3.2 Potenzreihen und komplexe Taylorentwicklung

Größe: px
Ab Seite anzeigen:

Download "3.2 Potenzreihen und komplexe Taylorentwicklung"

Transkript

1 40 Kapitel 3. Holomorphe Fuktioe 3.2 Potezreihe ud komplexe Tayloretwicklug Wede wir us u de Reiheetwickluge vo Fuktioe zu Defiitio Uter eier Potezreihe um de Pukt z 0 C versteht ma eie Reihe der Form a (z z 0 wobei (a N eie Folge komplexer Zahle ud z eie komplexe Variable ist. Ma sagt, die Potezreihe kovergiere a der Stelle z C, falls wir durch Eisetze vo z = z eie kovergete Reihe erhalte. Es zeigt sich, dass der Kovergezbereich eier Potezreihe stets die Form eier Kreisscheibe i der komplexe Ebee hat. Das ergibt sich als Kosequez aus dem folgede Lemma: Lemma Die Potezreihe a (z z 0 kovergiere a der Stelle z C, z z 0. Sei r eie reelle Zahl mit 0 < r < z z 0. Dakovergiert die Potezreihe auch für alle z C mit z z 0 r, ud zwar sogar absolut. Beweis. Nach Voraussetzug kovergiert die Reihe a (z z 0. Also bilde die Summade a (z z 0 eie Nullfolge ud sid daher beschräkt, etwa durch die Zahl M R. Das heisst, es gilt Setze wir ausserdem a (z z 0 M für alle N 0. q := so erhalte wir für z K r (z 0 : a (z z 0 = z z 0 z z 0 r z z 0 < a (z z 0 M q. Da q <, ist die geometrische Reihe k=0 q koverget, ud damit auch die Reihe k=0 M q. Also liefert das Majoratekriterium die Behauptug. q.e.d Defiitio Der Kovergezradius R der Potezreihe a (z z 0 ist folgedermasse defiiert: R := sup{r = z z 0 Die Potezreihe kovergiert a der Stelle z C.} Satz Sei a (z z 0 eie Potezreihe mit Kovergezradius R. Da gibt es geau drei Möglichkeite: R = 0, die Reihe kovergiert also ur im Pukt z = z 0.

2 3.2. Potezreihe ud komplexe Tayloretwicklug 4 R =, das heisst die Reihe kovergiert a jeder Stelle z C. 0 < R <. I diesem Fall kovergiert die Potezreihe a jeder Stelle im Iere der Kreisscheibe K R (z 0 ud divergiert a jeder Stelle ausserhalb der abgeschlossee Kreisscheibe. Was aber auf dem Rad der Kreisscheibe passiert, hägt vo der kokret gegebee Reihe ab Beispiele Die Reihe!z hat de Kovergezradius 0. De lim! z = für alle z 0. Also ka i diesem Fall die Folge der Summade keie Nullfolge sei. Die Expoetialreihe hat de Kovergezradius, sie kovergiert für alle z C. Die Begrüdug dafür wird gleich achgeliefert. Diegeometrische Reihe z hat de Kovergezradius R =. Wie bereits bemerkt, divergiert sie für alle z C mit z =. ( + Die Potezreihe = z hat de Kovergezradius R =. Sie kovergiert für alle z C mit z < ud divergiert für alle z C mit z >. A der Stelle z = liegt Kovergez ud a der Stelle z = liegt Divergez vor. Geauer kovergiert die Reihe a jeder Stelle z auf dem Eiheitskreis. Das folgede ützliche Kriterium zur Bestimmug des Kovergezradius lässt sich aus dem Majoratekriterium herleite Bemerkug Sei (a N0 eie Folge komplexer Zahle ugleich Null mit lim a + a = s, wobei s R oder s =. Da hat die Potezreihe a z de Kovergezradius R = s. Hier verabrede wir 0 = ud = 0. Betrachte wir jetzt die durch eie Potezreihe auf ihrem Kovergezbereich defiierte Fuktio geauer Bemerkug Sei a (z z 0 eie Potezreihe um de Pukt z 0 mit Kovergezradius R > 0,udsei r R >0 mit r < R.Dawirddurch dievorschrift f(z := a (z z 0 eie Fuktio f auf dem Iere U der Kreisscheibe K R (z 0 defiiert. Die Folge der Fuktioe f (z := a k (z z 0 k (z U k=0 kovergiert auf K := K r (z 0 gleichmässig gege f. Das heisst, zu jedem ǫ > 0 existiert ei 0 N mit f (z f(z < ǫ für alle z K ud alle 0.

3 42 Kapitel 3. Holomorphe Fuktioe Die Folge der Teilsumme kovergiert also für alle z im Bereich K vergleichbar schell. Beweis. Für z K kovergiert f (z für gege f ud es gilt f (z f(z = k=+ a k (z z 0 k k=+ a k r k. Wege der absolute Kovergez der Potezreihe a der Stelle z = z 0 +r U ka ma zu ǫ eie Idex 0 N fide, so dass k= 0 + a k r k < ǫ. Daraus folgt die Behauptug. q.e.d. Die wichtigste Aussage im Zusammehag mit gleichmässiger Kovergez sid im folgede Satz zusammegefasst Satz Sei f :G C eie Folge stetiger komplexer Fuktioe, die auf der kompakte Teilmege K G gleichmässig gege die Fuktio f kovergiere. Da folgt:. Die Fuktio f ist auf K stetig. 2. Ist γ ei glatter Weg i K, so ist f(zdz = lim f (zdz. γ γ 3. Sid die Fuktioe f auf G komplex differezierbar ud kovergiere die Ableituge f auf K gleichmässig gege g, so ist auch f komplex differezierbar ud f = g. Mithilfe dieser Aussage köe wir zeige, dass jede Potezreihe auf ihrem Kovergezbereich eie holomorphe Fuktio defiiert. Geauer gilt folgedes Satz Sei wie ebe a (z z 0 eie Potezreihe um de Pukt z 0 mit Kovergezradius R > 0, ud bezeiche U das Iere der Kreisscheibe K R (z 0. Die Fuktio f:u C, defiiert durch f(z = a (z z 0, ist holomorph, ud die Ableitug vo f lässt sich auch durch eie Potezreihe um z 0 darstelle, die wiederum de Kovergezradius R hat, ämlich f (z = a (z z 0 für z U. =

4 3.2. Potezreihe ud komplexe Tayloretwicklug 43 Beweis. Zu eiem gegebee Pukt z U köe wir eie abgeschlossee Kreisscheibe K = K r (z 0 U auswähle, die z ethält. Wie ebe bemerkt, kovergiert die Folge der Fuktioe f (z = k=0 a k(z z 0 k für z K ud N auf K gleichmässig gege f. Alle f sid stetig, also gilt dasselbe für de Grezwert f. Wege der Vertauschbarkeit vo Limes ud Wegitegral verschwidet ausserdem das Itegral vo f lägs jede geschlossee Weges. Nach dem Satz vo Morera ist deshalb f holomorph. Die Fuktioe f sid jeweils komplex differezierbar, ud f (z = a kk(z z 0 k. Ma ka zeige, dass die Potezreihe a k k(z z 0 k deselbe Kovergezradius hat wie die ursprügliche Reihe. Also kovergiert auch die Folge der Ableituge f auf K gleichmässig, ud zwar gege f. q.e.d Beispiel Durch die Vorschrift f(z := für z < wird eie ( k+zk k holomorphe Fuktio auf dem Iere der Eiheitskreisscheibe defiiert, weil die etsprechede Potezreihe de Kovergezradius hat (siehe obe. Durch summadeweises Ableite der Potezreihe erhalte wir eie geometrische Reihe, die ebefalls de Kovergezradius hat, ud für alle z C mit z < gilt: f (z = ( k+ z k = k=0 ( z k = +z. DieFuktiof istalsoeiestammfuktioderfuktiog(z = +z,udtatsächlich ist f(z = l( + z für alle z < (wobei l de Hauptzweig des Logarithmus bezeichet Folgerug Auch jede Stammfuktio g vo f lässt sich durch eie Potezreihe um z 0 mit Kovergezradius R darstelle, ud zwar ist g(z = g(z 0 + a + (z z 0 + für z U. Umgekehrt lässt sich jede holomorphe Fuktio lokal i eie Potezreihe etwickel. Ma sagt, die Fuktio sei komplex-aalytisch Satz Ist f:g C holomorph ud ist das Iere U der Kreisscheibe K R (z 0 gaz ethalte i G, so gibt es eie auf U kovergete Potezreihe um z 0, mit der f auf U übereistimmt. Dabei hadelt es sich um die komplexe Tayloretwicklug vo f um de Pukt z 0, ämlich f(z = f ( (z 0 (z z 0.!

5 44 Kapitel 3. Holomorphe Fuktioe Beweis. Zu z U sei r > 0 so gewählt, dass z z 0 < r ud dass die abgeschlossee Kreisscheibe K r (z 0 U. Die Cauchysche Itegralformel für die Kreisscheibe K := K r (z 0 lautet: f(z = 2πi γ f(ζ ζ z dζ, wobei γ die auf übliche Art parametrisierte Kreisliie K r (z 0 bezeichet. Es gilt: De: ζ z = (z z 0 (ζ z 0. + (z z 0 (ζ z 0 = + ζ z 0 ( z z0. ζ z 0 Diese geometrische Reihe kovergiert, weil z z 0 ζ z 0 = z z 0 < ist. Also folgt: r (z z 0 (ζ z 0 = + (ζ z 0 ζ z 0 = (ζ z 0 (z z 0 = ζ z. ( z z 0 Setze wir dies i die Cauchyformel ei, so erhalte wir: f(z = f(ζ 2πi γ (z z 0 (ζ z 0 +dζ. Weil die Folge der Teilsumme i der hier auftretede Reihe auch bezüglich ζ auf dem Rad vo K gleichmässig kovergiert, dürfe wir Itegral ud Summatio miteiader vertausche ud bekomme heraus: f(z = ( 2πi γ f(ζ (ζ z 0 +dζ (z z 0. Damit ist f a der Stelle z als Potezreihe um z 0 dargestellt. Die Koeffiziete dieser Potezreihe stimme gerade mit f( (z 0 überei, wie ei Vergleich mit der! Cauchyformel für die höhere Ableituge vo f zeigt. q.e.d Beispiele Die zu Afag agegebee Reiheetwickluge für Sius ud Cosius ud für die komplexe Expoetialfuktio werde jetzt im achhiei gerechtfertigt. De wie ma direkt achreche ka, sid es gerade die komplexe Tayloretwickluge der jeweilige Fuktioe um de Pukt z 0 = 0. Betrachte wir jetzt die komplexe Logarithmusfuktio auf der geschlitzte Ebee G := {re iϕ r > 0, π < ϕ < π}, gegebe durch l(re iϕ = l(r+iϕ, ud wähle wir als Etwicklugspukt z 0 =. Die grösste offee Kreisscheibe

6 3.2. Potezreihe ud komplexe Tayloretwicklug 45 um z 0, die i G ethalte ist, hat Radius. Die höhere Ableituge der Logarithmusfuktio laute, wie ma durch Iduktio zeigt: d dz l(z = ( (!z für N. Also erhalte wir folgede Reiheetwicklug: l(z = ( (z für z <. = Diese Reihe hat de Kovergezradius, was der Tatsache etspricht, dass die komplexe Logarithmusfuktio i de Nullpukt icht fortgesetzt werde ka. Aalog zu reelle Poteze setze wir für α C ud z C mit z < f(z = (+z α := e αl(+z. Auf diese Weise erhalte wir eie holomorphe Fuktio f auf U := {z C z < }. Für die Ableitug gilt: De ach der Ketteregel ist d dz (+zα = α (+z α. d dz eαl(+z = α +z eαl(+z = α e l(+z e αl(+z = α e (α l(+z. Durch Iduktio folgt für N: d dz (+zα = α(α...(α +(+z α. Ma defiiert ausserdem für N: ( α := α(α...(α +! Mit dieser Kovetio erhält die Tayloretwicklug der Fuktio f um de Pukt z 0 = 0 die folgede Form: ( α f(z = (+z α = z für z <. Wähle wir im vorige Beispiel α =, erhalte wir eie Tayloretwicklug 2 für eie Zweig der Quadratwurzelfuktio, ämlich (für z < : +z = ( 2 z = ( 3 2k 2k. z = + 2 z 8 z2 + 6 z3...

7 46 Kapitel 3. Holomorphe Fuktioe Wird eie komplexe Fuktio f:g C auf dem Iere U der Kreisscheibe K R (z 0 G durch eie Potezreihe mit Kovergezradius R dargestellt, so muss diese Potezreihe bereits mit der Taylorreihe vo f übereistimme. Geligt es, eie passede Reiheetwicklug zu fide, so ka ma die höhere Ableituge a der Stelle z 0 also bereits a der Reihe ablese Beispiele Die Fuktio f(z = (für z ±i wird auf dem +z 2 Bereich z < durch eie geometrische Reihe dargestellt, ämlich f(z = ( z 2. Diese Reihe hat de Kovergezradius, wie wir bereits bemerkt hatte. Weil die Reihe auf jeder abgeschlossee Kreisscheibe im Eiheitskreis gleichmässig kovergiert, köe wir eie Stammfuktio g vo f auf dem Iere des Eiheitskreises duch summadeweises Itegriere bestimme. Wir erhalte g(z = ( z2+ für z <. 2+ Für reelle z ist dies gerade die Tayloretwicklug der Arcustagesfuktio. Also ist g eie komplexe Fortsetzug des Arcustages auf das Iere des Eiheitskreises. Die Fuktio f(z = z 2 für z <, wobei ei passeder Zweig der komplexe Quadratwurzelfuktio ist, hat folgede Potezreiheetwicklug (siehe vorhergehedes Beispiel für α = 2 : f(z = ( z 2 2 = ( 2 ( z 2 für z <. Durch summadeweises Itegriere wird daraus ( ( g(z = 2 ( z2+ 2+ = 2k 2k z für z <. Dies ist für reelle z die Tayloretwicklug der Fuktio Arkussius. Also ist g eie komplexe Fortsetzug des Arkussius. Hier zur Ergäzug och eiige weitere Beispiele für die Bestimmug vo Tayloretwickluge Beispiele Die Tayloretwicklug der Fuktio f(z = (z 0 z um de Pukt z 0 = köe wir am schellste fide, idem wir sie als geometrische Reihe umschreibe: f(z = (z + = ( k (z k. k=0 Der Kovergezradius dieser Reihe ist R =.

8 3.2. Potezreihe ud komplexe Tayloretwicklug 47 Die Fuktio h(z = z 2 (z 0 stimmt (bis auf das Vorzeiche mit der Ableitug vo f überei. Also ergibt sich die Taylorreihe vo h um de Pukt z 0 = aus derjeige vo f durch summadeweise Ableitug: h(z = f (z = ( k+ k(z k für z <. Etspreched erhalte wir die Taylorreihe der Stammfuktio l(z aus derjeige vo f durch summadeweises Itegriere: l(z = ( k=0 k(z k+ k + für z <. Betrachte wir jetzt die Fuktio g(z = l(z (für z <. Wir habe die z beide Faktore, aus dee g gebildet ist, bereits als Potezreihe dargestellt. l(z ((z z = (z 2 (z 3 + ( (z +(z Wege der absolute Kovergez dürfe wir diese Reihe ausmultipliziere ud umorde ud erhalte so die Tayloretwicklug vo g um de Pukt z 0 = : g(z = ( k+ ( k (z k.

( 1) k z 2k+1 (2k +1)! ln(1+z) = ( 1) k+1zk. k=1. (ix) 2k (2k +1)! = cos(x)+isin(x).

( 1) k z 2k+1 (2k +1)! ln(1+z) = ( 1) k+1zk. k=1. (ix) 2k (2k +1)! = cos(x)+isin(x). Kapitel 3 Holomorphe Fuktioe 3. Exkurs: Kovergez vo Reihe Im vorige Paragraphe wurde gezeigt, dass jede holomorphe Fuktio beliebig oft komplex differezierbar ist. Aber es gilt sogar och mehr, ma ka eie

Mehr

7. Potenzreihen und Taylor-Reihen

7. Potenzreihen und Taylor-Reihen 7. Potezreihe ud Taylor-Reihe 39 7. Potezreihe ud Taylor-Reihe Mit Hilfe der Cauchysche Itegralformel wolle wir u i diesem Kapitel ei weiteres sehr zetrales Resultat der Fuktioetheorie herleite, ämlich

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 1

Technische Universität München Zentrum Mathematik. Übungsblatt 1 Techische Uiversität Müche Zetrum Mathematik Mathematik (Elektrotechik) Prof. Dr. Ausch Taraz Dr. Michael Ritter Übugsblatt Hausaufgabe Aufgabe. Bestimme Sie de Kovergezbereich M der folgede Reihe für

Mehr

n (n + 1) = 1(1 + 1)(1 + 2) 3 Induktionsschritt: Angenommen die Gleichung gilt für n N. Dann folgt: 1 2 = 2 =

n (n + 1) = 1(1 + 1)(1 + 2) 3 Induktionsschritt: Angenommen die Gleichung gilt für n N. Dann folgt: 1 2 = 2 = Aufgabe 1: (6 Pukte) Zeige Sie für alle N die Formel: 1 2 + 2 3 + 3 4 +... + ( + 1) = ( + 1)( + 2). 3 Lösug: Beweis durch vollstädige Iduktio. Iduktiosafag: Für = 1 gilt: 1 2 = 2 = 1(1 + 1)(1 + 2) 3 Iduktiosschritt:

Mehr

Dirichlet-Reihen II. 1 Konvergenzeigenschaften von Dirichlet-Reihen

Dirichlet-Reihen II. 1 Konvergenzeigenschaften von Dirichlet-Reihen Vortrag zum Semiar zur Fuktioetheorie, 7.2.2007 Holger Witermayr I diesem Vortrag werde wir Kovergezeigeschafte vo Dirichlet-Reihe erarbeite ud eie Vergleich zu Potezreihe ziehe. Ei weiteres Ziel dieses

Mehr

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man:

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man: Gleichmäßige Kovergez Wir betrachte im Folgede Abbilduge f : M N, wobei M eie Mege ud N ei metrischer Raum ist. Isbesodere iteressiere ud Folge f vo solche Abbilduge. Eie solche Folge bestimmt für jedes

Mehr

1 Lösungen zu Analysis 1/ 12.Übung

1 Lösungen zu Analysis 1/ 12.Übung Lösuge ausgewählter Beispiele zu Aalysis I, G. Bergauer, Seite Lösuge zu Aalysis / 2.Übug. Eileitug Gleichmäßige Kovergez ist eie starke Eigeschaft eier Fuktioefolge. Formuliert ma sie für Netze, statt

Mehr

8. Übungsblatt Aufgaben mit Lösungen

8. Übungsblatt Aufgaben mit Lösungen 8. Übugsblatt Aufgabe mit Lösuge Aufgabe 36: Bestimme Sie alle z C, für die die folgede Potezreihe kovergiere: z z a, b! +, c z +. = = Lösug 36: Wir bezeiche de Kovergezradius mit r. a Wir wede das Quotietekriterium

Mehr

Analysis I - Zweite Klausur

Analysis I - Zweite Klausur Aalysis I - Zweite Klausur Witersemester 2004-2005 Vorame: Name: Aufgabe Aufgabe 2 Aufgabe 3 Aufgabe 4 Aufgabe 5 Aufgabe 6 Aufgabe 7 Aufgabe 8 Aufgabe 9 Summe Aufgabe 4 Pukte Bestimme Sie (mit Beweis)

Mehr

Funktionentheorie. Lösungsvorschläge zum 4. Übungsblatt. (z 2 + 1)(2z + 1) dz. Log(iz 1) z + 4(i + 1) f (z) = e 1

Funktionentheorie. Lösungsvorschläge zum 4. Übungsblatt. (z 2 + 1)(2z + 1) dz. Log(iz 1) z + 4(i + 1) f (z) = e 1 Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Sebastia Schwarz SS 04 6.05.04 Fuktioetheorie Lösugsvorschläge zum 4. Übugsblatt Aufgabe 4 K) a) Bereche Sie das

Mehr

Technische Universität München Ferienkurs Analysis 1 Hannah Schamoni Folgen, Reihen, Potenzreihen, Exponentialfunktion. Musterlösung

Technische Universität München Ferienkurs Analysis 1 Hannah Schamoni Folgen, Reihen, Potenzreihen, Exponentialfunktion. Musterlösung Feriekurs Seite Techische Uiversität Müche Feriekurs Aalysis Haah Schamoi Folge, Reihe, Potezreihe, Expoetialfuktio Musterlösug 0.0.0. Folge I Utersuche Sie die Folge a N auf Kovergez bzw. Divergez ud

Mehr

Analysis I. Prof. Dr. H. Brenner Osnabrück WS 2014/2015. Vorlesung 20. Konvexe Funktionen

Analysis I. Prof. Dr. H. Brenner Osnabrück WS 2014/2015. Vorlesung 20. Konvexe Funktionen Prof. Dr. H. Breer Osabrück WS 2014/2015 Aalysis I Vorlesug 20 Kovexe Fuktioe Eie kovexe Teilmege. Eie ichtkovexe Teilmege. Defiitio 20.1. Eie Teilmege T R heißt kovex, we mit je zwei Pukte P, Q T auch

Mehr

3. Taylorformel und Taylorreihen

3. Taylorformel und Taylorreihen Prof Dr Siegfried Echterhoff Aalysis Vorlesug SS 9 3 Taylorformel ud Taylorreihe Sei I R ei Itervall ud sei f : I R eie Fuktio Ziel: Wolle utersuche, wa sich die Fuktio f i eier Umgebug vo eiem Pukt I

Mehr

$Id: komplex.tex,v /04/13 15:09:53 hk Exp $

$Id: komplex.tex,v /04/13 15:09:53 hk Exp $ Mathematik für Igeieure IV, SS 206 Mittwoch 3.4 $Id: komplex.tex,v.2 206/04/3 5:09:53 hk Exp $ Komplexe Zahle I diesem Kapitel wolle wir erst eimal zusammestelle was aus de vorige Semester über die komplexe

Mehr

Resultate: Vertauschbarkeit von Grenzprozessen, Konvergenzverhalten von Potenzreihen

Resultate: Vertauschbarkeit von Grenzprozessen, Konvergenzverhalten von Potenzreihen 26 Gleichmäßige Kovergez ud Potezreihe 129 26 Gleichmäßige Kovergez ud Potezreihe Lerziele: Kozepte: Puktweise ud gleichmäßige Kovergez Resultate: Vertauschbarkeit vo Grezprozesse, Kovergezverhalte vo

Mehr

Lösungsvorschlag zu den Hausaufgaben der 1. Übung

Lösungsvorschlag zu den Hausaufgaben der 1. Übung FAKULTÄT FÜR MATHEMATIK Prof. Dr. Patrizio Neff Christia Thiel 4.04.04 Lösugsvorschlag zu de Hausaufgabe der. Übug Aufgabe : (6 Pukte Bereche Sie für die Fuktio f : R R, f( : ep( a der Stelle 0 0 das Taylorpolyom

Mehr

Reihen. Folgen besonderer Art sind unendliche Summen. a k = a 1 + a

Reihen. Folgen besonderer Art sind unendliche Summen. a k = a 1 + a 6 Reihe Folge besoderer Art sid uedliche Summe a k = a + a 2 +... reeller oder komplexer Zahle, dee wir bereits i eiige Beispiele des Abschitts 5-d begeget sid. Da ma icht sämtliche Glieder eier Folge

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz. Dr. P. C. Kustma Dipl.-Math. M. Uhl WS 8/9 Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum. Übugsblatt

Mehr

Wir wiederholen zunächst das Majorantenkriterium aus Satz des Vorlesungsskripts Analysis von W. Kimmerle und M. Stroppel.

Wir wiederholen zunächst das Majorantenkriterium aus Satz des Vorlesungsskripts Analysis von W. Kimmerle und M. Stroppel. Uiversität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dr. D. Zimmerma MSc. J. Köller MSc. R. Marczizik FDSA 4 Höhere Mathematik II 30.04.2014 el, kyb, mecha, phys 1 Kovergezkriterie

Mehr

Analysis I. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching Aalysis I 5. Übugsstude Steve Battilaa steveb@studet.ethz.ch battilaa.uk/teachig March 9, 07 Erierug Satz. Quotietekriterium (bei!,,...) Das Quotietekriterium zeigt absolute Kovergez. lim a +

Mehr

Analysis I für M, LaG/M, Ph 8.Übungsblatt

Analysis I für M, LaG/M, Ph 8.Übungsblatt Aalysis I für M, LaG/M, Ph 8Übugsblatt Fachbereich Mathematik Sommersemester 200 Dr Robert Haller-Ditelma 0206200 David Bücher Christia Bradeburg Gruppeübug Aufgabe G (Kovergezkriterie/Kovergezradie) (a)

Mehr

Musterlösungen zur Klausur Analysis I Verständnisteil

Musterlösungen zur Klausur Analysis I Verständnisteil WS 2008/2009 Prof. Dr. Scheider Musterlösuge zur Klausur Aalysis I Verstädisteil 04.02.2009. a A ist ach Defiitio abzählbar, falls A edlich ist, oder falls carda = cardn gilt. b Ei Pukt x A ist ei ierer

Mehr

Kapitel 2 Differentialrechnung in einer Variablen. 2.1 Folgen und Grenzwerte

Kapitel 2 Differentialrechnung in einer Variablen. 2.1 Folgen und Grenzwerte Kapitel 2 Differetialrechug i eier Variable 2. Folge ud Grezwerte 2.. Defiitio Eie Folge ist eie Zuordug N R, a, geschriebe als Liste (a,a 2,...) oder i der Form (a ) N. Hier sid ei paar Beispiele: 2,4,6,8,...

Mehr

Probeklausur zur Analysis I WS 11/12 Prof. Dr. G. Wang Dr. A. Magni. Beginn: 8:15 Uhr. Name:...Vorname:... Matr.Nr.:...Studiengang:...

Probeklausur zur Analysis I WS 11/12 Prof. Dr. G. Wang Dr. A. Magni. Beginn: 8:15 Uhr. Name:...Vorname:... Matr.Nr.:...Studiengang:... Probeklausur zur Aalysis I WS / Prof. Dr. G. Wag 3.. Dr. A. Magi Begi: 8:5 Uhr Ede: Name:..........................Vorame:............................ Matr.Nr.:........................Studiegag:.........................

Mehr

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10. 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.000, 1 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Defiitio: Eie

Mehr

Kompaktheit und gleichgradige Stetigkeit. 1 Einführung in die Kompaktheit in C 0

Kompaktheit und gleichgradige Stetigkeit. 1 Einführung in die Kompaktheit in C 0 Kompaktheit ud gleichgradige Stetigkeit Vortrag zum Prosemiar zur Aalysis, 14.06.2010 Mao Wiescherma Matthias Klupsch Dieser Vortrag beschäftigt sich mit Kompaktheit vo Teilräume vom Raum der stetige Abbilduge

Mehr

4 Konvergenz von Folgen

4 Konvergenz von Folgen 4 Kovergez vo Folge Defiitio 4.. Sei M eie Mege. Ist 0 Z ud für jedes Z mit 0 ei a M gegebe, so et ma die Abbildug { Z; 0 } M, a eie Folge i M. Abkürzed schreibt ma für eie solche Abbildug auch a ) 0 oder

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 8

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 8 Mathematisches Istitut der Uiversität Müche Prof Dr Peter Otte WiSe 203/4 Lösug 8 032203 Übuge zur Aalysis für Iformatiker ud Statistiker Lösug zu Blatt 8 Aufgabe 8 [8 Pukte] (a) Für alle N sei = (+) Wir

Mehr

KAPITEL 8. Zahlenreihen. 8.1 Geometrische Reihe Konvergenzkriterien Absolut konvergente Reihen

KAPITEL 8. Zahlenreihen. 8.1 Geometrische Reihe Konvergenzkriterien Absolut konvergente Reihen KAPITEL 8 Zahlereihe 8. Geometrische Reihe................................. 53 8.2 Kovergezkriterie................................. 54 8.3 Absolut kovergete Reihe............................ 64 Lerziele

Mehr

n=1 b n, deren Summe n=1 (a n + b n ) eine konvergente Reihe ist. Die Aussage ist WAHR, ein mögliches Beispiel sind die divergenten Reihen 1

n=1 b n, deren Summe n=1 (a n + b n ) eine konvergente Reihe ist. Die Aussage ist WAHR, ein mögliches Beispiel sind die divergenten Reihen 1 ANALYSIS WS 08/09 Vorlesug: Prof. Dr. P. Ullrich Übuge: Dr. I. Kharif/ Dr. M. Steihauer 9. ÜBUNGSBLATT- LÖSUNGSHINWEISE/Ergebisse Die folgede Bearbeituge sid - zum Teil - keie ausführliche Musterlösuge,

Mehr

Zahlentheoretische Identitäten und die Eisensteinreihe vom Gewicht 2. Inhaltsverzeichnis

Zahlentheoretische Identitäten und die Eisensteinreihe vom Gewicht 2. Inhaltsverzeichnis Zahletheoretische Idetitäte ud die Eisesteireihe vom Gewicht 2 Vortrag zum Semiar zur Fuktioetheorie II, 3.2.203 Lukas Schürhoff Ihaltsverzeichis Wiederholug ud Vorbereitug 2 2 Zahletheoretische Idetitäte

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 05/06 04..05 Höhere Mathematik für die Fachrichtug Physik Lösugsvorschläge zum 6. Übugsblatt Aufgabe

Mehr

Es gibt verschiedene Möglichkeiten eine Folge zu definieren. Die zwei häufigsten Methoden

Es gibt verschiedene Möglichkeiten eine Folge zu definieren. Die zwei häufigsten Methoden Folge ud Reihe Folge Eie Folge ist eie Abbildug der atürliche Zahle N = {0, 1,,...} i die Mege der (zumidest i de meiste Fälle) reelle Zahle R. I diesem Fall ka ma sich eie Folge als Pukte i eiem Koordiatesystem

Mehr

Anhang A: Die Gamma-Funktion

Anhang A: Die Gamma-Funktion O. Forster: Zetafuktio ud Riemasche Vermutug Ahag A: Die Gamma-Fuktio A.. Defiitio. Die Gamma-Fuktio ist für eie komplee Variable z mit Rez > durch das Euler-Itegral Γz := t z e t defiiert. Da mit := Rez

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 05/06 7..05 Höhere Mathematik für die Fachrichtug Physik Lösugsvorschläge zum 5. Übugsblatt Aufgabe

Mehr

Beweis des Primzahlsatzes nach Newman

Beweis des Primzahlsatzes nach Newman Beweis des Primzahlsatzes ach Newma Eileitug Aleader Zeilma 3. Jauar 23 Betreut durch Prof. Dr. Folkmar Borema Defiitio : Primzahlfuktio Wir defiiere π) als die Azahl der Primzahle kleier oder gleich :

Mehr

Analysis I für M, LaG/M, Ph 4.Übungsblatt

Analysis I für M, LaG/M, Ph 4.Übungsblatt Aalysis I für M, LaG/M, Ph 4.Übugsblatt Fachbereich Mathematik Sommersemester 200 Dr. Robert Haller-Ditelma 05.05.200 David Bücher Christia Bradeburg Gruppeübug Aufgabe G (Kovergez vo Folge) Beweise Sie:

Mehr

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $ Mathematik für Iformatiker B, SS 0 Diestag 5.6 $Id: folge.tex,v. 0/06/05 ::8 hk Exp $ 6 Folge 6.4 Folge reeller Zahle I der letzte Sitzug habe wir de Begriff des Grezwerts eier Folge i eiem metrische Raum

Mehr

Übungen zum Ferienkurs Analysis 1, Vorlesung 2

Übungen zum Ferienkurs Analysis 1, Vorlesung 2 F. Hafer, T. Baldauf c Techische Uiversität Müche Übuge zum Feriekurs Aalysis, Vorlesug Witersemester 06/07. Richtig oder Falsch? Sid folgede Aussage richtig oder falsch? Korrigiere bzw. ergäze Sie falsche

Mehr

Kapitel 6 Differenzierbarkeit

Kapitel 6 Differenzierbarkeit Kapitel 6 Differezierbarkeit Ihalt 6.1 6.1Die Defiitio 6.2 6.2Die Eigeschafte 6.3 6.3Extremwerte Seite 2 Was heißt differezierbar? Differezierbare Fuktioe sid sid glatte Fuktioe. Wir Wir beschreibe diese

Mehr

Lösungen zum Ferienkurs Analysis 1, Vorlesung 2 Wintersemester 2014/2015

Lösungen zum Ferienkurs Analysis 1, Vorlesung 2 Wintersemester 2014/2015 Lösuge zum Feriekurs Aalysis, Vorlesug Witersemester 04/05 Fabia Hafer, Thomas Baldauf I Richtig oder Falsch Sid folgede Aussage richtig oder falsch? Korrigiere bzw. ergäze Sie falsche Aussage. Gebe Sie

Mehr

Modulabschlussprüfung Analysis Musterlösung

Modulabschlussprüfung Analysis Musterlösung Bergische Uiversität Wuppertal Fachbereich C Mathematik ud Naturwisseschafte Prof. Dr. N. Shcherbia SoSe 204 Modulabschlussprüfug Aalysis 2.07.204 Musterlösug. Utersuche Sie folgede Reihe auf Kovergez

Mehr

n gerade 0 n ungerade (c) x n = a 1 n, a R + (d) x 1 := 2, x n+1 = 2 + x n (e) x n = (f) x n = exp(exp(n)) (g) x n = sin(n)

n gerade 0 n ungerade (c) x n = a 1 n, a R + (d) x 1 := 2, x n+1 = 2 + x n (e) x n = (f) x n = exp(exp(n)) (g) x n = sin(n) Übugsaufgabe Aalysis I Aufgabe. Beweise oder widerlege Sie: a Jede i R kovergete Folge ist beschräkt. b Es gibt Cauchy-Folge im R, die icht kovergiere. c Beschräkte Folge sid koverget. d Folge mit eiem

Mehr

STUDIENMATERIAL Teil 9 für Studenten der Elektrotechnik/Informationstechnik UNENDLICHE REIHEN

STUDIENMATERIAL Teil 9 für Studenten der Elektrotechnik/Informationstechnik UNENDLICHE REIHEN Techische Uiversität Chemitz Fakultät für Mathematik Zahlereihe STUDIENMATERIAL Teil 9 für Studete der Elektrotechik/Iformatiostechik UNENDLICHE REIHEN Utersuche für folgede uedliche Reihe jeweils die

Mehr

n=0 f(x) = log(1 + x) = n=1

n=0 f(x) = log(1 + x) = n=1 Potez - Reihe Machmal ist es praktisch eie Fuktio f() mir Hilfe ihrer Potezreihe auszudrücke. Eie Potezreihe um de Etwicklugspukt 0 sieht im Allgemeie so aus a ( 0 ) Fuktioe, für die eie Potezreihe eistiert,

Mehr

Index. Majorante, 24 Minorante, 23. Partialsumme, 17

Index. Majorante, 24 Minorante, 23. Partialsumme, 17 Folge, Reihe Idex Kovergezkriterie Hauptkriterium, Leibiz-Kriterium, Majoratekriterium, 4 Mioratekriterium, otwediges Kriterium, 0 Quotietekriterium, teleskopierede Summe, Wurzelkriterium, Majorate, 4

Mehr

( 1) n 1 n n n + 1. n=1

( 1) n 1 n n n + 1. n=1 Prof. Dr. L. Schwachhöfer Dr. J. Horst Fakultät Mathematik TU Dortmud Musterlösug zum 6. Übugsblatt zur Höhere Mathematik I P/ET/AI/IT/IKT/MP) WS 20/2 Aufgabe mittels Zeige Sie die Kovergez der Reihe )

Mehr

Funktionenreihen. 1-E1 Ma 2 Lubov Vassilevskaya

Funktionenreihen. 1-E1 Ma 2 Lubov Vassilevskaya Fuktioereihe Erst durch Newto wurde die Theorie uedlicher Reihe zu eiem eigestädige Forschugsgebiet i der Mathematik, das da i Britaie besodere Beachtug ud weitere Etwicklug durch Brook Taylor ud Coli

Mehr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Lars Machiek Dipl.-Math. Sebastia Schwarz WS 206/207 03..206 Aalysis I Lösugsvorschläge zum 3. Übugsblatt Abgabe:

Mehr

6 Grenzwerte von Zahlenfolgen

6 Grenzwerte von Zahlenfolgen 6 Grezwerte vo Zahlefolge Ei zetraler Begriff der Aalysis ist der des Grezwertes. Wir begie mit der Betrachtug vo Grezwerte vo Zahlefolge. 6. Zahlefolge 6.. Grudbegriffe Defiitio 6... Eie Fuktio f : Z

Mehr

KAPITEL 3. Zahlenreihen. 3.1 Geometrische Reihe Konvergenzkriterien Absolut konvergente Reihen... 80

KAPITEL 3. Zahlenreihen. 3.1 Geometrische Reihe Konvergenzkriterien Absolut konvergente Reihen... 80 KAPITEL 3 Zahlereihe 3. Geometrische Reihe......................... 7 3.2 Kovergezkriterie......................... 72 3.3 Absolut kovergete Reihe.................... 80 Lerziele 3 Eigeschafte der geometrische

Mehr

Kapitel 9. Aufgaben. Verständnisfragen

Kapitel 9. Aufgaben. Verständnisfragen Kapitel 9 Aufgabe Verstädisfrage Aufgabe 9. Hadelt es sich bei de folgede für z C defiierte Reihe um Potezreihe? Falls ja, wie lautet die Koeffizietefolge ud wie der Etwicklugspukt? a c 3! j0 x! j x j

Mehr

Werte von Dirichlet-Reihen

Werte von Dirichlet-Reihen Vortrag zum Semiar zur Fuktioetheorie,..8 Adrea Schmitz I eiem der vorhergehede Vorträge zur Riemasche Zetafuktio ζ wurde festgestellt, dass diese Fuktio für alle gerade Argumete s > ud für alle gazzahlige

Mehr

Aufgaben zur Analysis I

Aufgaben zur Analysis I Aufgabe zur Aalysis I Es werde folgede Theme behadelt:. Logik, Iduktio, Mege, Abbilduge 2. Supremum, Ifimum 3. Folge, Fuktioefolge 4. Reihe, Potezreihe 5. Mootoie ud Stetigkeit 6. Differetialrechug 7.

Mehr

Analysis II für M, LaG und Ph, WS07/08 Übung 2, Lösungsskizze

Analysis II für M, LaG und Ph, WS07/08 Übung 2, Lösungsskizze Gruppeübug Aalysis II für M, LaG ud Ph, WS7/8 Übug, Lösugsskizze G 4 (Zum warm werde). Begrüde die vo Physiker beliebte Näheruge si(x) x, cos(x) ud ta(x) x für kleie x R. Dies folgt direkt aus der Tayloretwicklug

Mehr

Reihen. Konvergenz. Folgen besonderer Art sind unendliche Summen. a k = a 1 + a 2 +..

Reihen. Konvergenz. Folgen besonderer Art sind unendliche Summen. a k = a 1 + a 2 +.. 6 Reihe Folge besoderer Art sid uedliche Summe a k = a + a 2 +... reeller oder komplexer Zahle, dee wir bereits i eiige Beispiele des Abschitts 5.4 begeget sid. Da ma icht sämtliche Glieder eier Folge

Mehr

Übungen zur Infinitesimalrechnung 2, H.-C. Im Hof 19. März Blatt 4. Abgabe: 26. März 2010, Nachmittag. e x2 dx + e x2 dx = 2 e x2 dx

Übungen zur Infinitesimalrechnung 2, H.-C. Im Hof 19. März Blatt 4. Abgabe: 26. März 2010, Nachmittag. e x2 dx + e x2 dx = 2 e x2 dx Übuge zur Ifiitesimalrechug, H.-C. Im Hof 9. März Blatt 4 Abgabe: 6. März, Nachmittag Aufgabe. Zeige e x dx π. Beweis. Wir bemerke als erstes, dass e x dx e x dx + e x dx e x dx formal sieht ma dies per

Mehr

6. AufdemRaumder stetigdifferenzierbaren FunktionenC 1 ([a,b],r n ) kannman auch folgende Norm betrachten:

6. AufdemRaumder stetigdifferenzierbaren FunktionenC 1 ([a,b],r n ) kannman auch folgende Norm betrachten: 2 Kapitel. Gewöhliche Differetialgleichuge.2 Baachräume Um de Satz vo Picard ud Lidelöf auf höhere Dimesioe übertrage zu köe, wird hier zuächst der Begriff des Baachraums bereitgestellt ud da der Baachsche

Mehr

Klausur zur Analysis II

Klausur zur Analysis II Uiversität Würzburg Mathematisches Istitut Prof Jör Steudig SS 007 807007 Klausur zur Aalysis II Aufgabe Die Mege M R 3 sei gegebe durch Zeit: 7:45-9:45 M := { x, y, z R 3 expx + y + z = } a Ist M abgeschlosse?

Mehr

5. Übungsblatt Aufgaben mit Lösungen

5. Übungsblatt Aufgaben mit Lösungen 5. Übugsblatt Aufgabe mit Lösuge Aufgabe 2: Bestimme Sie alle Häufugspukte der komplexe) Folge mit de Glieder a) a = ) 5 + 7 + 2 ) b) b = i Lösug 2: a) Die Folge a ) zerfällt vollstädig i die beide Teilfolge

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 5. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 5. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Istitut für Aalysis Dr A Müller-Rettkowski Dr T Gauss WS 00/ Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum

Mehr

8. Die Exponentialfunktion und die trigonometrischen Funktionen. 8.1 Definition der Exponentialfunktion

8. Die Exponentialfunktion und die trigonometrischen Funktionen. 8.1 Definition der Exponentialfunktion 8. Die Expoetialfuktio ud die trigoometrische Fuktioe 8. Defiitio der Expoetialfuktio Fudametallemma: Für jede Folge w mit dem Grezwert w gilt: w lim + = k = 0 k w. k! Defiitio der Expoetialfuktio : k

Mehr

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $ Mathematik für Iformatiker B, SS 202 Doerstag 4.6 $Id: reihe.tex,v.9 202/06/4 3:59:06 hk Exp $ 7 Reihe 7.4 Kovergezkriterie für Reihe 7.4. Alterierede Reihe Wir hatte gesehe das die harmoische Reihe divergiert,

Mehr

1 Übungszettel. Beispiel 1.1. Beweisen Sie den binomischen Lehrsatz, d.h. für alle a, b 2 R, n 2 N gilt. (a + b) n = a k b n k. k

1 Übungszettel. Beispiel 1.1. Beweisen Sie den binomischen Lehrsatz, d.h. für alle a, b 2 R, n 2 N gilt. (a + b) n = a k b n k. k 1 Übugszettel Beispiel 1.1. Beweise Sie de biomische Lehrsatz, d.h. für alle a, b 2 R, 2 N gilt (a + b) =! X a k b k. k HINWEIS: Berücksichtige Sie, dass für alle,k 2 N mit 1 k gilt k=0!!! + 1 = +. k k

Mehr

Aufgaben zu Kapitel 9

Aufgaben zu Kapitel 9 Aufgabe zu Kapitel 9 Aufgabe zu Kapitel 9 Verstädisfrage Aufgabe 9. Hadelt es sich bei de folgede für z C defiierte Reihe um Potezreihe? Falls ja, wie lautet die Koeffizietefolge ud wie der Etwicklugspukt?

Mehr

4. Reihen Definitionen

4. Reihen Definitionen 4. Reihe 4.1. Defiitioe Addiere wir die Glieder eier reelle Zahlefolge (a k ), so heißt diese Summe S (uedliche) (Zahle-) Reihe S (Folge: Fuktio über N; Reihe: 1 Zahl): S := a 1 + a 2 + a 3 +... := Σ a

Mehr

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Aufgabe ud Lösuge Ausarbeitug der Übugsstude zur Vorlesug Aalysis I Witersemester 2008/2009 Übug am 09.2.2008 Übug 8 Eileitug Es soll och eimal auf die agebotee Sprechstude higewiese werde, sowie auf mögliche

Mehr

13. Übungsblatt zur Vorlesung Mathematik I für Informatik

13. Übungsblatt zur Vorlesung Mathematik I für Informatik Fachbereich Mathematik Prof. Dr. Thomas Streicher Dr. Sve Herrma Dipl.-Math. Susae Pape 3. Übugsblatt zur Vorlesug Mathematik I für Iformatik Witersemester 009/00 6./7. Jauar 00 Gruppeübug Aufgabe G (Reihe)

Mehr

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung 6. Übugsblatt Aufgabe mit Lösuge + Selbsttest-Auflösug Aufgabe 6: Utersuche Sie die Folge, dere Glieder ute für N agegebe sid, auf Beschräktheit, Mootoie ud Kovergez bzw. Beschräktheit, Mootoie ud Kovergez

Mehr

Konvergenzradius von Taylorreihen

Konvergenzradius von Taylorreihen HTBLA Neufelde Peter Fischer pe.fischer@at.u Kovergezradius vo Taylorreihe Mathematische / Fachliche Ihalte i Stichworte: Taylorreihe, Kovergezradius, bestädige Kovergez Kurzzusammefassug Zuerst wird der

Mehr

Scheinklausur Analysis 1 WS 2007 /

Scheinklausur Analysis 1 WS 2007 / Scheiklausur Aalysis 1 WS 2007 / 2008 08.02.2008 Es gibt 11 Aufgabe ud 1 Zusatzaufgabe. Die jeweilige Puktzahl steht am like Rad. Die Gesamtpuktzahl ist 40 Pukte plus 4 Zusatzpukte. Zum Bestehe der Klausur

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker II (Sommersemester 004 Lösuge zu Aufgabeblatt 7

Mehr

2 Konvergenz von Folgen

2 Konvergenz von Folgen Kovergez vo Folge. Eifache Eigeschafte Defiitio.. Eie Abbildug A : N C heißt Folge. Ma schreibt a statt A) für N ud a ) oder a ) statt A. We a R N, so heißt a ) reelle Folge. Defiitio.. Seie a ) eie Folge

Mehr

Höhere Mathematik I für die Fachrichtung Physik

Höhere Mathematik I für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr Christoph Schmoeger Dipl-Math Sebastia Schwarz WS 4/5 45 Höhere Mathematik I für die Fachrichtug Physik Lösugsvorschläge zur Übugsklausur Aufgabe

Mehr

Seminararbeit. Der Logarithmus von Matrizen

Seminararbeit. Der Logarithmus von Matrizen Semiararbeit Der Logarithmus vo Matrize SoSe 2 Prof. Dr. L. Schwachhöfer Techische Uiversität Dortmud Name: Gülsüm Sirik Studiegag: BfP Datum: 8.6.2 Ihaltsverzeichis Eileitug 3 2 Der Logarithmus vo Matrize

Mehr

Analysis Übungen Hausaufgaben für 4. April

Analysis Übungen Hausaufgaben für 4. April Aalysis Übuge Hausaufgabe für 4. April Reihe sg 1. AN 8.2. c), AN 8.9. a). 2. Beweise die otwedige Bedigug für die Kovergez eier Reihe: we a koverget ist, da lim a = 0. (I der Praxis: we lim a 0, da ist

Mehr

Klassische Theoretische Physik I WS 2013/2014

Klassische Theoretische Physik I WS 2013/2014 Karlsruher Istitut für Techologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 3/4 Prof. Dr. J. Schmalia Blatt 7 Dr. P. P. Orth Abgabe ud Besprechug 3..3. Tayloretwicklug I 5 + 5 + 5 + 5

Mehr

Aufgaben und Lösungen Weihnachtsgeschenke zur Vorlesung Analysis I

Aufgaben und Lösungen Weihnachtsgeschenke zur Vorlesung Analysis I Aufgabe ud Lösuge Weihachtsgescheke zur Vorlesug Aalysis I Der Witersemester 008/009 Übug am 4.., 5..008 sowie 0.0.009 Aufgabe. Folge Aufgabe Ma bestimme, ob die Folge (a ) mit a = + 3 + 4 kovergiert ud

Mehr

D-ITET Analysis I HS 2018 Prof. Alessandra Iozzi. Musterlösung 6. und berechnen. = lim. = lim. n n. = lim

D-ITET Analysis I HS 2018 Prof. Alessandra Iozzi. Musterlösung 6. und berechnen. = lim. = lim. n n. = lim D-ITET Aalysis I HS 2018 Prof. Alessadra Iozzi Musterlösug 6 1. a) Wir setze a := 1 (3+1) 4 ud bereche a a +1 = 1. ( 3( + 1) + 1 1 3 + 1 3 + 4 3 + 1 ( 3 + 4 ) 4 3 + 1 Der Limes existiert isbesodere ud

Mehr

KAPITEL 11. Ungleichungen. g(x) g(x 0 ) + K 0 (x x 0 ).

KAPITEL 11. Ungleichungen. g(x) g(x 0 ) + K 0 (x x 0 ). KAPITEL 11 Ugleichuge 111 Jese-Ugleichug Defiitio 1111 Eie Fuktio g : R R heißt kovex, we ma für jedes x R ei K = K (x ) R fide ka, so dass für alle x R gilt: g(x) g(x ) + K (x x ) Bemerkug 111 Eie Fuktio

Mehr

Zahlenfolgen und Konvergenzkriterien

Zahlenfolgen und Konvergenzkriterien www.mathematik-etz.de Copyright, Page of 7 Zahlefolge ud Kovergezkriterie Defiitio: (Zahle-Folge, Grezwert) Eie Folge ist eie Abbildug der atürliche Zahle i die Mege A. Es ist also im Fall A: ; f: mit

Mehr

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 2

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 2 D-MATH Topologie FS 15 Theo Bühler Musterlösug 2 1. a) Per Defiitio ist A = {x : x berührt A}. I der Vorlesug wurde die Formel (X A) = ( A ) c gezeigt, also A = ( X A ) c. Daher ist A = A A = A (A ) c

Mehr

Tutorium Mathematik I, M Lösungen

Tutorium Mathematik I, M Lösungen Tutorium Mathematik I, M Lösuge 16. November 2012 *Aufgabe 1. Ma utersuche die folgede Reihe auf Kovergez (a) ( 1) (1 ) (b) ( ) 2 +1 (c) (!) 3 10 (3)! (d) (e) (f) 2 +3 3 2 +1 3 ( 2 +1) 2 + 3 ( 2 +3) (g)

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Sebastia Schwarz WS 04/05 0..04 Höhere Mathematik für die Fachrichtug Physik Lösugsvorschläge zum 4. Übugsblatt

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 4. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 4. Übungsblatt UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz. Dr. P. C. Kustma Dipl.-Math. M. Uhl WS 2008/09 Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum 4. Übugsblatt

Mehr

Lösungsvorschlag zur Klausur zur Analysis III

Lösungsvorschlag zur Klausur zur Analysis III Prof. Dr. H. Garcke, D. Deper WS 9/ NWF I - Mathematik 8..9 Uiversität Regesburg Lösugsvorschlag zur Klausur zur Aalysis III 6 Pukte pro Aufgabe) Aufgabe i) Bestimme Sie für die Fuktioefolge f :, 4) R,

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Istitut für Aalysis Dr. A. Müller-Rettkowski Dr. T. Gauss WS 00/ Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge

Mehr

KAPITEL 7. Zahlenfolgen. 7.1 Konvergente Zahlenfolgen Grenzwertbestimmung Grenzwertbestimmung durch Abschätzung...

KAPITEL 7. Zahlenfolgen. 7.1 Konvergente Zahlenfolgen Grenzwertbestimmung Grenzwertbestimmung durch Abschätzung... KAPITEL 7 Zahlefolge 7. Kovergete Zahlefolge.............................. 30 7.2 Grezwertbestimmug............................... 32 7.3 Grezwertbestimmug durch Abschätzug..................... 35 7.4

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker II (Sommersemester 004) Aufgabe 7. Ubeschräktes

Mehr

Übungen zur Analysis II SS 2006

Übungen zur Analysis II SS 2006 Mathematisches Istitut der Uiversität Heidelberg Prof. Dr. R. Weissauer/Dr. U. Weselma http://www.mathi.ui-heidelberg.de/ weselma.uebuge.html Übuge zur Aalysis II SS 26 Lösugshiweise Blatt 3 Aufgabe 8*

Mehr

3 2n = 1 6 (( 2)3 ) n. < 1 ist sie konvergent und hat den Wert = = 1 (n + 1)! 0! 1. und hat den Wert 1. (mit Reihenwert e), also ist auch

3 2n = 1 6 (( 2)3 ) n. < 1 ist sie konvergent und hat den Wert = = 1 (n + 1)! 0! 1. und hat den Wert 1. (mit Reihenwert e), also ist auch Karlsruher Istitut für Techologie KIT Istitut für Aalysis Priv.-Doz. Dr. P. C. Kustma Dr. D. Frey WS 20/2 Höhere Mathematik I für die Fachrichtug Physik Lösugsvorschläge zum 5. Übugsblatt Aufgabe 23 a

Mehr

118 7 Potenzreihen. eine Folge von (reellen) Funktionen mit Definitionsgebieten D(f j), j N, und. = M D(f j ) R. j=1

118 7 Potenzreihen. eine Folge von (reellen) Funktionen mit Definitionsgebieten D(f j), j N, und. = M D(f j ) R. j=1 8 7 Potezreihe 7 Potezreihe 7. Fuktioefolge ud -reihe Puktweise ud gleichmäßige Kovergez vo Fuktioefolge Sei f j ) j= eie Folge vo reelle) Fuktioe mit Defiitiosgebiete Df j), j N, ud = Df j ) R. j= D bilde

Mehr

Höhere Mathematik I für die Fachrichtung Physik

Höhere Mathematik I für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Sebastia Schwarz SS 5 7.9.5 Höhere Mathematik I für die Fachrichtug Physik Lösugsvorschläge zur Bachelor-Modulprüfug

Mehr

Die erste Zeile ("Nummerierung") denkt man sich also dazu. Häufig wird eine Indexschreibweise benutzt um ein Folgenglied zu kennzeichnen.

Die erste Zeile (Nummerierung) denkt man sich also dazu. Häufig wird eine Indexschreibweise benutzt um ein Folgenglied zu kennzeichnen. Folge ud Reihe (Izwische Stoff der Hochschule. ) Stad: 30.03.205. Folge Was sid Zahlefolge? Z.B. oder Das ist die vereifachte Wertetabelle eier Fuktio geschriebe wie üblich bei Fuktioe i eier Wertetabelle.

Mehr

4-1 Elementare Zahlentheorie

4-1 Elementare Zahlentheorie 4-1 Elemetare Zahletheorie 4. Dirichlet s Satz über Primzahle i arithmetische Progressioe. Satz (Dirichlet 1837). Seie a, k atürliche Zahle. Sid die Zahle a, k teilerfremd, so gibt es uedlich viele Primzahle

Mehr

Kapitel VI. Reihen. VI.1 Definitionen und Beispiele. Definition VI.1. Sei (a n ) n=1 K N eine Zahlenfolge. Dann heißt die Folge (s m ) m=1 K N, mit

Kapitel VI. Reihen. VI.1 Definitionen und Beispiele. Definition VI.1. Sei (a n ) n=1 K N eine Zahlenfolge. Dann heißt die Folge (s m ) m=1 K N, mit Kapitel VI Reihe VI.1 Defiitioe ud Beispiele Defiitio VI.1. Sei (a K N eie Zahlefolge. Da heißt die Folge (s m K N, mit m s m : a, (VI.1 Reihe i K. Ist (s m koverget, so schreibe wir { a : lim {s m m}

Mehr

α : { n Z n l } n a n IR

α : { n Z n l } n a n IR 1 KAPITEL VI. ZAHLENFOLGEN UND REIHEN 1) REELLE ZAHLENFOLGEN: i) Jede Abbildug α : IN a IR heiÿt 'reelle Zahlefolge' bzw. 'Folge i IR'. Ma otiert diese i der Form α = a ) IN = a ) =0 = a 0, a 1, a 2,...)

Mehr

8. Die Exponentialfunktion und die trigonometrischen Funktionen

8. Die Exponentialfunktion und die trigonometrischen Funktionen 8. Die Expoetialfuktio ud die trigoometrische Fuktioe 8.1 Defiitio der Expoetialfuktio Fudametallemma: Für jede Folge w mit dem Grezwert w gilt: lim 1 w k 0 k w. k! Defiitio der Expoetialfuktio : k 2 3

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz LGÖ Ks VMa Schuljahr 6/7 Zusammefassug Folge ud Kovergez Ihaltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 5 Für Experte 7 Defiitioe ud Beispiele

Mehr

4 Andreas Gathmann. x 2 +y 2 x 2 +y 2 x 2 +y 2

4 Andreas Gathmann. x 2 +y 2 x 2 +y 2 x 2 +y 2 4 Adreas Gathma 1. Komplexe Zahle Bevor wir mit der komplexe Aalysis begie, wolle wir uächst die grudlegede Defiitioe ud Eigeschafte der komplexe Zahle och eimal kur wiederhole. Defiitio 1.1. Die Mege

Mehr