Statistik und Wahrscheinlichkeitsrechnung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Statistik und Wahrscheinlichkeitsrechnung"

Transkript

1 Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler

2 Warum Statistik und Wahrscheinlichkeits rechnung im Ingenieurwesen? Zusammenfassung der letzten Vorlesung Statistik und Wahrscheinlichkeitsrechnung ist im Ingenieurwesen notwendig, um: Unsicherheiten im Zusammenhang mit Ingenieurmodellen zu quantifizieren. die Ergebnisse von Experimenten zu dokumentieren und zu bewerten. die Wichtigkeit von unsicheren Einflussgrössen beurteilen zu können. effiziente Entscheidungen treffen zu können

3 Aufbau der Vorlesung

4 Karten Warm up Was studieren Sie? Bauwesen Geodäsie Umwelt

5 Kleine Denkaufgabe Welchen Nutzen hat Statistik und Wahrscheinlichkeitsrechnung im Ingenieurwesen? Im Ingenieurwesen keinen nützt höchstens dem Verständnis von Wahlergebnissen. Ermöglicht Entscheidungsfindung bei aussergewöhnlichen Fragestellungen. Weiss nicht

6 Inhalte der heutigen Vorlesung Ziel: Daten Modellbildung Probabilistisches Modell Im ersten Schritt werden wir die Daten nur beschreiben: numerisch Wahrscheinlichkeit h hk it Konsequenzen von Ereignissen von Ereignissen Risiken grafisch Entscheidungsfindung

7 Inhalte der heutigen Vorlesung Überblick der beschreibenden Statistik Numerische Zusammenfassungen Mit welchen einfachen Zahlen können Datenmengen charakterisiert werden? Grafische DarstellungvonDatenmengen Datenmengen Wie werden Datenmengen informativ in Grafiken umgesetzt?

8 Ziel der beschreibenden Statistik Beschreiben von Datenmengen

9 Vorbemerkung Stichprobe und Grundgesamtheit Die statistischen Eigenschaften einer Grundgesamtheit werden anhand von Stichproben untersucht. Z.B.: Die Grundgesamtheit aller Studierenden, welche für Statistik und Wahrscheinlichkeitsrechnung eingeschrieben sind, ist m = 199. Stichprobe von letzter Woche, n =

10 Vorbemerkung Stichprobe und Grundgesamtheit Die statistischen Eigenschaften einer Grundgesamtheit werden anhand von Stichproben untersucht. Z.B.: Biegezähigkeit von Büroklammern, m =. Stichprobe, n =

11 Vorbemerkung Stichprobe und Grundgesamtheit Die statistischen Eigenschaften einer Grundgesamtheit werden anhand von Stichproben untersucht. Damit tdest die Stichprobe die degu Grundgesamtheit etrepräsentiert, e t, müssen die Stichproben zufällig aus der Grundgesamtheit entnommen werden

12 Vorbemerkung Skalenniveau Nominalskala: Qualitative Eigenschaften, welche nicht der Grösse nach sortiert werden können

13 Vorbemerkung Skalenniveau Ordinalskala: Qualitative Eigenschaften, welche der Grösse nach sortiert werden können über den Abstand zwischen den Eigenschaften lässt sich nichts aussagen. (Schulnoten, Ligatabelle) Intervallskala: Quantitative Eigenschaften, sortierbar, der Abstand zwischen zwei Werten lässt sich sachlich begründen. Nullpunkt willkürlich festgelegt. (Temperatur in C, Jahreszahlen) Verhältnisskala: Wie Intervallskala, aber mit absolutem Nullpunkt (Temperatur in Kelvin, Kli Festigkeit, it Körpergrösse) ö

14 Ziel der beschreibenden Statistik Beschreiben von Datenmengen Zahlen Grafiken Keine Annahmen nur Beschreibung!!

15 Datenbeschreibung Zusammenfassen zu nur einer Zahl Arithmetisches Mittel: 1 x = n x = n i= 1 Für einen Datensatz: ( ) 1 2 x i x, x,..., x n T Um eine Stichprobe nur mit Hilfe einer Zahl zu beschreiben, wird normalerweise der Stichproben Mittelwert verwendet

16 Datenbeschreibung Einfache graphische Darstellung von Stichproben Eindimensionales Streudiagramm: Guter Datenüberblick (Maximum, Minimum). Vorsicht bei diskret verteilten Daten!

17 Datenbeschreibung Einfache graphische Darstellung von Stichproben Eindimensionales Streudiagramm: Mittelwert = n 1 Der Stichprobenmittelwert x = x i entspricht dem Schwerpunkt Schwerpunkt der Daten. n i=

18 Datenbeschreibung Einfache graphische Darstellung von Stichproben Histogramm: Einteilung der Datenreihe inklassen Klassen. Darstellung der Grösse der Klassen. zb z.b. die Körpergrösse Klassen Anzahl 150 < x < x < x < x < x n =

19 Datenbeschreibung Einfache graphische Darstellung von Stichproben Histogramm: Klassen Anzahl 150 < x < x < x < x < x n =

20 Datenbeschreibung Neben dem Mittelwert gibt es noch andere sog. Lagemasse: Der Median oder Zentralwert x ist der mittlere Wert einer nach der Grösse geordneten Stichprobe o o o. x1 x2... x n x x n + 1 n ungerade 2 = 1 xn + xn n gerade Beispiele: [ ] [ ]

21 Datenbeschreibung Neben dem Mittelwert gibt es noch andere sog. Lagemasse: Der Median oder Zentralwert x ist der mittlere Wert einer nach der Grösse geordneten Stichprobe o o o. x1 x2... x n Median = Mittelwert =

22 Datenbeschreibung Neben dem Mittelwert gibt es noch andere sog. Lagemasse: Der Modus oder Modalwert ist der am häufigsten auftretende Wert bei kontinuierlichen Wertemengen u.a. aus Histogramm ersichtlich. Modus Median = Mittelwert =

23 Datenbeschreibung Streumasse Streuung um den Mittelwert Die Varianz der Stichprobe s = ( xi x ) n 2 1 n i= 1 2 Die Standardabweichung der Stichprobe n 1 s = ( x x) n i = 1 i 2 Der Variationskoeffizient der Stichprobe (relative Streuung) ν = s x

24 Datenbeschreibung Streumasse Streuung um den Mittelwert Varianz s = n 2 1 n i= 1 ( xi x ) 2 2 Standardabweichung s= ( x x) COV 1 n n i = 1 i ν = s x Beispiel x = [cm] x = 71.2 [kg] 2 2 = 2 2 s [cm ] s = [kg ] s = 7.85 [cm] s = 9.28 [kg] ν = 0.04 [-] ν = 0.13 [-]

25 Datenbeschreibung Streumasse Streuung um den Mittelwert Der Schiefekoeffizient der Stichprobe > Mass für die Asymmetrie η = 1 n n i= 1 ( x i s 3 x ) 3 Beispiel η = 0.36 η = 0.1 Linksschief Rechtsschief

26 Datenbeschreibung Streumasse Streuung um den Mittelwert Kurtosis der Stichprobe: ( xi 1 i= 1 > Mass für die Wölbung κ = 4 n s Beispiel n x ) 4 κ = 3.05 κ =

27 Datenbeschreibung Beschreibung von paarweise beobachteten Eigenschaften x = (,,,..., ) x 1, x 2, x 3,, x n T y = y, y, y,..., y n ( ) T

28 Datenbeschreibung Beschreibung von paarweise beobachteten Eigenschaften Das zweidimensionale Streudiagramm

29 Datenbeschreibung Beschreibung von paarweise beobachteten Eigenschaften Das zweidimensionale Streudiagramm

30 Datenbeschreibung Beschreibung von paarweise beobachteten Eigenschaften Die Kovarianz: n 1 s = ( x x) ( y y) XY i i n i = 1 x Körpergrösse x = cm y Gewicht y = 71.2 kg

31 Datenbeschreibung Beschreibung von paarweise beobachteten Eigenschaften Die Kovarianz: n 1 s = ( x x) ( y y) = 50.8 XY i i n i = 1 x Körpergrösse x = cm y Gewicht y = 71.2 kg

32 Datenbeschreibung Beschreibung von paarweise beobachteten Eigenschaften Die Kovarianz: n 1 s = ( x x) ( y y) XY i i n i = 1 Der Korrelationskoeffizient: r XY = 1 n n i=1 ( x i x ) ( s X s Y y i y ) ist limitiert auf das Interval [ 1,1]

33 Datenbeschreibung Beschreibung von paarweise beobachteten Eigenschaften Der Korrelationskoeffizient: r XY n ( xi x ) ( yi y ) 1 i= 1 = = n s s X Y x Körpergrösse x = cm y Gewicht y = 71.2 kg

34 Nummerische Zusammenfassungen Mittelwerte: Arithmetisches Mittel: Median: Modalwert: Streuungsmasse: Varianz / Standardabweichung: Variationskoeffizient : Schwerpunkt der Stichprobe mittlerer Wert einer Stichprobe am häufigsten vorkommender Wert Verteilung um den Mittelwert Variabilität relativ zum Mittelwert Andere Masse: Schiefekoeffizient: Schiefe relativ zum Mittelwert Kurtosis: Wölbung um den Mittelwert Masse für Korrelation: Kovarianz: Tendenz für paarweise beobachtete Eigenschaften Korrelationskoeffizient : Normalisierter Koeffizient zwischen 1 und

35 Weitere graphische Darstellungsformen HistogrammTeil II Quantile Plots TukeyBoxplots

36 Histogramm Prinzip: Aufteilung der Stichprobe in k Grössenklassen Auftragen der Häufigkeit je Klasse Beispiel: Ihre Büroklammerdaten vom letzten Mal grosse Klammern, Stichprobenumfang n = 190, Maximalwert t132, Minimalwert i 6. Einteilung in 14 Klassen; (0,10]; ];(10,20]; (20,30]; ; (130,140]

37 Histogramm Prinzip: Aufteilung der Stichprobe in k Grössenklassen Auftragen der Häufigkeit je Klasse Beispiel: Anzahl Biegungen gr. Klammern Anzahl Biegungen gr. Klammern Aussage abhängig von der Anzahl Klassen!!!!

38 Histogramm Prinzip: Aufteilung der Stichprobe in k Grössenklassen Auftragen der Häufigkeit je Klasse Faustregel für die Anzahl Klassen: k= log( n) Beispiel: Büroklammerdaten grosse Klammern, Stichprobenumfang n = 190, Wertebereich [6, 132] k = log ( 190) = Klassen (0,15]; (15,30]; (30,45]; ; (120,135] oder (5,19]; (19,33]; (36,50]; ; (117,131]?

39 Histogramm Anzahl Biegungen gr. Klammern Anzahl Biegungen gr. Klammern

40 Histogramm Die Form des Histogramms hängt ab von der Anzahl Klassen. der Wahl des Startpunktes. Anzahl Biegungen gr. Klammern Anzahl Biegungen gr. Klammern Anzahl Biegungen gr. Klammern Anzahl Biegungen gr. Klammern

41 Histogramm Bisher betrachteten wir die absolute Häufigkeit. Inder Regel wird die Häufigkeit relativ, also normiert betrachtet. Anzahl Biegungen gr. Klammern Anzahl Biegungen gr. Klammern

42 Histogramm Eine Spielart des Histogramms ist das kumulative Häufigkeits diagramm. Anzahl Biegungen gr. Klammern Anzahl Biegungen gr. Klammern Anzahl Biegungen gr. Klammern

43 Histogramm Eine Spielart des Histogramms ist das kumulative Häufigkeits diagramm. Hier kann die Klasseneinteilung beliebig klein sein! Anzahl Biegungen gr. Klammern Anzahl Biegungen gr. Klammern

44 Weitere graphische Darstellungsformen Histogramm Teil II. Quantile Plots TukeyBoxplots

45 Quantil Plot Definition : DieQ Q Quantile Quantile korrespondiert mitdem Wert der Stichprobe, welcher mit dem Wert 100% Q x 100% überschritten wird. Dh D.h. zum Beispiel: das 075 Quantil 0.75 Quantil wird von 100% 0.75 x 100% = 25% der Daten überschritten. DieQuantilewerden vonder geordneten Stichprobe berechnet: x o 1 x o 2... x o n Q i i = 1 +n

46 Quantil Plot Quantile Plots werden durch Auftragen der Daten und dem Quantilwert gebildet. Anzahl Biegungen gr. Klammern

47 Quantil Plot Quantile Plots werden durch Auftragen der Daten und dem Quantilwert gebildet. oberes Quartil = 75% Quantil unteres Quartil = 25% Quantil Anzahl Biegungen gr. Klammern

48 Quantil Plot Quantile Plots werden durch Auftragen der Daten und dem Quantilwert gebildet. oberes Quartil = 75% Quantil Und was ist das?? unteres Quartil = 25% Quantil Anzahl Biegungen gr. Klammern Median Mittelwert e Weiss nicht

49 Tukey Boxplot Der Tukey Boxplot illustriert: Median untere und obere Quartilwerte Streubreite Ausreisser

50 Tukey Boxplot Ausreisser grösster verbundener Wert grösster Wert kleiner als oberes Quartil + 15* 1.5 r r oberes Quartil = 75% Quantil Median = 50% Quantil unteres Quartil = 25% Quantil r = interquartiler Bereich (50% der Werte) kleinster verbundener Wert kleinster Wert grösser als unteres Quartil 1.5 * r

51 Tukey Boxplot Klammern biegungen Durch grosse Klammern kleine Klammern

52 Tukey Boxplot 200 Körpergrösse Körp pergrösse Alle Männer Frauen

53 Q Q Plots Q Q plots dienen zur Darstellung und Vergleich von 2 Datenreihen. Datenpunkte der beiden Datenreihen mit demselben Quantilwert werden aufgetragen

54 Mittel über Differenz Plots Mittel über Differenz Plots dienen zur Darstellung und dem Vergleich vonzwei Datenreihen. Das Mittel ( yi + xi)/2 wird über die Differenz yi x i aufgetragen

55 Zusammenfassung Graphische Darstellung Ein dimensionales Streudiagramm Zwei dimensionales Streudiagramm Histogramm Quantile Plot Tukey Boxplot Q Q Plot Mittel über Differenz Plot Veranschaulicht den Bereich und die Verteilung von Datenreihen entlang einer Achse, und zeigt Symmetrie. Veranschaulicht den paarweisen Zusammenhang von Daten. Stellt die Verteilung von Daten über einem Bereich von Datenreihen dar, zeigt Modalwert und Symmetrie. Stellt Median, Verteilung und Symmetrie dar. Stellt Median, obere/untere Quartile, Symmetrie und Verteilung dar. Vergleicht zwei Datenreihen, relatives Bild. Vergleichtzwei Datenreihen, relativesbild Bild

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung 3. Vorlesung Dr. Jochen Köhler 1 Inhalte der heutigen Vorlesung Ziel: Daten Modellbildung Probabilistisches Modell Wahrscheinlichkeit von Ereignissen Im ersten

Mehr

Statistik und Wahrscheinlichkeitsrechnung. Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung. Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Prof. Dr. Michael Havbro Faber 1 Inhalte der heutigen Vorlesung Ziel: Daten Modellbildung Probabilistisches Modell Im ersten Schritt werden wir die Daten nur beschreiben:

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Übung 3 1 Inhalt der heutigen Übung Vorrechnen der Hausübung B.7 Beschreibende Statistik Gemeinsames Lösen der Übungsaufgaben C.1: Häufigkeitsverteilung C.2: Tukey

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Übung 2 28.02.2008 1 Inhalt der heutigen Übung Beschreibende Statistik Gemeinsames Lösen der Übungsaufgaben 2.1: Häufigkeitsverteilung 2.2: Tukey Boxplot 25:Korrelation

Mehr

Deskriptive Statistik

Deskriptive Statistik Deskriptive Statistik Deskriptive Statistik: Ziele Daten zusammenfassen durch numerische Kennzahlen. Grafische Darstellung der Daten. Quelle: Ursus Wehrli, Kunst aufräumen 1 Modell vs. Daten Bis jetzt

Mehr

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische

Mehr

htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK

htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK htw saar 2 Grundbegriffe htw saar 3 Grundgesamtheit und Stichprobe Ziel: Über eine Grundgesamtheit (Population) soll eine Aussage über ein

Mehr

Herzlich willkommen zur Vorlesung Statistik. Streuungsmaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung

Herzlich willkommen zur Vorlesung Statistik. Streuungsmaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung FB 1 W. Ludwig-Mayerhofer Statistik 1 Herzlich willkommen zur Vorlesung Statistik smaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung FB 1 W. Ludwig-Mayerhofer

Mehr

Fachrechnen für Tierpfleger

Fachrechnen für Tierpfleger Z.B.: Fachrechnen für Tierpfleger A10. Statistik 10.1 Allgemeines Was ist Statistik? 1. Daten sammeln: Durch Umfragen, Zählung, Messung,... 2. Daten präsentieren: Tabellen, Grafiken 3. Daten beschreiben/charakterisieren:

Mehr

Statistik I für Betriebswirte Vorlesung 9

Statistik I für Betriebswirte Vorlesung 9 Statistik I für Betriebswirte Vorlesung 9 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik Vorlesung am 8. Juni 2017 im Audi-Max (AUD-1001) Dr. Andreas Wünsche Statistik I für Betriebswirte

Mehr

Bitte am PC mit Windows anmelden!

Bitte am PC mit Windows anmelden! Einführung in SPSS Plan für heute: Grundlagen/ Vorwissen für SPSS Vergleich der Übungsaufgaben Einführung in SPSS http://weknowmemes.com/generator/uploads/generated/g1374774654830726655.jpg Standardnormalverteilung

Mehr

Statistische Methoden der Datenanalyse Wintersemester 2012/2013 Albert-Ludwigs-Universität Freiburg

Statistische Methoden der Datenanalyse Wintersemester 2012/2013 Albert-Ludwigs-Universität Freiburg Statistische Methoden der Datenanalyse Wintersemester 2012/2013 Albert-Ludwigs-Universität Freiburg Prof. Markus Schumacher, Dr. Stan Lai Physikalisches Institut Westbau 2 OG Markus.Schumacher@physik.uni-freiburg.de

Mehr

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5 Inhaltsverzeichnis Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite 1.0 Erste Begriffsbildungen 1 1.1 Merkmale und Skalen 5 1.2 Von der Urliste zu Häufigkeitsverteilungen 9 1.2.0 Erste Ordnung

Mehr

2. Deskriptive Statistik

2. Deskriptive Statistik Philipps-Universitat Marburg 2.1 Stichproben und Datentypen Untersuchungseinheiten: mogliche, statistisch zu erfassende Einheiten je Untersuchungseinheit: ein oder mehrere Merkmale oder Variablen beobachten

Mehr

Statistik. Jan Müller

Statistik. Jan Müller Statistik Jan Müller Skalenniveau Nominalskala: Diese Skala basiert auf einem Satz von qualitativen Attributen. Es existiert kein Kriterium, nach dem die Punkte einer nominal skalierten Variablen anzuordnen

Mehr

Statistische Grundlagen I

Statistische Grundlagen I Statistische Grundlagen I Arten der Statistik Zusammenfassung und Darstellung von Daten Beschäftigt sich mit der Untersuchung u. Beschreibung von Gesamtheiten oder Teilmengen von Gesamtheiten durch z.b.

Mehr

Statistik II: Grundlagen und Definitionen der Statistik

Statistik II: Grundlagen und Definitionen der Statistik Medien Institut : Grundlagen und Definitionen der Statistik Dr. Andreas Vlašić Medien Institut (0621) 52 67 44 vlasic@medien-institut.de Gliederung 1. Hintergrund: Entstehung der Statistik 2. Grundlagen

Mehr

1 45, 39, 44, 48, 42, 39, 40, , 31, 46, 35, 31, 42, 51, , 42, 33, 46, 33, 44, 43

1 45, 39, 44, 48, 42, 39, 40, , 31, 46, 35, 31, 42, 51, , 42, 33, 46, 33, 44, 43 1) Ermittle jeweils das arithmetische Mittel. Ordne die Datenerhebungen nach der Größe der arithmetischen Mittel. Beginne mit dem Größten. 1 45, 39, 44, 48, 42, 39, 40, 31 2 35, 31, 46, 35, 31, 42, 51,

Mehr

Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Aufgrund einer statistischen Untersuchung entsteht eine geordnete bzw. ungeordnete, die durc

Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Aufgrund einer statistischen Untersuchung entsteht eine geordnete bzw. ungeordnete, die durc SS 2017 Torsten Schreiber 222 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Aufgrund einer statistischen Untersuchung entsteht eine geordnete bzw. ungeordnete, die durch Summierung je Ausprägung

Mehr

Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66

Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS 2004 1/19 Skalenniveaus Skalenniveau Relation

Mehr

Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es

Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es beim radioaktiven Zerfall, zwischen 100 und 110 Zerfälle

Mehr

Stichwortverzeichnis. Symbole

Stichwortverzeichnis. Symbole Stichwortverzeichnis Symbole 50ste Perzentil 119 A Absichern, Ergebnisse 203 Abzählbar unendliche Zufallsvariable 146 Alternativhypothese 237 238 formulieren 248 Anekdote 340 Annäherung 171, 191 Antwortquote

Mehr

absolute Häufigkeit h: Anzahl einer bestimmten Note relative Häufigkeit r: Anzahl einer bestimmten Note, gemessen an der Gesamtzahl der Noten

absolute Häufigkeit h: Anzahl einer bestimmten Note relative Häufigkeit r: Anzahl einer bestimmten Note, gemessen an der Gesamtzahl der Noten Statistik Eine Aufgabe der Statistik ist es, Datenmengen zusammenzufassen und darzustellen. Man verwendet dazu bestimmte Kennzahlen und wertet Stichproben aus, um zu Aussagen bzw. Prognosen über die Gesamtheit

Mehr

3. Lektion: Deskriptive Statistik

3. Lektion: Deskriptive Statistik Seite 1 von 5 3. Lektion: Deskriptive Statistik Ziel dieser Lektion: Du kennst die verschiedenen Methoden der deskriptiven Statistik und weißt, welche davon für Deine Daten passen. Inhalt: 3.1 Deskriptive

Mehr

Ermitteln Sie auf 2 Dezimalstellen genau die folgenden Kenngrößen der bivariaten Verteilung der Merkmale Weite und Zeit:

Ermitteln Sie auf 2 Dezimalstellen genau die folgenden Kenngrößen der bivariaten Verteilung der Merkmale Weite und Zeit: 1. Welche der folgenden Kenngrößen, Statistiken bzw. Grafiken sind zur Beschreibung der Werteverteilung des Merkmals Konfessionszugehörigkeit sinnvoll einsetzbar? A. Der Modalwert. B. Der Median. C. Das

Mehr

Häufigkeitsverteilungen und Statistische Maßzahlen. Häufigkeitsverteilungen und Statistische Maßzahlen. Variablentypen. Stichprobe und Grundgesamtheit

Häufigkeitsverteilungen und Statistische Maßzahlen. Häufigkeitsverteilungen und Statistische Maßzahlen. Variablentypen. Stichprobe und Grundgesamtheit TECHNISCHE UNIVERSITÄT MÜNCHEN-WEIHENSTEPHAN MATHEMATIK UND STATISTIK INFORMATIONS- UND DOKUMENTATIONSZENTRUM R. Häufigkeitsverteilungen und Statistische Maßzahlen Statistik SS Variablentypen Qualitative

Mehr

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen 4. Datenanalyse und Modellbildung Deskriptive Statistik 2-1 2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen Für die Auswertung einer Messreihe, die in Form

Mehr

Arbeitsbuch zur deskriptiven und induktiven Statistik

Arbeitsbuch zur deskriptiven und induktiven Statistik Helge Toutenburg Michael Schomaker Malte Wißmann Christian Heumann Arbeitsbuch zur deskriptiven und induktiven Statistik Zweite, aktualisierte und erweiterte Auflage 4ü Springer Inhaltsverzeichnis 1. Grundlagen

Mehr

BOXPLOT 1. Begründung. Boxplot A B C

BOXPLOT 1. Begründung. Boxplot A B C BOXPLOT 1 In nachstehender Tabelle sind drei sortierte Datenreihen gegeben. Zu welchem Boxplot gehört die jeweilige Datenreihe? Kreuze an und begründe Deine Entscheidung! Boxplot A B C Begründung 1 1 1

Mehr

Statistikpraktikum. Carsten Rezny. Sommersemester Institut für angewandte Mathematik Universität Bonn

Statistikpraktikum. Carsten Rezny. Sommersemester Institut für angewandte Mathematik Universität Bonn Statistikpraktikum Carsten Rezny Institut für angewandte Mathematik Universität Bonn Sommersemester 2016 Anmeldung in Basis: 06. 10.06.2016 Organisatorisches Einführung Statistik Analyse empirischer Daten

Mehr

Merkmalstypen Univ.-Prof. Dr. rer. nat. et med. habil. Andreas Faldum

Merkmalstypen Univ.-Prof. Dr. rer. nat. et med. habil. Andreas Faldum 1 Merkmalstypen Quantitativ: Geordnete Werte, Vielfache einer Einheit Stetig: Prinzipiell sind alle Zwischenwerte beobachtbar Beispiele: Gewicht, Größe, Blutdruck Diskret: Nicht alle Zwischenwerte sind

Mehr

Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.)

Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.) Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.) Reinhard.Vonthein@imbs.uni-luebeck.de Institut für Medizinische Biometrie und Statistik Universität zu Lübeck / Universitätsklinikums Schleswig-Holstein

Mehr

Statistik. Rainer Hauser. Dezember 2012

Statistik. Rainer Hauser. Dezember 2012 Statistik Rainer Hauser Dezember 2012 1 Einleitung 1.1 Population und Merkmale Gegeben ist eine Population (oder Grundgesamtheit), und die Frage ist, welche Elemente dieser Population ein bestimmtes Merkmal

Mehr

Statistik I. Zusammenfassung und wichtiges zur Prüfungsvorbereitung. Malte Wissmann. 9. Dezember Universität Basel.

Statistik I. Zusammenfassung und wichtiges zur Prüfungsvorbereitung. Malte Wissmann. 9. Dezember Universität Basel. Zusammenfassung und wichtiges zur Prüfungsvorbereitung 9. Dezember 2008 Begriffe Kenntnis der wichtigen Begriffe und Unterscheidung dieser. Beispiele: Merkmal, Merkmalsraum, etc. Skalierung: Nominal etc

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Mag. Dipl.Ing. Dr. Pantelis Christodoulides & Mag. Dr. Karin Waldherr SS 2011 Christodoulides / Waldherr Einführung in Quantitative Methoden- 2.VO 1/62 Summenzeichen

Mehr

Beide Verteilungen der Zeiten sind leicht schief. Der Quartilsabstand für Zeiten zum Surfen ist kleiner als der zum Fernsehen.

Beide Verteilungen der Zeiten sind leicht schief. Der Quartilsabstand für Zeiten zum Surfen ist kleiner als der zum Fernsehen. Welche der folgenden Maßzahlen sind resistent gegenüber Ausreißer? Der Mittelwert und die Standardabweichung. Der und die Standardabweichung. Der und die Spannweite. Der und der Quartilsabstand. Die Spannweite

Mehr

Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen

Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen DAS THEMA: VERTEILUNGEN LAGEMAßE - STREUUUNGSMAßE Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen Anteile Häufigkeiten Verteilungen Anteile und Häufigkeiten Darstellung

Mehr

Beschreibende Statistik

Beschreibende Statistik Beschreibende Aufgaben der beschreibenden : Erhebung von Daten Auswertung von Daten Darstellung von Daten Erhebung von Daten Bei der Erhebung von Daten geht es um die Erfassung von Merkmalen (Variablen)

Mehr

Univ.-Prof. Dr. Georg Wydra

Univ.-Prof. Dr. Georg Wydra Univ.-Prof. Dr. Georg Wydra Methoden zur Auswertung von Untersuchungen 1 SKALENTYPEN UND VARIABLEN 2 ZUR BEDEUTUNG DER STATISTIK IN DER FORSCHUNG 3 STATISTIK ALS VERFAHREN ZUR PRÜFUNG VON HYPOTHESEN 4

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 08.04.2008 Der zentrale Grenzwertsatz Normalverteilung Die Wahrscheinlichkeitsdichteverteilung der Summe von Zufalls variablen konvergiert zu

Mehr

Inhaltsverzeichnis Grundlagen aufigkeitsverteilungen Maßzahlen und Grafiken f ur eindimensionale Merkmale

Inhaltsverzeichnis Grundlagen aufigkeitsverteilungen Maßzahlen und Grafiken f ur eindimensionale Merkmale 1. Grundlagen... 1 1.1 Grundgesamtheit und Untersuchungseinheit................ 1 1.2 Merkmal oder statistische Variable........................ 2 1.3 Datenerhebung.........................................

Mehr

Statistik SS Deskriptive Statistik. Bernhard Spangl 1. Universität für Bodenkultur. March 1, 2012

Statistik SS Deskriptive Statistik. Bernhard Spangl 1. Universität für Bodenkultur. March 1, 2012 Statistik SS 2012 Deskriptive Statistik Bernhard Spangl 1 1 Institut für angewandte Statistik und EDV Universität für Bodenkultur March 1, 2012 B. Spangl (Universität für Bodenkultur) Statistik SS 2012

Mehr

Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik

Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik INSTITUT FÜR STOCHASTIK WS 2007/08 UNIVERSITÄT KARLSRUHE Blatt 1 Dr. B. Klar Übungen zur Vorlesung Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik Musterlösungen

Mehr

Wiederholung Statistik I. Statistik für SozialwissenschaftlerInnen II p.8

Wiederholung Statistik I. Statistik für SozialwissenschaftlerInnen II p.8 Wiederholung Statistik I Statistik für SozialwissenschaftlerInnen II p.8 Konstanten und Variablen Konstante: Merkmal hat nur eine Ausprägung Variable: Merkmal kann mehrere Ausprägungen annehmen Statistik

Mehr

Die erhobenen Daten werden zunächst in einer Urliste angeschrieben. Daraus ermittelt man:

Die erhobenen Daten werden zunächst in einer Urliste angeschrieben. Daraus ermittelt man: Die erhobenen Daten werden zunächst in einer Urliste angeschrieben. Daraus ermittelt man: a) Die absoluten Häufigkeit: Sie gibt an, wie oft ein Variablenwert vorkommt b) Die relative Häufigkeit: Sie erhält

Mehr

Statistik Skalen (Gurtner 2004)

Statistik Skalen (Gurtner 2004) Statistik Skalen (Gurtner 2004) Nominalskala: Daten haben nur Namen(Nomen) und (eigentlich) keinen Zahlenwert Es kann nur der Modus ( ofteste Wert) berechnet werden Beispiel 1: Die Befragung von 48 Personen

Mehr

Statistik für Betriebswirte I 1. Klausur Wintersemester 2014/

Statistik für Betriebswirte I 1. Klausur Wintersemester 2014/ Statistik für Betriebswirte I 1. Klausur Wintersemester 2014/2015 13.02.2015 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:................................................................... Vorname:....................................................................

Mehr

1 Einleitung und Grundlagen 1

1 Einleitung und Grundlagen 1 Inhaltsverzeichnis Vorwort vii 1 Einleitung und Grundlagen 1 1.1 Einführende Beispiele 1 1.2 Statistischer Prozess 2 1.3 Grundlagen 2 1.4 Unterscheidung von Merkmalen 3 1.4.1 Skalenniveaus 3 1.4.2 Stetige

Mehr

3. Deskriptive Statistik

3. Deskriptive Statistik 3. Deskriptive Statistik Eindimensionale (univariate) Daten: Pro Objekt wird ein Merkmal durch Messung / Befragung/ Beobachtung erhoben. Resultat ist jeweils ein Wert (Merkmalsausprägung) x i : - Gewicht

Mehr

Wiederholung. Statistik I. Sommersemester 2009

Wiederholung. Statistik I. Sommersemester 2009 Statistik I Sommersemester 2009 Statistik I (1/21) Daten/graphische Darstellungen Lage- und Streuungsmaße Zusammenhangsmaße Lineare Regression Wahrscheinlichkeitsrechnung Zentraler Grenzwertsatz Konfidenzintervalle

Mehr

Streuungsmaße von Stichproben

Streuungsmaße von Stichproben Streuungsmaße von Stichproben S P A N N W E I T E, V A R I A N Z, S T A N D A R D A B W E I C H U N G, Q U A R T I L E, K O V A R I A N Z, K O R R E L A T I O N S K O E F F I Z I E N T Zentrale Methodenlehre,

Mehr

Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler

Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler Philipp Sibbertsen Hartmut Lehne Statistik Einführung für Wirtschafts- und Sozialwissenschaftler 2., überarbeitete Auflage 4^ Springer Gabler Inhaltsverzeichnis Teil I Deskriptive Statistik 1 Einführung

Mehr

Statistische Kennzahlen für die Lage

Statistische Kennzahlen für die Lage Statistische Kennzahlen für die Lage technische universität ach der passenden grafischen Darstellung der Werte eines Merkmals auf der Gesamtheit der Beobachtungen interessieren jetzt geschickte algebraische

Mehr

Grundlagen der empirischen Sozialforschung

Grundlagen der empirischen Sozialforschung Grundlagen der empirischen Sozialforschung Sitzung 10 - Datenanalyseverfahren Jan Finsel Lehrstuhl für empirische Sozialforschung Prof. Dr. Petra Stein 22. Dezember 2008 1 / 21 Online-Materialien Die Materialien

Mehr

Lehrinhalte Statistik (Sozialwissenschaften)

Lehrinhalte Statistik (Sozialwissenschaften) Lehrinhalte Technische Universität Dresden Institut für Mathematische Stochastik Dresden, 13. November 2007 Seit 2004 Vorlesungen durch Klaus Th. Hess und Hans Otfried Müller. Statistik I: Beschreibende

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Analyse und Modellierung von Daten von Prof. Dr. Rainer Schlittgen Universität Hamburg 12., korrigierte Auflage Oldenbourg Verlag München Inhaltsverzeichnis 1 Statistische Daten

Mehr

Statistik eindimensionaler Größen

Statistik eindimensionaler Größen Statistik eindimensionaler Größen Michael Spielmann Inhaltsverzeichnis 1 Aufgabe der eindimensionalen Statistik 2 2 Grundbegriffe 2 3 Aufbereiten der Stichprobe 3 4 Die Kennzahlen Mittelwert und Streuung,

Mehr

Mathematik IV: Statistik

Mathematik IV: Statistik für D-UWIS, D-ERDW, D-USYS und D-HEST SS16 Sie hören Vitamin String Quartet Daniel Stekhoven 14.04.2016 1 Daniel Stekhoven 14.04.2016 2 Überblick Lernziele Erledigt! Grundlagen Wahrscheinlichkeitsmodell

Mehr

Skalenniveaus =,!=, >, <, +, -

Skalenniveaus =,!=, >, <, +, - ZUSAMMENHANGSMAßE Skalenniveaus Nominalskala Ordinalskala Intervallskala Verhältnisskala =,!= =,!=, >, < =,!=, >, ,

Mehr

Tutorium Mathematik in der gymnasialen Oberstufe 1. Veranstaltung: Beschreibende Statistik 19. Oktober 2016

Tutorium Mathematik in der gymnasialen Oberstufe 1. Veranstaltung: Beschreibende Statistik 19. Oktober 2016 Tutorium Mathematik in der gymnasialen Oberstufe 1. Veranstaltung: Beschreibende Statistik 19. Oktober 2016 1. Daten erfassen 1. Aufgabe: Würfeln Sie 30-mal mit einem regelmäßigen Oktaeder und dokumentieren

Mehr

Beispiel 4 (Einige weitere Aufgaben)

Beispiel 4 (Einige weitere Aufgaben) 1 Beispiel 4 (Einige weitere Aufgaben) Aufgabe 1 Bestimmen Sie für die folgenden Zweierstichproben, d. h. Stichproben, die jeweils aus zwei Beobachtungen bestehen, a) den Durchschnitt x b) die mittlere

Mehr

Datenstrukturen. Querschnitt. Grösche: Empirische Wirtschaftsforschung

Datenstrukturen. Querschnitt. Grösche: Empirische Wirtschaftsforschung Datenstrukturen Datenstrukturen Querschnitt Panel Zeitreihe 2 Querschnittsdaten Stichprobe von enthält mehreren Individuen (Personen, Haushalte, Firmen, Länder, etc.) einmalig beobachtet zu einem Zeitpunkt

Mehr

Statistikpraktikum. Carsten Rezny. Sommersemester Institut für angewandte Mathematik Universität Bonn

Statistikpraktikum. Carsten Rezny. Sommersemester Institut für angewandte Mathematik Universität Bonn Statistikpraktikum Carsten Rezny Institut für angewandte Mathematik Universität Bonn Sommersemester 2017 Organisatorisches Anmeldung in Basis: 19. 23.06.2017 Skript und Übungsaufgaben unter: http://www.iam.uni-bonn.de/users/rezny/statistikpraktikum

Mehr

Inhaltsverzeichnis. Über die Autoren Einleitung... 21

Inhaltsverzeichnis. Über die Autoren Einleitung... 21 Inhaltsverzeichnis Über die Autoren.... 7 Einleitung... 21 Über dieses Buch... 21 Was Sie nicht lesen müssen... 22 Törichte Annahmen über den Leser... 22 Wie dieses Buch aufgebaut ist... 23 Symbole, die

Mehr

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19 Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, 2016 6:34 P.M. Page 11 Inhaltsverzeichnis Über die Übersetzerin 9 Einleitung 19 Was Sie hier finden werden 19 Wie dieses Arbeitsbuch aufgebaut ist

Mehr

Grundlagen der Statistik I

Grundlagen der Statistik I NWB-Studienbücher Wirtschaftswissenschaften Grundlagen der Statistik I Beschreibende Verfahren Von Professor Dr. Jochen Schwarze 10. Auflage Verlag Neue Wirtschafts-Briefe Herne/Berlin Inhaltsverzeichnis

Mehr

If something has a 50% chance of happening, then 9 times out of 10 it will. Yogi Berra

If something has a 50% chance of happening, then 9 times out of 10 it will. Yogi Berra If something has a 50% chance of happening, then 9 times out of 10 it will. Yogi Berra If you torture your data long enough, they will tell you whatever you want to hear. James L. Mills Warum Biostatistik?

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Maßzahlen für zentrale Tendenz, Streuung und andere Eigenschaften von Verteilungen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische

Mehr

Statistik. Ludwig Fahrmeir Rita Künstler Iris Pigeot Gerhard Tutz. Der Weg zur Datenanalyse. Springer. Zweite, verbesserte Auflage

Statistik. Ludwig Fahrmeir Rita Künstler Iris Pigeot Gerhard Tutz. Der Weg zur Datenanalyse. Springer. Zweite, verbesserte Auflage Ludwig Fahrmeir Rita Künstler Iris Pigeot Gerhard Tutz Statistik Der Weg zur Datenanalyse Zweite, verbesserte Auflage Mit 165 Abbildungen und 34 Tabellen Springer Inhaltsverzeichnis Vorwort v 1 Einführung

Mehr

Inhalt. I. Deskriptive Statistik Einführung Die Grundgesamtheit Merkmale und Verteilungen Tabellen und Grafiken...

Inhalt. I. Deskriptive Statistik Einführung Die Grundgesamtheit Merkmale und Verteilungen Tabellen und Grafiken... I. Deskriptive Statistik 1 1. Einführung 3 1.1. Die Grundgesamtheit......................... 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................ 10

Mehr

1 Univariate Statistiken

1 Univariate Statistiken 1 Univariate Statistiken Im ersten Kapitel berechnen wir zunächst Kenngrößen einer einzelnen Stichprobe bzw. so genannte empirische Kenngrößen, wie beispielsweise den Mittelwert. Diese können, unter gewissen

Mehr

Demokurs. Modul Grundlagen der Wirtschaftsmathematik Grundlagen der Statistik

Demokurs. Modul Grundlagen der Wirtschaftsmathematik Grundlagen der Statistik Demokurs Modul 31101 Grundlagen der Wirtschaftsmathematik und Statistik Kurs 40601 Grundlagen der Statistik 13. Juli 2010 KE 1 2.4 Schiefe und Wölbung einer Verteilung Seite: 53 2.4 Schiefe und Wölbung

Mehr

5 Exkurs: Deskriptive Statistik

5 Exkurs: Deskriptive Statistik 5 EXKURS: DESKRIPTIVE STATISTIK 6 5 Ekurs: Deskriptive Statistik Wir wollen zuletzt noch kurz auf die deskriptive Statistik eingehen. In der Statistik betrachtet man für eine natürliche Zahl n N eine Stichprobe

Mehr

Günther Bourier. Beschreibende Statistik. Praxisorientierte Einführung - Mit. Aufgaben und Lösungen. 12., überarbeitete und aktualisierte Auflage

Günther Bourier. Beschreibende Statistik. Praxisorientierte Einführung - Mit. Aufgaben und Lösungen. 12., überarbeitete und aktualisierte Auflage i Günther Bourier Beschreibende Statistik Praxisorientierte Einführung - Mit Aufgaben und Lösungen 12., überarbeitete und aktualisierte Auflage 4^ Springer Gabler Inhaltsverzeichnis Vorwort V 1 Einführung

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 1 Inhalt der heutigen Vorlesung Statistik und Wahrscheinlichkeitsrechnung Zusammenfassung der vorherigen Vorlesung Übersicht über Schätzung und

Mehr

Stichwortverzeichnis. Ausgleichsgerade 177 Ausreißer 13, 40

Stichwortverzeichnis. Ausgleichsgerade 177 Ausreißer 13, 40 283 Stichwortverzeichnis a Alpha-Wert 76, 91 Alter 256 Alternativhypothese 68, 70 ANOVA siehe einfache Varianzanalyse, zweifache Varianzanalyse Anpassung 178 Anpassungstest siehe Chi-Quadrat-Anpassungstest

Mehr

Teil VII. Deskriptive Statistik. Woche 5: Deskriptive Statistik. Arbeitsschritte der Datenanalyse. Lernziele

Teil VII. Deskriptive Statistik. Woche 5: Deskriptive Statistik. Arbeitsschritte der Datenanalyse. Lernziele Woche 5: Deskriptive Statistik Teil VII Patric Müller Deskriptive Statistik ETHZ WBL 17/19, 22.05.2017 Wahrscheinlichkeit und Statistik Patric Müller WBL 2017 Wahrscheinlichkeit

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Analyse und Modellierung von Daten Von Prof. Dr. Rainer Schlittgen 4., überarbeitete und erweiterte Auflage Fachbereich Materialwissenschaft! der Techn. Hochschule Darmstadt

Mehr

Inhaltsverzeichnis. 1 Über dieses Buch Zum Inhalt dieses Buches Danksagung Zur Relevanz der Statistik...

Inhaltsverzeichnis. 1 Über dieses Buch Zum Inhalt dieses Buches Danksagung Zur Relevanz der Statistik... Inhaltsverzeichnis 1 Über dieses Buch... 11 1.1 Zum Inhalt dieses Buches... 13 1.2 Danksagung... 15 2 Zur Relevanz der Statistik... 17 2.1 Beispiel 1: Die Wahrscheinlichkeit, krank zu sein, bei einer positiven

Mehr

Inhaltsverzeichnis: Aufgaben zur Vorlesung Statistik Seite 1 von 10 Prof. Dr. Karin Melzer, Prof. Dr. Gabriele Gühring, Fakultät Grundlagen

Inhaltsverzeichnis: Aufgaben zur Vorlesung Statistik Seite 1 von 10 Prof. Dr. Karin Melzer, Prof. Dr. Gabriele Gühring, Fakultät Grundlagen Inhaltsverzeichnis: 1. Aufgabenlösungen... Lösung zu Aufgabe 1:... Lösung zu Aufgabe... Lösung zu Aufgabe 3... Lösung zu Aufgabe 4... Lösung zu Aufgabe 5... 3 Lösung zu Aufgabe... 3 Lösung zu Aufgabe 7...

Mehr

I. Deskriptive Statistik 1

I. Deskriptive Statistik 1 I. Deskriptive Statistik 1 1. Einführung 3 1.1. Grundgesamtheit und Stichprobe.................. 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................

Mehr

PROC MEANS. zum Berechnen statistischer Maßzahlen (für quantitative Merkmale)

PROC MEANS. zum Berechnen statistischer Maßzahlen (für quantitative Merkmale) PROC MEAS zum Berechnen statistischer Maßzahlen (für quantitative Merkmale) Allgemeine Form: PROC MEAS DATA=name Optionen ; VAR variablenliste ; CLASS vergleichsvariable ; Beispiel und Beschreibung der

Mehr

Prüfung aus Statistik 1 für SoziologInnen

Prüfung aus Statistik 1 für SoziologInnen Prüfung aus Statistik 1 für SoziologInnen 14. Oktober 2006 Nachname: Vorname: Matrikelnummer: Studienkennzahl: Beispiel 1: Kreuze die jeweils richtige Antwort an (maximal 6 Punkte) 1.1. Bei einer rechtsschiefen

Mehr

Statistik für Dummies

Statistik für Dummies Bearbeitet von Deborah Rumsey, Reinhard Engel 3. aktualisierte Auflage 2015. Buch. 368 S. Softcover ISBN 978 3 527 71156 7 Format (B x L): 17,6 x 24 cm Wirtschaft > Betriebswirtschaft: Theorie & Allgemeines

Mehr

Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße. x mod (lies: x-mod) Wofür? Lageparameter. Modus/ Modalwert Zentrum. Median Zentralwert

Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße. x mod (lies: x-mod) Wofür? Lageparameter. Modus/ Modalwert Zentrum. Median Zentralwert Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße Wofür? Lageparameter Modus/ Modalwert Zentrum Median Zentralwert Im Datensatz stehende Informationen auf wenige Kenngrößen verdichten ermöglicht

Mehr

ÜBUNGSAUFGABEN ZUR DESKRIPTIVEN UND EXPLORATIVEN DATENANALYSE

ÜBUNGSAUFGABEN ZUR DESKRIPTIVEN UND EXPLORATIVEN DATENANALYSE ÜBUNGSAUFGABEN ZUR DESKRIPTIVEN UND EXPLORATIVEN DATENANALYSE 1.1 Füllen Sie bitte folgenden Lückentext aus. Daten, die in Untersuchungen erhoben werden, muss man grundsätzlich nach ihrem unterscheiden.

Mehr

Inhaltsverzeichnis. Robert Galata, Sandro Scheid. Deskriptive und Induktive Statistik für Studierende der BWL. Methoden - Beispiele - Anwendungen

Inhaltsverzeichnis. Robert Galata, Sandro Scheid. Deskriptive und Induktive Statistik für Studierende der BWL. Methoden - Beispiele - Anwendungen Inhaltsverzeichnis Robert Galata, Sandro Scheid Deskriptive und Induktive Statistik für Studierende der BWL Methoden - Beispiele - Anwendungen Herausgegeben von Robert Galata, Markus Wessler ISBN (Buch):

Mehr

Deskriptive Statistik 1 behaftet.

Deskriptive Statistik 1 behaftet. Die Statistik beschäftigt sich mit Massenerscheinungen, bei denen die dahinterstehenden Einzelereignisse meist zufällig sind. Statistik benutzt die Methoden der Wahrscheinlichkeitsrechnung. Fundamentalregeln:

Mehr

MATHEMATIK MTA 12 SCHULJAHR 07/08 STATISTIK

MATHEMATIK MTA 12 SCHULJAHR 07/08 STATISTIK MATHEMATIK MTA 12 SCHULJAHR 07/08 STATISTIK PROF. DR. CHRISTINA BIRKENHAKE Inhaltsverzeichnis 1. Merkmale 2 2. Urliste und Häufigkeitstabellen 9. Graphische Darstellung von Daten 10 4. Lageparameter 1

Mehr

Lagemaße Übung. Zentrale Methodenlehre, Europa Universität - Flensburg

Lagemaße Übung. Zentrale Methodenlehre, Europa Universität - Flensburg Lagemaße Übung M O D U S, M E D I A N, M I T T E L W E R T, M O D A L K L A S S E, M E D I A N, K L A S S E, I N T E R P O L A T I O N D E R M E D I A N, K L A S S E M I T T E Zentrale Methodenlehre, Europa

Mehr

Empirische Softwaretechnik. Boxplots. Graphische Darstellung. Median

Empirische Softwaretechnik. Boxplots. Graphische Darstellung. Median Empirische Softwaretechnik Boxplots Prof. Dr. Walter F. Tichy Fakultät für Informatik 1 Graphische Darstellung Median gegeben eine sortierte Stichprobe Median gibt den mittleren Wert der sortierten Stichprobe

Mehr

Angewandte Statistik 3. Semester

Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen

Mehr

SBP Mathe Aufbaukurs 1 # 0 by Clifford Wolf. SBP Mathe Aufbaukurs 1

SBP Mathe Aufbaukurs 1 # 0 by Clifford Wolf. SBP Mathe Aufbaukurs 1 SBP Mathe Aufbaukurs 1 # 0 by Clifford Wolf SBP Mathe Aufbaukurs 1 # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das

Mehr

Werkzeuge der empirischen Forschung

Werkzeuge der empirischen Forschung Werkzeuge der empirischen Forschung I. Daten und Beschreibende Statistik 1. Einführung 2. Dateneingabe, Datentransformation, Datenbehandlung 3. Beschreibende Statistik II. Schließende Statistik 1 III.

Mehr

a) x = 1150 ; x = 950 ; x = 800 b) Die Lagemaße unterscheiden sich voneinander. c) Der Median charakterisiert die Stichprobe am besten.

a) x = 1150 ; x = 950 ; x = 800 b) Die Lagemaße unterscheiden sich voneinander. c) Der Median charakterisiert die Stichprobe am besten. R. Brinkmann http://brinkmann-du.de Seite 6.0.2009 Lösungen Mittelwert, Median II se: E E2 E3 E4 E5 E6 a) Notendurchschnitt 2,6 b) Säulendiagramm siehe ausführliche Lösung. c) Kreisdiagramm siehe ausführliche

Mehr

Kapitel 3: Lagemaße. Ziel. Komprimierung der Daten zu einer Kenngröße, welche die Lage, das Zentrum der Daten beschreibt

Kapitel 3: Lagemaße. Ziel. Komprimierung der Daten zu einer Kenngröße, welche die Lage, das Zentrum der Daten beschreibt Kapitel 3: Lagemaße Ziel Komprimierung der Daten zu einer Kenngröße, welche die Lage, das Zentrum der Daten beschreibt Dr. Matthias Arnold 52 Definition 3.1 Seien x 1,...,x n Ausprägungen eines kardinal

Mehr

8. Statistik Beispiel Noten. Informationsbestände analysieren Statistik

8. Statistik Beispiel Noten. Informationsbestände analysieren Statistik Informationsbestände analysieren Statistik 8. Statistik Nebst der Darstellung von Datenreihen bildet die Statistik eine weitere Domäne für die Auswertung von Datenbestände. Sie ist ein Fachgebiet der Mathematik

Mehr

STATISTIK I Übung 04 Spannweite und IQR. 1 Kurze Wiederholung. Was sind Dispersionsparameter?

STATISTIK I Übung 04 Spannweite und IQR. 1 Kurze Wiederholung. Was sind Dispersionsparameter? STATISTIK I Übung 04 Spannweite und IQR 1 Kurze Wiederholung Was sind Dispersionsparameter? Die sogenannten Dispersionsparameter oder statistischen Streuungsmaße geben Auskunft darüber, wie die Werte einer

Mehr

Beschreibende Statistik Eindimensionale Daten

Beschreibende Statistik Eindimensionale Daten Mathematik II für Biologen 16. April 2015 Prolog Geordnete Stichprobe Rang Maße für die mittlere Lage der Daten Robustheit Quantile Maße für die Streuung der Daten Erkennung potentieller Eindimensionales

Mehr

1 EINLEITUNG Allgemeines Kapitelübersicht Gebrauch dieses Buches Verwenden zusätzlicher Literatur...

1 EINLEITUNG Allgemeines Kapitelübersicht Gebrauch dieses Buches Verwenden zusätzlicher Literatur... Inhaltsverzeichnis 1 EINLEITUNG... 1 1.1 Allgemeines... 1 1.2 Kapitelübersicht... 2 1.3 Gebrauch dieses Buches... 3 1.4 Verwenden zusätzlicher Literatur... 4 DESKRIPTIVE STATISTIK 2 GRUNDLAGEN... 5 2.1

Mehr