Seminar zur Energiewirtschaft:

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Seminar zur Energiewirtschaft:"

Transkript

1 Seminar zur Energiewirtschaft: Ermittlung der Zahlungsbereitschaft für erneuerbare Energien bzw. bessere Umwelt Vladimir Udalov 1

2 Modelle mit diskreten abhängigen Variablen 2

3 - Ausgangssituation Eine Dummy-Variable (auch bekannt als binäre, dichotome oder qualitative Variablen) stellt die abhängige Variable dar. Dies bedeutet, dass eine dichotome Struktur der erklärten Variable vorliegt und die abhängige Variable benomialverteilt ist. Um zu Regressionsverfahren für solche Variablen zu gelangen, wendet man den Trick an, ein Wahrscheinlichkeitsmodell zu spezifizieren. y x... x i 0 1 i,1 K i, K i Können wir in diesem Fall eine lineare Regression durchführen? 3

4 - Warum ist eine lineare Regression nicht zulässig? Aus der Exogenitätsannahme folgt: 0 E x E y x x i i i i i E y x P y x P y x i i i i i i P y 1 x x i i i 1. Problem: Das lineare Regressionsmodell führt zu unsinnigen Prognosen der Wahrscheinlichkeit. 4

5 - Warum ist eine lineare Regression nicht zulässig? Heteroskedastie-Problematik: Verteilung des Störterms. P x x P y 0 x 1 x i i i i i i 1 1 P x x P y x x i i i i i i 1 V x x x i i i i 2. Problem: Heteroskedastie liegt vor, da der Fehlerterm von x abhängt. Es kommt zu fehlerhaften Inferenzen sowie Effizienzverlust. 5

6 - Wie kann man das Problem lösen? Man benötigt eine Transformationsfunktion F, die sicherstellt, dass F(x i β) in das Intervall [0,1] fällt. Die beiden am häufigsten verwendeten Funktionen, die diese Annahme erfüllen, sind die Verteilungsfunktionen der Normal- und der logistischen Verteilung. Es handelt sich um Probit und Logit Modelle. 6

7 - Logit Logit basiert auf der logistischen Verteilungsfunktion: y x Pr 1 i i exp 1 exp x i i x 7

8 - Maximum-Likelihood-Methode Die Schätzung des Logit-Modells erfolgt mittels der Maximum- Likelihood-Methode. Bei der Maximum-Likelihood-Methode schätzt man die Parameter β des Modells so, dass die Wahrscheinlichkeit, gerade die beobachteten Daten zu erhalten, maximal wird. 8

9 9

10 - Interpretation der ermittelten Koeffizienten Die Interpretation der Ergebnisse ist deutlich komplexer als im Fall der linearen Regression. Wir können aber Vorzeichen und Signifikanz der Koeffizienten interpretieren. Im Gegensatz zum linearen Modell sind die geschätzten Koeffizienten des Logit-Modells nicht als marginale Effekte zu interpretieren, denn: Pr yi 1 exp x i xi 1 exp x i x 2 Die marginalen Effekte hängen von den exogenen Variablen x i ab und sind daher für jedes Individuum unterschiedlich. i 10

11 - Interpretation der ermittelten Koeffizienten Entweder kann man den Mittelwert (average) über alle Beobachtungen berechnen Pr yi exp x i xi n n 1 exp xi x i 2 oder man berechnet die Effekte im Mittelwert (at mean) der erklärenden Variablen. Pr yi 1 exp x x 1 exp x x 2 11

12 12

13 - Interpretation der ermittelten Koeffizienten Im Mittelwert steigt die Wahrscheinlichkeit, dass Umweltschutz gegenüber dem Wachstum vorgezogen wird, um 3,7 Prozentpunkte, wenn man um eine Einheit höheres Ausbildungsniveau hat. 13

14 - Eine alternative Interpretationsmöglichkeit der ermittelten Koeffizienten y exp x i Pr i 1 Pryi 1 log 1 exp x i 1 Pr yi 1 x Wenn man x um eine Einheit ändert, ändern sich die logarithmierten Chancen um β. Wenn man x um eine Einheit ändert, ändern sich um den Faktor exp(β). Problem: Wie soll man die logarithmierten Chancen interpretieren? i 14

15 15

16 - Güte der Logit-Regression Likelihood ratio test (LR chi2) testet, ob das Modell, was wir spezifiziert haben, besser als das Modell ist, die nur eine Konstante enthält. H0: β 1 = = β n = 0 Wald chi2 entspricht 1146,97 und ist statistisch signifikant. Damit können wir die H0-Hypothese verwerfen. 16

17 - Güte der Logit-Regression Im Falle einer linearen Regression beschreibt das Bestimmtheitsmaß den erklärten Anteil der Variabilität (Varianz) einer abhängigen Variablen durch ein statistisches Modell. Bei einem nominalen oder ordinalen Skalenniveau von y können wir R2 nicht berechnen. Um dennoch ein Bestimmtheitsmaß für ein Logit-Modell zu haben, benutzt man Pseudo R2: LLM Pseudo R21 LL 0 17

Empirische Analysen mit dem SOEP

Empirische Analysen mit dem SOEP Empirische Analysen mit dem SOEP Methodisches Lineare Regressionsanalyse & Logit/Probit Modelle Kurs im Wintersemester 2007/08 Dipl.-Volksw. Paul Böhm Dipl.-Volksw. Dominik Hanglberger Dipl.-Volksw. Rafael

Mehr

John Komlos Bernd Süssmuth. Empirische Ökonomie. Eine Einführung in Methoden und Anwendungen. 4y Springer

John Komlos Bernd Süssmuth. Empirische Ökonomie. Eine Einführung in Methoden und Anwendungen. 4y Springer John Komlos Bernd Süssmuth Empirische Ökonomie Eine Einführung in Methoden und Anwendungen 4y Springer 1 Einführung 1 1.1 Ökonometrie 1 2 Vorüberlegungen und Grundbegriffe 7 2.1 Statistik als Grundlage

Mehr

1 Einführung Ökonometrie... 1

1 Einführung Ökonometrie... 1 Inhalt 1 Einführung... 1 1.1 Ökonometrie... 1 2 Vorüberlegungen und Grundbegriffe... 7 2.1 Statistik als Grundlage der Empirischen Ökonomie... 7 2.2 Abgrenzung und Parallelen zu den Naturwissenschaften...

Mehr

Klassen diskreter Variablen

Klassen diskreter Variablen Modelle diskreter Variablen Klassen diskreter Variablen binär multinomial Weitere Klassifizierung multinomialer diskreter Variablen: kategorial y = 1, falls Einkommen < 3000 e. y = 2, falls Einkommen zw.

Mehr

Wiederholungsübungen zu den Kapiteln 7 bis 11

Wiederholungsübungen zu den Kapiteln 7 bis 11 Mittelwert-Tests Übung Wiederholungsübungen zu den Kapiteln 7 bis 11 In dieser Übung wird der Datensatz 4 verwendet. In dem (fiktiven) Datensatz sind für 50 Personen vier Variablen erfasst: das Geschlecht,

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 6 Genzwertsätze Einführung 1 Wahrscheinlichkeit: Definition und Interpretation

Mehr

Übung V Lineares Regressionsmodell

Übung V Lineares Regressionsmodell Universität Ulm 89069 Ulm Germany Dipl.-WiWi Michael Alpert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2007 Übung

Mehr

Bivariate Analyseverfahren

Bivariate Analyseverfahren Bivariate Analyseverfahren Bivariate Verfahren beschäftigen sich mit dem Zusammenhang zwischen zwei Variablen Beispiel: Konservatismus/Alter Zusammenhangsmaße beschreiben die Stärke eines Zusammenhangs

Mehr

X =, y In welcher Annahme unterscheidet sich die einfache KQ Methode von der ML Methode?

X =, y In welcher Annahme unterscheidet sich die einfache KQ Methode von der ML Methode? Aufgabe 1 (25 Punkte) Zur Schätzung der Produktionsfunktion des Unternehmens WV wird ein lineares Regressionsmodell der Form angenommen. Dabei ist y t = β 1 + x t2 β 2 + e t, t = 1,..., T (1) y t : x t2

Mehr

Musterlösung. Modulklausur Multivariate Verfahren

Musterlösung. Modulklausur Multivariate Verfahren Musterlösung Modulklausur 31821 Multivariate Verfahren 25. September 2015 Aufgabe 1 (15 Punkte) Kennzeichnen Sie die folgenden Aussagen zur Regressionsanalyse mit R für richtig oder F für falsch. F Wenn

Mehr

ε heteroskedastisch BINARY CHOICE MODELS Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS?

ε heteroskedastisch BINARY CHOICE MODELS Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS? BINARY CHOICE MODELS 1 mit Pr( Y = 1) = P Y = 0 mit Pr( Y = 0) = 1 P Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS? Y i = X i β + ε i Probleme: Nonsense Predictions

Mehr

Teil: lineare Regression

Teil: lineare Regression Teil: lineare Regression 1 Einführung 2 Prüfung der Regressionsfunktion 3 Die Modellannahmen zur Durchführung einer linearen Regression 4 Dummyvariablen 1 Einführung o Eine statistische Methode um Zusammenhänge

Mehr

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp Dr. Maike M. Burda Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 8.-10. Januar 2010 BOOTDATA.GDT: 250 Beobachtungen für die Variablen... cm:

Mehr

Binäre abhängige Variablen

Binäre abhängige Variablen Binäre abhängige Variablen Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Einführung Oft wollen wir qualitative Variablen

Mehr

Logistische Regression I. Odds, Logits, Odds Ratios, Log Odds Ratios

Logistische Regression I. Odds, Logits, Odds Ratios, Log Odds Ratios Logistische Regression I. Odds, Logits, Odds Ratios, Log Odds Ratios PD Dr.Gabriele Doblhammer, Fortgescrittene Methoden, SS2004 Logistische Regression Tabelle 2 Alter und Symptome von Herz-/Kreislauferkrankung(CD)

Mehr

Kategoriale abhängige Variablen: Logit- und Probit -Modelle. Statistik II

Kategoriale abhängige Variablen: Logit- und Probit -Modelle. Statistik II Kategoriale abhängige Variablen: Logit- und Probit -Modelle Statistik II Wiederholung Literatur Annahmen und Annahmeverletzungen Funktionen Exponenten, Wurzeln usw. Das Problem Das binäre Logit-Modell

Mehr

Logistische Regression

Logistische Regression Logistische Regression Teil 2: Beispiel Dirk Enzmann Fortgeschrittene quantitative Methoden der Kriminologie 29.04.206 Universität Hamburg Dirk Enzmann (Hamburg) Logistische Regression UHH, 29.04.206 /

Mehr

2.3 Nichtlineare Regressionsfunktion

2.3 Nichtlineare Regressionsfunktion Nichtlineare Regressionsfunktion Bisher: lineares Regressionsmodell o Steigung d. Regressionsgerade ist konstant o Effekt einer Änderung von X auf Y hängt nicht vom Niveau von X oder von anderen Regressoren

Mehr

Kapitel 4: Binäre Regression

Kapitel 4: Binäre Regression Kapitel 4: Binäre Regression Steffen Unkel (basierend auf Folien von Nora Fenske) Statistik III für Nebenfachstudierende WS 2013/2014 4.1 Motivation Ausgangssituation Gegeben sind Daten (y i, x i1,...,

Mehr

Logistische Regression

Logistische Regression Logistische Regression Werner Brannath VO Biostatistik im WS 2006/2007 Inhalt Logistische Regression Beispiel 1: Herzerkrankungsdaten aus Framingham Log Odds Modell Beispiel 1: Einfluss von Blutdruck Maximum

Mehr

Ordinale abhängige Variablen. Einführung Regressionsmodelle für ordinale Variablen Empirisches Beispiel Ausblick

Ordinale abhängige Variablen. Einführung Regressionsmodelle für ordinale Variablen Empirisches Beispiel Ausblick Kap. 6: Ordinale abhängige Variablen Einführung Regressionsmodelle für ordinale Variablen Empirisches Beispiel Ausblick 6.1 Einführung Typische ökonomische Beispiele für ordinale abhängige Variablen: Bildungsniveau

Mehr

Statistik II Übung 4: Skalierung und asymptotische Eigenschaften

Statistik II Übung 4: Skalierung und asymptotische Eigenschaften Statistik II Übung 4: Skalierung und asymptotische Eigenschaften Diese Übung beschäftigt sich mit der Skalierung von Variablen in Regressionsanalysen und mit asymptotischen Eigenschaften von OLS. Verwenden

Mehr

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische

Mehr

Lösung Übungsblatt 5

Lösung Übungsblatt 5 Lösung Übungsblatt 5 5. Januar 05 Aufgabe. Die sogenannte Halb-Normalverteilung spielt eine wichtige Rolle bei der statistischen Analyse von Ineffizienzen von Produktionseinheiten. In Abhängigkeit von

Mehr

Das lineare Regressionsmodell

Das lineare Regressionsmodell Universität Ulm 89069 Ulm Germany Prof. Dr. Werner Smolny Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Institutsdirektor Das ökonomische

Mehr

Die Regressionsanalyse

Die Regressionsanalyse Die Regressionsanalyse Zielsetzung: Untersuchung und Quantifizierung funktionaler Abhängigkeiten zwischen metrisch skalierten Variablen eine unabhängige Variable Einfachregression mehr als eine unabhängige

Mehr

Lehrstuhl für Statistik und emp. Wirtschaftsforschung, Prof. R. T. Riphahn, Ph.D. Bachelorprüfung, Praxis der empirischen Wirtschaftsforschung

Lehrstuhl für Statistik und emp. Wirtschaftsforschung, Prof. R. T. Riphahn, Ph.D. Bachelorprüfung, Praxis der empirischen Wirtschaftsforschung Lehrstuhl für Statistik und emp. Wirtschaftsforschung, Prof. R. T. Riphahn, Ph.D. Bachelorprüfung, Praxis der empirischen Wirtschaftsforschung Aufgabe 1: [14,5 Punkte] Sie interessieren sich für die Determinanten

Mehr

Inferenz im multiplen Regressionsmodell

Inferenz im multiplen Regressionsmodell 1 / 29 Inferenz im multiplen Regressionsmodell Kapitel 4, Teil 1 Ökonometrie I Michael Hauser 2 / 29 Inhalt Annahme normalverteilter Fehler Stichprobenverteilung des OLS Schätzers t-test und Konfidenzintervall

Mehr

Statistik II. IV. Hypothesentests. Martin Huber

Statistik II. IV. Hypothesentests. Martin Huber Statistik II IV. Hypothesentests Martin Huber 1 / 41 Übersicht Struktur eines Hypothesentests Stichprobenverteilung t-test: Einzelner-Parameter-Test F-Test: Multiple lineare Restriktionen 2 / 41 Struktur

Mehr

Kategoriale abhängige Variablen:

Kategoriale abhängige Variablen: Kategoriale abhängige Variablen: Logit- und Probit -Modelle Statistik II Literatur Annahmen und Annahmeverletzungen Funktionen Exponenten, Wurzeln usw. Das Problem Das binäre Logit-Modell Statistik II

Mehr

1. Lösungen zu Kapitel 7

1. Lösungen zu Kapitel 7 1. Lösungen zu Kapitel 7 Übungsaufgabe 7.1 Um zu testen ob die Störterme ε i eine konstante Varianz haben, sprich die Homogenitätsannahme erfüllt ist, sind der Breusch-Pagan-Test und der White- Test zwei

Mehr

y t = 30, 2. Benutzen Sie die Beobachtungen bis einschließlich 2002, um den Koeffizientenvektor β mit der KQ-Methode zu schätzen.

y t = 30, 2. Benutzen Sie die Beobachtungen bis einschließlich 2002, um den Koeffizientenvektor β mit der KQ-Methode zu schätzen. Aufgabe 1 (25 Punkte Zur Schätzung des Werbe-Effekts in einem Getränke-Unternehmen wird das folgende lineare Modell aufgestellt: Dabei ist y t = β 1 + x t2 β 2 + e t. y t : x t2 : Umsatz aus Getränkeverkauf

Mehr

Multivariate Verfahren

Multivariate Verfahren Selbstkontrollarbeit 1 Multivariate Verfahren Musterlösung Aufgabe 1 (40 Punkte) Auf der dem Kurs beigelegten CD finden Sie im Unterverzeichnis Daten/Excel/ die Datei zahlen.xlsx. Alternativ können Sie

Mehr

Statistische Modellierung Merkblatt

Statistische Modellierung Merkblatt Inhaltsverzeichnis Statistische Modellierung Merkblatt Welches Modell nimmt man wann?... 1 Logit:... 2 Probit:... 2 Poisson:...2 Loglinear:... 2 multinomiales Logit:... 2 Ordinales Logit (PROC LOGISTIC

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Inferenzstatistik in Regressionsmodellen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für

Mehr

Multivariate Statistische Methoden

Multivariate Statistische Methoden Multivariate Statistische Methoden und ihre Anwendung in den Wirtschafts- und Sozialwissenschaften Von Prof. Dr. Hans Peter Litz Carl von Ossietzky Universität Oldenburg v..v.-'... ':,. -X V R.Oldenbourg

Mehr

Kapitel 4. Zensierte (censored) und gestutzte (truncated) abhängige Variablen, Sample Selection

Kapitel 4. Zensierte (censored) und gestutzte (truncated) abhängige Variablen, Sample Selection Kapitel 4 Zensierte (censored) und gestutzte (truncated) abhängige Variablen, Sample Selection In den vorhergehenden Abschnitten haben wir uns mit Fällen beschäftigt, in denen die abhängige Variable y

Mehr

Logit-Analyse mit ordinalen und nominalen abhängigen Variablen

Logit-Analyse mit ordinalen und nominalen abhängigen Variablen Logit-Analyse mit ordinalen und nominalen abhängigen Variablen Regressionsmodelle für Politikwissenschaftler Übersicht Das multinomiale Logit-Modell Das konditionale Logit-Modell Regressionsmodelle für

Mehr

1 Beispiel zur Methode der kleinsten Quadrate

1 Beispiel zur Methode der kleinsten Quadrate 1 Beispiel zur Methode der kleinsten Quadrate 1.1 Daten des Beispiels t x y x*y x 2 ŷ ˆɛ ˆɛ 2 1 1 3 3 1 2 1 1 2 2 3 6 4 3.5-0.5 0.25 3 3 4 12 9 5-1 1 4 4 6 24 16 6.5-0.5 0.25 5 5 9 45 25 8 1 1 Σ 15 25

Mehr

Multivariate Statistische Methoden und ihre Anwendung

Multivariate Statistische Methoden und ihre Anwendung Multivariate Statistische Methoden und ihre Anwendung in den Wirtschafts- und Sozialwissenschaften Von Prof. Dr. Hans Peter Litz Carl von Ossietzky Universität Oldenburg R. Oldenbourg Verlag München Wien

Mehr

2.Tutorium Generalisierte Regression

2.Tutorium Generalisierte Regression 2.Tutorium Generalisierte Regression - Binäre Regression - Moritz Berger: 04.11.2013 und 11.11.2013 Shuai Shao: 06.11.2013 und 13.11.2013 Institut für Statistik, LMU München 1 / 16 Gliederung 1 Erweiterte

Mehr

Datenanalyse mit Excel und Gretl

Datenanalyse mit Excel und Gretl Dozent: Christoph Hindermann christoph.hindermann@uni-erfurt.de Datenanalyse mit Excel und Gretl Teil Titel 2: Gretl 1 Teil 2: Gretl Datenanalyse mit Excel und Gretl Teil Titel 2: Gretl 2 Modellannahmen

Mehr

Countdata, Postestimation und Modellvergleich

Countdata, Postestimation und Modellvergleich Countdata, Statistik II 1 Literatur 2 3 4 Statistik II Countdata (1/29) Literatur Zum Nachlesen Für heute: Scott/Freese ch. 8 Für nächste Woche: Wooldridge Kapitel 10.1 und 10.2 (im Reader) Statistik II

Mehr

Lineare Regression II

Lineare Regression II Lineare Regression II Varianzanalyse als multiple Regession auf Designvariablen Das lineare Regressionsmodell setzt implizit voraus, dass nicht nur die abhängige, sondern auch die erklärenden Variablen

Mehr

Klausur in Mikroökonometrie Dauer: 90 Minuten

Klausur in Mikroökonometrie Dauer: 90 Minuten Prof. Regina T. Riphahn, Ph.D. Wintersemester 2003/04 Klausur in Mikroökonometrie Dauer: 90 Minuten Hinweis: Die Punktverteilung der Aufgaben entspricht dem empfohlenen zeitlichen Gewicht bei der Beantwortung.

Mehr

Institut für Soziologie Dipl.-Soz. Benjamin Gedon. Methoden 2. Logistische Regression II

Institut für Soziologie Dipl.-Soz. Benjamin Gedon. Methoden 2. Logistische Regression II Institut für Soziologie Dipl.-Soz. Methoden 2 Logistische Regression II Bringen Sie zur nächsten Übung und in die Klausur einen (nicht programmierbaren) Taschenrechner mit! # 2 Programm Wiederholung der

Mehr

Maximum-Likelihood Schätzung

Maximum-Likelihood Schätzung Maximum-Likelihood Schätzung VL Forschungsmethoden 1 Wiederholung Einführung: Schätzung 2 Likelihood-Schätzung und Generalisiertes Lineares Modell Zufallsverteilungen 3 Lernziele 1 Grundzüge der Likelihood-Schätzung

Mehr

4.1. Verteilungsannahmen des Fehlers. 4. Statistik im multiplen Regressionsmodell Verteilungsannahmen des Fehlers

4.1. Verteilungsannahmen des Fehlers. 4. Statistik im multiplen Regressionsmodell Verteilungsannahmen des Fehlers 4. Statistik im multiplen Regressionsmodell In diesem Kapitel wird im Abschnitt 4.1 zusätzlich zu den schon bekannten Standardannahmen noch die Annahme von normalverteilten Residuen hinzugefügt. Auf Basis

Mehr

Nicht-kontinuierliche abhängige Variablen: Das generalisierte lineare Modell und die Parameterschätzung via Maximum Likelihood

Nicht-kontinuierliche abhängige Variablen: Das generalisierte lineare Modell und die Parameterschätzung via Maximum Likelihood Nicht-kontinuierliche abhängige Variablen: Das generalisierte lineare Modell und die Parameterschätzung via Maximum Likelihood Interaktionseffekte Varianz-Kovarianz-Matrix Interaktionseffekte Varianz-Kovarianz-Matrix

Mehr

Das Lineare Regressionsmodell

Das Lineare Regressionsmodell Das Lineare Regressionsmodell Bivariates Regressionsmodell Verbrauch eines Pkw hängt vom Gewicht des Fahrzeugs ab Hypothese / Theorie: Je schwerer ein Auto, desto mehr wird es verbrauchen Annahme eines

Mehr

Statistik I. Zusammenfassung und wichtiges zur Prüfungsvorbereitung. Malte Wissmann. 9. Dezember Universität Basel.

Statistik I. Zusammenfassung und wichtiges zur Prüfungsvorbereitung. Malte Wissmann. 9. Dezember Universität Basel. Zusammenfassung und wichtiges zur Prüfungsvorbereitung 9. Dezember 2008 Begriffe Kenntnis der wichtigen Begriffe und Unterscheidung dieser. Beispiele: Merkmal, Merkmalsraum, etc. Skalierung: Nominal etc

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 1 Inhalt der heutigen Vorlesung Statistik und Wahrscheinlichkeitsrechnung Zusammenfassung der vorherigen Vorlesung Übersicht über Schätzung und

Mehr

Multivariate Verfahren

Multivariate Verfahren Selbstkontrollarbeit 1 Multivariate Verfahren Diese Selbstkontrollarbeit bezieht sich auf die Kapitel 1 bis 4 der Kurseinheit 1 (Multivariate Statistik) des Kurses Multivariate Verfahren (883). Hinweise:

Mehr

Ziel: Vorhersage eines Kriteriums/Regressand Y durch einen Prädiktor/Regressor X.

Ziel: Vorhersage eines Kriteriums/Regressand Y durch einen Prädiktor/Regressor X. Lineare Regression Einfache Regression Beispieldatensatz: trinkgeld.sav Ziel: Vorhersage eines Kriteriums/Regressand Y durch einen Prädiktor/Regressor X. H0: Y lässt sich nicht durch X erklären, das heißt

Mehr

Zeitreihenanalyse. Zerlegung von Zeitreihen Saisonindex, saisonbereinigte Zeitreihe Trend und zyklische Komponente Prognose Autokorrelation

Zeitreihenanalyse. Zerlegung von Zeitreihen Saisonindex, saisonbereinigte Zeitreihe Trend und zyklische Komponente Prognose Autokorrelation Zeitreihenanalyse Zerlegung von Zeitreihen Saisonindex, saisonbereinigte Zeitreihe Trend und zyklische Komponente Prognose Autokorrelation Beispiel für Zeitreihe Andere Anwendungen Inventarmanagment Produktionsplanung

Mehr

Dr. Matthias Rudolf: M3 Multivariate Statistik Vorlesung LogRA. Folie Nr. 1

Dr. Matthias Rudolf: M3 Multivariate Statistik Vorlesung LogRA. Folie Nr. 1 2.1 Beispiele 2.2 Odds Ratio 2.3 Modell der logistischen Regression 2.3.1 Modellgleichung 2.3.2 Voraussetzungen 2.4 Schätzungen, Tests und Modellgüte 2.4.1 Schätzung der logistischen Regressionskoeffizienten

Mehr

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2013

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2013 Einführung in die Statistik für Politikwissenschaftler Sommersemester 2013 1. Welche Aussage zur Statistik (in den Sozialwissenschaften) sind richtig? (2 Punkte) ( ) Statistik ist die Lehre von Methoden

Mehr

Logistische Regression in SAS

Logistische Regression in SAS Logistische Regression in SAS Oliver Kuß Medizinische Universitätsklinik, Abt. Klinische Sozialmedizin, Bergheimer Str. 58, 69115 Heidelberg, email: okuss@med.uni-heidelberg.de 3. Konferenz für SAS -Anwender

Mehr

Modell (Konstante) 0,411 0,155 male 0,212 0,13 job 0,119 0,131 alcohol 0,255 0,05 a. Abhängige Variable: skipped

Modell (Konstante) 0,411 0,155 male 0,212 0,13 job 0,119 0,131 alcohol 0,255 0,05 a. Abhängige Variable: skipped Aufgabe 1 [14 Punkte] Sie möchten untersuchen, wovon die Abwesenheit der Studierenden in den Vorlesungen an einer Universität abhängt. Sie verfügen über einen Datensatz zu 282 Studierenden mit folgenden

Mehr

Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen)

Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) 3 Einfache lineare Regression Einfache lineare Modelle mit R 36 Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) > summary(lm(y~x)) Call: lm(formula =

Mehr

Statistik II Übung 1: Einfache lineare Regression

Statistik II Übung 1: Einfache lineare Regression Statistik II Übung 1: Einfache lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen dem Lohneinkommen von sozial benachteiligten Individuen (16-24 Jahre alt) und der Anzahl der

Mehr

Die Funktion f wird als Regressionsfunktion bezeichnet.

Die Funktion f wird als Regressionsfunktion bezeichnet. Regressionsanalyse Mit Hilfe der Techniken der klassischen Regressionsanalyse kann die Abhängigkeit metrischer (intervallskalierter) Zielgrößen von metrischen (intervallskalierten) Einflussgrößen untersucht

Mehr

Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik. 7. Februar 2008

Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik. 7. Februar 2008 L. Fahrmeir, G. Walter Department für Statistik Bitte für die Korrektur freilassen! Aufgabe 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik 7. Februar 8 Hinweise:. Überprüfen

Mehr

Prüfung im Fach Ökonometrie im WS 2011/12 Aufgabenteil. Name, Vorname. Matrikelnr. Studiengang. E-Mail-Adresse. Unterschrift

Prüfung im Fach Ökonometrie im WS 2011/12 Aufgabenteil. Name, Vorname. Matrikelnr. Studiengang. E-Mail-Adresse. Unterschrift Lehrstuhl für Statistik und empirische Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Prüfung im Fach Ökonometrie im WS 2011/12 Aufgabenteil Name, Vorname Matrikelnr. Studiengang E-Mail-Adresse Unterschrift

Mehr

Unterlagen zu Fisher s Exact Test, Vergleich von Anteilswerten und logistischer Regression. Robin Ristl. Wintersemester 2012/13

Unterlagen zu Fisher s Exact Test, Vergleich von Anteilswerten und logistischer Regression. Robin Ristl. Wintersemester 2012/13 Unterlagen zu Fisher s Exact Test, Vergleich von Anteilswerten und logistischer Regression Robin Ristl Wintersemester 2012/13 1 Exakter Test nach Fisher Alternative zum Chi-Quadrat Unabhängigkeitstest

Mehr

Statistik II Übung 2: Multivariate lineare Regression

Statistik II Übung 2: Multivariate lineare Regression Statistik II Übung 2: Multivariate lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen Flugpreisen und der Flugdistanz, dem Passagieraufkommen und der Marktkonzentration. Verwenden

Mehr

Analyse von Querschnittsdaten. Signifikanztests I Basics

Analyse von Querschnittsdaten. Signifikanztests I Basics Analyse von Querschnittsdaten Signifikanztests I Basics Warum geht es in den folgenden Sitzungen? Kontinuierliche Variablen Generalisierung kategoriale Variablen Datum 13.10.2004 20.10.2004 27.10.2004

Mehr

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell Universität Ulm 89069 Ulm Germany Dipl.-WiWi Christian Peukert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2010

Mehr

FRAGESTUNDE WS 2016/17 QM 2. Dr. Christian Schwarz 1

FRAGESTUNDE WS 2016/17 QM 2. Dr. Christian Schwarz 1 FRAGESTUNDE Dr. Christian Schwarz 1 #2 - Allgemein Q: Müssen wir den Standard Error händisch berechnen können? R: Nein. Q: Hat das Monte Carlo Experiment irgendeine Bedeutung für uns im Hinblick auf die

Mehr

Nachschreibklausur im Anschluss an das SS 2009

Nachschreibklausur im Anschluss an das SS 2009 Nachschreibklausur im Anschluss an das SS 2009 08. Oktober 2009 Lehrstuhl: Prüfungsfach: Prüfer: Hilfsmittel: Klausurdauer: Wirtschaftspolitik Empirische Wirtschaftsforschung Prof. Dr. K. Kraft Nicht-programmierbarer

Mehr

Statistik II Übung 2: Multivariate lineare Regression

Statistik II Übung 2: Multivariate lineare Regression Statistik II Übung 2: Multivariate lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen Flugpreisen und der Flugdistanz, dem Passagieraufkommen und der Marktkonzentration. Verwenden

Mehr

Beispiele für Prüfungsfragen Ökonometrie I und II

Beispiele für Prüfungsfragen Ökonometrie I und II Beispiele für Prüfungsfragen Ökonometrie I und II Von den sieben Beispielen von Prüfungsfragen wären in einer konkreten einstündigen Prüfung etwa deren zwei zu beantworten. Aufgaben 3, 4, 6 und 7 beziehen

Mehr

Über die Autoren 9. Widmung von Roberto 9 Danksagung von Roberto 10. Einleitung 21

Über die Autoren 9. Widmung von Roberto 9 Danksagung von Roberto 10. Einleitung 21 Inhaltsverzeichnis Über die Autoren 9 Widmung von Roberto 9 Danksagung von Roberto 10 Einleitung 21 Über dieses Buch 21 Törichte Annahmen über den Leser... 22 Symbole, die in diesem Buch verwendet werden

Mehr

Prognoseintervalle für y 0 gegeben x 0

Prognoseintervalle für y 0 gegeben x 0 10 Lineare Regression Punkt- und Intervallprognosen 10.5 Prognoseintervalle für y 0 gegeben x 0 Intervallprognosen für y 0 zur Vertrauenswahrscheinlichkeit 1 α erhält man also analog zu den Intervallprognosen

Mehr

Statistik II Übung 1: Einfache lineare Regression

Statistik II Übung 1: Einfache lineare Regression Statistik II Übung 1: Einfache lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen dem Lohneinkommen von sozial benachteiligten Individuen (16-24 Jahre alt) und der Anzahl der

Mehr

Kapitel 3 Schließende lineare Regression Einführung. induktiv. Fragestellungen. Modell. Matrixschreibweise. Annahmen.

Kapitel 3 Schließende lineare Regression Einführung. induktiv. Fragestellungen. Modell. Matrixschreibweise. Annahmen. Kapitel 3 Schließende lineare Regression 3.1. Einführung induktiv Fragestellungen Modell Statistisch bewerten, der vorher beschriebenen Zusammenhänge auf der Basis vorliegender Daten, ob die ermittelte

Mehr

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell Kapitel 8 Einfache Regression Josef Leydold c 2006 Mathematische Methoden VIII Einfache Regression 1 / 21 Lernziele Lineares Regressionsmodell Anpassen des linearen Regressionsmodells, OLS Eigenschaften

Mehr

Kapitel 15. Verletzung der Annahme A3: Variable Parameterwerte

Kapitel 15. Verletzung der Annahme A3: Variable Parameterwerte Kapitel 15 Verletzung der Annahme A3: Variable Parameterwerte v Auer, Ökonometrie 15 2 Das ökonometrische Modell einer Mehrfachregression lautet: y t = α + β 1 x 1t + β 2 x 2t + + β K x Kt + u t Annahme

Mehr

Analyse kategorialer Variablen Schriftliche Ausarbeitung des Referats vom 23. Mai 2002

Analyse kategorialer Variablen Schriftliche Ausarbeitung des Referats vom 23. Mai 2002 Universität Tübingen Tübingen, im Mai 2002 Geographisches Institut Sommersemester 2002 Seminar Verarbeitung Geographischer Daten Dozent: Dr. H.-J. Rosner Referenten: Katrin Oehlkers, Helke Neuendorff,

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Hypothesen: Fehler 1. und 2. Art, Power eines statistischen Tests

Hypothesen: Fehler 1. und 2. Art, Power eines statistischen Tests ue biostatistik: hypothesen, fehler 1. und. art, power 1/8 h. lettner / physik Hypothesen: Fehler 1. und. Art, Power eines statistischen Tests Die äußerst wichtige Tabelle über die Zusammenhänge zwischen

Mehr

Klausurvorbereitung - Statistik

Klausurvorbereitung - Statistik Aufgabe 1 Klausurvorbereitung - Statistik Studenten der Politikwissenschaft der Johannes Gutenberg-Universität wurden befragt, seit wie vielen Semestern sie eingeschrieben sind. Berechnen Sie für die folgenden

Mehr

Bereiche der Statistik

Bereiche der Statistik Bereiche der Statistik Deskriptive / Exploratorische Statistik Schließende Statistik Schließende Statistik Inferenz-Statistik (analytische, schließende oder konfirmatorische Statistik) baut auf der beschreibenden

Mehr

Institut für Soziologie Christian Ganser. Methoden 2. Regressionsanalyse II: Lineare multiple Regression

Institut für Soziologie Christian Ganser. Methoden 2. Regressionsanalyse II: Lineare multiple Regression Institut für Soziologie Christian Ganser Methoden 2 Regressionsanalyse II: Lineare multiple Regression Inhalt 1. Anwendungsbereich 2. Vorgehensweise bei multipler linearer Regression 3. Beispiel 4. Modellannahmen

Mehr

Bachelorprüfung WS 2012/13

Bachelorprüfung WS 2012/13 Lehrstuhl für Statistik und empirische Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Fach: Praxis der empirischen Wirtschaftsforschung Prüfer: Prof. Regina T. Riphahn, Ph.D. Bachelorprüfung WS 2012/13

Mehr

Institut für Soziologie. Methoden 2. Regressionsanalyse I: Einfache lineare Regression

Institut für Soziologie. Methoden 2. Regressionsanalyse I: Einfache lineare Regression Institut für Soziologie Methoden 2 Regressionsanalyse I: Einfache lineare Regression Programm Anwendungsbereich Vorgehensweise Interpretation Annahmen Zusammenfassung Übungsaufgabe Literatur # 2 Anwendungsbereich

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Analyse und Modellierung von Daten von Prof. Dr. Rainer Schlittgen Universität Hamburg 12., korrigierte Auflage Oldenbourg Verlag München Inhaltsverzeichnis 1 Statistische Daten

Mehr

2. Generieren Sie deskriptive Statistiken (Mittelwert, Standardabweichung) für earny3 und kidsunder6yr3 und kommentieren Sie diese kurz.

2. Generieren Sie deskriptive Statistiken (Mittelwert, Standardabweichung) für earny3 und kidsunder6yr3 und kommentieren Sie diese kurz. Statistik II Übung : Einfache lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen dem Lohneinkommen von sozial benachteiligten Individuen (6-24 Jahre alt) und der Anzahl der unter

Mehr

Bachelorprüfung WS 2012/13 - MUSTERLÖSUNG

Bachelorprüfung WS 2012/13 - MUSTERLÖSUNG Lehrstuhl für Statistik und empirische Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Bachelorprüfung WS 2012/13 - MUSTERLÖSUNG Fach: Praxis der empirischen Wirtschaftsforschung Prüfer: Prof. Regina

Mehr

entschieden hat, obwohl die Merkmalsausprägungen in der Grundgesamtheit voneinander abhängig sind.

entschieden hat, obwohl die Merkmalsausprägungen in der Grundgesamtheit voneinander abhängig sind. Bsp 1) Die Wahrscheinlichkeit dafür, dass eine Glühbirne länger als 200 Stunden brennt, beträgt 0,2. Wie wahrscheinlich ist es, dass von 10 Glühbirnen mindestens eine länger als 200 Stunden brennt? (Berechnen

Mehr

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Es können von den Antworten alle, mehrere oder keine Antwort(en) richtig sein. Nur bei einer korrekten Antwort (ohne Auslassungen

Mehr

Inhaltsverzeichnis. Über die Autoren Einleitung... 21

Inhaltsverzeichnis. Über die Autoren Einleitung... 21 Inhaltsverzeichnis Über die Autoren.... 7 Einleitung... 21 Über dieses Buch... 21 Was Sie nicht lesen müssen... 22 Törichte Annahmen über den Leser... 22 Wie dieses Buch aufgebaut ist... 23 Symbole, die

Mehr

Bivariate Zusammenhänge

Bivariate Zusammenhänge Bivariate Zusammenhänge 40 60 80 Bivariater Zusammenhang: Zusammenhang zwischen zwei Variablen weight (kg) Gibt es einen Zusammenhang zwischen Größe & Gewicht? (am Beispieldatensatz) Offensichtlich positiver

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS Sommersemester 2009 Statistik mit SPSS 15. Mai 2009 15. Mai 2009 Statistik Dozentin: mit Esther SPSSOchoa Fernández 1 Überblick 1. Korrelation vs. Regression 2. Ziele der Regressionsanalyse 3. Syntax für

Mehr

Informationen zur KLAUSUR am

Informationen zur KLAUSUR am Wiederholung und Fragen 1 Informationen zur KLAUSUR am 24.07.2009 Raum: 032, Zeit : 8:00 9:30 Uhr Bitte Lichtbildausweis mitbringen! (wird vor der Klausur kontrolliert) Erlaubte Hilfsmittel: Alle Unterlagen,

Mehr

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandelt die Verteilung einer Variablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

Statistischer Rückschluss und Testen von Hypothesen

Statistischer Rückschluss und Testen von Hypothesen Statistischer Rückschluss und Testen von Hypothesen Statistischer Rückschluss Lerne von der Stichprobe über Verhältnisse in der Grundgesamtheit Grundgesamtheit Statistischer Rückschluss lerne aus Analyse

Mehr

Lehrstuhl für Statistik und empirische Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Prüfung im Fach Ökonometrie im WS 2011/12 Lösungsskizze

Lehrstuhl für Statistik und empirische Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Prüfung im Fach Ökonometrie im WS 2011/12 Lösungsskizze Lehrstuhl für Statistik und empirische irtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Prüfung im ach Ökonometrie im S 20/2 Lösungsskizze Aufgabe (.5 Punkte) Sie verfügen über einen Datensatz, der Informationen

Mehr