Die Dimension eines Vektorraumes

Größe: px
Ab Seite anzeigen:

Download "Die Dimension eines Vektorraumes"

Transkript

1 Die Dimension eines Vektorraumes Ist (b 1, b 2,..., b n ) eine Basis des Vektorraums V, so heißt n die Dimension von V. Die Möglichkeit dieser Definition beruht auf dem folgenden nichttrivialen Satz. Je zwei Basen (b 1, b 2,..., b n ) und (c 1, c 2,..., c m ) ein und desselben Vektorraums V haben dieselbe Mitgliederzahl, es gilt also m = n. Wie wir später untersuchen, ist durch Kenntnis seiner Dimension n ein Vektorraum V weitgehend bestimmt. Schreibweise: dim R V = n. 1

2 Vorschau Unterräume Die in der Praxis mit weitem Abstand wichtigsten Vektorräume sind die Unterräume des R n. Unterräume eines Vektorraums sind ihrerseits wieder Vektorräume. Zu den Unterräumen des R n zählt insbesondere der Vektorraum R n selbst (n = 0, 1, 2,...), aber viele weitere. Wir untersuchen anschließend den Unterraumbegriff und beschäftigen uns mit Verfahren, Unterräume herzustellen. 2

3 Definition von Unterräumen Vektorräume treten häufig als Unterräume eines gegebenen Vektorraums, in der Praxis vor allem als Unterräume eines R n auf. Aus gegebenen Vektorräumen entstehen durch Bilden von Unterräumen somit weitere Vektorräume. Eine Teilmenge U eines R-Vektorraums V heißt Unterraum von V, wenn gilt: (U 1) 0 U. (U 2) U + U U, d.h. x, y U = x + y U. (U 3) R.U U, d.h. x U, a R = a.x U. 3

4 Unterräume sind ihrerseits Vektorräume Der Name Unterraum ist gerechtfertigt, denn ein Unterraum U von V ist bzgl. der Verknüpfungen wieder ein Vektorraum. + : U U U, (u, v) u + v. : R U U, (a, u) a.u Beweis. Wegen (U2) und (U3) machen beide Verknüpfungen Sinn (sind wohldefiniert, wie man sagt). Ferner sind (A1), (A2) offensichtlich erfüllt, (A3) ist wegen (U1) erfüllt. Wegen (U3) ist insbesondere U U, d.h. x U = x U. Somit gilt auch (A4). Der Nachweis von (M1) (M4) ist schließlich Routine. 4

5 Beispiele von Unterräumen (a) Für jeden Vektorraum V sind stets V selbst und {0} Unterräume von V. (b) Ist V ein Vektorraum und v V so ist R.v := {a.v a R} ein Unterraum von V. (c) V sei der Anschauungsraum. Die nur aus 0 bestehende Teilmenge {0}, eine Gerade G durch 0 oder eine Ebene E durch 0 sind Beispiele für Unterräume von V. Im Zusammenhang mit der Diskussion des Dimensionsbegriffs werden wir später sehen, dass jeder Unterraum U des Anschauungsraumes (gleichbedeutend des R 3 ) einer der in (c) genannten Fälle ist. 5

6 Systematische Konstruktion von Unterräumen: Die Lineare Hülle Unterräume eines R-Vektorraums V können wir uns nach folgendem Muster verschaffen: Satz Sind v 1, v 2,..., v t V, so bildet die Menge aller Linearkombinationen v 1, v 2,..., v t := {a 1.v a t.v t a 1, a 2,..., a t R} einen Unterraum von V, welchen wir die lineare Hülle von v 1, v 2,..., v t oder {v 1, v 2,..., v t } nennen. Es ist auch die Bezeichnung von v 1, v 2,..., v t aufgespannter Unterraum üblich. 6

7 Die Lineare Hülle ist ein Unterraum Beweis. Sei H = v 1, v 2,..., v t. Es ist klar, dass 0 = 0.v v v t in H liegt und daher (U1) erfüllt ist. Ferner ist H wegen (a 1.v a t.v t ) + (b 1.v b t.v t ) = (a 1 + b 1 ).v (a t + b t ).v t a. (a 1.v a t.v t ) = (aa 1 ).v aa t ).v t gegen die Bildung Summen und von Produkten mit Skalaren abgeschlossen, es gelten somit auch (U2) und (U3). Folglich ist H = v 1, v 2,..., v t ein Unterraum von V. 7

8 Erzeugendensystem und Lineare Hülle Satz. V sei ein Vektorraum und v 1, v 2,..., v t sei ein System von Vektoren aus V. Dann gilt: (v 1, v 2,..., v t ) ist genau dann ein Erzeugendensystem von V, wenn V gleich der linearen Hülle v 1, v 2,..., v t ist. Beweis. (a) Falls (v 1, v 2,..., v t ) ein EZS von V ist, so ist jeder Vektor von V eine Linearkombination von v 1, v 2,..., v t, somit V = v 1, v 2,..., v t. (b) Falls V = v 1, v 2,..., v t, so ist jeder Vektor aus V in v 1, v 2,..., v t gelegen, daher eine Linearkombination von v 1, v 2,..., v t. 8

9 Beispiele von Unterräumen I (1) Sei V = R 3 und v 1 = H := v 1, v 2, v 3 = ein Unterraum des R , v 2 = x 1 x , v 3 = 1 1 0, so ist x 1, x 2 R = R2 {0} Es bilden v 1 und v 2 eine Basis (v 1, v 2 ) von H. Grund? Folglich hat H die Dimension 2. 9

10 Beispiele von Unterräumen II Wir fixieren a 1, a 2, a 3 R und setzen voraus, dass a 1 0 gilt. U := x 1 x 2 x 3 R 3 a 1 x 1 + a 2 x 2 + a 3 x 3 = 0 ist dann ein 2-dimensionaler Unterraum des R 3. Behauptung: Es bilden v 1 = a 2 a von U. Folglich hat U die Dimension 2. und v 2 = a 3 a eine Basis 10

11 Wie kommt man/frau auf diese Basis von U? Jedes v = x 1 x 2 x 3 U genügt der Beziehung a 1 x 1 +a 2 x 2 +a 3 x 3 = 0, die wir wegen a 1 0 nach x 1 auflösen können: Es folgt somit für jedes v U v = x 1 x 2 x 3 = a 2 x 1 = a 2 a 1 x 2 a 3 a 1 x 3. a x 1 2 a 3 x 2 x 3 a 1 x 3 = x 2 a 2 a x 3 a 3 a somit U = v 1, v 2. Die lineare Unabhängigkeit von v 1, v 2 ist klar., 11

12 Die Funktion der linearen Hülle Satz Die lineare Hülle H := v 1, v 2,..., v t ist der bezüglich Inklusion kleinste Unterraum von V, welcher v 1, v 2,..., v t enthält. Beweis. Wir wissen schon, dass H = v 1, v 2,..., v t ein Unterraum ist, welcher v 1, v 2,..., v t umfasst. Ist nun U irgendein Unterraum von V, welcher v 1, v 2,..., v t enthält, so liegen alle Linearkombinationen a 1.v a t.v t ebenfalls in U, woraus H U folgt. In diesem Sinn ist H der kleinste v 1, v 2,..., v t umfassende Unterraum. 12

13 Summe und Durchschnitt von Unterräumen Aus gegebenen Unterräumen U 1 und U 2 ergeben sich durch Summen und Durchschnittsbildung weitere: Satz. Sind U 1 und U 2 Unterräume von V, so auch Durchschnitt und Summe U 1 U 2 = {x V x U 1 und x U 2 } U 1 + U 2 = {x 1 + x 2 x 1 U 1 und x 2 U 2 }. Beweis. durch direktes Nachrechnen. Achtung: Die Vereinigung U 1 U 2 ist im allgemeinen nicht wieder ein Unterraum. 13

14 Nachweis für Summe; Warnung für Vereinigung Nachweis Die Summe U 1 + U 2 zweier Unterräume von V Unterraum. ist ein Wir haben die Unterraumeigenschaften (U1) (U3) zu zeigen. Wegen 0 = U 1 + U 2 ist (U1) erfüllt. Sind x = x 1 + x 2 und y = y 1 + y 2 mit x i, y i U, so folgt dass x + y = (x 1 + x 2 ) + (y 1 + y 2 ) = (x 1 + y 1 ) + (x 2 + y 2 ) in U 1 + U 2 liegt, was (U2) zeigt. Schließlich ist mit obigen Bezeichnungen a.x = a(x 1 + x 2 ) = a.x 1 + a.x 2 in U 1 + U 2 gelegen, womit (U3) bewiesen ist. Warnung: Es sind U 1 = R {0} und U 2 = {0} R Unterräume von R R, aber U 1 U 2 ist kein Unterraum von R R. Es liegt nämlich (1, 1) = (1, 0) + (0, 1) nicht in U 1 U 2. 14

15 Anwendung des Durchschnitts: System linearer Gleichungen Es seien reelle Zahlen a 1, a 2, a 3, b 1, b 2, b 3 gegeben. Die Menge aller x 1 Lösungen x 2 R 3 des Gleichungssystems x 3 bildet einen Unterraum des R 3. a 1 x 1 + a 2 x 2 + a 3 x 3 = 0 b 1 x 1 + b 2 x 2 + b 3 x 3 = 0 Beweis. Jede der beiden Gleichungen hat als Lösungsmenge einen Unterraum U 1 bzw. U 2. Die Lösungsmenge insgesamt ist gerade U 1 U 2, damit wieder ein Unterraum. 15

16 Wichtige Bemerkung zu linearen Gleichungen Wir werden später lineare Gleichungssysteme und ihr Lösungsverhalten systematisch studieren. Um ihr Lösungsverhalten gut zu verstehen, ist es entscheidend, auf die Begriffe Basis, Dimension, Unterraum und Erzeugendensystem eines Vektorraums zurückgreifen zu können. Beim gerade diskutierten Beispiel von zwei (homogenen) linearen Gleichungen in drei Unbekannten, kann je nach Vorgabe von a 1, a 2, a 3 und b 1, b 2, b 3 der Lösungsraum die Dimension 1, 2 oder 3 haben. Es ist wichtig, entscheiden zu können, wann welcher Fall vorliegt. Wir kennen diesen Lösungsraum, sobald wir eine Basis desselben kennen. 16

17 Vorschau: Lineare Abbildungen Wer Vektorräume studiert, muss sich zugleich mit linearen Abbildungen zwischen ihnen auseinander setzen. Erst lineare Abbildungen ermöglichen es, verschiedene Vektorräume wirklich miteinander zu vergleichen. Zugleich bilden sie eine sprudelnde Quelle zur Bildung und Analyse von Unterräumen. 17

18 Definition linearer Abbildungen Definition Es seien V und W Vektorräume über R (oder allgemeiner über einem Körper K). Eine Abbildung f : V W heißt linear, wenn gilt: (L1) f(v 1 + v 2 ) = f(v 1 ) + f(v 2 ) für alle v 1, v 2 V. (L2) f(a.v) = a.f(v) für alle v V und a R (bzw. a K.) Wir können die Bedingungen (L1) und (L2) zu einer einzigen Bedingung zusammenfügen: (L) f(a 1.v 1 + a 2.v 2 ) = a 1.f(v 1 ) + a 2.f(v 2 ) für alle a 1, a 2 R (bzw. K) und alle v 1, v 2 V. 18

19 Eigenschaften linearer Abbildungen Sei f : V W eine lineare Abbildung. Dann gilt: (1) f(0 V ) = 0 W (2) f( v) = f(v) (3) f(a 1.v a t.v t ) = a 1.f(v 1 ) + + a t.f(v t ). Diese Eigenschaften ergeben sich unmittelbar aus (L1) und (L2). Insbesondere überführt (3) eine lineare Abbildung f : V W die Menge v 1, v 2,..., v t der Linearkombinationen der v 1, v 2,..., v t in die Menge f(v 1 ),..., f(v t ). Somit f( v 1, v 2,..., v t ) = f(v 1 ),..., f(v t ). Diese Redeweise unterstellt, dass V und W Vektorräume sind. 19

20 Die Summe linearer Abbildungen Satz Sind f, g : V W lineare Abbildungen, so auch die Abbildung f + g : V W, v f(v) + g(v). Beweis. Es ist zu zeigen, dass die durch h(v) = f(v) + g(v) (für v V ) erklärte Abbildung linear ist. Nun ist h(x + y) h(a.x) Def. = f(x + y) + g(x + y) linear = (f(x) + f(y)) + (g(x) + g(y)) = (f(x) + g(x)) + (f(y) + g(y)) Def. = h(x) + h(y) Def. = (f(a.x) + g(a.x)) linear = a.f(x) + a.g(x) Def. = a.h(x). 20

21 Skalare Vielfache linearer Abbildungen Satz Ist f : V W eine lineare Abbildung und a R, so ist auch a.f : V W, v a.f(v) eine lineare Abbildung. Beweis. Es ist zu zeigen, dass die durch h(v) := a.f(v) (für v V ) erklärte Abbildung linear ist. Es gilt h(x + y) h(b.x) Def. = a.f(x + y) linear = a.(f(x) + f(y)) (M1) = a.f(x) + a.f(y) Def. = h(x) + h(y) Def. = f(a.(b.x)) (M3) = f((a b).x) ab=ba = f(b.(a.x)) linear = b.f(a.x) Def. = b.h(x). 21

22 Beispiele linearer Abbildungen I (a) Sind V und W Vektorräume, so ist die Nullabbildung f : V W mit f(v) = 0 W für alle v V eine lineare Abbildung. (b) Ist V ein Vektorraum, so ist die identische Abbildung 1 V : V V, v v linear. (c) Sind v 1, v 2, v 3 Vektoren des R-Vektorraums V, so ist die Abbildung f : R 3 V, x 1 x 2 x 3 x 1.v 1 + x 2.v 2 + x 3.v 3 linear. 22

23 Lineare Abbildungen f : R R 3 Satz. Zujeder lineare Abbildung f : R R 3 gibt es einen Vektor v 1 a v 1 v = v 2 R 3, so dass f(a) = a v 2 gilt D.h. f(a) = a.v. v 3 a v 3 Umgekehrt ist jede solche Abbildung linear. Beweis. Wegen (L 2) gilt f(a) = f(a.1) = a.f(1) für alle a R. Mit v := f(1) ist dann die obige Behauptung erfüllt. Bemerkung. Der Satz und sein Beweis gelten ebenfalls für R n anstelle von R 3. Wir diskutieren anschließend den Spezialfall n = 1. 23

24 Spezialfall: Lineare Abbildungen f : R R Vorweg: R ist selbst ein Vektorraum (Spezialfall des R n für n = 1). Es macht daher Sinn, die linearen Abbildungen f : R R zu untersuchen. Satz. Zu jeder linearen Abbildung f : R R gibt es ein v R, nämlich v := f(1), so dass f(a) = a v für jedes a R gilt. Umgekehrt ist jede solche Abbildung linear. Lineare Abbildungen f : R R sind daher durch ein einziges Datum, die Zahl v = f(1), eindeutig bestimmt. Auf der nächsten Folie bestimmen wir allgemeiner die linearen Abbildungen von R 3 nach R. 24

25 Lineare Abbildungen von R 3 nach R Satz. Zu jederlineare Abbildung f : R 3 R gibt es a 1, a 2, a 3 R, x 1 so dass f x 2 = a 1 x 1 + a 2 x 2 + a 3 x 3 gilt. x 3 Umgekehrt ist jede solche Abbildung linear. Beweis =. Sei e 1, e 2, e 3 die Standardbasis des R 3. Wir setzen a 1 := f(e 1 ), a 2 := f(e 2 ), a 3 := f(e 3 ). Aus der Linearität von f folgt: f x 1 x 2 = f (x 1.e 1 + x 2.e 2 + x 3.e 3 ) x 3 = x 1 f(e 1 ) + x 2 f(e 2 ) + x 3 f(e 3 ) = x 1 a 1 + x 2 a 2 + x 3 a 3. Es ist leicht zu sehen, dass für jede Vorgabe von a 1, a 2, a 3 die obige Formel eine lineare Abbildung f definiert. 25

26 Lineare Abbildungen von R 3 nach V V sei ein R-Vektorraum. Wir diskutieren eine Erweiterung des vorangehenden Satzes. Satz. Zu jeder linearen Abbildung f : R 3 V gibt es Vektoren v 1, v 2, v 3 aus V, so dass für jeden Vektor x R 3 mit den Koordinaten x 1, x 2, x 3 die Formel f x 1 x 2 x 3 = x 1.v 1 + x 2.v 2 + x 3.v 3 gilt. Umgekehrt ist für jede Vorgabe von v 1, v 2, v 3 die mit obiger Formel definierte Abbildung f : R 3 V linear. 26

27 Wie finden wir v 1, v 2, v 3? Beweis. (a) f : R 3 V sei als lineare Abbildung gegeben. Wir wenden f auf die Standardbasis e 1, e 2, e 3 von R 3 an und setzen v 1 = f(e 1 ), v 2 = f(e 2 ), v 3 = f(e 3 ). Es folgt dann f x 1 x 2 x 3 Basisdarstellung = f(x 1.e 1 + x 2.e 2 + x 3.e 3 ) f linear = x 1.f(e 1 ) + x 2.f(e 2 ) + x 3.f(e 3 ) Def = x 1.v 1 + x 2.v 2 + x 3.v 3. 27

28 Wie finden wir f? (b) Gegeben sind jetzt irgendwelche Vektoren v 1, v 2, v 3 aus V. Wir definieren f : R 3 V durch die Vorschrift f x 1 x 2 x 3 = x 1.v 1 + x 2.v 2 + x 3.v 3. Es folgt durch einfache Rechnung, dass f linear ist. Wir merken uns: Lineare Abbildungen des R 3 nach V entsprechen eins-zu-eins Tripeln (v 1, v 2, v 3 ) von Vektoren aus V. 28

29 Rückblick und Weiterschau: f : R n V Wenn wir die verwendeten Argumente anschauen ist klar, dass wir den schreibtechnisch bequemen R 3 durch einen Vektorraum R n, für beliebiges n, ersetzen können, und die Aussage entsprechend gilt: Satz Eine lineare Abbildungen f : R n V entspricht umkehrbar eindeutig einem n-tupel (v 1, v 2,..., v n ) von Vektoren aus V. (1) Einer gegebenen linearen Abbildung f wird das n-tupel (f(e 1 ),..., f(e n )) zugeordnet. (2) Einem n-tupel (v 1, v 2,..., v n ) entspricht umgekehrt die Abbildung f mit f(x 1,..., x n ) auf n i=1 x i.v i schickt. Kommentare: (1) Aus platztechnischen Gründen haben wir Vektoren des R n hier in Zeilenform (x 1, x 2,..., x n ) geschrieben. (2) Dieser Satz umfasst alle vorweg diskutierten Spezialfälle. Nur diesen Satz müssen wir uns daher wirklich merken. 29

30 Das Bild einer linearen Abbildung Sei f : V W eine lineare Abbildung. Satz Es gilt: (1) Das Bild f(v ) von f ein Unterraum von W. Bezeichnung: Bild(f) := f(v ). (2) Ist ferner v 1, v 2,..., v t ein Erzeugendensystem von V (zum Beispiel eine Basis von V ) so ist Bild(f) = f(v 1 ),..., f(v t ). (3) Eine lineare Abbildung f : V W überführt daher ein Erzeugendensystem (v 1, v 2,..., v t ) von V in ein Erzeugendensystem (f(v 1 ),..., f(v t )) von Bild(f). Wir begründen diese Aussagen auf der nächsten Folie. 30

31 Bilder von Unterräumen Die Behauptung (1) ist abgedeckt durch folgenden einfach zu beweisenden Satz: Satz Ist f : V W eine lineare Abbildung und U ein Unterraum von V, so ist f(u) = {f(u) u U} ein Unterraum von W. (2) folgt aus der früher gezeigten Aussage f( v 1, v 2,..., v t ) = f(v 1 ),..., f(v t ). (3) ist eine Umformulierung von (2). 31

Kapitel 10. Lineare Abbildungen Definition linearer Abbildungen Eigenschaften und Beispiele Alle linearen Abbildungen R n V Bild von Unterräumen

Kapitel 10. Lineare Abbildungen Definition linearer Abbildungen Eigenschaften und Beispiele Alle linearen Abbildungen R n V Bild von Unterräumen Kapitel 10. Lineare Abbildungen Definition linearer Abbildungen Eigenschaften und Beispiele Alle linearen Abbildungen R n V Bild von Unterräumen Vorschau: Lineare Abbildungen Wer Vektorräume studiert,

Mehr

Vektorräume und Lineare Abbildungen

Vektorräume und Lineare Abbildungen Lineare Algebra Kapitel 9. Vektorräume Der Körper der reellen Zahlen Der Vektorraumbegriff, Beispiele Rechnen in Vektorräumen Linearkombinationen und Erzeugendensysteme Lineare Abhängigkeit und Unabhängigkeit

Mehr

Donnerstag, 11. Dezember 03 Satz 2.2 Der Name Unterraum ist gerechtfertigt, denn jeder Unterraum U von V ist bzgl.

Donnerstag, 11. Dezember 03 Satz 2.2 Der Name Unterraum ist gerechtfertigt, denn jeder Unterraum U von V ist bzgl. Unterräume und Lineare Hülle 59 3. Unterräume und Lineare Hülle Definition.1 Eine Teilmenge U eines R-Vektorraums V heißt von V, wenn gilt: Unterraum (U 1) 0 U. (U ) U + U U, d.h. x, y U x + y U. (U )

Mehr

Bestimmung der Dimension

Bestimmung der Dimension Bestimmung der Dimension Satz. Sei (v 1, v 2,..., v n ) ein minimales Erzeugendensystem von V, d.h. dieses System ist ein Erzeugendensystem von V, aber keines der nach Weglassen eines v i (1 i n) entstehenden

Mehr

Kapitel 11. Dimension und Isomorphie

Kapitel 11. Dimension und Isomorphie Kapitel 11. Dimension und Isomorphie Bestimmung der Dimension Satz. Sei (v 1, v 2,..., v n ) ein minimales Erzeugendensystem von V, d.h. dieses System ist ein Erzeugendensystem von V, aber keines der nach

Mehr

Vektorräume und Lineare Abbildungen

Vektorräume und Lineare Abbildungen Vektorräume und Lineare Abbildungen Die angesprochene Thematik macht den Kern dieser Veranstaltung aus. Lineare Techniken sind zentral für weite Bereiche mathematischen Argumentierens. Durch in der Analysis

Mehr

Kapitel 12. Lineare Abbildungen und Matrizen

Kapitel 12. Lineare Abbildungen und Matrizen Kapitel 12 Lineare Abbildungen und Matrizen Lineare Abbildungen f : R n R m Wir wissen schon: Eine lineare Abbildung f : R n R m ist eindeutig durch ein n-tupel von Vektoren v 1, v 2,, v n des R m bestimmt

Mehr

3.3 Austauschsatz, Basisergänzungssatz und Dimension

3.3 Austauschsatz, Basisergänzungssatz und Dimension 66 Kapitel III: Vektorräume und Lineare Abbildungen 3.3 Austauschsatz, Basisergänzungssatz und Dimension Montag, 15. Dezember 2003 Es sei V ein Vektorraum. Jedes Teilsystem eines linear unabhängigen Systems

Mehr

Der Rangsatz für lineare Abbildungen

Der Rangsatz für lineare Abbildungen Der Rangsatz für lineare Abbildungen Satz Sei f : V W eine lineare Abbildung Dann gilt dim V = dim Kern(f) + dim Bild(f), also gleichbedeutend dim Kern(f) = dim V rg(f) Da uns in der Regel bei gegebenem

Mehr

Kapitel 13. Lineare Gleichungssysteme und Basen

Kapitel 13. Lineare Gleichungssysteme und Basen Kapitel 13. Lineare Gleichungssysteme und Basen Matrixform des Rangsatzes Satz. Sei A eine m n-matrix mit den Spalten v 1, v 2,..., v n. A habe den Rang r. Dann ist die Lösungsmenge L := x 1 x 2. x n x

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 7 Die Lösungsmenge eines homogenen linearen Gleichungssystems in n Variablen über einem Körper K ist ein Untervektorraum

Mehr

3.3 Austauschsatz, Basisergänzungssatz und Dimension

3.3 Austauschsatz, Basisergänzungssatz und Dimension 64 Kapitel III: Vektorräume und Lineare Abbildungen 3.3 Austauschsatz, Basisergänzungssatz und Dimension Montag, 15. Dezember 2003 Es sei V ein Vektorraum. Jedes Teilsystem eines linear unabhängigen Systems

Mehr

Beweis. Bei (a) handelt es sich um eine Umformulierung des ersten Teils von Satz 6.2, während (b) aus dem zweiten Teil des genannten Satzes folgt.

Beweis. Bei (a) handelt es sich um eine Umformulierung des ersten Teils von Satz 6.2, während (b) aus dem zweiten Teil des genannten Satzes folgt. 82 Kapitel III: Vektorräume und Lineare Abbildungen Beweis. Bei (a) handelt es sich um eine Umformulierung des ersten Teils von Satz 6.2, während (b) aus dem zweiten Teil des genannten Satzes folgt. Wir

Mehr

Gegeben sei eine Menge V sowie die Verknüpfung der Addition und die skalare Multiplikation der Elemente von V mit reellen Zahlen.

Gegeben sei eine Menge V sowie die Verknüpfung der Addition und die skalare Multiplikation der Elemente von V mit reellen Zahlen. 1. Der Vektorraumbegriff...1 2. Unterräume...2. Lineare Abhängigkeit/ Unabhängigkeit... 4. Erzeugendensystem... 5. Dimension...4 6. Austauschlemma...5 7. Linearität von Abbildungen...6 8. Kern und Bild

Mehr

Kapitel II. Vektoren und Matrizen

Kapitel II. Vektoren und Matrizen Kapitel II. Vektoren und Matrizen Vektorräume A Körper Auf der Menge R der reellen Zahlen hat man zwei Verknüpfungen: Addition: R R R(a, b) a + b Multiplikation: R R R(a, b) a b (Der Malpunkt wird oft

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Lineare Algebra 1 WS 2006/07 Lösungen Blatt 13/ Probeklausur. Lösungen zur. Zentrum Mathematik

TECHNISCHE UNIVERSITÄT MÜNCHEN. Lineare Algebra 1 WS 2006/07 Lösungen Blatt 13/ Probeklausur. Lösungen zur. Zentrum Mathematik TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Lineare Algebra 1 WS 26/7 en Blatt 13/2 29.1.27 en zur Probeklausur Aufgabe 1 (ca. 6 Punkte) Sei

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof Dr H Brenner Osnabrück WS 25/26 Lineare Algebra und analytische Geometrie I Schläft ein Lied in allen Dingen, Die da träumen fort und fort, Und die Welt hebt an zu singen, Triffst du nur das Zauberwort

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Linearen Algebra 1 Wintersemester 014/015 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 7 Abgabetermin: Freitag, 05.1.014, 11 Uhr Aufgabe 7.1 (Vektorräume

Mehr

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit 3 Lineare Algebra (Teil : Lineare Unabhängigkeit 3. Der Vektorraum R n Die Menge R n aller n-dimensionalen Spalten a reeller Zahlen a,..., a n R bildet bezüglich der Addition a b a + b a + b. +. :=. (53

Mehr

10.2 Linearkombinationen

10.2 Linearkombinationen 147 Vektorräume in R 3 Die Vektorräume in R 3 sind { } Geraden durch den Ursprung Ebenen durch den Ursprung R 3 Analog zu reellen Vektorräumen kann man komplexe Vektorräume definieren. In der Definition

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P Grohs T Welti F Weber Herbstsemester 25 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 8 Aufgabe 8 Basen für Bild und Kern Gegeben sind die beiden 2 Matrizen:

Mehr

Für die Matrikelnummer M = Dann sind durch A =

Für die Matrikelnummer M = Dann sind durch A = Musterlösung zum. Blatt 9. Aufgabe: Gegeben seien m 3 + 2 m m 3 m 2 m 4 + m 7 m 3 A := m m 2 m 2 + 2 m 2 m 4 + m 5 und b := m 6 m 4 + a) Finden Sie eine Lösung x R 7 für die Gleichung Ax =. b) Finden Sie

Mehr

4 Affine Koordinatensysteme

4 Affine Koordinatensysteme 4 Affine Koordinatensysteme Sei X φ ein affiner Raum und seien p,, p r X Definition: Nach ( c ist der Durchschnitt aller affinen Unterräume Z X, welche die Menge {p,,p r } umfassen, selbst ein affiner

Mehr

Ausgewählte Lösungen zu den Übungsblättern 4-5

Ausgewählte Lösungen zu den Übungsblättern 4-5 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Ausgewählte en zu den Übungsblättern -5 Aufgabe, Lineare Unabhängigkeit

Mehr

Lemma 10. Die Menge Aff (K n ) aller Affinitäten von K n ist eine Gruppe bezüglich der Verkettung. Beweis. (vgl. Lemma 39 LAAG I sowie

Lemma 10. Die Menge Aff (K n ) aller Affinitäten von K n ist eine Gruppe bezüglich der Verkettung. Beweis. (vgl. Lemma 39 LAAG I sowie Lemma 10. Die Menge Aff (K n ) aller Affinitäten von K n ist eine Gruppe bezüglich der Verkettung. Beweis. (vgl. Lemma 39 LAAG I sowie Noch ein Beispiel aus Vorl. 1, Seite 10) Zuerst zeigen wir, dass jede

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 15. April 2018 1/46 Die Dimension eines Vektorraums Satz 2.27 (Basisergänzungssatz) Sei V ein Vektorraum über einem Körper K. Weiter seien v 1,...,

Mehr

m 2 m 3 m 5, m m 2

m 2 m 3 m 5, m m 2 Musterlösung zum 8. Blatt 7. Aufgabe: Seien die folgenden Vektoren im R 4 gegeben: 2m 5 + 2 2m 2 2m 7 + m 2 m 3 m 5 v = m 5, v 2 = m 2, v 3 = m 7 m 2 m 3 m 5 m 2 m 3 m 5, m 5 + m 2 m 7 2m + m 2 m 4 2m

Mehr

Musterlösung. 1 Relationen. 2 Abbildungen. TUM Ferienkurs Lineare Algebra 1 WiSe 08/09 Dipl.-Math. Konrad Waldherr

Musterlösung. 1 Relationen. 2 Abbildungen. TUM Ferienkurs Lineare Algebra 1 WiSe 08/09 Dipl.-Math. Konrad Waldherr TUM Ferienkurs Lineare Algebra WiSe 8/9 Dipl.-Math. Konrad Waldherr Musterlösung Relationen Aufgabe Auf R sei die Relation σ gegeben durch (a, b)σ(c, d) : a + b c + d. Ist σ reflexiv, symmetrisch, transitiv,

Mehr

Mathematik I. Vorlesung 11. Lineare Unabhängigkeit

Mathematik I. Vorlesung 11. Lineare Unabhängigkeit Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 11 Lineare Unabhängigkeit Definition 11.1. Es sei K ein Körper und V ein K-Vektorraum. Dann heißt eine Familie von Vektoren v i, i I,

Mehr

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $ Mathematik für Ingenieure I, WS 8/9 Freitag 9. $Id: linabb.tex,v.3 9//9 3:7:34 hk Exp hk $ II. Lineare Algebra 9 Lineare Abbildungen 9. Lineare Abbildungen Der folgende Satz gibt uns eine einfachere Möglichkeit

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 8 18. Mai 2010 Kapitel 8. Vektoren (Fortsetzung) Lineare Unabhängigkeit (Fortsetzung) Basis und Dimension Definition 80. (Lineare (Un-)Abhängigkeit)

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker I Wintersemester 3/ Aufgabenblatt 6. Januar Präsenzaufgaben

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 5/6): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

0, v 6 = , v 4 = 1

0, v 6 = , v 4 = 1 Aufgabe 6. Linearkombinationen von Vektoren Gegeben sei folgende Menge M von 6 Vektoren v, v,..., v 6 R 4 : M = v =, v =, v 3 =, v 4 =, v 5 =, v 6 =. Zeigen Sie, dass sich jeder Vektor v i M, i =,,...,

Mehr

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 6): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

In diesem Kapitel wird der Vektorraumbegriff axiomatisch eingeführt und einige grundlegende Begriffe erläutert, etwa. Unterraum,

In diesem Kapitel wird der Vektorraumbegriff axiomatisch eingeführt und einige grundlegende Begriffe erläutert, etwa. Unterraum, 2 Vektorräume In diesem Kapitel wird der Vektorraumbegriff axiomatisch eingeführt und einige grundlegende Begriffe erläutert, etwa Unterraum, Linearkombination, lineare Unabhängigkeit und Erzeugendensystem.

Mehr

5 Vektorräume. (V1) für alle x, y V : x + y = y + x; (V2) für alle x, y, z V : (x + y) + z = x + (y + z);

5 Vektorräume. (V1) für alle x, y V : x + y = y + x; (V2) für alle x, y, z V : (x + y) + z = x + (y + z); 5 Vektorräume Was wir in den vorangegangenen Kapiteln an Matrizen und Vektoren gesehen haben, wollen wir nun mathematisch abstrahieren. Das führt auf den Begriff des Vektorraumes, den zentralen Begriff

Mehr

Hauptachsentransformation: Eigenwerte und Eigenvektoren

Hauptachsentransformation: Eigenwerte und Eigenvektoren Hauptachsentransformation: Eigenwerte und Eigenvektoren die bisherigen Betrachtungen beziehen sich im Wesentlichen auf die Standardbasis des R n Nun soll aufgezeigt werden, wie man sich von dieser Einschränkung

Mehr

, v 3 = und v 4 =, v 2 = V 1 = { c v 1 c R }.

, v 3 = und v 4 =, v 2 = V 1 = { c v 1 c R }. 154 e Gegeben sind die Vektoren v 1 = ( 10 1, v = ( 10 1. Sei V 1 = v 1 der von v 1 aufgespannte Vektorraum in R 3. 1 Dann besteht V 1 aus allen Vielfachen von v 1, V 1 = { c v 1 c R }. ( 0 ( 01, v 3 =

Mehr

Musterlösung Serie 8

Musterlösung Serie 8 D-MATH Lineare Algebra I HS 018 Prof. Richard Pink Musterlösung Serie 8 Dimension, Direkte Summe & Komplemente 1. Zeige: Für jedes Erzeugendensystem E eines Vektorraums V und jede linear unabhängige Teilmenge

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 4

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 4 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 25): Lineare Algebra und analytische Geometrie 4 4. (Frühjahr 27, Thema, Aufgabe ) Zeigen Sie, dass die beiden folgenden Unterräume des R 3 übereinstimmen:

Mehr

5.1 Affine Räume und affine Abbildungen

5.1 Affine Räume und affine Abbildungen 402 LinAlg II Version 1.2 21. Juli 2006 c Rudolf Scharlau 5.1 Affine Räume und affine Abbildungen Ein affiner Raum besteht aus zwei Mengen P und G zusammen mit einer Relation der Inzidenz zwischen ihnen.

Mehr

2.3 Basis und Dimension

2.3 Basis und Dimension Lineare Algebra I WS 205/6 c Rudolf Scharlau 65 2.3 Basis und Dimension In diesem zentralen Abschnitt werden einige für die gesamte Lineare Algebra fundamentale Grundbegriffe eingeführt: Lineare Abhängigkeit

Mehr

Kapitel V. Affine Geometrie

Kapitel V. Affine Geometrie Kapitel V Affine Geometrie 1 Affine Räume Betrachte ein lineares Gleichungssystem Γ : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2 + + a mn x n = b

Mehr

Lineare Algebra I. Probeklausur - Lösungshinweise

Lineare Algebra I. Probeklausur - Lösungshinweise Institut für Mathematik Wintersemester 2012/13 Universität Würzburg 19. Dezember 2012 Prof. Dr. Jörn Steuding Dr. Anna von Heusinger Frederike Rüppel Lineare Algebra I Probeklausur - Lösungshinweise Aufgabe

Mehr

Blatt 10 Lösungshinweise

Blatt 10 Lösungshinweise Lineare Algebra und Geometrie I SS 05 Akad. Rätin Dr. Cynthia Hog-Angeloni Dr. Anton Malevich Blatt 0 Lösungshinweise 0 0 Aufgabe 0. Es seien die Vektoren u =, v = und w = in R gegeben. a # Finden Sie

Mehr

3. Übungsblatt zur Lineare Algebra I für Physiker

3. Übungsblatt zur Lineare Algebra I für Physiker Fachbereich Mathematik Prof. Dr. Mirjam Dür Dipl. Math. Stefan Bundfuss. Übungsblatt zur Lineare Algebra I für Physiker WS 5/6 6. Dezember 5 Gruppenübung Aufgabe G (Basis und Erzeugendensystem) Betrachte

Mehr

Lineare Algebra und Analytische Geometrie I Winter 2015/16 Erste Klausur

Lineare Algebra und Analytische Geometrie I Winter 2015/16 Erste Klausur Lineare Algebra und Analytische Geometrie I Winter 25/6 Erste Klausur 9.2.26 Name (deutlich lesbar!):....................................................................... Matrikelnummer (deutlich lesbar!):

Mehr

Affine und projektive Räume

Affine und projektive Räume Affine und projektive Räume W. Kühnel Literatur hierzu: G.Fischer, Analytische Geometrie, 7. Aufl., Vieweg 2001 Zur Motivation: Wenn man in einem Vektorraum die Elemente nicht als Vektoren, sondern als

Mehr

4 Vektorräume. 4.1 Definition. 4 Vektorräume Pink: Lineare Algebra 2014/15 Seite 48. Sei K ein Körper.

4 Vektorräume. 4.1 Definition. 4 Vektorräume Pink: Lineare Algebra 2014/15 Seite 48. Sei K ein Körper. 4 Vektorräume Pink: Lineare Algebra 2014/15 Seite 48 4 Vektorräume 4.1 Definition Sei K ein Körper. Definition: Ein Vektorraum über K, oder kurz ein K-Vektorraum, ist ein Tupel (V,+,, 0 V ) bestehend aus

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof Dr H Brenner Osnabrück WS 205/206 Lineare Algebra und analytische Geometrie I Vorlesung 9 Basiswechsel Wir wissen bereits, dass in einem endlichdimensionalen Vektorraum je zwei Basen die gleiche Länge

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Wintersemester 2014/15 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax

Mehr

1 Lineare Abbildungen

1 Lineare Abbildungen 1 Lineare Abbildungen Definition 1 Sei K ein Körper und V und W K-Vektoräume. Eine Abbildung f : V W heisst linear oder Homomoprhismus, wenn gilt: fv 1 + v 2 = fv 1 + fv 2 v 1, v 2 V fλv = λfv λ K, v V

Mehr

Kapitel II. Vektorräume

Kapitel II. Vektorräume Inhalt der Vorlesung LAAG I Prof. Dr. Arno Fehm TU Dresden WS2017/18 Kapitel II. Vektorräume In diesem ganzen Kapitel sei K ein Körper. 1 Definition und Beispiele 1.1 Beispiel. Ist K = R, so haben wir

Mehr

Lineare Algebra I Lösungsvorschlag

Lineare Algebra I Lösungsvorschlag Aufgabe Lineare Algebra I Lösungsvorschlag Wir bezeichnen mit a, a 2, a 3 Q 4 die Spalten der Matrix A. Es ist 7 a + 2a 2 = 7 4 = 7a 3, und wir sehen im l A = a, a 2, a 3 = a, a 2. Da die Vektoren a und

Mehr

1 Zum Aufwärmen. 1.1 Notationen. 1.2 Lineare Abbildungen und Matrizen. 1.3 Darstellungsmatrizen

1 Zum Aufwärmen. 1.1 Notationen. 1.2 Lineare Abbildungen und Matrizen. 1.3 Darstellungsmatrizen 1 Zum Aufwärmen 1.1 Notationen In diesem Teil der Vorlesung bezeichnen wir Körper mit K, Matrizen mit Buchstaben A,B,..., Vektoren mit u,v,w,... und Skalare mit λ,µ,... Die Menge der m n Matrizen bezeichnen

Mehr

Mengen und Abbildungen

Mengen und Abbildungen Mengen und Abbildungen Der Mengenbegriff Durchschnitt, Vereinigung, Differenzmenge Kartesisches Produkt Abbildungen Prinzip der kleinsten natürlichen Zahl Vollständige Induktion Mengen und Abbildungen

Mehr

Lösungen der Aufgaben zu Abschnitt 5.4

Lösungen der Aufgaben zu Abschnitt 5.4 A Filler: Elementare Lineare Algebra Lösungen zu Abschnitt 54 Lösungen der Aufgaben zu Abschnitt 54 B ist linear unabhängig, wenn die Vektorgleichung ( ) ( ) ( ) ( ) 456 λ + λ + λ = bzw das LGS λ +4λ +λ

Mehr

Nachklausur (Modulprüfung) zum Lehrerweiterbildungskurs 6 Lineare Algebra/Analytische Geometrie I WiSe 2016/17

Nachklausur (Modulprüfung) zum Lehrerweiterbildungskurs 6 Lineare Algebra/Analytische Geometrie I WiSe 2016/17 Name, Vorname Matrikel-Nr. Aufg.1 Aufg.2 Aufg.3 Aufg.4 Σ Note bzw. Kennzeichen Nachklausur (Modulprüfung) zum Lehrerweiterbildungskurs 6 Lineare Algebra/Analytische Geometrie I WiSe 2016/17 Bearbeiten

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 4

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 4 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 26/7): Lineare Algebra und analytische Geometrie 4 4. (Frühjahr 27, Thema, Aufgabe ) Zeigen Sie, dass die beiden folgenden Unterräume des R 3 übereinstimmen:

Mehr

11. BASIS, UNTERRAUM, und DIMENSION

11. BASIS, UNTERRAUM, und DIMENSION 11. BASIS, UNTERRAUM, und DIMENSION 1 Basen werden zu unterschiedlichen Zwecken benutzt: Um lineare Abbildungen in ihrer Matrixdarstellung zu vereinfachen, um die Dimension von Vektorräumen und ihren Unterräumen

Mehr

3.9 Elementarmatrizen

3.9 Elementarmatrizen 90 Kapitel III: Vektorräume und Lineare Abbildungen 3.9 Elementarmatrizen Definition 9.1 Unter einer Elementarmatrix verstehen wir eine Matrix die aus einer n n-einheitsmatrix E n durch eine einzige elementare

Mehr

Die lineare Hülle. heißt der Vektor. Linearkombination der Vektoren v i mit Koeffizienten α i. Direkt aus (12.6) folgt

Die lineare Hülle. heißt der Vektor. Linearkombination der Vektoren v i mit Koeffizienten α i. Direkt aus (12.6) folgt Eine Menge v +U mit einem Untervektorraum U nennt man auch eine Nebenklasse des Untervektorraumes U. Sie entsteht, wenn man die Translation τ v auf die Menge U anwendet. Ausdrücke der Form αu + βv, auch

Mehr

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 14: Ferienserie

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 14: Ferienserie D-MAVT Lineare Algebra I HS 7 Prof. Dr. N. Hungerbühler Lösungen Serie 4: Ferienserie . Finden Sie ein Erzeugendensystem des Lösungsraums L R 5 des Systems x + x x 3 + 3x 4 x 5 = 3x x + 4x 3 x 4 + 5x 5

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 05.11.2013 Alexander Lytchak 1 / 14 Linearkombinationen Definition Es sei V ein reeller Vektorraum. Es sei (v i ) i

Mehr

Affine Geometrie (Einfachere, konstruktive Version)

Affine Geometrie (Einfachere, konstruktive Version) Affine Geometrie (Einfachere, konstruktive Version) Def. Affiner Raum der Dimension n über Körper K ist nach Definition K n. Bemerkung. Man könnte Theorie von affinen Raumen auch axiomatisch aufbauen mit

Mehr

Lineare Algebra I - Prüfung Winter 2019

Lineare Algebra I - Prüfung Winter 2019 Lineare Algebra I - Prüfung Winter 209. (20 Punkte) Kreuzen Sie auf dem Abgabeblatt ihre Antwort an. Pro Teilaufgabe ist genau eine der vier Antwortmöglichkeiten richtig. Für jede richtig beantwortete

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine Vektorräume (Teschl/Teschl 9 Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen: Eine

Mehr

Das inhomogene System. A x = b

Das inhomogene System. A x = b Ein homogenes lineares Gleichungssystem A x = 0 mit m Gleichungen und n Unbestimmten hat immer mindestens die Lösung 0. Ist r der Rang von A, so hat das System n r Freiheitsgrade. Insbesondere gilt: Ist

Mehr

4.2 Die adjungierte Abbildung

4.2 Die adjungierte Abbildung 4.2. DIE ADJUNGIERTE ABBILDUNG 177 4.2 Die adjungierte Abbildung Die Vektorräume dieses Paragraphen seien sämtlich euklidisch, die Norm kommt jetzt also vom inneren Produkt her, v = v v. Zu f Hom R (V,

Mehr

Satz 2.8 V sei ein endlichdimensionaler euklidischer Vektorraum. Für jeden Unterraum

Satz 2.8 V sei ein endlichdimensionaler euklidischer Vektorraum. Für jeden Unterraum Orthogonalität 123 Dienstag, 27. April 04 Satz 2.8 V sei ein endlichdimensionaler euklidischer Vektorraum. Für jeden Unterraum U von V gilt dann (a) U + U = V, U U = {0}, U, U = 0. (b) (U ) = U. Wir sagen

Mehr

Lösung zum 2. Übungsblatt

Lösung zum 2. Übungsblatt MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Prof. Dr. D. Rost SoSe 25 Blatt 2 3.5.25 Lösung zum 2. Übungsblatt. Gegeben seien die Vektoren v = 2, v 2 =, v 3 = in R 3 3 2 und ( ) ( ) w =, w 2 2 =, w

Mehr

02. Vektorräume und Untervektorräume

02. Vektorräume und Untervektorräume 02. Vektorräume und Untervektorräume Wir kommen nun zur eigentlichen Definition eines K-Vektorraums. Dabei ist K ein Körper (bei uns meist R oder C). Informell ist ein K-Vektorraum eine Menge V, auf der

Mehr

Vektorräume. 1. v + w = w + v (Kommutativität der Vektoraddition)

Vektorräume. 1. v + w = w + v (Kommutativität der Vektoraddition) Vektorräume In vielen physikalischen Betrachtungen treten Größen auf, die nicht nur durch ihren Zahlenwert charakterisiert werden, sondern auch durch ihre Richtung Man nennt sie vektorielle Größen im Gegensatz

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 6. Aufgabe 6.1. Dr. V. Gradinaru K. Imeri. Herbstsemester 2018.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 6. Aufgabe 6.1. Dr. V. Gradinaru K. Imeri. Herbstsemester 2018. Dr. V. Gradinaru K. Imeri Herbstsemester 8 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 6 Aufgabe 6. Multiple Choice: Online abzugeben. 6.a) (i) Welche der folgenden

Mehr

Lineare Abbildungen und Orthonormalsysteme

Lineare Abbildungen und Orthonormalsysteme KAPITEL Lineare Abbildungen und Orthonormalsysteme. Lineare Abbildungen und Koordinatendarstellungen.. Lineare Abbildungen und ihre Basisdarstellung. Seien V, W Vektorraume uber R. Mit einer Abbildung

Mehr

Vektorräume. Kapitel Definition und Beispiele

Vektorräume. Kapitel Definition und Beispiele Kapitel 3 Vektorräume 3.1 Definition und Beispiele Sei (V,,0) eine abelsche Gruppe, und sei (K, +,, 0, 1) ein Körper. Beachten Sie, dass V und K zunächst nichts miteinander zu tun haben, deshalb sollte

Mehr

Lineare Hülle. span(a) := λ i v i : so dass k N, λ i R und v i A.

Lineare Hülle. span(a) := λ i v i : so dass k N, λ i R und v i A. Lineare Hülle Def A sei eine nichtleere Teilmenge des Vektorraums (V,+, ) Die lineare Hülle von A (Bezeichung: span(a)) ist die Menge aller Linearkombinationen der Elemente aus A { k } span(a) := λ i v

Mehr

Addition: ( 1 ; : : : ; n ) + ( 1 ; : : : ; n ) = ( ; : : : ; n + n ). Skalare Multiplikation: ( 1 ; : : : ; n ) = ( 1 ; : : : ; n ). II. Die Me

Addition: ( 1 ; : : : ; n ) + ( 1 ; : : : ; n ) = ( ; : : : ; n + n ). Skalare Multiplikation: ( 1 ; : : : ; n ) = ( 1 ; : : : ; n ). II. Die Me x 3 VEKTOR AUME In Kapitel 2 betrachteten wir wichtige Raume, die durch unsere Raumvorstellung motiviert waren { die zwei- und dreidimensionalen Raume R 2 und R 3. Jetzt untersuchen wir hoher dimensionale

Mehr

Das Spatprodukt 25. Insbesondere ist das Spatprodukt in jedem Faktor linear. a 1 = aa 2 + ba 3

Das Spatprodukt 25. Insbesondere ist das Spatprodukt in jedem Faktor linear. a 1 = aa 2 + ba 3 Das Spatprodukt 25 (Sp 4) (aa, b, c) a(a, b, c) Insbesondere ist das Spatprodukt in jedem Faktor linear Montag,3 November 23 Satz 92 Drei Vektoren,, Spatprodukt (,, ) ist sind genau dann linear abhängig,

Mehr

Affine Hülle. x x 1 ist lineare Kombination der Vektoren x 2 x 1,x 3 x 1,...,x k x 1. Tatsächlich, in diesem Fall ist λ 1 = 1 λ 2 λ 3...

Affine Hülle. x x 1 ist lineare Kombination der Vektoren x 2 x 1,x 3 x 1,...,x k x 1. Tatsächlich, in diesem Fall ist λ 1 = 1 λ 2 λ 3... Affine Hülle Wiederholung. Der Vektor x K n ist eine lineare Kombination der Vektoren x,...,x k K n, wenn es Zahlen λ,...,λ k K gibt mit x = λ x +... + λ k x k. Def. Gibt es solche Zahlen λ,...,λ k K mit

Mehr

Lösungsskizze zur Hauptklausur Lineare Algebra I

Lösungsskizze zur Hauptklausur Lineare Algebra I Lösungsskizze zur Hauptklausur Lineare Algebra I Aufgabe Seien V und W zwei K-Vektorräume für einen Körper K. a) Wann heißt eine Abbildung f : V W linear? b) Wann heißt eine Abbildung f : V W injektiv?

Mehr

17 Lineare Abbildungen

17 Lineare Abbildungen Chr.Nelius: Lineare Algebra II (SS2005) 1 17 Lineare Abbildungen Wir beginnen mit der Klärung des Abbildungsbegriffes. (17.1) DEF: M und N seien nichtleere Mengen. Eine Abbildung f von M nach N (in Zeichen:

Mehr

Demo für LINEARE ALGEBRA. Vektoren und Vektorraum. Teil 3. Untervektorräume INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Datei Nr.

Demo für   LINEARE ALGEBRA. Vektoren und Vektorraum. Teil 3. Untervektorräume INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Datei Nr. Teil 3 Untervektorräume Stand 1. Juli 011 Datei Nr. 61110 LINEARE ALGEBRA Vektoren und Vektorraum INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Demo für 61110 Vektorrechnung Teil 3 Untervektorräume 51 Inhalt

Mehr

2.3 Basis und Dimension

2.3 Basis und Dimension 23 Basis und Dimension Erinnerung Gegeben ein K-Vektorraum V, ein Vektorensystem x,, x n in V Eine Linearkombination in den x i ist ein Vektor der Form λ x + + λ n x n mit λ i K Die λ i heißen Koeffizienten

Mehr

Musterlösung 7 Lineare Algebra für die Naturwissenschaften

Musterlösung 7 Lineare Algebra für die Naturwissenschaften Musterlösung 7 Lineare Algebra für die Naturwissenschaften Aufgabe Entscheiden Sie, ob folgende Abbildungen linear sind, und geben sie für die linearen Abbildungen eine Matrixdarstellung (in einer Basis

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Matrizen und Vektoren, LGS, Gruppen, Vektorräume 1.1 Multiplikation von Matrizen Gegeben seien die Matrizen A := 1 1 2 0 5 1 8 7 Berechnen Sie alle möglichen

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine) Vektorräume (Teschl/Teschl 9) Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere) Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen:

Mehr

Übungen zu Lineare Algebra 1, NAWI Graz, WS 2018/19 Blatt 1 (3.10.)

Übungen zu Lineare Algebra 1, NAWI Graz, WS 2018/19 Blatt 1 (3.10.) Blatt 1 (3.10.) 1. Von einem Parallelogramm ABCD sind die Punkte A = (2, 1), B = (6, 2) und D = (3, 5) gegeben. Berechnen Sie C. 2. Stellen Sie rechnerisch fest, ob das Viereck ABCD mit A = (2, 3), B =

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R Käppeli L Herrmann W Wu Herbstsemester Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 9 Aufgabe 9 Finden Sie eine Basis des Lösungsraums L R 5 des linearen

Mehr

(1) In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt.

(1) In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt. () In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt. a) Es seien A und B beliebige n n-matrizen mit Einträgen in einem Körper K.

Mehr

Unterlagen zur Vorlesung Algebra und Geometrie in der Schule: Grundwissen über Affine Geometrie. Sommersemester Franz Pauer

Unterlagen zur Vorlesung Algebra und Geometrie in der Schule: Grundwissen über Affine Geometrie. Sommersemester Franz Pauer Unterlagen zur Vorlesung Algebra und Geometrie in der Schule: Grundwissen über Affine Geometrie Sommersemester 2009 Franz Pauer INSTITUT FÜR MATHEMATIK, UNIVERSITÄT INNSBRUCK, TECHNIKERSTRASSE 13, 6020

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Sommersemester 2010 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax = b

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGEBRA Ferienkurs Hanna Schäfer Philipp Gadow INHALT 1 Grundbegriffe 1 1.1 Aussagen und Quantoren 1 1.2 Mengen 2 1.3 Gruppen 3 1.4 Körper 4 1.5 Vektorräume 5 1.6 Basis und Dimension 7 Aufgaben

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Definition. Sei K ein Körper, a ij K für 1 i m, 1 j n und b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2......

Mehr