Skulptur. 0,25 m. 1,65 m 1,7 m Sockel. 0,6 m 0,6 m 10 m. Aufgabe 1: Die Skulptur

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Skulptur. 0,25 m. 1,65 m 1,7 m Sockel. 0,6 m 0,6 m 10 m. Aufgabe 1: Die Skulptur"

Transkript

1 Aufgabe 1: Die Skulptur Um die Höe einer Skulptur zu bestimmen, die auf einem Sockel stet, stellt sic eine Person (Augenöe 1,70 m) in einer Entfernung von 10 m mit dem Rücken zur Skulptur und ält sic einen 25 cm oen, ebenen Spiegel vertikal so vor das Gesict, dass sie darin die Skulptur gerade formatfüllend (one den Sockel!) siet. Der Abstand des Spiegels zum Gesict des Betracters beträgt dann 60 cm. Die Spiegelunterkante befindet sic 1,65 m über dem Boden. Wie oc ist die Skulptur? Entsceidend für die Lösung der Aufgabe ist eine gute Skizze, die den gegebenen Sacveralt darstellt. Diese muss keineswegs maßstabsgetreu sein: 0,25 m Skulptur 1,65 m 1,7 m s Sockel 0,6 m 0,6 m 10 m Beactet man, dass beim Spiegel Einfallswinkel gleic Ausfallswinkel gilt, so kann man die Skizze zu einer Stralensatzfigur ergänzen (in der Zeicnung gestricelt dargestellt.) Mit dem zweiten Stralensatz folgt: 10 m+0,6 m+0,6 m = 0, 6 m 0,25 m Damit gilt für die gesucte Höe der Skulptur: = 11,2 m 0,6 m 0,25 m 4,7 m Verwendungsvorsclag für diese Aufgabe: Bei Anwendungsaufgaben zu den Stralensätzen bestet die Scwierigkeit meist in der Konstruktion einer passenden Stralensatzfigur. Dabei kann eine informative Figur gute Dienste leisten. Dies muss jedoc geübt werden! Dazu kann diese Aufgabe eingesetzt werden. Die Aufgabe lässt sic statt über die Stralensätze auc mit Hilfe änlicer Dreiecke lösen.

2 Aufgabe 2: Baumspitze Der Scüler in der Abbildung ält seinen Kopf so, dass er die Baumspitze in dem am Boden liegenden Spiegel seen kann. (a) Wie oc ist der Baum? (b) Bei einem Sturm brecen die oberen 37,75 m des Baumes ab. In welcer Entfernung x vom Scüler muss jetzt der Spiegel liegen, damit er darin, bei gleicem Standort wie vorer, die neue Baumspitze seen kann? Bearbeitungstipp für (a) und (b): Bei der Reflexion des Lictes am Spiegel gilt das Reflexionsgesetz: Einfallswinkel α = Ausfallswinkel β. 1,65m α β 0,9 m 24m (a) Bei dieser Aufgabe sollte erkannt werden, dass man den linken Teil der Zeicnung an der Grundlinie spiegeln kann um eine Stralensatzfigur zu eralten. Dass dies möglic ist, folgt aus der Tatsace, dass die Winkel α und β gleic groß sind: 1,65 m 0,9 m 24 m Mit dem zweiten Stralensatz lässt sic dann die Höe zu = (1,65 m * 24 m) / 0,9 m = 44 m berecnen. Die Aufgabe lässt sic auc one Stralensatz und Umstrukturieren der Figur lösen, wenn man änlice Dreiecke benutzt. (b) Auc diese Aufgabe lässt sic über informative Figur lösen. Diese kann wie oben gezeigt gleic als Stralensatzfigur gezeicnet werden: 1,65 m x 24,9m - x 6,25 m

3 Der Baumstumpf ist nur noc 44 m 37,75 m = 6,25 m oc, die Augenöe des Scülers ist noc immer 1,65 m und sein Abstand zum Baum bleibt bei 24,9 m. Der gesucte Abstand des Spiegels vom Scüler sei x. Damit ergibt sic mit dem zweiten Stralensatz: 1,65 / x = 6,25 / (24,9 x). Auflösen nac x liefert den gesucten Abstand: x = 5,20 m. Verwendungsvorsclag für diese Aufgabe: Bei dieser Aufgabe kann der Einsatz informativer Figuren bei Stralensatzaufgaben geübt werden. Die Aufgabe kann auc im Zusammenang mit dem Tema Änlickeit gestellt werden, da sie auc über änlice Dreiecke one Stralensätze elegant lösbar ist. Aufgabe 3: Facwerk Für den Bau eines Hauses ist eine Facwerkkonstruktion im Giebel geplant. Berecne die Länge der beiden fett gezeicneten Trägerbalken aus den gegebenen Größen a = 18 m, b = 5 m, c = 4 m und der Höe des Daces = 8,1 m. a b c Gegeben: a = 18 m, b = 5 m, c = 4 m und die Höe des Daces = 8,1 m. Gesuct: die Länge der beiden fett gezeicneten Trägerbalken. Entsceidend für die Lösung dieser Aufgabe ist die gescickte Zerlegung der Ausgangsfigur in Teilfiguren. Betractet man nur den Teil rects der eingezeicneten Höe und nur den vertikalen Balken, kann dessen Länge bezeicnet mit x direkt über Stralensätze bestimmt werden: x Aus x / c = / (b + c) folgt x = (c * ) / (b + c) = 8,14 * 4 / 9 = 3,6. Der vertikale Balken ist 3,6 m lang. Die Länge des orizontalen Balkens kann nun bestimmt werden. Dazu muss die bereits bestimmte Länge des vertikalen Balkens (x = 3,6 m) mit der Länge des unteren Abscnittes der Höe identifiziert werden. Die Länge des orizontalen Balkens kann dann direkt mit der großen

4 Stralensatzfigur oder durc Zerlegung der Gesamtfigur in zwei Teildreiecke abscnittsweise mit Hilfe einfacerer Stralensatzfiguren berecnet werden. Letztere Variante sei ier näer bescrieben: Man denkt sic den orizontalen Balken zusammengesetzt aus den beiden Teilstücken y 1 und y 2 links und rects der eingezeicneten Dacöe: y 1 y 2 a b c Mit Hilfe von Stralensatzfiguren lassen sic dann die folgenden Gleicungen aufstellen: a / = y 1 / ( 3,6) für das linke Teilstück y 1 und (b + c) / = y 2 / ( 3,6) für das recte Teilstück y 2. Mit den gegebenen Zalenwerten folgt y 1 = 10 m und y 2 = 5 m. Der orizontale Balken ist 15 m lang. Verwendungsvorsclag für diese Aufgabe: Die sinnvolle Zerlegung in Teildreiecke ist ein in vielen Bereicen der Geometrie nützlices Verfaren. Dies gilt für den Temenbereic Stralensätze ebenso wie für den Temenbereic Satz des Pytagoras. Diese wictige Anwendung des Zerlegungsprinzips kann anand dieser Aufgabe erausgearbeitet werden. Um dieses Ziel zu erreicen, kann die Aufgabe im Unterrictsgespräc gemeinsam bearbeitet und besprocen werden. Es ist aber auc möglic, die Aufgabe den Scülerinnen und Scülern erst zur selbstständigen Bearbeitung zu stellen und dann beim Besprecen des Lösungsweges auf das Zerlegungsprinzip einzugeen. Aufgabe 4: Das Regal Die Seitenteile eines Regals sind 1,8 m bzw. 1,5 m oc. Zur Stabilisierung des Regals sollen zwei Diagonalstreben eingebaut werden. In welcer Höe treffen sic die beiden Streben? 1,8m 1,5m Die Aufgabe siet auf den ersten Blick leict aus. Allerdings ist die Lösung mit Hilfe von Stralensätzen oder änlicen Dreiecken relativ kompliziert. Dafür müssen wenigstens eine Hilfslinie (Parallele zur Grundlinie durc den Scnittpunkt) und zwei weitere Variablen eingefürt werden, wodurc man mit drei Unbekannten arbeiten muss.

5 Eine elegantere Möglickeit ist die Lösung mit linearen Funktionen, die vom Recenaufwand geringer ist. Dazu stellt man Funktionsgleicungen für beide Diagonalen auf, wobei man den Ursprung des Koordinatensystems zum Beispiel in den Fußpunkt des linken Seitenteils legen kann. Zum Aufstellen der Funktionsgleicungen benötigt man den Abstand der Seitenteile voneinander. Hat man erkannt, dass unabängig von diesem Abstand ist, kann man in 1 setzen oder allgemein mit einem Parameter p bezeicnen, der sic bei der weiteren Recnung erauskürzt. Recnet man mit der Länge 1, ergeben sic folgende Geradengleicungen: y 1 = m 1 * x + b = -1,8 * x + 1,8 für die fallende Gerade und y 2 = m 2 * x + b = 1,5 * x für die steigende Ursprungsgerade. Am Scnittpunkt ist -1,8 * x + 1,8 = 1,5 * x Dies liefert x 0,55. Die zugeörige y-koordinate entsprict der gesucten Höe ( 82 cm.) Verwendungsvorsclag für diese Aufgabe: Diese Aufgabe zeigt, dass es sinnvoll sein kann, nac alternativen Lösungsmöglickeiten mit anderen matematiscen Mitteln zu sucen, anstatt - wie bei diesem Aufgabentyp meist üblic - mit den Stralensätzen zu arbeiten Je mer Lösungsansätze gefunden werden, desto größer sind die Cancen, ein Problem tatsäclic auc zu lösen. Die Aufgabe kann als Übungsaufgabe gestellt werden. Die Scülerinnen und Scüler können besonders viel dabei lernen, wenn sie dazu angeregt werden, versciedene Lösungswege zu finden. Daran kann sic eine Diskussion darüber anscließen, welce Lösungswege gefunden wurden und welce besonders sinnvoll sind. Aufgabe 5: Änlickeit (a) Mikroskope werden in der Cemie äufig eingesetzt, um kleine Kristalle besser betracten zu können. Erkläre, wo ierbei Änlickeit im Sinne der Matematik auftritt! (b) Sie dir die unten steende vergrößerte Abbildung genau an! Sie zeigt einen so genannten Silberbaum. Was kann man entdecken, wenn man einzelne Teile noc weiter vergrößert? Was bedeutet Änlickeit in diesem Zusammenang?

6 (a) Durc die Vergrößerung mit Hilfe des Mikroskops kann man den Kristall besser betracten. Ein Mikroskop vergrößert alle Strecken des Originals in einem bestimmten Maßstab. Das eißt, dass die Bildfigur dem Ausgangsobjekt änlic im Sinne der Matematik ist, da es sic ier um ein maßstabsänlices Vergrößern andelt. (b) Zoomt man (beispielsweise mit Hilfe des Mikroskops) näer an die Figur eran, kann man eine Figur entdecken, die der Ausgangsfigur änlic ist: Die Figur zeigt eine änlice Verästelung. Hierbei andelt es sic allerdings um keine Änlickeit im Sinne der Matematik, denn keine maßstabsgetreue Vergrößerung eines Teils der Figur entsprict der Ausgangsfigur. Weder die Winkel der Äste noc ire Anzal ist gleic. Die Änlickeit bestet ier allein in der Struktur.

Jgst. 11/I 1.Klausur

Jgst. 11/I 1.Klausur Jgst. /I.Klausur..00 A. Bestimme den Scnittpunkt und den Scnittwinkel der beiden folgenden Geraden: g : x y = 5 : + y = 5x Zunäcst müssen die beiden Geraden auf Normalform gebract werden: x y = 5 y = x

Mehr

Linear. Halbkreis. Parabel

Linear. Halbkreis. Parabel Vom Parabolspiegel zur Ableitungsfunktion Im Folgenden get es darum erauszufinden, was ein Parabolspiegel ist und wie er funktioniert. Das fürt uns auf wictige Fragen eines Teilgebietes der Matematik,

Mehr

9 Anhang. 9.1 Verhältnisgleichungen. 9.2 Strahlensätze. Elemente der Geometrie 22

9 Anhang. 9.1 Verhältnisgleichungen. 9.2 Strahlensätze. Elemente der Geometrie 22 Elemente der Geometrie 9 Anang 9.1 Verältnisgleicungen Verältnisgleicungen sind spezielle Formen von Gleicungen. Es a werden zwei Quotienten gleic gesetzt. Die Gleicung! b = c d kann man auc screiben als!a:b

Mehr

6. Die Exponentialfunktionen (und Logarithmen).

6. Die Exponentialfunktionen (und Logarithmen). 6- Funktionen 6 Die Eponentialfunktionen (und Logaritmen) Eine ganz wictige Klasse von Funktionen f : R R bilden die Eponentialfunktionen f() = c ep( ) = c e, ier sind, c feste reelle Zalen (um Trivialfälle

Mehr

Analysis: Ableitung, Änderungsrate,Tangente Analysis Klausur zu Ableitung, Änderungsrate, Tangente Gymnasium Klasse 10

Analysis: Ableitung, Änderungsrate,Tangente Analysis Klausur zu Ableitung, Änderungsrate, Tangente Gymnasium Klasse 10 Analysis Klausur zu Ableitung, Änderungsrate, Tangente Gymnasium Klasse 10 Aleander Scwarz www.mate-aufgaben.com Dezember 01 1 Teil 1: one Hilfsmittel Aufgabe 1: Ermittle die Steigung von f() = + 4 an

Mehr

Klasse 9 a/b/c 4. Schulaufgabe aus der Mathematik

Klasse 9 a/b/c 4. Schulaufgabe aus der Mathematik Klasse 9 a/b/c 4. Sculaufgabe aus der Matematik 14. 06. 00 (WWG) Gruppe A 1. Von einem Würfel der Kantenlänge a wird wie unten eingezeicnet eine Pyramide abgescnitten. Berecne das Volumen der Pyramide.

Mehr

Diagramm 1 Diagramm 2

Diagramm 1 Diagramm 2 Zweijärige zur Prüfung der Facsculreife fürende Berufsfacscule (BFS) Matematik (9) Hauptprüfung 008 Aufgaben Aufgabe 1 A. 1. Bestimmen Sie die Gleicungen der Geraden g und.. Geben Sie die Koordinaten der

Mehr

Verlauf Material LEK Glossar Lösungen. Perspektivisch betrachtet Geometrie mit Fluchtlinien und Fluchtpunkten. Wolfgang Göbels, Bergisch Gladbach

Verlauf Material LEK Glossar Lösungen. Perspektivisch betrachtet Geometrie mit Fluchtlinien und Fluchtpunkten. Wolfgang Göbels, Bergisch Gladbach Reie 15 S 1 Verlauf Material Perspektivisc betractet Geometrie mit Fluctlinien und Fluctpunkten Wolfgang Göbels, Bergisc Gladbac Hoc inaus Froscperspektive beim Altenberger Dom in Odental Klasse: 10 Dauer:

Mehr

Musterlösung Übung 1

Musterlösung Übung 1 Allgemeine Cemie PC) Musterlösung Übung HS 07 Musterlösung Übung Aufgabe : Molmasse von Sauerstoff Da die Summe der natürlicen Häufigkeiten aller stabilen Isotope Σ i i = sein muss, ist die Häufigkeit

Mehr

Geometrisch ergibt sich deren Graph als Schnitt von G mit der senkrechten Ebene y = b bzw. x = a:

Geometrisch ergibt sich deren Graph als Schnitt von G mit der senkrechten Ebene y = b bzw. x = a: Fläcen im Raum Grap und Scnittkurven Im ganzen Artikel bezeicnet D eine Teilmenge des R 2 und eine skalarwertige Funktion in zwei Veränderlicen. Der Grap f : D R 2 R : (x, y) z = f(x, y) G = { (x, y, z)

Mehr

Mathematik für Chemiker I

Mathematik für Chemiker I Universität D U I S B U R G E S S E N Campus Essen, Matematik PD Dr. L. Strüngmann WS 007/08 Übungsmaterial sowie andere Informationen zur Veranstaltung unter: ttp://www.uni-due.de/algebra-logic/struengmann.stml

Mehr

Einstieg in die Differenzialrechnung

Einstieg in die Differenzialrechnung Lern-Online.net Matematikportal Dierenzialrecnung (Einstieg) Einstieg in die Dierenzialrecnung Einstiegsbeispiel: Der ideale Kasten Augabenstellung: Ein DIN-A4-Blatt soll zu einem (deckellosen) Kasten

Mehr

Grundkurs Physik: Abiturprüfung 1997 Aufgabe 3 Atomphysik

Grundkurs Physik: Abiturprüfung 1997 Aufgabe 3 Atomphysik Grundkurs Pysik: Abiturprüfung 1997 Aufgabe 3 Atompysik 1. Der gesamte sictbare Bereic (00 nm λ 750 nm) des elektromagnetiscen Spektrums soll auf einem Scirm dargestellt werden. a) Begründen Sie, warum

Mehr

3.2 Polarkoordinaten und exponentielle Darstellung

3.2 Polarkoordinaten und exponentielle Darstellung 42 3.2 Polarkoordinaten und exponentielle Darstellung Ein Punkt z = a + bi der Gaußscen Zalenebene ist durc seine kartesiscen Koordinaten a und b eindeutig festgelegt. Man kann jedoc auc zwei andere Grössen

Mehr

( ), und legen deshalb eine Ebene fest. Als Aufpunkt dient ein beliebiger Punkt von g oder h, als Spannvektoren

( ), und legen deshalb eine Ebene fest. Als Aufpunkt dient ein beliebiger Punkt von g oder h, als Spannvektoren Lösungen zur analytiscen Geometrie, Buc S. 9f. a) E in die Parameterform umwandeln: x = x + x + Wäle: x = ; x = x = + E : X = x x x = + + = + In F einsetzen: + + = + = = In E einsetzen: s: X = + + ( )

Mehr

Einstiegsphase Analysis (Jg. 11)

Einstiegsphase Analysis (Jg. 11) Einstiegspase Analysis (Jg. 11) Ac Geradengleicungen: Eine Gerade g verlaufe durc P(-3/-2) und Q(4/3). Eine Gerade gee durc R(1/y) und stee senkrect auf g. Zeicne diese Geraden und stelle ire Gleicungen

Mehr

Physik I Übung 7, Teil 2 - Lösungshinweise

Physik I Übung 7, Teil 2 - Lösungshinweise Pysik I Übung 7, Teil - Lösungsinweise Stefan Reutter SoSe 0 Moritz Kütt Stand:.06.0 Franz Fujara Aufgabe Clausius- Klappermann Clapeyron Revisited (Vorsict, Aufgabe vom Cef!) Da sic Prof. Fujara wie immer

Mehr

1.06 Druck an gekrümmten Flächen y y = f(x) p = γ. (h-y) h y

1.06 Druck an gekrümmten Flächen y y = f(x) p = γ. (h-y) h y 1.06 Druck an gekrümmten läcen f() p γ. (-) p p ds p 0 0 Es andelt sic um ein zweidimensionales Problem in der -- Ebene. ür die Ermittlung von Kräften muss auc die Dimension senkrect zur Tafelebene berücksictigt

Mehr

Numerische Simulation von Differential-Gleichungen der Himmelsmechanik

Numerische Simulation von Differential-Gleichungen der Himmelsmechanik Numerisce Simulation von Differential-Gleicungen der Himmelsmecanik Teilnemer: Max Dubiel (Andreas-Oberscule) Frank Essenberger (Herder-Oberscule) Constantin Krüger (Andreas-Oberscule) Gabriel Preuß (Heinric-Hertz-Oberscule)

Mehr

Fertigungstechnik Technische Kommunikation - Technisches Zeichnen

Fertigungstechnik Technische Kommunikation - Technisches Zeichnen Uwe Rat Eckleinjarten 13a. 7580 Bremeraven 0471 3416 rat-u@t-online.de Fertigungstecnik Tecnisce Kommunikation - Tecnisces Zeicnen 11 Projektionszeicnen 11. Körperscnitte und bwicklungen 11..4 Kegelige

Mehr

Aufgabenzettel. Löse rechnerisch mit Hilfe geeigneter Funktionsgleichungen. Überprüfe deine Lösung mit einer Zeichnung.

Aufgabenzettel. Löse rechnerisch mit Hilfe geeigneter Funktionsgleichungen. Überprüfe deine Lösung mit einer Zeichnung. Matematik Klasse 11 1 Zylinder Zwei Zylinderförmige Gefäße werden mit Wasser gefüllt (siee unten). Jedes Gefäß at einen Grundfläceninalt von 1dm 2 und ist 85cm oc. Erreict der Wasserspiegel des zweiten

Mehr

14 B Steigung. 1 Miss bei den drei Keilen die Winkel und Strecken und übertrage sie in die Tabelle. Berechne die Steigung.

14 B Steigung. 1 Miss bei den drei Keilen die Winkel und Strecken und übertrage sie in die Tabelle. Berechne die Steigung. Steigung 4 6 Arbeitseft+ Teste dic selbst Miss bei den drei Keilen die Winkel und Strecken und übertrage sie in die Tabelle. Berecne die Steigung. a a a Keil Keil 2 Keil 3 Keil Keil 2 Keil 3 Horizontale

Mehr

Übungen zum Mathematik-Abitur. Geometrie 1

Übungen zum Mathematik-Abitur. Geometrie 1 Geometrie Übungen zum atematik-abitur -7/8 Übungen zum atematik-abitur Geometrie Gegeben sind die Punkte ( 4 ) und ( 5 6 4) P und die Gerade 7 4 g: x= + r 4 Aufgabe : Die Ebene E entält g und Bestimmen

Mehr

4.3.2 Ableitungsregeln

4.3.2 Ableitungsregeln Vorbereitungskurs auf die Aufnameprüfung der ETH: Matematik 4.3.2 Ableitungsregeln Der Differentialquotient [s. 43] zur Definition der Ableitung beinaltet eine Grenzwertbildung Limes), welce meist dadurc

Mehr

Einführung in die Differentialrechnung

Einführung in die Differentialrechnung Reiner Winter Einfürung in die Differentialrecnung. Das Tangentenproblem als ein Grundproblem der Differentialrecnung Wir betracten im folgenden die quadratisce Normalparabel, d.. den Grapen GI f der Funktionsgleicung

Mehr

Geometrie. 26. Juni Inhaltsverzeichnis. 1 Zweidimensionale Geometrie 2. 2 Dreidimensionale Geometrie 6

Geometrie. 26. Juni Inhaltsverzeichnis. 1 Zweidimensionale Geometrie 2. 2 Dreidimensionale Geometrie 6 Geometrie 6. Juni 017 Inltsverzeicnis 1 Zweidimensionle Geometrie Dreidimensionle Geometrie 6 1 1 Zweidimensionle Geometrie In diesem Kpitel wollen wir uns mit einigen einfcen geometriscen Formen bescäftigen

Mehr

Bereich Thema Schwierigkeit Geometrie Berechnungen in Rechtwinkligen Dreiecken II ***

Bereich Thema Schwierigkeit Geometrie Berechnungen in Rechtwinkligen Dreiecken II *** Ballon Von einem Freiballon aus werden die Orte A und B, die 2700m voneinander entfernt sind, unter den Tiefenwinkeln mit den Winkelweiten α = 66 und β = 24 angepeilt Bestimme, in welcer Höe der Ballon

Mehr

Tangenten an Funktionsgraphen (Differenzialrechnung) Aufgaben ab Seite 4

Tangenten an Funktionsgraphen (Differenzialrechnung) Aufgaben ab Seite 4 Klasse / Augaben ab Seite 4 rundlagen und Begrie der Dierenzialrecnung Die Zeicnungen und Erklärungen sind etwas ausürlicer als notwendig u versciedene Screibweisen und Darstellungen auzuzeigen. Steigung

Mehr

2 Ein Beispiel und der Haken an der Sache

2 Ein Beispiel und der Haken an der Sache Numerik I. Version: 9.02.08 2 Ein Beispiel und der Haken an der Sace In lineare Algebra I-II wurde gezeigt, wie durc das Gaußsce Verfaren lineare Gleicungssysteme gelöst werden. Das folgende einface Beispiel

Mehr

Mathematik Klassenarbeit Nr. 3. Die Ableitungsfunktion, Eigenschaften und Anwendungen

Mathematik Klassenarbeit Nr. 3. Die Ableitungsfunktion, Eigenschaften und Anwendungen 0. Für Pflict- und Walteil gilt: saubere und übersictlice Darstellung, klar ersictlice Recenwege, Antworten in ganzen Sätzen und Zeicnungen mit spitzem Bleistift bringen dir bis zu 3 Punkte. /3 1. Erkläre

Mehr

1 Berechnung einer Geschwindigkeitskonstanten mit der Theorie des Übergangszustandes

1 Berechnung einer Geschwindigkeitskonstanten mit der Theorie des Übergangszustandes Pysikalisce Cemie II Lösung 11 4. Dezember 215 1 Berecnung einer Gescwindigkeitskonstanten mit der eorie des Übergangszustandes Mit Gl. 4.97 1. Eyringsce Gleicung ergibt sic für die termiscen Gescwindigkeitskonstanten

Mehr

Abiturprüfung Mathematik 2005 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Lösung Aufgabe A

Abiturprüfung Mathematik 2005 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Lösung Aufgabe A www.mate-aufgaben.com Abiturprüfung Matematik 5 (Baden-Württemberg) Beruflice Gymnasien one TG Analysis Gruppe I, Lösung Aufgabe A f () ( ) ( ) ( ) f () ( ) f () ( ) und f () Wendepunkte: f () ( ) f (

Mehr

Übungsaufgaben zur Kursarbeit

Übungsaufgaben zur Kursarbeit Übungsaufgaben zur Kursarbeit I) Tema Funktionen. Gib jeweils die maximale Definitionsmenge der Funktion an f(x) = (x ) D f = R (x) = x D = {x R /x } g(x) = (x ) D = {x R /x } g k(x) = x D = {x R /x >

Mehr

Tangentensteigung. Gegeben ist die Funktion f(x) = x 2.

Tangentensteigung. Gegeben ist die Funktion f(x) = x 2. Tangentensteigung Gegeben ist die Funktion () =. Um die Steigung der Tangente im Punkt P( ) zu bestimmen, ermitteln wir zunäcst die Steigung der Sekante durc P( ) und Q( ). Q soll so beweglic sein, dass

Mehr

e-funktion und natürlicher Logarithmus

e-funktion und natürlicher Logarithmus e-funktion und natürlicer Logaritmus. Die Differentialgleicung y=y' Gibt es eine Funktion, die mit irer Ableitung identisc ist, d.. dass f = f ' für alle gilt? Wenn die Ableitung trigonometriscer Funktionen

Mehr

Differentialrechnung. Kapitel 7. Differenzenquotient. Graphische Interpretation des Differentialquotienten. Differentialquotient

Differentialrechnung. Kapitel 7. Differenzenquotient. Graphische Interpretation des Differentialquotienten. Differentialquotient Differenzenquotient Sei f : R R eine Funktion. Der Quotient Kapitel 7 Differentialrecnung f f 0 + f 0 f f 0 0 eißt Differenzenquotient an der Stelle 0. f, f Sekante 0, f 0 f 0 Josef Leydold Matematik für

Mehr

Realschule Schüttorf November 2006 Mathematik Klasse 10 Wiederholung

Realschule Schüttorf November 2006 Mathematik Klasse 10 Wiederholung 1.) Ein Farradändler verkauft in einer Woce 8 Damen- und 1 Herrenfarräder für 589. Ein Damenfarrad ist 11 günstiger als ein Herrenfarrad. Berecne jeweils den Preis eines Damen- und den Preis eines Herrenfarrades!.)

Mehr

Manfred Burghardt. Allgemeine Hochschulreife und Fachhochschulreife in den Bereichen Erziehung, Gesundheit und Soziales

Manfred Burghardt. Allgemeine Hochschulreife und Fachhochschulreife in den Bereichen Erziehung, Gesundheit und Soziales Manfred Burgardt Allgemeine Hocsculreife und Facocsculreife in den Bereicen Erzieung, Gesundeit und Soziales Version /4 Inaltsverzeicnis I Inaltsverzeicnis Inaltsverzeicnis... I Die Ableitungsfunktion

Mehr

Analysis: Ableitung, Änderungsrate,Tangente 1 Analysis Ableitung, Änderungsrate, Tangente Teil 1 Gymnasium Klasse 10

Analysis: Ableitung, Änderungsrate,Tangente 1 Analysis Ableitung, Änderungsrate, Tangente Teil 1 Gymnasium Klasse 10 www.mate-aufgaben.com Analysis: Ableitung, Änderungsrate,Tangente Analysis Ableitung, Änderungsrate, Tangente Teil Gymnasium Klasse 0 Alexander Scwarz www.mate-aufgaben.com April 0 www.mate-aufgaben.com

Mehr

Differenzieren kurz und bündig

Differenzieren kurz und bündig mate online Skripten ttp://www.mate-online.at/skripten/ Differenzieren kurz und bündig Franz Embacer Fakultät für Matematik der Universität Wien E-mail: franz.embacer@univie.ac.at WWW: ttp://omepage.univie.ac.at/franz.embacer/

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Tecnisce Universität Müncen SoSe 2013 Institut für Informatik Prof. Dr. Tomas Huckle Dipl.-Inf. Cristop Riesinger Dipl.-Mat. Jürgen Bräckle Numerisces Programmieren, Übungen 2. Übungsblatt: Kondition,

Mehr

Schriftliche Prüfung Schuljahr: 2008/2009 Schulform: Gymnasium. Mathematik

Schriftliche Prüfung Schuljahr: 2008/2009 Schulform: Gymnasium. Mathematik Ministerium für Bildung, Jugend und Sport Prüfungen am Ende der Jargangsstufe 10 Scriftlice Prüfung Sculjar: 2008/2009 Sculform: Matematik Allgemeine Arbeitsinweise Die Prüfungszeit beträgt 160 Minuten.

Mehr

Analysis: Klausur Analysis

Analysis: Klausur Analysis Analysis Klausur zu Ableitung, Extrem- und Wendepunkten, Interpretation von Grapen von Ableitungsfunktionen, Tangenten und Normalen (Bearbeitungszeit: 90 Minuten) Gymnasium J Alexander Scwarz www.mate-aufgaben.com

Mehr

VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA

VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA Mittwoc: Ableiten, Kurvendiskussionen, Optimieren, Folgen und Reien Betracte auf einem Hügel einen Weg, dessen Seitenansict

Mehr

Anwendungsaufgaben - Größen und Einheiten 1 Gib jeweils die Messgenauigkeit und die Anzahl der gültigen Ziffern an.

Anwendungsaufgaben - Größen und Einheiten 1 Gib jeweils die Messgenauigkeit und die Anzahl der gültigen Ziffern an. Anwendungsaufgaben - Größen und Eineiten 1 Gib jeweils die Messgenauigkeit und die Anzal der gültigen Ziffern an. Messgerät Messwert Messgenauigkeit gültige Ziffern Maßband Lineal Messscieber Mikrometer

Mehr

Geometrische Mehrgitterverfahren. Annabell Schlüter

Geometrische Mehrgitterverfahren. Annabell Schlüter Geometrisce Mergitterverfaren Annabell Sclüter 13.07.2010 Inaltsverzeicnis 1 Einleitung 2 2 Das Mergitterverfaren für lineare Probleme 3 2.1 Dämpfungseigenscaften des Jacobiverfarens............ 3 2.2

Mehr

Heute schon gepoppt?

Heute schon gepoppt? Heute scon gepoppt? Benno Grabinger, Neustadt/Weinstraße, www.bennograbinger.de www.pringles.de Benno Grabinger: Pringles 1 Wie ann die Form eines Pringle matematisc bescrieben werden? Wo entsteen solce

Mehr

ANALYSIS Differenzialrechnung Kapitel 1 5

ANALYSIS Differenzialrechnung Kapitel 1 5 TELEKOLLEG MULTIMEDIAL ANALYSIS Differenzialrecnung Kapitel 5 Ferdinand Weber BRmedia Service GmbH Inaltsverzeicnis Jedes Kapitel beginnt mit der Seitenzal.. Das Tangentenproblem. Steigung einer Geraden

Mehr

Andreas Platen

Andreas Platen Seminar zur Approximationsteorie im Wintersemester 2009/2010 Monge-Ampère-Gleicung Numerisce Verfaren zur Lösung der Monge-Ampère-Gleicung, Teil II Andreas Platen 29.01.2010 1 Inaltsverzeicnis Inaltsverzeicnis

Mehr

Teil 1. 2 Gleichungen mit 2 Unbekannten mit Textaufgaben. und 3 Gleichungen mit 2 Unbekannten. Datei Nr. 12180. Friedrich Buckel. Stand 11.

Teil 1. 2 Gleichungen mit 2 Unbekannten mit Textaufgaben. und 3 Gleichungen mit 2 Unbekannten. Datei Nr. 12180. Friedrich Buckel. Stand 11. Teil Gleicungen mit Unbekannten mit Textaufgaben und 3 Gleicungen mit Unbekannten Datei Nr. 80 Stand. April 0 Lineare Gleicungssysteme INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 80 Gleicungssysteme Vorwort

Mehr

Einführung der Trigonometrischen Funktionen

Einführung der Trigonometrischen Funktionen Einfürung der Trigonometriscen Funktionen Andreas Kovacs H03550L JKU Linz andreas.kovacs@ aon.at Cristian Punzengruber H035596L JKU Linz cunzengruber@ gm.at. Juni 004 Kurzfassung Diese Arbeit andelt von

Mehr

14. Landeswettbewerb Mathematik Bayern

14. Landeswettbewerb Mathematik Bayern 4. Landeswettbewerb Matematik Bayern Lösungsbeispiele für die Aufgaben der. Runde / Aufgabe David wirft einen besnderen Würfel und screibt jeweils die ben liegende Zal auf. Die Abbildung zeigt ein Netz

Mehr

Bestimmung von Azimut und Abstand: Berechnete Höhe (= Entfernung des gegißten Ortes vom Bildpunkt):

Bestimmung von Azimut und Abstand: Berechnete Höhe (= Entfernung des gegißten Ortes vom Bildpunkt): Bestimmung von Azimut und Abstand: Stundenwinkel: t = Grt + λ + für E-Längen - für W-Längen Berecnete Höe (= Entfernung des gegißten Ortes vom Bildpunkt): sin = sin ϕ sin δ + cos ϕ cosδ cos t Bei der Verwendung

Mehr

GRUNDVORSTELLUNGEN BEI DER EINFÜHRUNG DER BEIDEN BEGRIFFE DIFFERENZENQUOTIENT UND DIFFERENTIALQUOTIENT

GRUNDVORSTELLUNGEN BEI DER EINFÜHRUNG DER BEIDEN BEGRIFFE DIFFERENZENQUOTIENT UND DIFFERENTIALQUOTIENT GRUNDVORSTELLUNGEN BEI DER EINFÜHRUNG DER BEIDEN BEGRIFFE DIFFERENZENQUOTIENT UND DIFFERENTIALQUOTIENT Dr. Bernard Salzger Don Bosco-Gymnasium, Ebreicsdorf-Unterwalterdorf Ebreicsdorf-Unterwaltersdorf,

Mehr

ma t 4 u GITARREN- UND LAUTENBÜNDE GRUNDLEGENDES DAS MONOCHORD

ma t 4 u GITARREN- UND LAUTENBÜNDE GRUNDLEGENDES DAS MONOCHORD GRUNDLEGENDES DAS MONOCHORD Scon in der Antike war es üblic, Intervalle durc Streckenteilung auf einer gespannten Saite geometrisc darzustellen. Das dabei benützte Instrument eißt Kanon oder Monocordon

Mehr

Was haben Beschleunigungs-Apps mit der Quadratur des Kreises zu tun?

Was haben Beschleunigungs-Apps mit der Quadratur des Kreises zu tun? Was aben Bescleunigungs-Apps mit der Quadratur des Kreises zu tun? Teilnemer: Jonatan Geuter Leonard Hackel Paul Hagemann Maximilian Kuc Amber Lucas Tobias Tieme Tobias Tiesse Niko Wolf Gruppenleiter:

Mehr

RWTH Aachen, Lehrstuhl für Informatik IX Kapitel 3: Suchen in Mengen - Datenstrukturen und Algorithmen - 51

RWTH Aachen, Lehrstuhl für Informatik IX Kapitel 3: Suchen in Mengen - Datenstrukturen und Algorithmen - 51 RWTH Aacen, Lerstul für Informatik IX Kapitel 3: Sucen in Mengen - Datenstrukturen und Algoritmen - 51 Sucbäume Biser betractete Algoritmen für Suce in Mengen Sortierte Arrays A B C D - Nur sinnvoll für

Mehr

Kantonale Prüfungen Mathematik II Prüfung für den Übertritt aus der 9. Klasse

Kantonale Prüfungen Mathematik II Prüfung für den Übertritt aus der 9. Klasse Kantonale Prüfungen 2013 für die Zulassung zum gymnasialen Unterrict im 9. Sculjar Matematik II Serie H9 Gymnasien des Kantons Bern Matematik II Prüfung für den Übertritt aus der 9. Klasse Bitte beacten:

Mehr

Kraft F in N Dehnung s in m

Kraft F in N Dehnung s in m . Klausur Pysik Leistungskurs Klasse 7. 9. 00 Dauer: 90 in. Wilel T., ein junger, talentierter Bogenscütze darf sic einen neuen Bogen kaufen. Er kann den Bogen it axial 50 N spannen und seine Are reicen

Mehr

Das Delta-Potential. Gruppe PLANCK. Anton Hörl Thomas Kloiber Bernd Kollmann Miriam Mutici Jakob Schwarz. Quantenmechanik Projekt 2

Das Delta-Potential. Gruppe PLANCK. Anton Hörl Thomas Kloiber Bernd Kollmann Miriam Mutici Jakob Schwarz. Quantenmechanik Projekt 2 Das Delta-Potential Quantenmecanik Projekt Gruppe PLANCK Anton Hörl Tomas Kloiber Bernd Kollmann Miriam Mutici Jakob Scwarz Max Planck (1858 1947) 4.4 Delta-Potential Ist die räumlice Ausdenung eines Potentials

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik Aufgabe 2 Wetterstation Aufgabe aus der scriftlicen Abiturprüfung Hamburg 05. In einer Wetterstation wird die Aufzeicnung eines Niedersclagmessgeräts vom Vortag (im Zeitraum von 0 Ur bis Ur) ausgewertet.

Mehr

Charaktere. 1 Wiederholung. 2 Charaktere verschiedener Darstellungen. 1.1 Zerlegung von Darstellungen. 1.2 Schursches Lemma

Charaktere. 1 Wiederholung. 2 Charaktere verschiedener Darstellungen. 1.1 Zerlegung von Darstellungen. 1.2 Schursches Lemma Caraktere 1 Wiederolung 1.1 Zerlegung von Darstellungen Jede Darstellung läßt sic Zelegen in V = V a1 1 V a Wobei die V i irreduzible Darstellungen von G sind und a i N. Die Sätze der Carakterteorie liefern

Mehr

Musterlösung zu Übungsblatt 1

Musterlösung zu Übungsblatt 1 Prof. R. Pandaripande J. Scmitt, C. Scießl Funktionenteorie 23. September 16 HS 2016 Musterlösung zu Übungsblatt 1 Aufgabe 1. Sei F ein Körper, der R als einen Unterkörper entält. Das eisst R ist eine

Mehr

2.7. Aufgaben zu Ähnlichkeitsabbildungen

2.7. Aufgaben zu Ähnlichkeitsabbildungen .7. Aufaben zu Änlickeitsabbildunen Aufabe 1 Strecke das Dreieck AB mit A(3 1), B( 3) und ( ) an Z(1 1) um die Streckfaktoren k 1 =, k = 1, k 3 = 1, k 4 = und k =. Aufabe Strecke das Dreieck AB mit A(

Mehr

Differenzialrechnung Skript für den Brückenkurs zum Studiengang Holztechnik

Differenzialrechnung Skript für den Brückenkurs zum Studiengang Holztechnik Differenzialrecnung Skript für den Brückenkurs zum Studiengang Holztecnik Joannes Creutziger Hocscule für nacaltige Entwicklung Eberswalde (FH) Facbereic Holztecnik Version 0.2, 06.10.2011; kleine Korrekturen

Mehr

iek Institut für Entwerfen und Konstruieren

iek Institut für Entwerfen und Konstruieren Grundlaen der Darstellun Institut für Entwerfen und Konstruieren Prof. José Luis Moro Heiko Stacel Mattias Rottner 1 Konstruktion der senkrecten Axonometrie 2 Mertafelprojektion B(A) A B A Aufriss Seitenriss

Mehr

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert PN Einfürung in die Pysik für Cemiker Prof. J. Lipfert en zu Übungsblatt 7 WS 203/4 en zu Übungsblatt 7 Aufgabe Ballscleuder. Zwei Bälle werden übereinander und gleiczeitig fallen gelassen. Die Massen

Mehr

Das Goethe-Barometer Luftdruckmessungen mit einem historischen Gerät von Helmut Jena

Das Goethe-Barometer Luftdruckmessungen mit einem historischen Gerät von Helmut Jena Das Goete-Barometer uftdruckmessungen mit einem istoriscen Gerät von Helmut Jena Das Goete-Barometer als attraktiver und istoriscer uftdruck- Anzeiger fasziniert besonders den naturwissenscaftlic interessierten

Mehr

Leibnizschule Hannover

Leibnizschule Hannover Leibnizscule Hannover - Seminararbeit - Modellierung von Ausflussvorgängen J I Sculjar: 2010 Fac: Matematik Inaltsverzeicnis 1 Einleitung 2 11 Vorwort 2 12 Vorbereitung 2 2 Ausflussvorgang bei konstantem

Mehr

Rudolphs Schlitten. Aufgabe. Autor: Jochen Ricker

Rudolphs Schlitten. Aufgabe. Autor: Jochen Ricker Rudolps Sclitten Autor: Jocen Ricker Aufgabe Endlic ist es wieder soweit: Weinacten stet vor der Tür! Diesmal at der Weinactsmann sic ein ganz besonderes Gescenk für seine Rentiere einfallen lassen. Sie

Mehr

Wochenplan Woche vom...

Wochenplan Woche vom... Wocenplan Woce vom... Temenübersict Arbeitsblatt 1 Holzylinder Inalt, Scwerpunkte des Temas Volumenberecnungen und Masseberecnung für den Holzylinder Kontrolle Arbeitsblatt Netze von, Oberfläcenberecnung,

Mehr

Mathematik 1 bis 3 Sekundarstufe I Das neue Mathematik-Lehrwerk ist komplett

Mathematik 1 bis 3 Sekundarstufe I Das neue Mathematik-Lehrwerk ist komplett Matematik 1 bis 3 Sekundarstufe I Das neue Matematik-Lerwerk ist komplett Das Lerwerk für Aritmetik, Algebra, Geometrie, Sacrecnen und Stocastik für die 1. bis 3. Sekundarklasse Augenöe der Für die Scülerinnen

Mehr

2. Kubatur (Aufgaben 55 bis 108)

2. Kubatur (Aufgaben 55 bis 108) . Kubatur (Aufgaben 55 bis 108) 55) Rotiert ein Bogen einer gleicseitigen Hyperbel (wobei der Anfangspunkt ein Sceitel ist) um die Hauptacse von yp, so entstet (analog zur Kugelkalotte) eine Hyperboloidkalotte

Mehr

Übersicht. Einführung Universelles Hashing Perfektes Hashing

Übersicht. Einführung Universelles Hashing Perfektes Hashing Hasing Übersict Einfürung Universelles Hasing Perfektes Hasing 2 Das Wörterbuc-Problem Gegeben: Universum U = [0 N-1], wobei N eine natürlice Zal ist. Ziel: Verwalte Menge S U mit folgenden Operationen.

Mehr

Zentrum für schulpraktische Lehrerausbildung Leverkusen Seminar für das Lehramt an Gymnasien und Gesamtschulen

Zentrum für schulpraktische Lehrerausbildung Leverkusen Seminar für das Lehramt an Gymnasien und Gesamtschulen Zentrum für sculpraktisce Lererausbildung Leverkusen Seminar für das Leramt an Gymnasien und Gesamtsculen Brückenstr. 0-2 5379 Leverkusen Unterrictsentwurf für den 3. Unterrictsbesuc im Fac Matematik Studienreferendar:

Mehr

Steuerliche Spendenanreize: Ein Reformvorschlag. Ludwig von Auer Andreas Kalusche. Research Papers in Economics No. 7/10

Steuerliche Spendenanreize: Ein Reformvorschlag. Ludwig von Auer Andreas Kalusche. Research Papers in Economics No. 7/10 Steuerlice Spendenanreize: Ein Reformvorsclag Ludwig von Auer Andreas Kalusce Researc Papers in Economics No. 7/10 Steuerlice Spendenanreize: Ein Reformvorsclag Ludwig von Auer 1 Universität Trier Andreas

Mehr

Á 4. Differenzierbarkeit, Stetigkeit

Á 4. Differenzierbarkeit, Stetigkeit Á 4. Differenzierbarkeit, Stetigkeit Historisc ist der Begriff der Differenzierbarkeit lange vor dem der Stetigkeit entwickelt worden. Untersciedlice Definitionen der Differenzierbarkeit werden von Gottfried

Mehr

r 11 r 12 r 13 0 r 22 r r 33 l ik r kj die Gleichungen: k= (II) 2 (I) = 3 2 1

r 11 r 12 r 13 0 r 22 r r 33 l ik r kj die Gleichungen: k= (II) 2 (I) = 3 2 1 Tecnisce Universität Berlin Wintersemester 004/005 Fakultät II; Institut für Matematik Prof. Dr. G. Bärwolff/C. Mense.0.005 Probeklausur zur LV Numerik für Informatiker en Aufgabe a Berecnen Sie die LU-Zerlegung

Mehr

Über Formen des konvektiven Terms in Finite-Elemente-Diskretisierungen der inkompressiblen Navier-Stokes-Gleichungen

Über Formen des konvektiven Terms in Finite-Elemente-Diskretisierungen der inkompressiblen Navier-Stokes-Gleichungen Über Formen des konvektiven Terms in Finite-Elemente-Diskretisierungen der inkompressiblen Navier-Stokes-Gleicungen Diplomarbeit zur Erlangung des akademiscen Grades Diplom-Matematikerin Freie-Universität

Mehr

Das Matrizenexponential

Das Matrizenexponential Das Matrizenexponential Tobias Fleckenstein 18 Mai 215 Das Matrizenexponential Seminar im Sommersemester 215 HCM Bonn Einleitung Bei der Untersucung von Differentialgleicung kommt man ser scnell in die

Mehr

mathphys-online DIFFERENTIALRECHNUNG BEI GANZRATIONALEN FUNKTIONEN y-achse x-achse Graph von f Graph von f ' Graph von f ''

mathphys-online DIFFERENTIALRECHNUNG BEI GANZRATIONALEN FUNKTIONEN y-achse x-achse Graph von f Graph von f ' Graph von f '' matpys-online DIFFERENTIALRECHNUNG BEI GANZRATIONALEN FUNKTIONEN 5 Grap von f Grap von f ' Grap von f '' matpys-online bei ganzrationalen Funktionen Inaltsverzeicnis Kapitel Inalt Seite Der Ableitungsbegriff.

Mehr

7.2. Ableitungen und lineare Approximation

7.2. Ableitungen und lineare Approximation 7.. Ableitungen und lineare Approximation Eindimensionale Ableitungen und Differentialquotienten einer Funktion bekommt man bekanntlic als Limes von Differenzenquotienten f ( a) = f ( a + ) f( a ) = x

Mehr

Reise nach Rio Klimadiagramme lesen

Reise nach Rio Klimadiagramme lesen Reise nac Rio Klimadiagramme lesen Maria will im Juli nac Brasilien fliegen und dort Urlaub macen. Um iren Koffer passend zu packen und Unternemungen planen zu können, suct sie im Internet zunäcst nac

Mehr

Teil 1: 2 Gleichungen mit 2 Unbekannten mit Textaufgaben. und 3 Gleichungen mit 2 Unbekannten. Datei Nr Friedrich Buckel. Stand 29.

Teil 1: 2 Gleichungen mit 2 Unbekannten mit Textaufgaben. und 3 Gleichungen mit 2 Unbekannten. Datei Nr Friedrich Buckel. Stand 29. Teil 1: Gleicungen mit Unbekannten mit Textaufgaben und 3 Gleicungen mit Unbekannten Datei Nr. 1180 Friedric Buckel Stand 9. Juni 016 Lineare Gleicungssysteme Demo-Text für www.mate-cd.de Dieser Text stet

Mehr

Mathematik II Prüfung für den Übertritt aus der 9. Klasse

Mathematik II Prüfung für den Übertritt aus der 9. Klasse Kantonale Prüfungen 2013 für die Zulassung zum gymnasialen Unterrict im 9. Sculjar Matematik II Serie H9 Gymnasien des Kantons Bern Matematik II Prüfung für den Übertritt aus der 9. Klasse Bitte beacten:

Mehr

3.2 Spline Interpolation

3.2 Spline Interpolation 3.2 Spline Interpolation 3.2 Spline Interpolation Ein wesentlicer Defekt der globalen Interpolation aus dem vorerigen Abscnitt ist, dass die interpolierenden Polynome starke Oszillationen zwiscen den Stützstellen

Mehr

Mathematik - Oberstufe

Mathematik - Oberstufe www.mate-aufgaben.com Matematik - Oberstufe Aufgaben und Musterlösungen zu Ableitungen, Tangenten, Normalen Zielgruppe: Oberstufe Gymnasium Scwerpunkt: Differenzenquotient, Differenzialquotient, Ableitung,

Mehr

2. Unterrichtsvorhaben in der E-Phase Änderungsraten und Ableitung

2. Unterrichtsvorhaben in der E-Phase Änderungsraten und Ableitung 0 2. Unterrictsvoraben in der E-Pase Änderungsraten und Ableitung Jörn Meyer j.meyer@fals-solingen.de www.maspole.de 1 Inaltsverzeicnis 1 Einfürung in die Differenzialrecnung... 2 2 Mittlere Änderungsraten...

Mehr

Nichtkonforme finite Elemente und Doedel-Kollokation für elliptische Differentialgleichungen

Nichtkonforme finite Elemente und Doedel-Kollokation für elliptische Differentialgleichungen Nictkonforme finite Elemente und Doedel-Kollokation für elliptisce Differentialgleicungen - Diplomarbeit - Eingereict am Facbereic Matematik und Informatik der Pilipps-Universität Marburg von Bastian Goldlücke

Mehr

Differenzial- und Integralrechnung V

Differenzial- und Integralrechnung V Differenzial- un Integralrecnung V Rainer Hauser Dezember 2013 1 Einleitung 1.1 Rationale Funktionen Rationale Funktionen sin Funktionen in er Form von Brücen, eren Zäler un Nenner Polynome sin. Durc vollstäniges

Mehr

Schriftliche Abiturprüfung Leistungskursfach Mathematik. - Ersttermin -

Schriftliche Abiturprüfung Leistungskursfach Mathematik. - Ersttermin - Säcsisces Staatsministerium für Kultus Sculjar 200/02 Geltungsbereic: - Allgemein bildendes Gymnasium - Abendgymnasium und Kolleg - Sculfremde Prüfungsteilnemer Scriftlice Abiturprüfung Leistungsursfac

Mehr

Neue GuideLed Sicherheitsleuchten

Neue GuideLed Sicherheitsleuchten CEAG GuideLed Sicereitsleucten Neue GuideLed Sicereitsleucten Geradliniges Design kombiniert mit oer Wirtscaftlickeit C-C8 C-C GuideLed SL., 2. CG-S Deckeneinbau EN 838 LED * GuideLed SL. CG-S IP GuideLed

Mehr

Schriftliche Abschlussprüfung Physik

Schriftliche Abschlussprüfung Physik Säcsisces Staatsministerium für Kultus Sculjar 2001/2002 Geltungsbereic: für Klassen 10 an - Mittelsculen - Fördersculen - Abendmittelsculen Scriftlice Absclussprüfung Pysik Realsculabscluss Allgemeine

Mehr

ZUM PROBLEM DER KÜRZESTEN DÄMMERUNG. von. Á. Kxss

ZUM PROBLEM DER KÜRZESTEN DÄMMERUNG. von. Á. Kxss ZUM PROBLEM DER KÜRZESTEN DÄMMERUNG von Á. Kxss Summary: (Contribution to te Problem of te Sortest Twiligt.) Te autor comes simply by an elementary matematical metod to te oterwise well-known Solution

Mehr

Einstieg in die Koordinatengeometrie - lineare Funktionen -

Einstieg in die Koordinatengeometrie - lineare Funktionen - Einstie in die Koordinateneoetrie - lineare Funktionen - Was ist eine Funktion? Definition: Funktion Eine Zuordnun f: D}, D eißt Funktion, wenn sie jede Eleent xd enau eine reelle Zal y zuordnet. f(x)=y

Mehr

Elastizitätsmodul. 1. Aufgabenstellung

Elastizitätsmodul. 1. Aufgabenstellung M Elastizitätsmodul 1. Aufgabenstellung 1.1 Bestimmen Sie den Elastizitätsmodul E versciedener Metalle aus der Biegung von Stäben. 1. Stellen Sie den Biegepfeil s in Abängigkeit von der Belastung grafisc

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 10 SATZ DES PYTHAGORAS. Hypotenuse

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 10 SATZ DES PYTHAGORAS. Hypotenuse Mtemtik: Mg. Scmid Wolfgng Arbeitsbltt 10. Semester ARBEITSBLATT 10 SATZ DES PYTHAGORAS Definition: Ktete Ktete Hypotenuse Jene beiden Seiten, die den recten Winkel bilden (,b) nennt mn Kteten, die dritte

Mehr

Realschulabschluss Physik (Sachsen) Aufgaben im Stil der Abschlussprüfung: Mechanik

Realschulabschluss Physik (Sachsen) Aufgaben im Stil der Abschlussprüfung: Mechanik Realsculabscluss Pysik (Sacsen) Aufgaben im Stil der Absclussprüfung: Mecanik Kraftumformende Einrictung 1 Ein PKW kommt beim Bremsen ins Scleudern und rutsct eine Böscung inab. Ein Abscleppfarzeug ziet

Mehr