Fusion bedeutet das Verschmelzen leichter Atome (z.b. Wasserstoff) zu schweren (z.b. Helium).

Größe: px
Ab Seite anzeigen:

Download "Fusion bedeutet das Verschmelzen leichter Atome (z.b. Wasserstoff) zu schweren (z.b. Helium)."

Transkript

1 Kernfusion Kernfusion ist das Gegenteil der Kernspaltung. Fusion bedeutet das Verschmelzen leichter Atome (z.b. Wasserstoff) zu schweren (z.b. Helium). Sie findet immer im inneren der Sterne statt, wobei riesige Energien freigesetzt werden. Damit überhaupt eine Fusion zustande kommen kann, müssen die Teilchen mit einer sehr hohen Geschwindigkeit aufeinander geschossen werden, die verschmelzen. Um diese Geschwindigkeit zu erreichen sind Temperaturen von mehreren hundert Grad nötig, so das die Kernreaktion mit einer ausreichenden Häufigkeit stattfinden. So wird die Temperatur konstant gehalten, damit die Fusion selbsttätig erfolgt und dem System Energie abgenommen werden kann. Die Energiegewinnung ist wesentlich höher als bei der Kernspaltung. In erkennbarer Zukunft wird nur die Verschmelzung von Kernen der Wasserstoffkerne Deuterium und Tritium möglich sein. Trotzdem würde dies reichen, um den Energiebedarf der Erde über Jahrhunderte zu sichern. Dann wird man sicherlich die Fusion von reinem Deuterium oder sogar von gewöhnlichem Wasserstoff beherrschen. Deuterium: Hat ein Proton und ein Neutron im Kern, ist deshalb schwerer als Wasserstoff und wird schwerer Wasserstoff genannt. Tritium: wird künstlich durch Beschuß von Lithium mit Neutronen hergestellt. Besitzt ein Proton und zwei Neutronen im Kern. Der Kern ist deshalb instabil und wird überschwerer Wasserstoff genannt. Die freiwerdende Energie fällt hauptsächlich als kinetische Energie der gebildeten Neutronen und Wärmeenergie an. z.b.: Der Heizwert von dem in ein Liter Wasser enthaltenen Deuterium entspricht der Energie, die bei der Verbrennung von 100l Erdöl anfällt. Diese Kernfusion findet z.b. im inneren der Sonne statt. Die für uns sichtbare Strahlungsenergie wird aus diesem Vorgang gewonnen. Zur Erreichung dieser Ziele ist eine Beherrschung von extremen Stoffzuständen notwendig, wie sie bisher nur aus kosmischen Verhältnissen bekannt sind. Seite 1 von 5

2 Fusionsreaktortypen 1. TOKAMAK: Beim magnetischen Einschluß besitzt weltweit der Tokamak einen Entwicklungsvorsprung gegenüber seinen Konkurrenten. Der Begriff Tokamak kommt aus Rußland und heißt frei übersetzt "magnetische Kammer". In der Tat ist die Fusionszone ein Torus. Sie gleicht einem riesigen, liegenden LKW- Reifenschlauch. Der Tokamak benötigt drei verschiedene Spulensysteme. Das magnetische Grundfeld wird durch Toroidalfeldspuren, die den Torusschlauch in gleichmäßigen Abständen voneinander ringförmig umschließen, erzeugt. Ein zweites Magnetfeld entsteht durch eine Strom, der im Plasmaschlauch als Sekundärwicklung eines Transformators von einer Torusnarbe stehenden Primärwicklung induziert wird. Das dritte Magnetfeld wird durch Vertikalfeldspuren erzeugt, die als große, liegende Ringe parallel zur Toruswandung angeordnet sind. Weltweit gibt es zwei Tokamak - Experimentieranlagen, die in den letzten Jahren Aufsehen erregten. Der europäische JET (Joint European Torus) in Culham in England und der amerikanische TFTR (Tokamak Fusion Test Reaktor) in Princeton. Im JET hat man mit einer Gesamtheizleistung von kw Plasmaströme bis zu 7 Millionen Ampere erzeugt. In beiden Anlagen wurden für die Dauer von etwa einer Sekunde Temperaturen von Millionen Grad und eine Fusionsleistung bis zu kw Seite 2 von 5

3 erreicht. Dazu mußte allerdings das 2-3,7-fache an Heizenergie aufgewendet werden. Der nächste notwendige Schritt wäre der Bau des ITER (Internationl Thermonuklear Experimental Reaktor). Er soll eine thermische Leistung von 1,5 Millionen kw in Pulsen für eine Dauer von jeweils 1000 Sekunden erzeugen. Grundsätzlich ist der Tokamak eine gepulste Maschine. Weil der im Plasma induzierte Strom seine Richtung nicht umkehren soll, kann immer nur für eine begrenzte Zeit ein ansteigender oder abfallender Strom im Plasma getrieben werden. Das ist ein großes Hemmnis für eine spätere unterbrechungslose Stromerzeugung. Seite 3 von 5

4 2. STELLARATOR: Dieses Hemmnis, wie beim Tokamak genannt, vermeidet der Stellarator. Er arbeitet zwar ebenfalls mit einem magnetischen Einschluß des Plasmas, aber ohne den durch eine Primärwicklung induzierten, gepulsten Plasmastrom. Neuerdings genügen allein Toroidalfeldspuren besonderer Art. Sie bestehen nicht mehr aus ebenen Ringen in größeren Abständen um den Torusschlauch, sondern aus einer größeren Anzahl räumlich verbogener, ringförmiger Spulen. Diese neuen Stellaratorspulen haben sich bereits im Experiment in Garching bewährt. Die Japaner nahmen nach achtjähriger Bauzeit eine größere Stellarator-Experimentanlage LHD (Large Helical Device) in Betrieb. Sie besitzt noch die Wartung erschwerenden, spiralförmigen Spulen um den Torus und soll von zunächst auf später kw Heizleistung aufgestockt werden. Dagegen wird die in Greifswald/Mecklenburg vorgesehene Stellarator-Experimentanlage schon die neuartigen Spulen erhalten. Mit einer Heizleistung von kw und einem Torusvolumen von 30m 3 soll sie im Jahr 2004 arbeitsbereit sein. Von den geschätzten 600 Millionen DM Investitionskosten werden 45% durch die EU-Kommission finanziert. 3. LASERREAKTOR: Beim Laserreaktor will man den langzeitigen magnetischen Einschluß des Plasmas durch im Sekunden- Rhytmus nacheinander folgende Trägheitseinschlüsse ersetzen. Zu diesem Zweck soll ein gekapseltes Kügelchen von Sandkorngröße aus Deuterium und Tritium von sehr energiereicher Laserstrahlung allseitig beschossen werden. Das von der Oberfläche des Kügelchens in ein paar Milliardstel Sekunde explosionsartig abdampfende Material verdichtet nach dem Trägheitsprinzip das Innere des Körnchens. Dabei wird im Inneren eine tausendfache Wasserdichte und eine Temperatur von einigen Millionen Grad erreicht. Das reicht für die Zündung des Fusionsprozesses, wodurch das gesamte Material des Körnchens fusionieren soll. In den USA befindet sich eine solche Experimentieranlage NIF (National Ignition Facility) in Kalifornien im Bau. Sie soll 1,2 Milliarden Dollar kosten und im Jahr 2003 in Betrieb gehen. Dabei sind große technologische Hürden, insbesondere bei den gigantischen Lasersystemen und der Herstellung der Pellets zu überwinden. Das eigentliche Ziel des NIF ist es jedoch nicht die Gewinnung von Fusionsenergie, sondern es soll dem Militär als Simulationsmodell für Wasserstoffbomben nach dem Kernwaffenteststoppabkommen dienen. AUSBLICK: Ohne Zweifel ist man in den vergangenen Jahrzehnten einer kontrollierten Kernfusion näher gekommen. Allein von wurden in der Bundesrepublik 800 Millionen DM aufgewendet. Zur Weiterentwicklung sind Großgeräte erforderlich (ITER, DEMO) erforderlich, deren Investitions- Folgekosten die Finanzkraft von Staatengemeinschaften erfordern. Folgende Zweifel bleiben bestehen: 1. Es ist nicht sicher, ob es physikalisch-technisch gelingt, die Vorraussetzungen für eine Nettoproduktion zu schaffen. 2. Es ist nicht sicher, ob es wegen der erforderlichen extrem aufwendigen Technologie gelingt, technischwirtschafliche Lösungen zu finden. 3. Es ist nicht sicher, dass selbst bei einem Gelingen von 1. und 2. der Masseneinsatz von Fusionsreaktoren erst gegen Ende des 21. Jahrhunderts möglich ist und damit für eine Kohlendioxidentlastung der Atmosphäre zu spät kommt. Seite 4 von 5

5 VORTEILE: 1. Neue, zusätzliche Energiequelle zu regenerativer Energie und fossilen Brennstoffen. 2. Keine zeitliche Begrenzung. Selbst wenn alle Primärenergie angenommen durch Fusion geliefert und global das zweifache des heutigen Verbrauchs angenommen wird, reicht der Deuteriumgehalt der Weltmeere länger als die Brenndauer der Sonne. Auch das Tritium, das aus Lithium erbrütet wird kann als "quasi" unerschöpflich gelten. 3. Eine unkontrollierte Leistungsexkursion GAU (größter anzunehmender Unfall) beim Kernspaltungsreaktor ist ausgeschlossen. Der Brennstoffinhalt des Fusionsvolumens beträgt zu jeder Betriebszeit nur wenige Gramm und jede Störung der Randbedingungen unterbricht den Fusionsprozeß. 4. Keine radioaktiv und thermisch abgebrannten Brennelemente wie beim Kernspaltungsreaktor. 5. Verringertes militärisches Mißbrauchspotential, weil nicht wie beim Spaltungsreaktor unvermeidlich kernwaffenfähiges Plutonium erbrütet wird. NACHTEILE: 1. Es ist eine extrem anspruchsvolle Technologie notwendig. 2. Diese Technologie macht zentrale Großeinheiten mit riesigem Kapitalaufwand erforderlich. 3. Aus oben genannten Gründen kommen daher als Standort nur reiche Industrienationen in Frage, die über die hierzu erforderliche Infrastruktur und das Kapital verfügen. 4. Es fallen große Mengen radioaktiven Abfalls wegen des Austauschzwanges der durch Neutronen geschädigten Strukturmaterialien an. 5. Es ist zu erwarten, dass es zum Aufbau eines erhöhten radioaktiven Tritiumpegels in der Atmosphäre wegen der im Normalbetrieb und bei Störungen unvermeidlichen Tritiumleckagen in einer erforderlich großen Anzahl von Fusionsanlagen kommt. 6. Eventuelle Engpässe bei wichtigen Strukturmaterialien wie Niob und Zinn für die supraleitenden Spulen könnten auftreten. Home Seite 5 von 5

Ferienakademie Kernfusion. von Matthias Dodenhöft

Ferienakademie Kernfusion. von Matthias Dodenhöft Ferienakademie 18.09.11-30.09.11 Kernfusion von Matthias Dodenhöft 1 Inhalt 1. Geschichte der Kernfusion 2. Physikalische Grundlagen 3. Kernfusion auf der Sonne 4. Kernfusion auf der Erde 4.1 Umsetzung

Mehr

Kapitel 5: Kernfusion

Kapitel 5: Kernfusion Kapitel 5: Kernfusion 330 5 Die Kernfusion und ihre Anwendung Der Unterschied der Bindungsenergie zwischen Deuterium D und Helium He ist pro Nukleon wesentlich größer als bei der Kernspaltung. Kernfusion

Mehr

Dieter Suter Physik B3

Dieter Suter Physik B3 Dieter Suter - 426 - Physik B3 9.3 Kernenergie Kernenergie ist eine interessante Möglichkeit, nutzbare Energie zu gewinnen. Das kann man sehen wenn man vergleicht, wie viel Energie in 1 kg unterschiedlicher

Mehr

Fusion- eine neue Primärenergiequelle der Zukunft

Fusion- eine neue Primärenergiequelle der Zukunft Mitglied der Helmholtz-Gemeinschaft Fusion- eine neue Primärenergiequelle der Zukunft IHK im Dialog Workshop 5: Forschung und Entwicklung Jülich, 14.10.2008 Detlev Reiter Entwurf: Impulsreferat, 14.10.08,

Mehr

Kernfusion und Wendelstein 7-X

Kernfusion und Wendelstein 7-X Kernfusion und Wendelstein 7-X Dirk Hartmann Max-Planck Institut für Plasmaphysik EURATOM Association Wendelsteinstr. 1 Greifswald Dirk Hartmann 1 Kernfusion Pro Sekunde werden in der Sonne 675.000.000

Mehr

Kernfusion die Energiequelle der Sonne auf der Erde nutzen Sibylle Günter

Kernfusion die Energiequelle der Sonne auf der Erde nutzen Sibylle Günter Kernfusion die Energiequelle der Sonne auf der Erde nutzen Sibylle Günter Wissenschaftliche Direktorin Max-Planck-Institut für Plasmaphysik, Garching/Greifswald Energie erzeugen wie die Sonne Wie gewinnt

Mehr

Fachhochschule Südwestfalen Wir geben Impulse

Fachhochschule Südwestfalen Wir geben Impulse Fachhochschule Südwestfalen Wir geben Impulse Folie 2 (06/2015) Inhalt Grundidee Grundlagen der Kernfusion Projekt ITER Energiegewinnung Gefahren Wirtschaftlichkeit Zukunftsfähigkeit Quellen Folie 3 (06/2015)

Mehr

30 Minuten für den ersten Teil und weitere 30 Minuten für den fakultativen zweiten Teil.

30 Minuten für den ersten Teil und weitere 30 Minuten für den fakultativen zweiten Teil. Posten 7 Kernfusion Sozialform: Bearbeitungszeit: Voraussetzung: Partnerarbeit 30 Minuten für den ersten Teil und weitere 30 Minuten für den fakultativen zweiten Teil. Posten 1 Einsteins Postulate Posten

Mehr

Primärproblem: Bevölkerungswachstum

Primärproblem: Bevölkerungswachstum Möglchkeiten der Energieversorgung aus der Kernfusion F. Wagner, Max-Planck Institut für Plasmaphysik, Greifswald Primärproblem: Bevölkerungswachstum Billion 20 18 16 14 12 10 8 6 4 2 0 1900 1950 2000

Mehr

Kernfusion durch magnetischen Einschluss

Kernfusion durch magnetischen Einschluss Bachelor Seminar SoSe 2012 13. Juli 2012 Gliederung Grundlagen der Kernfusion 1 Grundlagen der Kernfusion 2 Grundprinzip des magnetischen Einschlusses Der Tokamak Der Stellarator 3 Die Deuterium-Tritium-Reaktion

Mehr

Physikreferat über Kernfusion, techn. Probleme der Kernfusion, Wasserstoffbombe und Vorgänge in Fixsternen

Physikreferat über Kernfusion, techn. Probleme der Kernfusion, Wasserstoffbombe und Vorgänge in Fixsternen Physikreferat über Kernfusion, techn. Probleme der Kernfusion, Wasserstoffbombe und Vorgänge in Fixsternen Kernfusion: (Stefan) - Kernfusion ist das Gegenteil der Kernspaltung - Fusion bedeutet das verschmelzen

Mehr

Bei dieser Reaktion fusionieren Deuterium und Tritium zu einem Heliumkern und einem Neutron: 2 H +

Bei dieser Reaktion fusionieren Deuterium und Tritium zu einem Heliumkern und einem Neutron: 2 H + Kernfusion Die ungeheuren Energiemengen, die bei der Kernfusion in der Sonne freiwerden, möchte der Mensch auch nutzen können. Doch das gestaltet sich schwieriger, als in den Anfängen der Fusionsforschung

Mehr

Ziel nuklearer Zündbereich/Vorarbeiten für NET/ Die neuen Fusionsapparate des IPP

Ziel nuklearer Zündbereich/Vorarbeiten für NET/ Die neuen Fusionsapparate des IPP V..--:----;" "..- " \U, IV, 4/83 [=~ ~. ~ v I ±l~ i FU"O",","C","E JET '" ''''RIEB GENO. ~~-j "j"--"'[-"""-' '''''1=' Ziel nuklearer Zündbereich/Vorarbeiten für NET/ Die neuen Fusionsapparate des IPP Der

Mehr

Fusionsexperiment Wendelstein 7-X

Fusionsexperiment Wendelstein 7-X Fusionsexperiment Wendelstein 7-X Garching - Greifswald Wendelstein 7-X, die weltweit größte und modernste Fusionsforschungsanlage ihrer Bauart, wird gegenwärtig im Teilinstitut Greifswald des Max-Planck-Instituts

Mehr

Energieforschung für die Zukunft Auf dem Weg zu einem Fusionskraftwerk

Energieforschung für die Zukunft Auf dem Weg zu einem Fusionskraftwerk Energieforschung für die Zukunft Auf dem Weg zu einem Fusionskraftwerk Dipl. Ing. (FH) Bernadett Gmeiner MPI Dank an: Dr. Rudolf Neu Dr. Hans Meister 85748 Garching, Boltzmannstr.2 Bernadett.Gmeiner@ipp.mpg.de

Mehr

Fusionsenergie. Fusionsenergie 1

Fusionsenergie. Fusionsenergie 1 1 von 11 Fusionsenergie Fusionsenergie 1 Einleitung 2 Was ist Fusionsenergie? 3 Tokamak-Anordnung 5 Stellarator-Anordnung 6 Geschichte der Fusionsenergie 7 Wie Funktioniert Fusionsenergie? 8 Wie entsteht

Mehr

Die Welt von morgen - die Sicht eines Energieforschers

Die Welt von morgen - die Sicht eines Energieforschers DHV Symposium Die Welt von morgen Die Welt von morgen - die Sicht eines Energieforschers Thomas Klinger Max Planck-Institut für Plasmaphysik Garching und Greifswald DHV Symposium, Bonn 2. November 2016

Mehr

Fusion von Wasserstoff

Fusion von Wasserstoff Fusion von Wasserstoff Die neue Energie? Thomas Klinger Max-Planck-Institut für Plasmaphysik, Greifswald Frage 1 Die Energiefrage ist absolut fundamental. Wohin geht die Entwicklung in diesem Jahrhundert?

Mehr

Pro und Contra Kernfusionsforschung

Pro und Contra Kernfusionsforschung 1 Pro und Contra Kernfusionsforschung SPD BEZIRK BRAUNSCHWEIG 20. MAI 2015 Prof. Dr. Bruno Thomauske RWTH Aachen Institut für Nukleare Entsorgung und Techniktransfer (NET) 2 INHALT 1. Kernfusion Kernspaltung

Mehr

Moderne Experimentalphysik III: Kerne und Teilchen (Physik VI)

Moderne Experimentalphysik III: Kerne und Teilchen (Physik VI) Moderne Experimentalphysik III: Kerne und Teilchen (Physik VI) Günter Quast, Roger Wolf, Pablo Goldenzweig 08. Juni 2017 INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) PHYSICS FACULTY KIT University

Mehr

ARD Globus: Kernfusion Februar 1996

ARD Globus: Kernfusion Februar 1996 ARD Globus: Kernfusion Februar 1996 Autor: Kamera: Ton: Schnitt : Michael Houben Tom Kaiser Gernot Steinweg Doro Plaß Filmtext 0.01 High - Tech zu Beginn der 70er Jahre. 0.04 Die ersten kommerziellen Atomkraftwerke

Mehr

FWU Schule und Unterricht. FWU-Klassiker Kernfusion. FWU das Medieninstitut der Länder

FWU Schule und Unterricht. FWU-Klassiker Kernfusion. FWU das Medieninstitut der Länder FWU Schule und Unterricht DVD 46 02527 18 min, Farbe FWU-Klassiker Kernfusion FWU das Medieninstitut der Länder 00 Lernziele nach Lehrplänen und Schulbüchern Die Schüler lernen, dass bestimmte Atomkerne

Mehr

Die Sonne. Ein Energieversorger

Die Sonne. Ein Energieversorger 2 Die Sonne Ein Energieversorger Die Sonne ist - direkt oder indirekt - der Motor fast aller Abläufe in der Atmosphäre. Obwohl nur der zweimilliardste Teil der gesamten von der Sonne ausgehenden Strahlung

Mehr

Physik VI Plasmaphysik

Physik VI Plasmaphysik Physik VI Plasmaphysik Physik VI Plasmaphysik Inhaltsübersicht 1. Charakteristik des Plasmazustandes 2. Experimentelle Grundlagen der Plasmaphysik 3. Thermodynamische Gleichgewichtsplasmen 4. Plasmen im

Mehr

Laserfusion. Georg Hofmann. 05. Juni Uni Osnabrück. Georg Hofmann (Uni Osnabrück) Laserfusion 05. Juni / 43

Laserfusion. Georg Hofmann. 05. Juni Uni Osnabrück. Georg Hofmann (Uni Osnabrück) Laserfusion 05. Juni / 43 Laserfusion Georg Hofmann Uni Osnabrück 05. Juni 2007 Georg Hofmann (Uni Osnabrück) Laserfusion 05. Juni 2007 1 / 43 1 Einführung Fusion 2 Laserfusion 3 Ausblick 4 Zusammenfassung Georg Hofmann (Uni Osnabrück)

Mehr

4. Radiochemie und Kerntechnik

4. Radiochemie und Kerntechnik 4. Radiochemie und Kerntechnik Bindungsenergiekurve - Für alle Atomkerne mit Nukleonenzahlen zwischen 30 und 150 beträgt die mittlere Bindungsenergie je Nukleon ca. 8,5 MeV die halbempirische Bethe-Weizsäcker-Formel

Mehr

Physik 4: Skalen und Strukturen

Physik 4: Skalen und Strukturen Physik 4: Skalen und Strukturen Kapitel : Kernphysik.1 Grundlagen.2 Kerneigenschaften. Bindungsenergien.4 Kernzerfälle.5 Kernreaktionen.6 Anwendungen Geometrischer Wirkungsquerschnitt Gesamtfläche A, n

Mehr

Abstand der Deuteronen: R. Abbildung 2.22: Energie von 2 Deuteronen als Funktion des Abstandes

Abstand der Deuteronen: R. Abbildung 2.22: Energie von 2 Deuteronen als Funktion des Abstandes 2.8. KERNFUSION 109 2.8 Kernfusion Aus der Diskussion der Bindungsenergien pro Nukleon im vorhergehenden Abschnitt wissen wir, dass man im Bereich der leichten Atomkerne Energie dadurch gewinnen kann,

Mehr

Aufgabe I: Fusionsreaktor und Sonne

Aufgabe I: Fusionsreaktor und Sonne Europa-Gymnasium Wörth Abiturprüfung 2012 Leistungskurs Physik LK2 Aufgabe I: Fusionsreaktor und Sonne Leistungsfachanforderungen Hilfsmittel Formelsammlung (war im Unterricht erstellt worden) Tabelle

Mehr

Kernfusionsforschung in Mecklenburg-Vorpommern

Kernfusionsforschung in Mecklenburg-Vorpommern Member of the Helmholtz Association Öffentliche Anhörung im Landtag Mecklenburg-Vorpommern Kernfusionsforschung in Mecklenburg-Vorpommern Sachverständiger Ulrich Samm, Forschungszentrum Jülich Schwerin,

Mehr

Spezielle Relativitätstheorie. Experimente der relativistischen Dynamik

Spezielle Relativitätstheorie. Experimente der relativistischen Dynamik Spezielle Relativitätstheorie Experimente der relativistischen Dynamik Massenzunahme Walter Kaufmann (87-947) wies 90 die Zunahme der Elektronenmasse bei wachsender Geschwindigkeit nach (bis v 0,94 c).

Mehr

Kernfusion. Ein Referat von Sebastian Titze und Florian Wetzel. Einleitung Nachwort... 9

Kernfusion. Ein Referat von Sebastian Titze und Florian Wetzel. Einleitung Nachwort... 9 Kernfusion Ein Referat von Sebastian Titze und Florian Wetzel Einleitung... 2 Grundlagen der Kernverschmelzung (Kernfusion)... 2 Der Massendefekt... 2 Andere Fusionsvorgänge... 3 Die Coulomb schen Abstoßungskräfte...

Mehr

Forschung für die Energie der Zukunft

Forschung für die Energie der Zukunft Forschung für die Energie der Zukunft Die Sonne, ein gewaltiger Plasmaball. Seit Jahrmillionen verströmt sie Licht und Wärme. Fusion eine neue Energiequelle Kernverschmelzungen sind wichtige Natur prozesse:

Mehr

Vortrag: Prof. Dr. Hartmut Zohm, Direktor des Max-Planck-Instituts für Plasmaforschung, 2015.

Vortrag: Prof. Dr. Hartmut Zohm, Direktor des Max-Planck-Instituts für Plasmaforschung, 2015. Kernfusion Es geht um die Verschmelzung leichter Atomkerne zu schwereren Atomkernen. Dabei wird Energie frei. Die Kernfusion ist eine Energiequelle, sie ist die Energiequelle der Sterne. Unsere Sonne verbrennt

Mehr

5. Welche erneuerbaren Energieträger gibt es und welche Bedeutung haben sie für die Zukunft?

5. Welche erneuerbaren Energieträger gibt es und welche Bedeutung haben sie für die Zukunft? Gliederung zum Referat Energie 1. Definition des Energiebegriffs 2. Welche Energiearten gibt es? 3. Die heutige Energieproblematik 4. Kernenergie: Segen oder Fluch? a) Katastrophe von Tschernobyl b) Aufbau

Mehr

Energieerzeugung durch Fusion

Energieerzeugung durch Fusion Energieerzeugung durch Fusion von Simon Friederich Institut für Kernphysik Johannes Guttenberg Universität Betreuer: Dr. Harald Merkel 5. Dezember 2011 1 Kernfusion 1.1 Energieerzeugung durch Kernfusion

Mehr

MAX-PLANCK-INSTITUT FOR PLASMAPHYSIK

MAX-PLANCK-INSTITUT FOR PLASMAPHYSIK MAX-PLANCK-INSTITUT FOR PLASMAPHYSIK 8046 GARCHING B. MüNCHEN PI 4/88 12. Oktober 1988 Fusionsexperiment WENDELSTEIN VII-AS in Betrieb Das erste Plasma in einem "Advanced Stellarator"/Stellaratoren im

Mehr

Unser Stern die Sonne

Unser Stern die Sonne Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrinos from the Sun Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Unser Stern die Sonne Max Camenzind Würzburg 2018/2019

Mehr

Projekt Wendelstein 7-X Feinwerktechnik in der Fusionsforschung

Projekt Wendelstein 7-X Feinwerktechnik in der Fusionsforschung Projekt Wendelstein 7-X Feinwerktechnik in der Fusionsforschung 11. Tagung "Feinwerktechnische Konstruktion" 22.09.2017, Dresden Martin Banduch für das W7-X Team This work has been carried out within the

Mehr

Der Energiemix im 21. Jahrhundert Günther Hasinger

Der Energiemix im 21. Jahrhundert Günther Hasinger Standort Greifswald EURATOM Max-Planck-Institut für Plasmaphysik Der Energiemix im 21. Jahrhundert Günther Hasinger Standort Garching 10. Münchner Wissenschaftstage 23. Oktober 2010 LMU München Das Energie-Dilemma

Mehr

Handout zum Seminarvortrag Kernfusion

Handout zum Seminarvortrag Kernfusion Handout zum Seminarvortrag Kernfusion Christoph Rosner 1 Grundlagen Unter Kernfusion verstehen wir die Verschmelzung zweier leichter Kerne zu einem schwereren. Die allgemeine Reaktionsgleichung hierfür

Mehr

BULLETIN Nr. 70 April 2014

BULLETIN Nr. 70 April 2014 AVES Pfannenstil Aktion für vernünftige Energiepolitik Schweiz (AVES) Regionalgruppe Pfannenstil c/o Dr. Hans R. Moning AG, Gotthardstrasse 10, 8800 Thalwil Postkonto 80-10120-3 www.aves-zh.ch BULLETIN

Mehr

Radioaktivität Haller/ Hannover-Kolleg 1

Radioaktivität Haller/ Hannover-Kolleg 1 Radioaktivität 17.09.2007 Haller/ Hannover-Kolleg 1 Radioaktivität 17.09.2007 Haller/ Hannover-Kolleg 2 Radioaktivität 1. Was verstehe ich darunter? 2. Welche Wirkungen hat die Radioaktivität? 3. Muss

Mehr

Energieerzeugung durch Kernfusion

Energieerzeugung durch Kernfusion red Institute for Nuclear Physics Mainz, D 55099 Mainz, Germany E-mail: magentadiefenba@kph.uni-mainz.de Vorgestellt werden die Grundprinzipien der Kernfusion, welche Probleme sich bei der technischen

Mehr

Kernenergie. Handout zum Vortrag im Rahmen des Fortgeschrittenenseminars im SS 13. Sonja Spies. Betreuung: Prof. Dr. Frank Maas

Kernenergie. Handout zum Vortrag im Rahmen des Fortgeschrittenenseminars im SS 13. Sonja Spies. Betreuung: Prof. Dr. Frank Maas Kernenergie Handout zum Vortrag im Rahmen des Fortgeschrittenenseminars im SS 13 Sonja Spies Betreuung: Prof. Dr. Frank Maas 1 Inhaltsverzeichnis 1 Einleitung 2 2 Physikalische Grundlagen 2 2.1 Bindungsenergie.........................

Mehr

A T O M E N E R G I E

A T O M E N E R G I E A T O M E N E R G I E EINLEITUNG: Wohl keine andere Form der Energiegewinnung wird so kontrovers diskutiert wie die Atomenergie. Tatsache ist, dass auch die Kernenergie eine Energieform ist, die auf endlichen

Mehr

Oberthema: Atom- und Kernenergie Datum: Thema: Kernkraftwerke (nach Lehrbuch Dorn-Bader zusammengestellt) Seite: 2 von 6

Oberthema: Atom- und Kernenergie Datum: Thema: Kernkraftwerke (nach Lehrbuch Dorn-Bader zusammengestellt) Seite: 2 von 6 Thema: Kernkraftwerke (nach Lehrbuch Dorn-Bader zusammengestellt) Seite: 2 von 6 Grundlagen der Kernspaltung 1. Neutronen müssen langsam sein! Warum müssen kernspaltende Neutronen langsam sein? Viele Neutronen,

Mehr

1. Was ist Kernfusion? 2. Fusionsreaktionen auf der Erde

1. Was ist Kernfusion? 2. Fusionsreaktionen auf der Erde Kernfusion Johannes-Gutenberg-Universität Mainz Fortgeschrittenen-Praktikum Physik - Seminar (SoSe10) Referent: Tobias Macha Betreuer: Dr. Harald Merkel 26. April 2010 1. Was ist Kernfusion? Während dem

Mehr

Radioaktivität. den 7 Oktober Dr. Emőke Bódis

Radioaktivität. den 7 Oktober Dr. Emőke Bódis Radioaktivität den 7 Oktober 2016 Dr. Emőke Bódis Prüfungsfrage Die Eigenschaften und Entstehung der radioaktiver Strahlungen: Alpha- Beta- und Gamma- Strahlungen. Aktivität. Zerfallgesetz. Halbwertzeit.

Mehr

Joule, Kalorie & Co. Was ist eigentlich Energie?

Joule, Kalorie & Co. Was ist eigentlich Energie? Joule, Kalorie & Co. Was ist eigentlich Energie? Dr. Dr. Max-Planck-Institut für Physik Energie in den Schlagzeilen Energieverbrauch Energie sparen Energieverlust Energieverschwendung Energieressourcen

Mehr

Fusionsforschung Auf dem Weg zu einer neuen Primärenergiequelle Robert Wolf robert.wolf@ipp.mpg.de

Fusionsforschung Auf dem Weg zu einer neuen Primärenergiequelle Robert Wolf robert.wolf@ipp.mpg.de Max-Planck-Institut für Plasmaphysik Fusionsforschung Auf dem Weg zu einer neuen Primärenergiequelle Robert Wolf robert.wolf@ipp.mpg.de Max-Planck-Institut für Plasmaphysik Energie Kernfusion Fusionsforschung

Mehr

Neutronensterne. Belegarbeit von. Steven Kirchner

Neutronensterne. Belegarbeit von. Steven Kirchner Neutronensterne Belegarbeit von Steven Kirchner 2006 Inhaltsverzeichnis 1. Was ist ein Neutronenstern? 2. Die Entstehung eines Neutronensterns 3. Die Eigenschaften eines Neutronensterns 4. Das Magnetfeld

Mehr

Keine Welt ohne explodierende Sterne. Bruno Leibundgut Europäische Südsternwarte (ESO)

Keine Welt ohne explodierende Sterne. Bruno Leibundgut Europäische Südsternwarte (ESO) Keine Welt ohne explodierende Sterne Bruno Leibundgut Europäische Südsternwarte (ESO) Alter der Alpen Entstanden vor etwa 30 bis 35 Millionen Jahren Dinosaurier haben die Alpen nie gekannt! (vor 65 Millionen

Mehr

Testanlage ITER Fusionsforschung in globaler Zusammenarbeit Alexander M. Bradshaw, Max-Planck-Institut für Plasmaphysik (IPP), Garching, Greifswald

Testanlage ITER Fusionsforschung in globaler Zusammenarbeit Alexander M. Bradshaw, Max-Planck-Institut für Plasmaphysik (IPP), Garching, Greifswald Testanlage ITER Fusionsforschung in globaler Zusammenarbeit Alexander M. Bradshaw, Max-Planck-Institut für Plasmaphysik (IPP), Garching, Greifswald Die Entscheidung für den Bau der internationalen Fusionstestanlage

Mehr

MAX-PLANCK-INSTITUT FOR PLASMAPHYSIK. Wie man mit Radiowellen Fusionsplasmen auf 100 Millionen Grad aufheizt / Neue Heizmethode im Einsatz

MAX-PLANCK-INSTITUT FOR PLASMAPHYSIK. Wie man mit Radiowellen Fusionsplasmen auf 100 Millionen Grad aufheizt / Neue Heizmethode im Einsatz MAX-PLANCK-INSTITUT FOR PLASMAPHYSIK 8046 GARCHING B. MüNCHEN r~. t= ;, VA~/83 t[---i 7D : D7 i, 17. November 1983 STÄRKER ALS JEDER RADIOSENDER Wie man mit Radiowellen Fusionsplasmen auf 100 Millionen

Mehr

Kernfusion und Neutronik am Beispiel des Stellarator Leistungsreaktors HELIAS

Kernfusion und Neutronik am Beispiel des Stellarator Leistungsreaktors HELIAS Kernfusion und Neutronik am Beispiel des Stellarator André Häußler andre.haeussler@kit.edu KIT The Research University in the Helmholtz Association www.kit.edu Weltweiter Primärenergieverbrauch Anstieg

Mehr

15 Kernphysik Der Atomkern 15.2 Kernspin Zerfallsgesetz radioaktiver Kerne

15 Kernphysik Der Atomkern 15.2 Kernspin Zerfallsgesetz radioaktiver Kerne 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität ität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 1553K 15.5.3 Kettenreaktion 15. Kernphysik

Mehr

FOS: Radioaktivität und Strahlenschutz. Chemische Elemente und ihre kleinsten Teilchen

FOS: Radioaktivität und Strahlenschutz. Chemische Elemente und ihre kleinsten Teilchen R. Brinkmann http://brinkmann-du.de Seite 5..03 Chemische Elemente FOS: Radioaktivität und Strahlenschutz Chemische Elemente und ihre kleinsten Teilchen Der Planet Erde besteht aus 9 natürlich vorkommenden

Mehr

ELMs unter Kontrolle

ELMs unter Kontrolle ELMs unter Kontrolle PD Dr. Wolfgang Suttrop Max-Planck-Institut für Plasmaphysik, D-85740 Garching e-mail: suttrop@ipp.mpg.de Neue Experimente an Fusions-Plasmen in Tokamaks demonstrieren die Kontrolle

Mehr

Einführung Fusions- forschung. indie

Einführung Fusions- forschung. indie Einführung Fusions- forschung indie Grundlagen der Kernfusion Die Kernbausteine sind von einer Atomsorte zur anderen verschieden stark aneinander gebunden. Durch Umordnung der Kernbausteine in fester verbundene

Mehr

Kernfusion: Energie der Zukunft

Kernfusion: Energie der Zukunft Sonnenenergie reproduzieren Kernfusion: Energie der Zukunft Die Kernfusion ein riesiges schlummerndes Potenzial Die Fusion von Wasserstoff zu Helium ist der Energieprozess, der Sonne und Sterne strahlen

Mehr

Der Weg zu einem Fusionskraftwerk

Der Weg zu einem Fusionskraftwerk EURATOM Max-Planck-Institut für Plasmaphysik Standort Greifswald Der Weg zu einem Fusionskraftwerk Standort Garching G. Hasinger, IPP Garching TU München Ringvorlesung Umwelt 3. Juni 2009, TU München Das

Mehr

Wetter, Klima, Klimawandel

Wetter, Klima, Klimawandel Phänomene der Erde Wetter, Klima, Klimawandel Wissen für eine Welt im Umbruch Bearbeitet von Nadja Podbregar, Karsten Schwanke, Harald Frater 1. Auflage 2003. Buch. VI, 264 S. Hardcover ISBN 978 3 540

Mehr

Das Ampere sche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenz sche Regel

Das Ampere sche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenz sche Regel 10. Elektrodynamik 10.5.4 Das Ampere sche Gesetz 10.5.5 Der Maxwellsche Verschiebungsstrom 10.5.6 Magnetische Induktion 10.5.7 Lenz sche Regel 10.6 Maxwell sche Gleichungen 10.7 Elektromagnetische Wellen

Mehr

Vom Sternenfeuer zum Fusionskraftwerk Günther Hasinger

Vom Sternenfeuer zum Fusionskraftwerk Günther Hasinger Standort Greifswald EURATOM Max-Planck-Institut für Plasmaphysik Vom Sternenfeuer zum Fusionskraftwerk Günther Hasinger Standort Garching Tag der Unternehmerschaft 2010 Düsseldorf 10. Juni 2010 Hotel NIKKO

Mehr

15 Kernphysik Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne

15 Kernphysik Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne Inhalt 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 15.5.3 Kettenreaktion Der Atomkern

Mehr

Feldbegriff und Feldlinienbilder. Elektrisches Feld. Magnetisches Feld. Kraft auf Ladungsträger im elektrischen Feld

Feldbegriff und Feldlinienbilder. Elektrisches Feld. Magnetisches Feld. Kraft auf Ladungsträger im elektrischen Feld Feldbegriff und Feldlinienbilder Elektrisches Feld Als Feld bezeichnet man den Bereich um einen Körper, in dem ohne Berührung eine Kraft wirkt beim elektrischen Feld wirkt die elektrische Kraft. Ein Feld

Mehr

15 Kernphysik Physik für E-Techniker. 15 Kernphysik

15 Kernphysik Physik für E-Techniker. 15 Kernphysik 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 15.5.3 Kettenreaktion 15. Kernphysik 15.

Mehr

Einführung in die Kern- und Teilchenphysik I Vorlesung 14 13.12.2013. Kernfusion: Energieerzeugung Funktionsweise von Fusionsreaktoren

Einführung in die Kern- und Teilchenphysik I Vorlesung 14 13.12.2013. Kernfusion: Energieerzeugung Funktionsweise von Fusionsreaktoren Einführung in die Kern- und Teilchenphysik I Vorlesung 14 13.12.2013 Kernfusion: Energieerzeugung Funktionsweise von Fusionsreaktoren Kernfusion: Grundlagen Vorteile der Kernfusion Praktisch unbegrenzte

Mehr

Wie lange leben Sterne? und Wie entstehen sie?

Wie lange leben Sterne? und Wie entstehen sie? Wie lange leben Sterne? und Wie entstehen sie? Neue Sterne Neue Sterne Was ist ein Stern? Unsere Sonne ist ein Stern Die Sonne ist ein heißer Gasball sie erzeugt ihre Energie aus Kernfusion Planeten sind

Mehr

Die Inbetriebnahme von Wendelstein 7 X: der Beitrag des Stellarators zur Fusionsforschung

Die Inbetriebnahme von Wendelstein 7 X: der Beitrag des Stellarators zur Fusionsforschung Die Inbetriebnahme von Wendelstein 7 X: der Beitrag des Stellarators zur Fusionsforschung Robert Wolf und das W7-X Team *) robert.wolf@ipp.mpg.de *) siehe Autorenliste Bosch et al. Nucl. Fusion 53 (2013)

Mehr

Fusionsforschung auf dem Weg zu einem energieliefernden Plasma

Fusionsforschung auf dem Weg zu einem energieliefernden Plasma Zum Gedenken an Lise Meitner, Ehrendoktorin der FU Ringvorlesung Wintersemester 2018/2019 Fusionsforschung auf dem Weg zu einem energieliefernden Plasma Robert Wolf robert.wolf@ipp.mpg.de Fakultät II Zentrum

Mehr

Kernfusion die Energiequelle der Zukunft?

Kernfusion die Energiequelle der Zukunft? 1 Friderico-Francisceum-Gymnasium Schuljahr 2003/2004 Bad Doberan Facharbeit des Schülers Martin Knorr im Fach Physik Klasse 10e Thema: Kernfusion die Energiequelle der Zukunft? 2 Inhaltsverzeichnis 1.

Mehr

Physik Spezialgebiet Die Kernfusion

Physik Spezialgebiet Die Kernfusion Physik Spezialgebiet Die Kernfusion 1. Allgemeines zur Kernfusion 1.1 Geschichte der Kernfusion (Fusionsforschung) 1.2 Bedeutung der Kernfusion 2. Die natürliche Kernfusion in der Sonne 2.1 Bethe-Weizsäcker-Zyklus

Mehr

B Kernenergie. 1 Physikalische Grundlagen. 1.1 Maßeinheiten der Atomphysik. 1.2 Massendefekt

B Kernenergie. 1 Physikalische Grundlagen. 1.1 Maßeinheiten der Atomphysik. 1.2 Massendefekt -VI.B1- B Kernenergie 1 Physikalische Grundlagen 1.1 Maßeinheiten der Atomphysik Da die üblichen Einheiten für Masse und Energie in der Atom und Kernphysik zu groß sind, benutzt man hier üblicherweise

Mehr

Grundwissen Physik 9. Jahrgangsstufe

Grundwissen Physik 9. Jahrgangsstufe Grundwissen Physik 9. Jahrgangsstufe I. Elektrizitätslehre und Magnetismus 1. a) Geladene Teilchen, die sich in einem Magnetfeld senkrecht zu den Magnetfeldlinien bewegen, erfahren eine Kraft (= Lorentzkraft),

Mehr

Neutrinos: Kosmische Leichtgewichte auf der Waagschale von KATRIN

Neutrinos: Kosmische Leichtgewichte auf der Waagschale von KATRIN Neutrinos: Kosmische Leichtgewichte auf der Waagschale von KATRIN Neutrinos, ihre Masse & das Universum KATRIN eine Waage für Neutrinos am Forschungszentrum Karlsruhe 1 Man denk am Besten gar nicht darüber

Mehr

Kraft. Sonne. der. Mit der FUSIONSENERGIE

Kraft. Sonne. der. Mit der FUSIONSENERGIE FEUERBALL: Die Sonne ist ein riesiger Ball aus glühenden Gasen. Pro Jahr strahlt sie eine Energiemenge auf die Erde ab, die 15.000-mal größer ist als der Energieverbrauch aller Menschen auf der Welt in

Mehr

Kernfusion- Energiequelle der Zukunft?

Kernfusion- Energiequelle der Zukunft? Kernfusion- Energiequelle der Zukunft? Facharbeit zum Thema: Naturwissenschaftliche Entdeckungen Gymnasium am Markt Achim Am Marktplatz 18 28832 Achim Abgabetermin 29.03.2017 Von Niklas Purnhagen Grundkurs

Mehr

Energie erzeugen wie die Sonne Kernfusion im Energiemix der Zukunft

Energie erzeugen wie die Sonne Kernfusion im Energiemix der Zukunft Energie erzeugen wie die Sonne Kernfusion im Energiemix der Zukunft Sibylle Günter Max-Planck-Institut für Plasmaphysik Garching Grafik: ITER Foto: SOHO (ESA & NASA) Die schier unerschöpfliche Energie

Mehr

Massive Sterne: Gravitationskollaps-Supernovae, Neutronensterne & Pulsare

Massive Sterne: Gravitationskollaps-Supernovae, Neutronensterne & Pulsare Massive Sterne: Gravitationskollaps-, & Uni Mainz Vortrag in Astroteilchenphysik im WS 10/11 18. Januar 2011 Überblick 1 Gravitationskollaps- und Entstehung von n 2 Eigenschaften von n 3 Was ist ein Pulsar?

Mehr

Kernphysik Kernfusion und Kernspaltung

Kernphysik Kernfusion und Kernspaltung 46 11279 Didaktische FWU-DVD differenziertes Arbeitsmaterial Kernphysik Kernfusion und Kernspaltung Physik Klasse 9 12 Trailer ansehen Schlagwörter Abstoßung; Atom; Atomhülle; Atomkern; Atommüll; Basiskonzept;

Mehr

Sternentwicklung (3) Wie Sterne Energie erzeugen

Sternentwicklung (3) Wie Sterne Energie erzeugen Sternentwicklung (3) Wie Sterne Energie erzeugen Die Leuchtkraft der Sonne Die Leuchtkraft ist eine Strahlungsleistung. Sie gibt die pro Zeiteinheit (Sekunde) von einem Stern im gesamten Spektralbereich

Mehr

Kernreaktionen chemisch beschrieben

Kernreaktionen chemisch beschrieben Physics Meets Chemistry Kernreaktionen chemisch beschrieben 1 Kernreaktionen chemisch beschrieben 1. Ausgangslage 2. Ziele 3. Unterrichtsvorschlag mit Übungen Physics Meets Chemistry Kernreaktionen chemisch

Mehr

Experimentalphysik 4 - SS11 Physik der Atome und Kerne

Experimentalphysik 4 - SS11 Physik der Atome und Kerne Experimentalphysik 4 - SS Physik der Atome und Kerne Prof. Dr. Tilman Pfau 5. Physikalisches Institut Übungsblatt 06 Besprechung: 8. Juni Aufgabe : Koeffizient a C des Coulomb-Terms 4 Punkte In dieser

Mehr

FOKUS_Energie. Ein Labyrinth der Technik: Verborgen unter einem Gewirr von Leitungen, Stutzen und Gängen liegt die Plasmakammer von Wendelstein 7-X.

FOKUS_Energie. Ein Labyrinth der Technik: Verborgen unter einem Gewirr von Leitungen, Stutzen und Gängen liegt die Plasmakammer von Wendelstein 7-X. FOKUS_Energie Ein Labyrinth der Technik: Verborgen unter einem Gewirr von Leitungen, Stutzen und Gängen liegt die Plasmakammer von Wendelstein 7-X. Foto: Jan Michael Hosan/IPP Funken in der Sternenmaschine

Mehr

Über Arbeiten zur Hydromagnetik elektrisch leitender Flüssigkeiten, über Verdichtungsstöße und aus der Hochtemperaturplasmaphysik

Über Arbeiten zur Hydromagnetik elektrisch leitender Flüssigkeiten, über Verdichtungsstöße und aus der Hochtemperaturplasmaphysik WILHELM FUCKS Über Arbeiten zur Hydromagnetik elektrisch leitender Flüssigkeiten, über Verdichtungsstöße und aus der Hochtemperaturplasmaphysik HERMANN L. JORDAN Erzeugung von Plasma hoher Temperatur durch

Mehr

Ich schwitze sagte die Solarzelle. Bei Dir piepst s wohl antwortete der Geigerzähler.

Ich schwitze sagte die Solarzelle. Bei Dir piepst s wohl antwortete der Geigerzähler. Ich schwitze sagte die Solarzelle. Bei Dir piepst s wohl antwortete der Geigerzähler. Eine strahlende Reise von der Brennstoffzelle zum Urgestein. Hartmut Abele, Jacqueline Erhart, Christoph Gösselsberger,

Mehr

Basics of Electrical Power Generation Nukleartechnik

Basics of Electrical Power Generation Nukleartechnik Basics of Electrical Power Generation Nukleartechnik 1/ 43 GE Global Research Freisinger Landstrasse 50 85748 Garching kontakt@reg-energien.de Inhalte 1. Kernkraftwerke 2. Kraftwerkstypen 3. Der Brennstoffkreislauf

Mehr

Westfälische Hochschule - Fachbereich Informatik & Kommunikation - Bereich Angewandte Naturwissenschaften. 7. Anfang und Ende der Welt

Westfälische Hochschule - Fachbereich Informatik & Kommunikation - Bereich Angewandte Naturwissenschaften. 7. Anfang und Ende der Welt Ziele der Vorlesung: 1.) Die Entwicklung des Universums seit dem Urknall, unsere Heimatgalaxie 2.) Entwicklungszyklen von Sternen mit unterschiedlichen Anfangsmassen, unsere Sonne 3.) Unser Planetensystem

Mehr

Dieser Artikel wurde ausgedruckt unter der Adresse:

Dieser Artikel wurde ausgedruckt unter der Adresse: Dieser Artikel wurde ausgedruckt unter der Adresse: http://www.planet-wissen.de/technik/atomkraft/grundlagen_der_atomkraft/index.html P Atomenergie: So funktioniert sie Planet Wissen 25.04.2016 02:41 Min.

Mehr

Kernenergie A = N + Z. A Massenzahl N Neutronenzahl Z Protonenzahl

Kernenergie A = N + Z. A Massenzahl N Neutronenzahl Z Protonenzahl Kernenergie A = N + Z A Massenzahl N Neutronenzahl Z Protonenzahl Massendefekt: M Z m p + N m n M A Bindungsenergie: B M x c 2 c Lichtgeschwindigkeit 1 ev = 1,602 10-19 J Mittlere Bindungsenergie je Nukleon

Mehr

DER WEG VOM EXPERIMENT ZUM KRAFTWERK

DER WEG VOM EXPERIMENT ZUM KRAFTWERK TOPIC 5: FUSIONSTECHNOLOGIE Mega-Mikrowelle: Leistungsstarke Gyrotronröhren heizen das Plasma auf über 100 Millionen Grad Celsius auf. Die am KIT entwickelte 140-Gigahertz-Gyrotronröhre erreicht Heizleistungen

Mehr

Energiegewinnung nach dem Vorbild der Sonne

Energiegewinnung nach dem Vorbild der Sonne Energiegewinnung nach dem Vorbild der Sonne Vakuumtechnik ermöglicht die Herstellung von Fusionsbedingungen Auf der Suche nach alternativen und sauberen Energiequellen gewinnt die Energieerzeugung durch

Mehr

Bausteine der Materie und ihre Entstehung Von Quarks bis zum Sandstrand

Bausteine der Materie und ihre Entstehung Von Quarks bis zum Sandstrand Bausteine der Materie und ihre Entstehung Von Quarks bis zum Sandstrand Professor Dr. Andreas Zilges Universität zu Köln MINT-Laborpraktikum 2008 Das Auge von Säugetieren Vorne zu sitzen ist manchmal gefährlich.

Mehr

Energieversorgung 2100 - Kernfusion oder doch Windräder?

Energieversorgung 2100 - Kernfusion oder doch Windräder? Max-Planck-Institut für Plasmaphysik Energieversorgg - Kernfusion oder doch Windräder? Ralph Dux MPI für Plasmaphysik 85748 Garching, Boltzmannstr. 2 Ralph.Dux@ipp.mpg.de http://www.ipp.mpg.de Prolog Windräder

Mehr

Kernkraftwerke. Kernkraftwerk mit Siedewasserreaktor

Kernkraftwerke. Kernkraftwerk mit Siedewasserreaktor 1 Kernkraftwerke Es werden zur Zeit vier Reaktortypen zur Energiegewinnung verwendet. 54. Siedewasserreaktor 55. Druckwasserreaktor 56. Schneller Brutreaktor 57. Thorium Hochtemperaturreaktor Im Folgenden

Mehr

Sonnenfeuer im Labor. Wo steht die Fusionsforschung? 44 02/2007 Magazin

Sonnenfeuer im Labor. Wo steht die Fusionsforschung? 44 02/2007 Magazin Sonnenfeuer im Labor Wo steht die Fusionsforschung? Ein energielieferndes Fusionsfeuer soll der internationale Experimentalreaktor ITER erzeugen. Die Großanlage, die demnächst im französischen Cadarache

Mehr

Hinweise für die Schülerinnen und Schüler

Hinweise für die Schülerinnen und Schüler Abitur 009 Physik Seite Hinweise für die Schülerinnen und Schüler Aufgabenwahl Die vorliegende Arbeit besteht aus den Prüfungsteilen A und B. Alle Prüfungsteilnehmer bearbeiten den Teil A. Es besteht die

Mehr