHINWEISE/Ergebisse Die folgede Bearbeituge sid - zum Teil - keie ausführliche Musterlösuge,

Mehr

Klausur Höhere Mathematik I für die Fachrichtung Physik

Klausur Höhere Mathematik I für die Fachrichtung Physik Karlsruher Istitut für Techologie KIT) Istitut für Aalysis Prof. Dr. Tobias Lamm Dr. Patric Breuig SS 3.9.3 Klausur Höhere Mathemati I für die Fachrichtug Physi Aufgabe 4+3+3) Pute) a) Sei a ) N eie reelle

Mehr

Übungsaufgaben zur Vorlesung ANALYSIS I (WS 12/13) Serie 10

Übungsaufgaben zur Vorlesung ANALYSIS I (WS 12/13) Serie 10 Humboldt-Uiversität zu Berli Istitut für Mathematik Prof. A. Griewak Ph.D.; Dr. A. Hoffkamp; Dipl.Math. T.Bosse; Dipl.Math. L. Jase Übugsaufgabe zur Vorlesug ANALYSIS I (WS 2/3) Serie 0 Musterlösug S.

Mehr

Übungen zum Ferienkurs Analysis 1, Vorlesung 2

Übungen zum Ferienkurs Analysis 1, Vorlesung 2 F. Hafer, T. Baldauf c Techische Uiversität Müche Übuge zum Feriekurs Aalysis, Vorlesug Witersemester 06/07. Richtig oder Falsch? Sid folgede Aussage richtig oder falsch? Korrigiere bzw. ergäze Sie falsche

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz LGÖ Ks VMa Schuljahr 6/7 Zusammefassug Folge ud Kovergez Ihaltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 5 Für Experte 7 Defiitioe ud Beispiele

Mehr

Analysis I für M, LaG/M, Ph 4.Übungsblatt

Analysis I für M, LaG/M, Ph 4.Übungsblatt Aalysis I für M, LaG/M, Ph 4.Übugsblatt Fachbereich Mathematik Sommersemester 200 Dr. Robert Haller-Ditelma 05.05.200 David Bücher Christia Bradeburg Gruppeübug Aufgabe G (Kovergez vo Folge) Beweise Sie:

Mehr

ÜBUNGSBLATT 4 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS

ÜBUNGSBLATT 4 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS ÜBUNGSBLATT 4 LÖSUNGEN MAT/MAT3 ANALYSIS I HERBSTSEMESTER 00 PROF. DR. AMILLO DE LELLIS Aufgabe. Etscheide Sie für folgede Folge (wobei N \ {0}), ob diese koverget sid, ud bereche sie gegebeefalls ihre

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof Dr R Köig Dr M Prähofer Zetralübug TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik Mathematik für Physiker (Aalysis ) MA90 Witersem 07/8 Lösugsblatt 4 http://www-m5matumde/allgemeies/ma90 07W (007)

Mehr

Kapitel 3 Folgen von reellen Zahlen

Kapitel 3 Folgen von reellen Zahlen Wolter/Dah: Aalysis Idividuell 4 Kapitel 3 Folge vo reelle Zahle Wir befasse us i diesem Abschitt mit Zahlefolge, die u.a. zur Eiführug ud 3/0/0 Behadlug des für die Aalysis äußerst wichtige Grezwertbegriffes

Mehr

3 2n = 1 6 (( 2)3 ) n. < 1 ist sie konvergent und hat den Wert = = 1 (n + 1)! 0! 1. und hat den Wert 1. (mit Reihenwert e), also ist auch

3 2n = 1 6 (( 2)3 ) n. < 1 ist sie konvergent und hat den Wert = = 1 (n + 1)! 0! 1. und hat den Wert 1. (mit Reihenwert e), also ist auch Karlsruher Istitut für Techologie KIT Istitut für Aalysis Priv.-Doz. Dr. P. C. Kustma Dr. D. Frey WS 20/2 Höhere Mathematik I für die Fachrichtug Physik Lösugsvorschläge zum 5. Übugsblatt Aufgabe 23 a

Mehr

Lösungen zum Ferienkurs Analysis 1, Vorlesung 2 Wintersemester 2014/2015

Lösungen zum Ferienkurs Analysis 1, Vorlesung 2 Wintersemester 2014/2015 Lösuge zum Feriekurs Aalysis, Vorlesug Witersemester 04/05 Fabia Hafer, Thomas Baldauf I Richtig oder Falsch Sid folgede Aussage richtig oder falsch? Korrigiere bzw. ergäze Sie falsche Aussage. Gebe Sie

Mehr

Übungen zur Analysis II SS 2006

Übungen zur Analysis II SS 2006 Mathematisches Istitut der Uiversität Heidelberg Prof. Dr. R. Weissauer/Dr. U. Weselma http://www.mathi.ui-heidelberg.de/ weselma.uebuge.html Übuge zur Aalysis II SS 26 Lösugshiweise Blatt 3 Aufgabe 8*

Mehr

α : { n Z n l } n a n IR

α : { n Z n l } n a n IR 1 KAPITEL VI. ZAHLENFOLGEN UND REIHEN 1) REELLE ZAHLENFOLGEN: i) Jede Abbildug α : IN a IR heiÿt 'reelle Zahlefolge' bzw. 'Folge i IR'. Ma otiert diese i der Form α = a ) IN = a ) =0 = a 0, a 1, a 2,...)

Mehr

Folgen und Reihen. 23. Mai 2002

Folgen und Reihen. 23. Mai 2002 Folge ud Reihe Reé Müller 23. Mai 2002 Ihaltsverzeichis 1 Folge 2 1.1 Defiitio ud Darstellug eier reelle Zahlefolge.................. 2 1.1.1 Rekursive Defiitio eier Folge......................... 3 1.2

Mehr

Technische Universität München Ferienkurs Analysis 1 Hannah Schamoni Folgen, Reihen, Potenzreihen, Exponentialfunktion. Musterlösung

Technische Universität München Ferienkurs Analysis 1 Hannah Schamoni Folgen, Reihen, Potenzreihen, Exponentialfunktion. Musterlösung Feriekurs Seite Techische Uiversität Müche Feriekurs Aalysis Haah Schamoi Folge, Reihe, Potezreihe, Expoetialfuktio Musterlösug 0.0.0. Folge I Utersuche Sie die Folge a N auf Kovergez bzw. Divergez ud

Mehr

( 1) k z 2k+1 (2k +1)! ln(1+z) = ( 1) k+1zk. k=1. (ix) 2k (2k +1)! = cos(x)+isin(x).

( 1) k z 2k+1 (2k +1)! ln(1+z) = ( 1) k+1zk. k=1. (ix) 2k (2k +1)! = cos(x)+isin(x). Kapitel 3 Holomorphe Fuktioe 3. Exkurs: Kovergez vo Reihe Im vorige Paragraphe wurde gezeigt, dass jede holomorphe Fuktio beliebig oft komplex differezierbar ist. Aber es gilt sogar och mehr, ma ka eie

Mehr

Anhang A: Die Gamma-Funktion

Anhang A: Die Gamma-Funktion O. Forster: Zetafuktio ud Riemasche Vermutug Ahag A: Die Gamma-Fuktio A.. Defiitio. Die Gamma-Fuktio ist für eie komplee Variable z mit Rez > durch das Euler-Itegral Γz := t z e t defiiert. Da mit := Rez

Mehr

118 7 Potenzreihen. eine Folge von (reellen) Funktionen mit Definitionsgebieten D(f j), j N, und. = M D(f j ) R. j=1

118 7 Potenzreihen. eine Folge von (reellen) Funktionen mit Definitionsgebieten D(f j), j N, und. = M D(f j ) R. j=1 8 7 Potezreihe 7 Potezreihe 7. Fuktioefolge ud -reihe Puktweise ud gleichmäßige Kovergez vo Fuktioefolge Sei f j ) j= eie Folge vo reelle) Fuktioe mit Defiitiosgebiete Df j), j N, ud = Df j ) R. j= D bilde

Mehr

7. Reihen. 7.A Grenzwerte von Reihen. 7. Reihen 71

7. Reihen. 7.A Grenzwerte von Reihen. 7. Reihen 71 7. Reihe 7 7. Reihe Wir wolle us u mit eiem spezielle Typ vo Folge beschäftige, der i der Praxis sehr häufig vorkommt: ämlich Folge, die i der Form (a 0, a 0 + a, a 0 + a + a 2,... für gewisse a K gegebe

Mehr