Theoretische Physik I Mechanik Probeklausur - Lösungshinweise

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Theoretische Physik I Mechanik Probeklausur - Lösungshinweise"

Transkript

1 Prof. H. Monien St. Kräer R. Sanchez SS2014 Theoretische Physik I Mechanik Probeklausur - Lösungshinweise Hinweise: Diese Lösung/Lösungshinweise erhebt keinen Anspruch auf Richtigkeit oder Vollständigkeit, ist aber nach beste Wissen erstellt. Dennoch können sich Fehler eingeschlichen haben. Für Hinweise auf solche sind wir dankbar. Aufgabe 1 (Definitionen und Sätze). a. Drücken Sie die kartesischen Koordinaten (x, y, z) in Kugelkoordinaten (r, θ, φ) aus. x r sin θ cos ϕ y = r sin θ sin ϕ z r cos θ b. Gegeben sei f(x(t), y(t), t) = x(t) 2 x(t)y(t) 3 + e iωt. Berechnen Sie für x(t) = vt und y(t) = gt 2 /2 die totale Ableitung df/dt. d f f f f (x(t), y(t), t) = + ẏ(t) + dt xẋ(t) y t = ( 2x(t) y(t) 3) v ( 3x(t)y(t) 2) gt + iωe iωt = 2tv g3 t 6 v + iωe iωt c. Wieviele Freiheitsgrade hat ein Massepunkt auf einer Schraubenlinie? Ein Massepunkt in drei Diensionen hat drei Freiheitsgrade. Die Schraubenline liefert zwei Zwangsbedingungen (Radius fixiert und eine Beziehung zwischen Höhe und Winkel). Dait hat ein Massepunkt auf einer Schraubenlinie einen (drei inus zwei) Freiheitsgrad.

2 d. Gegeben sei eine Hailtonfunktion H(q, p, t). Geben Sie die kanonischen Gleichungen it Hilfe der Poissonklaern an. ṗ = {p, H} q = {q, H} e. Was besagt das Noethertheore (in Worten)? Zu jeder kontinuierlichen Syetrie eines physikalischen Systes gibt es eine Erhaltungsgröße. Hinweis: Weiterhin gibt das Noethertheore eine Forel zu Berechnung dieser Erhaltungsgröße. Siehe Aufgabe 5. f. Wann sind generalisierte Koordinaten zyklisch? Es sei L(q i, q i, t) eine Lagrangefunktion. Eine Koordinate q ν ist genau dann zyklisch, wenn die Lagrangefunktion nicht explizit von ihr abhängt (bzw. nur von deren Ableitung). Es gilt also: L q ν = 0 Aufgabe 2. Die Lagrangefunktion einer eindiensionalen Bewegung sei wie folgt gegeben: L = 2 ẋ2 e γ t, wobei γ > 0 eine Konstante. a. Zeigen Sie, dass die zugegehörigen Euler-Lagrange-Gleichung wie folgt aussehen: Die Euler-Lagrange-Gleichungen liefern: γ ẋ + ẍ = 0 d dt d L dt ẋ L x = 0 ( ẋe γ/t) 0 = 0 ẍe γ/t + ẋ γ eγ/t = 0 γ ẋ + ẍ = 0 b. Lösen Sie die Bewegungsgleichung unter den Anfangsbedingungen x(0) = x 0 und ẋ(0) = v 0. Definiere: v(t) = ẋ(t) + c 0. Haben nun Differentialgleichung für v(t): v + γ v = 0 1

3 Hat als Lösung: v(t) = c 1 e γ/t. Soit haben haben wir für x(t) = v(t)dt = c 1 e γ/t dt = γ c 1e γ/t + c 0 Für die Anfangsbedingungen setzten wir sie ein: x 0 = x(0) = γ c 1 + c 0 v 0 = x (0) = c 1 Der Wert von c 1 = v 0 kann sofort abgelesen werden und in die ersten Gleichung eingesetzt werden. Lösen nach der anderen Konstante ergibt: c 2 = v 0+γx 0 γ. Soit ist die gesuchte Lösung: x(t) = 1 (v 0 + γx 0 e γ/t) γ c. Bleiben während der Bewegung Ipuls und Energie erhalten? Begründen Sie Ihre Antwort. Ipuls bleibt erhalten, da x eine zyklische Variable ist. Die Energie bleibt nicht erhalten, da es eine Zeitabhängigkeit gibt und es gilt: dh dt = H t = L t 0. Aufgabe 3. Betrachten Sie erneut die Lagrangefunktion aus Aufgabe 2.: L = 2 ẋ2 e γ t, wobei γ > 0 eine Konstante. a. Berechnen Sie die kanonischen Ipulse. p = L ẋ = ẋeγ/t b. Geben Sie die zugehörige Hailtonfunktion an. Die Hailtonfunktion ist als H = p q L definiert. Wie lösen den kanonischen Ipuls nach ẋ auf und erhalten ẋ = p e γ/t Das alles setzten wir in die Definition von H ein: H = pẋ 2 ẋ2 e γ t = p2 2 e γ/t 2

4 c. Berechnen Sie die kanonischen Gleichungen. Die kanonischen Gleichungen lauten: ṗ = H x = 0 ẋ = H p = p e γ/t d. Lösen Sie die kanonischen Gleichungen. Die erste kanonische Gleichung ergibt p = c 1 für eine Konstante c 1. Die zweite Gleichung kann integriert werden und ergibt (zusaen it der Konstante c 1 ): x(t) = c 1 e γ/t + c 2 Aufgabe 4 (Schwingungen). Wir betrachten folgendes Modell aus Federn: Die Kugeln haben jeweils die Masse und die Federn die Federkonstante k. k k k k Abbildung 1: Federkonstruktion a. Stellen Sie die Lagrangefunktion und die Bewegungsgleichung für die zweidiensionale Bewegung auf. Verwenden Sie die Auslenkung der Kugeln aus den Gleichgewichtslagen als verallgeeinerte Koordinaten. Wir führen folgende Konvention ein: Indizes werden nur odulo 4 betrachtet. Das bedeutet, dass folgendes gilt: x 1 = x 5 y 1 = y 5 x 0 = x 4 y 0 = y 4 x 1 = x 3 y 1 = y 3 Jedes einzelne Teilchen hat eine kinetische Energie: T i = 1 2 (ẋ2 i +ẏ2 i ) und durch die Federn eine potentielle Energie: V i = 1 2 k((x i x i+1 ) 2 +(y i yi+1 2 )). Für die gesate kinetische Energie suieren wir über alle einzelnen: T = 4 i=1 T i. Analog für die 3

5 potentielle Energie: V = 4 i=1 V i. Dait ergibt sich für die Langrangefunktion: L = T V = ẋ 2 i + ẏi k (x i x i+1 ) 2 + (y i y i+1 ) 2 i=1 i=1 Es gibt zwei Sätze von Euler-Lagrange-Gleichungen: d L L = 0 dt ẋ ν x ν ẍ ν k (x ν 1 2x ν + x ν+1 ) = 0 d L L = 0 dt ẏ ν y ν ÿ ν k (y ν 1 2y ν + y ν+1 ) = 0 Hinweis: U den zweiten Ter in den ELG besser zu sehen, können wir folgendes betrachten: L = 1 x ν x ν 2 k ( (x ν 1 x ν ) 2 + (x ν x ν+1 ) 2) = k(x ν 1 2x ν + x ν+1 ) Wir führen die Variable q = ( x, y) t ein und schreiben die Bewegungsgleichung wie folgt: q = k ( ) A 0 q 0 A wobei: A = b. Bestien Sie die Eigenfrequenzen und die zugehörigen linearen Eigenschwingungen des Aufbaus. Wir berechnen das charakteristische Polyno von A: χ A (λ) = λ 4 + 8λ λ λ Dieses hat als Nullstellen: 0 (einfach), 2 (doppelt) und 4 (einfach). Die zugehörigen Eigenräue berechnen sich zu: E A (λ = 0) = (1, 1, 1, 1) t E A (λ = 2) = (0, 1, 0, 1) t, ( 1, 0, 1, 0) t E A (λ = 4) = ( 1, 1, 1, 1) t 4

6 Dait ergeben sich als Eigenfrequenzen 2 k und 2 k und als Eigenschwingungen: i) Für Eigenfrequenz 2 k haben wir folgende Eigenschwingungen: ( q 1 (t) = (0, 1, 0, 1, 0, 0, 0, 0) t sin 2 k ( ) q 2 (t) = ( 1, 0, 1, 0, 0, 0, 0, 0) t sin 2 k ( ) q 3 (t) = (0, 0, 0, 0, 0, 1, 0, 1) t sin 2 k ( ) q 4 (t) = (0, 0, 0, 0, 1, 0, 1, 0) t sin 2 k ) k ii) Für Eigenfrequenz 2 haben wir folgende Eigenschwingungen: ( ) q 5 (t) = ( 1, 1, 1, 1, 0, 0, 0, 0) t k sin 2 ( ) q 6 (t) = (0, 0, 0, 0, 1, 1, 1, 1) t k sin 2 Aufgabe 5 (Syetrien und das Noethertheore). Betrachte die folgende Lagrangefunktion: L = 1 2 j j (q j q j t) 2 t 2 a. Zeigen Sie, dass dieses Syste unter räulichen Translationen invariant ist. Betrachten Sie dazu die Transforation: q i (t) q i(t) = q i (t) + ɛ (1) für ein festes i. Die anderen Koordinaten q j (t) q j (t) = q j(t) für j i sollen ungeändert bleiben. Zeigen Sie, dass die Lagrangefunktion unter dieser Transforation invariant bleibt. Hinweis: Die Lagrangefunktion ist invariant, wenn sie sich nur u eine totale Zeitableitung ändert. 5

7 Wir setzten die neuen Koordinaten in die Langrangefunktion ein und erhalten: L(q, q, t) = 1 2 = 1 2 j j j (q j q j t) 2 t 2 j (q j δ ijɛ q j t)2 t 2 = 1 j ( (q j q j t)2 2 t 2 + 2δ ijɛ(q j q j t) + δ ijɛ 2 t 2 ) j = L(q, q, t) + d ( i ( q ) i dt t ɛ ɛ2 t ) Dait ist die Lagrangefunktion invariant. b. Berechnen Sie it Hilfe des Noethertheores die zu der Transforation (1) gehörige Erhaltungsgröße. Nach der Vorlesung, bzw. nach Aufgabenblatt 4 ist die Erhaltungsgrösse: Q = j L q j ψ j f(q, t) Wir betrachten die Tere einzeln: ( = j qj q ) j t i) L q j ii) Die Funktion ψ i ist die Transforation: q j q j = q j + ɛψ j. Hier haben wir also ψ j = δ ij. iii) Die Funktion f wurde wie folgt konstruiert: d L(q, q, t) dɛ = d f(q, t) ɛ=0 dt q i q i t i t 2 = d f(q, t) dt q i f(q, t) = i t Soit ergibt sich insgesat: Q = i ( q i q i t ) ( q i i t ) = i q i Aufgabe 6 (Zylinder auf Zylinderantel). Auf der Innenfläche eines Zylinderantels it Radius R rolle ein Zylinder it Radius r und konstanter Massendichte ρ. 6

8 ϕ r θ R Abbildung 2: Zylinder auf Zylinderantel a. Wie lautet die Lagrangefunktion des Systes? Die kinetische Energie besteht hier aus eine Translationsanteil und einen Rotationsanteil: T trans = 2 (R r)2 ϕ 2 T rot = J 2 ( ϕ + θ) 2 T tot = T trans + T rot Hier ist J = 1/2r 2 das Trägheitsoent. Die potentielle Energie lässt sich wie folgt ausdrücke: V = g(r r)(1 cos φ) Soit ergibt sich für die Lagrangefunktion nach Uforungen: L = T V = 3 4 (R r)2 ϕ 2 + g(r r) cos ϕ g(r r) b. Forulieren Sie die Bewegungsgleichungen. Die Euler-Lagrange-Gleichungen ergeben: ϕ = 3 g 2 R r sin ϕ c. Lösen Sie die Bewegungsgleichungen für kleine Ausschläge ϕ. Für kleine Ausschläge können wir nähern: sin α = α und erhalten als Bewegungsgleichung: Diese Gleichung hat als Lösung: ϕ = 3 g 2 R r ϕ ϕ(t) = a cos (ωt) + b sin (ωt) Dabei ist a und b Konstanten, die aus den Anfangsbedingungen zu bestien sind und ω = 2g 3(R r). 7

9 Aufgabe 7 (Beschleunigte schiefe Ebene). Ein Massepunkt gleitet reibungsfrei auf einer schiefen Ebene die in x-richtung beschleunigt wird: a(t) = bt 2 /2. Die Neigung der Ebene α bleibt dabei konstant. Die Gravitationskraft wirke parallel zu y-achse. y g α x a(t) Abbildung 3: Schiefe Ebene a. Stellen Sie die Zwangsbedingung auf. Der Punkte liegt zu einen auf der Ebene und zu anderen bewegt sich die Ebene. Soit bekoen wir als Zwangsbedingung: g(x, y, t) = (a(t) x) sin α y cos α b. Wie lauten die Bewegungsgleichungen? Wir setzten die Lagrangefunktion an als: L = 2 (ẋ2 + ẏ 2) + gy Die Euler-Lagrange-Gleichungen it Nebenbedingungen ergeben: r = g + λgradg In ein Einzelnen Koponenten: ẍ = λ sin α ÿ = g λ cos α. c. Lösen Sie die Bewegungsgleichungen. Zwangsbedingung zwei al differenzieren und Bewegungsgleichung einsetzten ergibt: 0 = (b ẍ) sin α ÿ cos α ( = b λ ) sin α sin α + (g + λ ) cos α cos α = b sin α + g cos α + λ λ = (g cos α + b sin α) 8

10 Wir setzten dieses λ in die Bewegungsgleichungen ein und erhalten: ẍ = sin α(g cos α + b sin α ÿ = g + cos α(g cos α + b sin α) Diese Gleichungen sind von t unabhängig und können soit zweial it geeigneten Anfangsbedingungen integriert werden. d. Wie lauten die Zwangskräfte? Die Zwangskraft ist: Z = λ gradg = (g cos α + b sin α) (e x sin α + e y cos α) Aufgabe 8 (Streuung an eine Rotationskörper). Gegeben sein ein rotationssyetrischer Körper it der Oberfläche y(x) = x, für x < 1, an de Teilchen it de Stoßparaeter b u einen Winkel θ gestreut werden. Abbildung 4: Streuung a. Berechnen Sie den Zusaenhang zwischen b und θ. Aus der Zeichnung können wir die folgenden Relationen ablesen: π = 2α + θ π/2 = α + β θ = 2β x b = b 2 (wegen For des Körpers) 9

11 Die Tangente hat i Punkt x b die Steigung: y (x) x=xb = 1 2 x = 1 2b. x=xb Dait haben wir tan β = 1/(2b), was zusaen it den anfänglichen Relationen ergibt: b(θ) = 1 2 cot θ 2 b. Zeigen Sie, dass der differentielle Wirkungsquerschnitt wie folgt gegeben ist: dσ dω = 1 16 sin 4 θ 2 In der Vorlesung gab es die Forel: dσ dω = b(θ) db(θ) sin θ dθ cos θ 2 = 2 sin θ 2 2 cos θ 2 sin θ 2 1 = 16 sin 4 θ sin 2 θ 2 c. Berechnen Sie den totalen Wirkungsquerschnitt. σ = = = π θax θ in θax dσ dω dω θ in 1 16 sin 4 θ 2 sin θdϕdθ wobei θ in = θ(b = 1) = 2 arctan 1 2 und θ ax = θ(b = 0) = π. 10

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13 Prof. C. Greiner, Dr. H. van Hees Sommersemester 014 Übungen zur Theoretischen Physik Lösungen zu Blatt 13 Aufgabe 51: Massenpunkt auf Kugel (a) Als generalisierte Koordinaten bieten sich Standard-Kugelkoordinaten

Mehr

Klassische Mechanik - Ferienkurs; Lösungem. Sommersemester 2011, Prof. Metzler

Klassische Mechanik - Ferienkurs; Lösungem. Sommersemester 2011, Prof. Metzler Klassische Mechanik - Ferienkurs; Lösunge Soerseester 2011, Prof. Metzler 1 Inhaltsverzeichnis 1 Quickies 3 2 Lagrange Gleichung 1. Art 3 2.1 Perle auf Schraubenlinie..................................

Mehr

Übungen zu Lagrange-Formalismus und kleinen Schwingungen

Übungen zu Lagrange-Formalismus und kleinen Schwingungen Übungen zu Lagrange-Foralisus und kleinen Schwingungen Jonas Probst.9.9 Teilchen auf der Stange Aufgabe: Ein Teilchen der Masse wird durch eine Zwangskraft auf einer asselosen Stange gehalten, auf der

Mehr

1 Lagrange-Formalismus

1 Lagrange-Formalismus Lagrange-Formalismus SS 4 In der gestrigen Vorlesung haben wir die Beschreibung eines physikalischen Systems mit Hilfe der Newton schen Axiome kennen gelernt. Oft ist es aber nicht so einfach die Kraftbilanz

Mehr

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T) im SoSe 20 Blatt 0. Hamilton-Formalismus- Lösungsvorschlag Aufgabe 0.. Hamilton-Formalismus

Mehr

Blatt 6. Schwingungen- Lösungsvorschlag

Blatt 6. Schwingungen- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T1) i SoSe 011 Blatt 6. Schwingungen- Lösungsvorschlag Aufgabe 6.1. Räulicher Oszillator

Mehr

Ferienkurs Theoretische Mechanik 2010 Lagrange Formalismus

Ferienkurs Theoretische Mechanik 2010 Lagrange Formalismus Fakultät für Physik Michael Schrapp Technische Universität München Vorlesung Ferienkurs Theoretische Mechanik 2010 Lagrange Formalismus Inhaltsverzeichnis 1 Motivation 2 2 Generalisierte Koordinaten und

Mehr

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ.

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ. Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 10 Prof. Dr. Aleander Shnirman Blatt 5 Dr. Boris Narozhny, Dr. Holger Schmidt 11.05.010

Mehr

Übungen zu Lagrange-Formalismus und kleinen Schwingungen

Übungen zu Lagrange-Formalismus und kleinen Schwingungen Übungen zu Lagrange-Formalismus und kleinen Schwingungen Jonas Probst 22.09.2009 1 Teilchen auf der Stange Ein Teilchen der Masse m wird durch eine Zwangskraft auf einer masselosen Stange gehalten, auf

Mehr

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe:

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe: Übungen zu Theoretische Physik I - Mechanik im Sommersemester 03 Blatt 7 vom 0.06.3 Abgabe: 7.06.3 Aufgabe 9 3 Punkte Keplers 3. Gesetz Das 3. Keplersche Gesetz für die Planetenbewegung besagt, dass das

Mehr

2. Klausur zur Theoretischen Physik I (Mechanik)

2. Klausur zur Theoretischen Physik I (Mechanik) 2. Klausur zur Theoretischen Physik I (echanik) 09.07.2004 Aufgabe 1 Physikalisches Pendel 4 Punkte Eine homogene, kreisförmige, dünne Platte mit Radius R und asse ist am Punkt P so aufgehängt, daß sie

Mehr

Lösung zu Übungsblatt 3

Lösung zu Übungsblatt 3 Technische Universität München Fakultät für Physik Ferienkurs Theoretische Physik. Ebenes Pendel (*) Lösung zu Übungsblatt 3 Lagrange-Formalismus, Systeme von Schwingungen Man betrachte ein ebenes Doppelpendel

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 12/13/14) Dozent: J. von Delft Übungen: B. Kubala Nachklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2008 (1. Oktober

Mehr

Grundlagen der Lagrange-Mechanik

Grundlagen der Lagrange-Mechanik Grundlagen der Lagrange-Mechanik Ahmed Omran 1 Abriss der Newton schen Mechanik 1.1 Newton sche Axiome 1. Axiom: Im Inertialsystem verharrt ein Körper in seinem momentanen Bewegungszustand (in Ruhe, oder

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 4 - Lösung Technische Universität München 1 Fakultät für Physik 1 Zwei Kugeln und der Satz von Steiner Nehmen Sie zwei Kugeln mit identischem Radius R und

Mehr

Ferienkurs Theoretische Mechanik Lösungen Hamilton

Ferienkurs Theoretische Mechanik Lösungen Hamilton Ferienkurs Theoretische Mechanik Lösungen Hamilton Max Knötig August 10, 2008 1 Hamiltonfunktion, Energie und Zeitabhängigkeit 1.1 Perle auf rotierendem Draht Ein Teilchen sei auf einem halbkreisförmig

Mehr

Probeklausur zur Theoretischen Physik I: Mechanik

Probeklausur zur Theoretischen Physik I: Mechanik Prof. Dr. H. Friedrich Physik-Department T3a Technische Universität München Probeklausur zur Theoretischen Physik I: Mechanik Montag, 2.7.29 Hörsaal 1 1:15-11:5 Aufgabe 1 (8 Punkte) Geben Sie möglichst

Mehr

Klausur zu Theoretische Physik 2 Klassische Mechanik

Klausur zu Theoretische Physik 2 Klassische Mechanik Klausur zu Theoretische Physik Klassische Mechanik 30. September 016 Prof. Marc Wagner Goethe-Universität Frankfurt am Main Institut für Theoretische Physik 5 Aufgaben mit insgesamt 5 Punkten. Die Klausur

Mehr

Probeklausur zur T1 (Klassische Mechanik)

Probeklausur zur T1 (Klassische Mechanik) Probeklausur zur T1 (Klassische Mechanik) WS 006/07 Bearbeitungsdauer: 10 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

Bewegung auf Paraboloid 2

Bewegung auf Paraboloid 2 Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 8 vom 17.06.13 Abgabe: 24.06. Aufgabe 34 4 Punkte Bewegung auf Paraboloid 2 Ein Teilchen der Masse m bewege sich reibungsfrei unter

Mehr

Blatt 1. Kinematik- Lösungsvorschlag

Blatt 1. Kinematik- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 011 Blatt 1. Kinematik- Lösungsvorschlag Aufgabe 1.1. Schraubenlinie Die

Mehr

7 Die Hamilton-Jacobi-Theorie

7 Die Hamilton-Jacobi-Theorie 7 Die Hamilton-Jacobi-Theorie Ausgearbeitet von Rolf Horn und Bernhard Schmitz 7.1 Einleitung Um die Hamilton schen Bewegungsgleichungen q k = H(q, p) p k ṗ k = H(p, q) q k zu vereinfachen, führten wir

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 1/13/14) Dozent: J. von Delft Übungen: B. Kubala Klausur zur Vorlesung T1: Theoretische Mechanik, SoSe 008 (3. Juli 007) Bearbeitungszeit:

Mehr

Blatt 05.2: Green sche Funktionen

Blatt 05.2: Green sche Funktionen Fakultät für Physik T: Klassische Mechanik, SoSe 05 Dozent: Jan von Delft Übungen: Katharina Stadler, Frauke Schwarz, Dennis Schimmel, Lukas Weidinger http://homepages.physik.uni-muenchen.de/~vondelft/lehre/5t/

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 2 - Lösung Technische Universität München 1 Fakultät für Physik 1 Perle Eine Perle der Masse m gleite reibungsfrei auf einem vertikal stehenden Ring vom Radius

Mehr

Ferienkurs Theoretische Mechanik 2009 Hamilton Formalismus und gekoppelte Systeme

Ferienkurs Theoretische Mechanik 2009 Hamilton Formalismus und gekoppelte Systeme Fakultät für Physik Technische Universität München Michael Schrapp Übungsblatt 3 Ferienkurs Theoretische Mechanik 009 Hamilton Formalismus und gekoppelte Systeme Hamilton-Mechanik. Aus Doctoral General

Mehr

Theoretische Physik 1 Mechanik

Theoretische Physik 1 Mechanik Technische Universität München Fakultät für Physik Ferienkurs Theoretische Physik 1 Mechanik Skript zu Vorlesung 1: Grundlagen der Newton schen Mechanik, Zweiteilchensysteme gehalten von: Markus Krottenmüller

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

Blatt 05.3: Green sche Funktionen

Blatt 05.3: Green sche Funktionen Fakultät für Physik T: Klassische Mechanik, SoSe 06 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Sebastian Huber, Katharina Stadler, Lukas Weidinger http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_6/t_theor_mechanik/

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

Hamilton-Mechanik. Inhaltsverzeichnis. 1 Einleitung. 2 Verallgemeinerter oder kanonischer Impuls. Simon Filser

Hamilton-Mechanik. Inhaltsverzeichnis. 1 Einleitung. 2 Verallgemeinerter oder kanonischer Impuls. Simon Filser Hamilton-Mechanik Simon Filser 4.9.09 Inhaltsverzeichnis 1 Einleitung 1 Verallgemeinerter oder kanonischer Impuls 1 3 Hamiltonfunktion und kanonische Gleichungen 4 Die Hamiltonfunktion als Energie und

Mehr

Übungen zum Ferienkurs Theoretische Mechanik

Übungen zum Ferienkurs Theoretische Mechanik Übungen zum Ferienkurs Theoretische Mechanik Lagrange un Hamilton Mechanik Übungen, ie mit einem Stern markiert sin, weren als besoners wichtig erachtet. 2.1 3D Faenpenel Betrachten Sie ein Faenpenel er

Mehr

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am )

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am ) Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: 14.09.11, Abgabe am 1.09.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Seite 1 Theoretische Physik: Mechanik Blatt 4 Fakultät für Physik Technische Universität München 27.09.2017 Inhaltsverzeichnis 1 Trägheitsmoment & Satz von Steiner 2 2 Trägheitstensor einer dünnen Scheibe

Mehr

Theoretische Physik II: Analytische Mechanik und Spezielle Relativitätstheorie

Theoretische Physik II: Analytische Mechanik und Spezielle Relativitätstheorie Theoretische Physik II: Analytische Mechanik und Spezielle Relativitätstheorie Dirk H. Rischke Sommersemester 2010 Inhaltsverzeichnis 1 Lagrange-Mechanik 1 1.1 Zwangskräfte, Zwangsbedingungen und generalisierte

Mehr

2 Lagrange sche Bewegungsgleichungen

2 Lagrange sche Bewegungsgleichungen 2 Lagrange sche Bewegungsgleichungen Ausgearbeitet von Christine Cronjäger, Klaus Grambach und Ulrike Wacker 2.1 Zwangsbedingungen: Zwangsbedingungen schränken die 3 Freiheitsgrade des Teilchens ein. Unterwirft

Mehr

1 Lagrange sche Gleichung 1. Art

1 Lagrange sche Gleichung 1. Art 1 Lagrange sche Gleichung 1. Art 1.1 Einführung und Beispiel Bewege sich ein Massepunkt auf einer Geraden (G) im Raum, so hat dieser einen Freiheitsgrad, d.h. es müssen 2 Zwangsbedingungen für ihn gelten.

Mehr

1. Prinzip von d'alembert

1. Prinzip von d'alembert 1. Prinzip von d'alembert 1.1 Freiheitsgrade 1.2 Zwangsbedingungen 1.3 Virtuelle Geschwindigkeiten 1.4 Prinzip der virtuellen Leistung Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik 2 5.1-1 1.1

Mehr

Klausur zur T1 (Klassische Mechanik)

Klausur zur T1 (Klassische Mechanik) Klausur zur T1 (Klassische Mechanik) WS 2006/07 Bearbeitungsdauer: 120 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

Theoretische Mechanik

Theoretische Mechanik Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 2008 Theoretische Mechanik 9. Übung 9.1 d alembertsches Prinzip: Flaschenzug Wir betrachten

Mehr

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06 Übungen zu: Theoretische Physik I klassische Mechanik W 3 Tobias Spranger - Prof. Tom Kirchner WS 5/6 http://www.pt.tu-clausthal.de/qd/teaching.html. Dezember 5 Übungsblatt 6 Lösungsvorschlag 3 ufgaben,

Mehr

Ferienkurs Theoretische Mechanik. Lagrangeformalismus

Ferienkurs Theoretische Mechanik. Lagrangeformalismus Ferienkurs Theoretische Mechanik Lagrangeformalismus Sebastian Wild Mittwoch, 14.09.2011 Inhaltsverzeichnis 1 Zwangskräfte und Lagrangegleichungen 1. Art 2 1.1 Motivation, Definition von Zwangsbedingungen..........

Mehr

Definition 1.1 (Wirkung) Wir wollen die Kurvenverläufe x(t) finden, die das Funktional

Definition 1.1 (Wirkung) Wir wollen die Kurvenverläufe x(t) finden, die das Funktional Christina Schindler Karolina Stoiber Ferienkurs Analysis für Physiker SS 13 A 1 Variationsrechnung 1.1 Lagrange. Art Wir führen die Überlegungen von gestern fort und wollen nun die Lagrangegleichungen.

Mehr

10. und 11. Vorlesung Sommersemester

10. und 11. Vorlesung Sommersemester 10. und 11. Vorlesung Sommersemester 1 Die Legendre-Transformation 1.1 Noch einmal mit mehr Details Diese Ableitung wirkt einfach, ist aber in dieser Form sicher nicht so leicht verständlich. Deswegen

Mehr

Theoretische Physik I: Lösungen Blatt Michael Czopnik

Theoretische Physik I: Lösungen Blatt Michael Czopnik Theoretische Physik I: Lösungen Blatt 2 15.10.2012 Michael Czopnik Aufgabe 1: Scheinkräfte Nutze Zylinderkoordinaten: x = r cos ϕ y = r sin ϕ z = z Zweimaliges differenzieren ergibt: ẍ = r cos ϕ 2ṙ ϕ sin

Mehr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 2 Lösung. 22. September 2015, 12-14 Uhr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 2 Lösung. 22. September 2015, 12-14 Uhr KIT SS 15 Klassische Theoretische Physik II V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch Klausur Lösung. September 15, 1-14 Uhr Aufgabe 1: Kurzfragen (3+4+1+1 Punkte (a Die erhaltenen Größen und evtl.

Mehr

Formelsammlung. Lagrange-Gleichungen: q k. Zur Koordinate q k konjugierter Impuls: p k = L. Hamilton-Funktion: p k. Hamiltonsche Gleichungen: q k = H

Formelsammlung. Lagrange-Gleichungen: q k. Zur Koordinate q k konjugierter Impuls: p k = L. Hamilton-Funktion: p k. Hamiltonsche Gleichungen: q k = H Formelsammlung Lagrange-Gleichungen: ( ) d L dt q k L q k = 0 mit k = 1,..., n. (1) Zur Koordinate q k konjugierter Impuls: p k = L q k. (2) Hamilton-Funktion: n H(q 1,..., q n, p 1,..., p n, t) = p k

Mehr

(dφ) 2 + (dz) 2. φ 2 dφ mit z=z(φ).

(dφ) 2 + (dz) 2. φ 2 dφ mit z=z(φ). PD Dr. S. Mertens Theoretische Physik I Mechanik J. Unterhinninghofen, M. Hummel Blatt 5 WS 8/9.. 8. Strecke auf Zylinder. Bestimmen Sie die kürzeste Verbindung zwischen zwei Punkten auf Pkt.) dem Zylinder.

Mehr

Lagrangesche Mechanik. Ari Wugalter 22. September 2009

Lagrangesche Mechanik. Ari Wugalter 22. September 2009 Lagrangesche Mechanik. September 009 Teil II. Lagrangesche Mechanik. Einführung in die Lagrange-Regeln.Art.. Generalisierte Koordinaten, Freiheitsgrade und Zwangsbedingungen In der Newtonschen Mechanik

Mehr

Lagrange sche Bewegungsgleichungen

Lagrange sche Bewegungsgleichungen Kapitel 2 Lagrange sche Bewegungsgleichungen Ausgearbeitet von Christine Cronjäger, Klaus Grambach und Ulrike Wacker 2.1 Zwangsbedingungen: Zwangsbedingungen schränken die 3 Freiheitsgrade des Teilchens

Mehr

Name: Gruppe: Matrikel-Nummer: Aufgabe Punkte

Name: Gruppe: Matrikel-Nummer: Aufgabe Punkte T1: Klassische Mechanik, SoSe007 Prof. Dr. Jan von Delft Theresienstr. 37, Zi. 40 Dr. Vitaly N. Golovach vitaly.golovach@physik.lmu.de Nachholklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 007 (8.

Mehr

3. Erhaltungsgrößen und die Newton schen Axiome

3. Erhaltungsgrößen und die Newton schen Axiome Übungen zur T1: Theoretische Mechanik, SoSe13 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray James.Gray@physik.uni-muenchen.de 3. Erhaltungsgrößen und die Newton schen Axiome Übung 3.1:

Mehr

Blatt 4. Stoß und Streuung - Lösungsvorschlag

Blatt 4. Stoß und Streuung - Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 211 Blatt 4. Stoß und Streuung - Lösungsvorschlag Aufgabe 4.1. Stoß Zwei

Mehr

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Horst Laschinsky 12. Oktober 1999 Inhaltsverzeichnis 1 Gewöhnliche lineare homogene Differentialgleichungen 2. Ordnung mit konstanten

Mehr

Übungsblatt 3. Lagrange-Formalismus, Systeme von Schwingungen. Man betrachte ein ebenes Doppelpendel im dreidimensionalen Raum (siehe Abb.).

Übungsblatt 3. Lagrange-Formalismus, Systeme von Schwingungen. Man betrachte ein ebenes Doppelpendel im dreidimensionalen Raum (siehe Abb.). Technische Universität München Fautät für Phsi Ferienurs Theoretische Phsi 1 Übungsbatt 3 Lagrange-Foraisus, Sstee von Schwingungen 1. Ebenes Pende (*) Man betrachte ein ebenes Doppepende i dreidiensionaen

Mehr

Blatt 03.1: Scheinkräfte

Blatt 03.1: Scheinkräfte Fakultät für Physik T1: Klassische Mechanik, SoSe 2016 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Sebastian Huber, Katharina Stadler, Lukas Weidinger http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_16/t1_theor_mechanik/

Mehr

2. Klausur zur Theoretischen Physik II

2. Klausur zur Theoretischen Physik II PD Dr. Burkhard Dünwe SS 2006 Dipl.-Phys. Ulf D. Schiller 2. Klausur zur Theoretischen Physik II 22. Juli 2006 Name:............................................................ Matrikelnummer:...................................................

Mehr

5. Vorlesung Wintersemester

5. Vorlesung Wintersemester 5. Vorlesung Wintersemester 1 Bewegung mit Stokes scher Reibung Ein dritter Weg, die Bewegungsgleichung bei Stokes scher Reibung zu lösen, ist die 1.1 Separation der Variablen m v = αv (1) Diese Methode

Mehr

5. Raum-Zeit-Symmetrien: Erhaltungssätze

5. Raum-Zeit-Symmetrien: Erhaltungssätze 5. Raum-Zeit-Symmetrien: Erhaltungssätze Unter Symmetrie versteht man die Invarianz unter einer bestimmten Operation. Ein Objekt wird als symmetrisch bezeichnet, wenn es gegenüber Symmetrieoperationen

Mehr

Theoretische Physik I: Weihnachtszettel Michael Czopnik

Theoretische Physik I: Weihnachtszettel Michael Czopnik Theoretische Physik I: Weihnachtszettel 21.12.2012 Michael Czopnik Aufgabe 1: Rudolph und der Weihnachtsmann Der Weihnachtsmann (Masse M) und sein Rentier Rudolph (Masse m) sind durch ein Seil mit konstanter

Mehr

Kapitel 2. Lagrangesche Mechanik. 2.1 Einleitung/Motivation

Kapitel 2. Lagrangesche Mechanik. 2.1 Einleitung/Motivation Kapitel Lagrangesche Mechanik Hier entwickeln wir eine elegante und einfache Betrachtungsweise der Newtontheorie, die eine Verallgemeinerung für quantenmechanische und relativistische Systeme ermöglicht..1

Mehr

Musterlösungen. Theoretische Physik I: Klassische Mechanik

Musterlösungen. Theoretische Physik I: Klassische Mechanik Blatt 1 4.01.013 Musterlösungen Theoretische Physik I: Klassische Mechanik Prof. Dr. G. Alber MSc Nenad Balanesković Hamilton-Funktion 1. Betrachten Sie zwei Massenpunktem 1 undm die sich gemäß dem Newtonschen

Mehr

Beispiel 1:Der Runge-Lenz Vektor [2 Punkte]

Beispiel 1:Der Runge-Lenz Vektor [2 Punkte] Übungen Theoretische Physik I (Mechanik) Blatt 9 (Austeilung am: 1.9.11, Abgabe am 8.9.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.

Mehr

E1 Mechanik Lösungen zu Übungsblatt 2

E1 Mechanik Lösungen zu Übungsblatt 2 Ludwig Maimilians Universität München Fakultät für Physik E1 Mechanik en u Übungsblatt 2 WS 214 / 215 Prof. Dr. Hermann Gaub Aufgabe 1 Drehbewegung einer Schleifscheibe Es werde die Schleifscheibe (der

Mehr

KLAUSUR THEORETISCHE MECHANIK

KLAUSUR THEORETISCHE MECHANIK KLAUSUR THEORETISCHE MECHANIK Univ. Potsdam Prof. A. Feldmeier Fr 30. Juli 00 4 bis 7 Uhr JEDE AUFGABE AUF EIN NEUES BLATT MIT NAME UND MATRIKEL Schein: mindest. halbe Punktzahl. Davon mindest. ein Drittel

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre (c) Ulm University p. 1/ Grundlagen der Physik Schwingungen und Wärmelehre 3. 04. 006 Othmar Marti othmar.marti@uni-ulm.de Experimentelle Physik Universität Ulm (c) Ulm University p. / Physikalisches Pendel

Mehr

1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve.

1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve. 1 Ableitungen Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen γ 1 (t) γ(t) = γ n (t) Bild(γ) = {γ(t) t I} heißt auch die Spur der Kurve Beispiel:1)

Mehr

15. Vorlesung Sommersemester

15. Vorlesung Sommersemester 15. Vorlesung Soerseester 1 Kontinuusgrenzfall der Bewegungsgleichungen Was wird aus den Bewegungsgleichungen i Kontinuusgrenzwert? I diskreten Fall sind diese η j = kη j+1 η j + η j 1 1 und an führt wieder

Mehr

Klassische Theoretische Physik II

Klassische Theoretische Physik II Institut für Theoretische Teilchenphysik Prof. Dr. U. Nierste, Dr. R. Ziegler, Simon Kast https://www.ttp.kit.edu/courses/ss2017/theob/start Klassische Theoretische Physik II Erste Klausur Sommersemester

Mehr

Das mathematische Pendel

Das mathematische Pendel 1 Das mathematische Pendel A. Krumbholz, S. Effendi 25. Juni 2013 2 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung 3 1.1 Das mathematische Pendel........................... 3 1.2

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 1 Schwingungen und Wellen: Einführung in die mathematischen Grundlagen 1.1 Die Sinus- und die Kosinusfunktion Die Sinusfunktion lässt sich genauso wie die Kosinusfunktion

Mehr

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

Klassische Theoretische Physik I WS 2013/2014

Klassische Theoretische Physik I WS 2013/2014 Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 213/214 Prof. Dr. J. Schmalian Blatt 6 Dr. P. P. Orth bgabe und Besprechung 6.12.213 1. Vektoranalysis I (2

Mehr

Grundlagen der Physik 1 Lösung zu Übungsblatt 6

Grundlagen der Physik 1 Lösung zu Übungsblatt 6 Grundlagen der Physik 1 Lösung zu Übungsblatt 6 Daniel Weiss 20. November 2009 Inhaltsverzeichnis Aufgabe 1 - Massen auf schiefer Ebene 1 Aufgabe 2 - Gleiten und Rollen 2 a) Gleitender Block..................................

Mehr

Lösungen zu den Übungen zur Newtonschen Mechanik

Lösungen zu den Übungen zur Newtonschen Mechanik Lösungen zu den Übungen zur Newtonschen Mechanik Jonas Probst.9.9 1 Bahnkurve eines Massenpunktes Aufgabe: Ein Massenpunkt bewegt sich auf folgender Trajektorie: 1. Skizzieren Sie die Bahnkurve. r(t) (a

Mehr

Theoretische Physik 1 Mechanik

Theoretische Physik 1 Mechanik Technische Universität München Fakultät für Physik Ferienkurs Theoretische Physik 1 Mechanik Skript zu Vorlesung 3: Lagrange-Formalismus, Systeme von Schwingungen gehalten von: Markus Krottenmüller & Markus

Mehr

1 Mechanik starrer Körper

1 Mechanik starrer Körper 1 Mechanik starrer Körper 1.1 Einführung Bisher war die Mechanik auf Massepunkte beschränkt. Nun gehen wir den Schritt zu starren Körpern. Ein starrer Körper ist ein System aus Massepunkten, welche nicht

Mehr

Theoretische Mechanik

Theoretische Mechanik Theoretische Mechanik Übungen R. Kirschner, ITP, Univ. Leipzig 1-1 1. Betrachten Sie ein System aus 4 Massenpunkten, ( r i,m i ),i = 1,2,3,4, das sich in trivialer geradlinig-gleichförmiger Bewegung befindet.

Mehr

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) =

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) = Karlsruher Institut für Technologie Institut für theoretische Festkörperphsik www.tfp.kit.edu Lösung Klassische Theoretische Phsik I WS / Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel Mendler Besprechung...

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 213 Übung 2 - Lösung Technische Universität München 1 Fakultät für Physik 1 Schräger Wurf Ein Massepunkt der Masse m werde mit der Anfangsgeschwindigkeit

Mehr

Aufgaben zur Analytischen Mechanik SS 2013 Blatt 10 - Lösungen. Aufgabe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte)

Aufgaben zur Analytischen Mechanik SS 2013 Blatt 10 - Lösungen. Aufgabe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte) Aufgben zur Anlytischen Mechnik SS 013 Bltt 10 - en Aufgbe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte Bestimmen Sie Eigenwerte λ 1 und λ sowie die Eigenvektoren v 1 und v der folgenden Mtrix:

Mehr

TECHNISCHE MECHANIK III (DYNAMIK)

TECHNISCHE MECHANIK III (DYNAMIK) Klausur im Fach TECHNISCHE MECHANIK III (DYNAMIK) WS 2014 / 2015 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 Summe Punkte: 15 7 23 15 60 Davon erreicht Bearbeitungszeit: Hilfsmittel:

Mehr

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie KIT SS 3 Institut für Analysis.6.3 Prof. Dr. Tobias Lamm Dr. Patrick reuning Aufgabe Höhere Mathematik II für die Fachrichtung Physik 9. Übungsblatt Ein Heißluftballon

Mehr

Differentialgleichung.

Differentialgleichung. Kapitel 9 Differentialgleichungen 9. Einteilung der Differentialgleichungen In einer Differentialgleichung (DGl) treten Differentialquotienten von einer oder ehreren Funtionen von einer oder ehreren Veränderlichen

Mehr

Fallender Stein auf rotierender Erde

Fallender Stein auf rotierender Erde Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 4 vom 13.05.13 Abgabe: 27. Mai Aufgabe 16 4 Punkte allender Stein auf rotierender Erde Wir lassen einen Stein der Masse m in einen

Mehr

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06 Übungen zu: Theoretische Physik I klassische Mechanik W 13 Tobias Spranger - Prof. Tom Kirchner WS 005/06 http://www.pt.tu-clausthal.de/qd/teaching.html 9. Januar 006 Übungsblatt 8 Lösungsvorschlag 3 Aufgaben,

Mehr

M1 Maxwellsches Rad. 1. Grundlagen

M1 Maxwellsches Rad. 1. Grundlagen M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten

Mehr

Es kann günstig sein, Koordinatentransformationen im Phasenraum durchzuführen. V.3.4 a

Es kann günstig sein, Koordinatentransformationen im Phasenraum durchzuführen. V.3.4 a V.3.4 Kanonische Transformationen Es kann günstig sein Koordinatentransformationen im Phasenraum durchzuführen. V.3.4 a Koordinatentransformation im Phasenraum Wir betrachten eine allgemeine Koordinatentransformation

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 213 Übung 1 - Lösung Technische Universität München 1 Fakultät für Physik 1 Relaxation Geben Sie die Lösung der Differentialgleichung für die Relaxation

Mehr

Allgemeine Mechanik Musterlösung 7.

Allgemeine Mechanik Musterlösung 7. Allgemeine Mechanik Musterlösung 7. HS 204 Prof. Thomas Gehrmann Übung. Lagrange-Funktion eines geladenen Teilchens Die Lagrange-Funktion für ein Teilchen der Ladung q in elektrischen und magnetischen

Mehr

Kapitel 6. Der Lagrange-Formalismus. 6.2 Lagrange-Funktion in der relativistischen Feldtheorie. 6.1 Euler-Lagrange-Gleichung

Kapitel 6. Der Lagrange-Formalismus. 6.2 Lagrange-Funktion in der relativistischen Feldtheorie. 6.1 Euler-Lagrange-Gleichung 92 Teilchenphysik, HS 2007-SS 2008, Prof. A. Rubbia (ETH Zurich) 6.2 Lagrange-Funktion in der relativistischen Felheorie Kapitel 6 Der Lagrange-Formalismus 6.1 Euler-Lagrange-Gleichung In der Quantenmechanik

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

Allgemeine Mechanik Musterlo sung 5.

Allgemeine Mechanik Musterlo sung 5. Allgemeine Mechanik Musterlo sung 5 U bung HS 203 Prof R Renner Gekoppelte Pendel Wir betrachten ein System aus zwei gleichen mathematischen Pendeln der La nge l = l2 = l mit Massen m = m2 = m im Schwerefeld

Mehr

Vorkurs Mathematik-Physik, Teil 8 c 2016 A. Kersch

Vorkurs Mathematik-Physik, Teil 8 c 2016 A. Kersch Vorkurs Matheatik-Physik, Teil 8 c 26 A. Kersch Dynaik. Newton sche Bewegungsgleichung Reaktionsgesetz F geändert Der Bewegungszustand eines Körpers wird nur durch den Einfluss von (äußeren) Kräften F

Mehr

Kapitel 2. Kinematik des Massenpunktes. 2.1 Einleitung. 2.2 Massenpunkt. 2.3 Ortsvektor

Kapitel 2. Kinematik des Massenpunktes. 2.1 Einleitung. 2.2 Massenpunkt. 2.3 Ortsvektor Kapitel 2 Kinematik des Massenpunktes 2.1 Einleitung In diesem Kapitel behandeln wir die Bewegung von einem oder mehreren Körpern im Raum. Wir unterscheiden dabei zwischen Kinematik und Dynamik. Die Kinematik

Mehr

Schwingungen. Inhaltsverzeichnis. TU München Experimentalphysik 1 DVP Vorbereitungskurs. Andreas Brenneis; Rebecca Saive; Felicitas Thorne

Schwingungen. Inhaltsverzeichnis. TU München Experimentalphysik 1 DVP Vorbereitungskurs. Andreas Brenneis; Rebecca Saive; Felicitas Thorne TU München Experimentalphysik 1 DVP Vorbereitungskurs Andreas Brenneis; Rebecca Saive; Felicitas Thorne Schwingungen Donnerstag, der 31.07.008 Inhaltsverzeichnis 1 Einleitung: Schwingungen und Wellen 1

Mehr

Klausursammlung Grundlagen der Mechanik und Elektrodynamik

Klausursammlung Grundlagen der Mechanik und Elektrodynamik Klausursammlung Grundlagen der Mechanik und Elektrodynamik Fachschaft Physik Stand: Mai 27 Liebe Physik-Studis, hier haltet ihr die Klausursammlung für das Modul Grundlagen der Mechanik und Elektrodynamik

Mehr

Probeklausur PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt)

Probeklausur PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt) CURANDO Probeklausur PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, (othmar.marti@uni-ulm.de) 30. 11. 005 Prüfungstermin 30. 11. 005, 13:15 bis 14:00 Name Vorname Matrikel-Nummer

Mehr