Physik VI Plasmaphysik

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Physik VI Plasmaphysik"

Transkript

1 Physik VI Plasmaphysik

2 Physik VI Plasmaphysik Inhaltsübersicht 1. Charakteristik des Plasmazustandes 2. Experimentelle Grundlagen der Plasmaphysik 3. Thermodynamische Gleichgewichtsplasmen 4. Plasmen im Magnetfeld 5. Wellen im Plasma 6. Plasmakinetik 7. Plasmastrahlung 8. Thermonukleare Plasmen

3 1 8. Thermonukleare Plasmen die Entwicklung in der Plasmaphysik wurde im wesentlichen durch die Erforschung der kontrollierten Kernfusion vorangetrieben um aus der Verschmelzung von Atomkernen Energie zu gewinnen, muss ein Plasma bei ausreichender Temperatur lange genug eingeschlossen bleiben erst dann findet die Energiefreisetzung bei Fusionsreaktionen mit einer Rate statt, die das Aufrechterhalten des Plasmas gewährleistet dieses gezündete thermonukleare Plasma ist bislang noch nicht experimentell realisiert

4 Kernfusion pp-zyklus p + p D + e + + n D + p 3 He + g 3 He + 3 He 4 He + 2 p In jeder Sekunde Umwandlung von: 600 Mio. t Wasserstoff in 596 Mio. t Helium E = m c 2 entspricht Energieproduktion von: GW Sonne, Sterne Gravitation überwindet Abstoßungskräfte

5 Fusionsreaktoren Gravitation (Sonne) Magnetischer Einschluss Trägheitsfusion

6 Fusionsreaktionen der Energiegewinn bei der Kernfusion basiert auf der Fusion leichter Atomkerne hierbei wird eine große Menge an Energie freigesetzt, da sich die Bindungsenergie pro Nukleon im Fusionsprodukt erhöht (Potentialtopf tiefer) damit Fusion stattfindet, müssen die Atomkerne sich bei einem Stoß nahe genug kommen, um durch den Coulomb-Wall tunneln zu können und in den Bereich der starken Wechselwirkung zu gelangen Fusionsreaktionen mit großem Wirkungsquerschnitt sind:

7 Kernfusion große Abstände r > r n : Abstoßung durch Coulomb-Kraft Potentialwall ~ 100 kev + + Bindungsenergie Potentialwall: schwierig zu überwinden endliche Wahrscheinlichkeit für Durchtunneln der Barriere Wahrscheinlichkeit für leichte Kerne mit hohem v rel maximal + + kleine Abstände r < r n ~ fm : Anziehung durch Kernkräfte starke Wechselwirkung ~ MeV

8 Kernenergie Chemische Bindungen: ~ ev (Atome, Moleküle) Kernbindungsenergien: ~ MeV Energiefreisetzung prinzipiell möglich durch: Fusion von leichten Kernen oder Spaltung schwerer Kerne Vorteile der Fusion: Ressourcen Sicherheit

9 Kernfusion Sonne Energieerzeugung durch Kernprozesse Thermonukleare Fusionen sind Reaktionen, bei denen leichtere Kerne zu einem schweren Kern verschmelzen und sich durch diesen Prozess in einen energetisch günstigeren Zustand begeben, d.h. Energie an die Umgebung abgeben. Kernfusionsprozesse im Sterninneren werden durch kinetische Energie der ungeordneten thermischen Bewegung der Teilchen eingeleitet niedrige, aber hinreichende Fusionsrate wird primär durch Geschwindigkeitsverteilung und quantenmechanischen Tunneleffekt bestimmt dominierende Mechanismen sind: pp Reaktion CNO-Zyklus 3 -Prozess

10 Kernfusion Sonne

11 Kernfusion Sonne

12 Kernfusion Sonne pp-reaktion dominiert in der Sonne (BETHE, CHRITCHFIELD 1938) läuft im Bereich T K ab (Sonne!) pp- Reaktion: 1 H + 1 H 2 D + e + + n MeV ( a) daran anschließend sind am häufigsten 2 D + 1 H 3 He + g MeV (6s) 3 He + 3 He 4 He H MeV (10 6 a) Energiebilanz pro He-Kern ( MeV) + ( MeV) MeV 0.51 MeV = 26.2 MeV = J

13 Kernfusion geringer Wirkungsquerschnitt des pp-zyklus d.h.: Reaktion ist sehr unwahrscheinlich sehr langsame Reaktion lange Lebensdauer der Sterne auf Erde nicht realisierbar wahrscheinlichere Reaktion Deuterium-Tritium-Plasma (DT) Reaktionsbedingungen: Temperatur: T ~ 100 Mio K ~10 kev Dichte: n ~ m -3 Energieeinschlußzeit: ~ 5 10 s heiße Plasmen

14 Zündkriterium Rate der Fusionsreaktionen ist gegeben als bei vollständig ionisierten Plasmen sind die Strahlungsverluste im wesentlichen Bremsstrahlung der Elektronen, die im Coulomb-Feld der Ionen abgelenkt werden die Linienstrahlung spielt eine untergeordnete Rolle allerdings können Verunreinigungen, die durch Wandprozesse in das Plasma getragen werden, die Leistungsbilanz stark beeinflussen

15 4 für die Leistungsbilanz ist schließlich noch die Isolation des Plasmas wesentlich dies wird in einem einfachsten Ansatz mit einer Energieeinschlusszeit ausgedrückt Lawson-Kriterium um das thermonukleare Zünden des Plasmas zu erreichen, wird im wesentlichen an einer Verbesserung des Einschlusses gearbeitet dementsprechend gibt es unterschiedliche Konzepte, ein heißes Fusionsplasma zu erzeugen es lassen sich zwei Klassen unterscheiden: die magnetische Fusion (Tokamak, Stellarator) und die Trägheitsfusion, bei der ein Brennstoffgemisch aus Deuterium und Tritium mittels Laserstrahlung zur Implosion gebracht wird

16 Plasmaeinschluss die Halterung des thermonuklearen Plasmas kann wegen seiner hohen Temperatur nicht mehr durch substantielle Wände erfolgen jedoch eröffnet die Anwendung magnetischer Felder eine Möglichkeit zur Einschließung der Plasmen mittels des magnetischen Druckes (magnetische Halterung) ein Zusammenhalt des Plasmas infolge der Gravitationskräfte, wie er z.b. auf der Sonne auftritt, ist unter irdischen Maßstäben nicht realisierbar

17 Zylinderförmiges homogenes Magnetfeld: Magnetischer Einschluss Einschluss entlang der Achse Problem: Verschluss der Enden? Schließen zum Torus die Lösung?

18 Magnetischer Einschluss Rein toroidales Magnetfeld führt zu radialer Variation des Feldes B ~ 1/R Zentrifugalkraft und Gradienten-Drift Separation von Elektronen und Ionen (Ladungstrennung) elektrisches Feld E und Polarisationsdrift ExB-Drift Teilchenverluste

19 Magnetischer Einschluss Verdrillung des Feldes sorgt für Kompensation der Drift! (Mittelung über Gebiete mit schwachem und starkem Feld) Toroidale Anordnung mit magnetischen Flächen Zwei notwendige Feldkomponenten: toroidal ( B t ) und poloidal ( B p ) Zwei mögliche Konzepte: Tokamak und Stellarator

20 Tokamak Arzimovich, Sacharov, Tamm (Moskau, 50er Jahre) Poloidalfeld B p durch Induktion eines Plasmastroms (Transformatorprinzip) + intrinsische Heizung + fortgeschrittenstes Konzept - nicht stationär (Stromtrieb) - Stromabriss möglich (Disruption)

21 Tokamak R = 1.65 m a = 0.5 m B t 3.5 T I p 1.4 MA P H 28 MW Betriebsbeginn: 1991 ASDEX Upgrade, IPP Garching

22 Stellarator L. Spitzer jr. (50er Jahre, Princeton) poloidales Feld durch externe helikale Spulen + nur externe Ströme + stationär betreibbar - komplizierte Geometrie Magnetfeld durch externes Spulensystem erzeugt!

23 Stellarator Magnetfeld durch externes Spulensystem erzeugt! Wendelstein 7-X, IPP Greifswald

24 Kernfusion Stellarator Wendelstein

25 Stellarator Spulengehäuse Embedding 270 Wickelpaket Supraleiter 330 Querschnitt nichtplanare Spule Supraleitende nicht-planare Spulen 5 x 10 nichtplanare Spulen 5 x 4 planare Spulen

26 Plasmaheizung für die Erzeugung bzw. Heizung thermonuklearer Plasma kommen folgende Methoden in Frage: - Elektrischer Stromdurchgang (Stromtrieb, Ohmsche Heizung) - Magnetische Kompression (Pinch) - Injektion energiereicher Wellen- oder Teilchenstrahlen (Wellenheizung, Neutralteilcheninjektion)

27 - Ohmsche Heizung nur in Tokamaks von Bedeutung - Neutralteilcheninjektion (NBI) schnelle Teilchen geben Energie ab Plasmaheizung - Zyklotronresonanzheizung (CRH) Beschleunigung der Gyrationsbewegung Einstrahlung von Mikrowellen ins Plasma: Elektronen (ECRH): GHz (Radar) Ionen (ICRH): MHz (UKW) Gyrotronentwicklung im FZK

28 Energieträger Brennstoff-Bedarf eines 1GW-Kraftwerks im Jahr: Uran: 8 LKW (150 Tonnen) Fusionsbrennstoff 0,6 Tonnen Öl: 7 Supertanker ( Barrel) Kohle: Zug von 400 km Länge ( Tonnen) Strombedarf einer Familie im Jahr gedeckt durch 0.08 g D und 0.2 g Li Ein Kohlekraftwerk erzeugt pro Stunde 2000 t CO2. Ein Fusionskraftwerk erzeugt pro Stunde einige 100g harmloses Helium.

29 Fusionskraftwerk Brennstoff: D 1:2000 in Meerwasser Li im Meerwasser T wird in der Anlage erbrütet

Kernfusion die Energiequelle der Sonne auf der Erde nutzen Sibylle Günter

Kernfusion die Energiequelle der Sonne auf der Erde nutzen Sibylle Günter Kernfusion die Energiequelle der Sonne auf der Erde nutzen Sibylle Günter Wissenschaftliche Direktorin Max-Planck-Institut für Plasmaphysik, Garching/Greifswald Energie erzeugen wie die Sonne Wie gewinnt

Mehr

Energieversorgung 2100 - Kernfusion oder doch Windräder?

Energieversorgung 2100 - Kernfusion oder doch Windräder? Max-Planck-Institut für Plasmaphysik Energieversorgg - Kernfusion oder doch Windräder? Ralph Dux MPI für Plasmaphysik 85748 Garching, Boltzmannstr. 2 Ralph.Dux@ipp.mpg.de http://www.ipp.mpg.de Prolog Windräder

Mehr

Fusion von Wasserstoff

Fusion von Wasserstoff Fusion von Wasserstoff Die neue Energie? Thomas Klinger Max-Planck-Institut für Plasmaphysik, Greifswald Frage 1 Die Energiefrage ist absolut fundamental. Wohin geht die Entwicklung in diesem Jahrhundert?

Mehr

Ferienakademie Kernfusion. von Matthias Dodenhöft

Ferienakademie Kernfusion. von Matthias Dodenhöft Ferienakademie 18.09.11-30.09.11 Kernfusion von Matthias Dodenhöft 1 Inhalt 1. Geschichte der Kernfusion 2. Physikalische Grundlagen 3. Kernfusion auf der Sonne 4. Kernfusion auf der Erde 4.1 Umsetzung

Mehr

Dieter Suter Physik B3

Dieter Suter Physik B3 Dieter Suter - 426 - Physik B3 9.3 Kernenergie Kernenergie ist eine interessante Möglichkeit, nutzbare Energie zu gewinnen. Das kann man sehen wenn man vergleicht, wie viel Energie in 1 kg unterschiedlicher

Mehr

Kernfusion und Wendelstein 7-X

Kernfusion und Wendelstein 7-X Kernfusion und Wendelstein 7-X Dirk Hartmann Max-Planck Institut für Plasmaphysik EURATOM Association Wendelsteinstr. 1 Greifswald Dirk Hartmann 1 Kernfusion Pro Sekunde werden in der Sonne 675.000.000

Mehr

Fusion- eine neue Primärenergiequelle der Zukunft

Fusion- eine neue Primärenergiequelle der Zukunft Mitglied der Helmholtz-Gemeinschaft Fusion- eine neue Primärenergiequelle der Zukunft IHK im Dialog Workshop 5: Forschung und Entwicklung Jülich, 14.10.2008 Detlev Reiter Entwurf: Impulsreferat, 14.10.08,

Mehr

Kapitel 5: Kernfusion

Kapitel 5: Kernfusion Kapitel 5: Kernfusion 330 5 Die Kernfusion und ihre Anwendung Der Unterschied der Bindungsenergie zwischen Deuterium D und Helium He ist pro Nukleon wesentlich größer als bei der Kernspaltung. Kernfusion

Mehr

Energieforschung für die Zukunft Auf dem Weg zu einem Fusionskraftwerk

Energieforschung für die Zukunft Auf dem Weg zu einem Fusionskraftwerk Energieforschung für die Zukunft Auf dem Weg zu einem Fusionskraftwerk Dipl. Ing. (FH) Bernadett Gmeiner MPI Dank an: Dr. Rudolf Neu Dr. Hans Meister 85748 Garching, Boltzmannstr.2 Bernadett.Gmeiner@ipp.mpg.de

Mehr

Bei dieser Reaktion fusionieren Deuterium und Tritium zu einem Heliumkern und einem Neutron: 2 H +

Bei dieser Reaktion fusionieren Deuterium und Tritium zu einem Heliumkern und einem Neutron: 2 H + Kernfusion Die ungeheuren Energiemengen, die bei der Kernfusion in der Sonne freiwerden, möchte der Mensch auch nutzen können. Doch das gestaltet sich schwieriger, als in den Anfängen der Fusionsforschung

Mehr

Die Welt von morgen - die Sicht eines Energieforschers

Die Welt von morgen - die Sicht eines Energieforschers DHV Symposium Die Welt von morgen Die Welt von morgen - die Sicht eines Energieforschers Thomas Klinger Max Planck-Institut für Plasmaphysik Garching und Greifswald DHV Symposium, Bonn 2. November 2016

Mehr

Fusionsforschung Auf dem Weg zu einer neuen Primärenergiequelle Robert Wolf robert.wolf@ipp.mpg.de

Fusionsforschung Auf dem Weg zu einer neuen Primärenergiequelle Robert Wolf robert.wolf@ipp.mpg.de Max-Planck-Institut für Plasmaphysik Fusionsforschung Auf dem Weg zu einer neuen Primärenergiequelle Robert Wolf robert.wolf@ipp.mpg.de Max-Planck-Institut für Plasmaphysik Energie Kernfusion Fusionsforschung

Mehr

Energieerzeugung durch Kernfusion

Energieerzeugung durch Kernfusion red Institute for Nuclear Physics Mainz, D 55099 Mainz, Germany E-mail: magentadiefenba@kph.uni-mainz.de Vorgestellt werden die Grundprinzipien der Kernfusion, welche Probleme sich bei der technischen

Mehr

Moderne Experimentalphysik III: Kerne und Teilchen (Physik VI)

Moderne Experimentalphysik III: Kerne und Teilchen (Physik VI) Moderne Experimentalphysik III: Kerne und Teilchen (Physik VI) Günter Quast, Roger Wolf, Pablo Goldenzweig 08. Juni 2017 INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) PHYSICS FACULTY KIT University

Mehr

Fusionsexperiment Wendelstein 7-X

Fusionsexperiment Wendelstein 7-X Fusionsexperiment Wendelstein 7-X Garching - Greifswald Wendelstein 7-X, die weltweit größte und modernste Fusionsforschungsanlage ihrer Bauart, wird gegenwärtig im Teilinstitut Greifswald des Max-Planck-Instituts

Mehr

Primärproblem: Bevölkerungswachstum

Primärproblem: Bevölkerungswachstum Möglchkeiten der Energieversorgung aus der Kernfusion F. Wagner, Max-Planck Institut für Plasmaphysik, Greifswald Primärproblem: Bevölkerungswachstum Billion 20 18 16 14 12 10 8 6 4 2 0 1900 1950 2000

Mehr

FWU Schule und Unterricht. FWU-Klassiker Kernfusion. FWU das Medieninstitut der Länder

FWU Schule und Unterricht. FWU-Klassiker Kernfusion. FWU das Medieninstitut der Länder FWU Schule und Unterricht DVD 46 02527 18 min, Farbe FWU-Klassiker Kernfusion FWU das Medieninstitut der Länder 00 Lernziele nach Lehrplänen und Schulbüchern Die Schüler lernen, dass bestimmte Atomkerne

Mehr

Physik VI Plasmaphysik

Physik VI Plasmaphysik Physik VI Plasmaphysik Physik VI Plasmaphysik Inhaltsübersicht 1. Charakteristik des Plasmazustandes 2. Experimentelle Grundlagen der Plasmaphysik 3. Thermodynamische Gleichgewichtsplasmen 4. Plasmen im

Mehr

41. Kerne. 33. Lektion Kerne

41. Kerne. 33. Lektion Kerne 41. Kerne 33. Lektion Kerne Lernziel: Kerne bestehen aus Protonen und Neutronen, die mit starken, ladungsunabhängigen und kurzreichweitigen Kräften zusammengehalten werden Begriffe Protonen, Neutronen

Mehr

Einführung in die Kern- und Teilchenphysik I Vorlesung 14 13.12.2013. Kernfusion: Energieerzeugung Funktionsweise von Fusionsreaktoren

Einführung in die Kern- und Teilchenphysik I Vorlesung 14 13.12.2013. Kernfusion: Energieerzeugung Funktionsweise von Fusionsreaktoren Einführung in die Kern- und Teilchenphysik I Vorlesung 14 13.12.2013 Kernfusion: Energieerzeugung Funktionsweise von Fusionsreaktoren Kernfusion: Grundlagen Vorteile der Kernfusion Praktisch unbegrenzte

Mehr

1. Was ist Kernfusion? 2. Fusionsreaktionen auf der Erde

1. Was ist Kernfusion? 2. Fusionsreaktionen auf der Erde Kernfusion Johannes-Gutenberg-Universität Mainz Fortgeschrittenen-Praktikum Physik - Seminar (SoSe10) Referent: Tobias Macha Betreuer: Dr. Harald Merkel 26. April 2010 1. Was ist Kernfusion? Während dem

Mehr

Handout zum Seminarvortrag Kernfusion

Handout zum Seminarvortrag Kernfusion Handout zum Seminarvortrag Kernfusion Christoph Rosner 1 Grundlagen Unter Kernfusion verstehen wir die Verschmelzung zweier leichter Kerne zu einem schwereren. Die allgemeine Reaktionsgleichung hierfür

Mehr

Plasmaphysik und Kernfusion

Plasmaphysik und Kernfusion Patrick Fahner Seminarvortrag vom 22. Juni 2012 1 Einleitung Wir kennen Materie in drei Zuständen: fest, flüssig und gasförmig. Wir erreichen diese Zustände in der eben genannten Reihenfolge, indem wir

Mehr

Abstand der Deuteronen: R. Abbildung 2.22: Energie von 2 Deuteronen als Funktion des Abstandes

Abstand der Deuteronen: R. Abbildung 2.22: Energie von 2 Deuteronen als Funktion des Abstandes 2.8. KERNFUSION 109 2.8 Kernfusion Aus der Diskussion der Bindungsenergien pro Nukleon im vorhergehenden Abschnitt wissen wir, dass man im Bereich der leichten Atomkerne Energie dadurch gewinnen kann,

Mehr

Projekt Wendelstein 7-X Feinwerktechnik in der Fusionsforschung

Projekt Wendelstein 7-X Feinwerktechnik in der Fusionsforschung Projekt Wendelstein 7-X Feinwerktechnik in der Fusionsforschung 11. Tagung "Feinwerktechnische Konstruktion" 22.09.2017, Dresden Martin Banduch für das W7-X Team This work has been carried out within the

Mehr

4. Radiochemie und Kerntechnik

4. Radiochemie und Kerntechnik 4. Radiochemie und Kerntechnik Bindungsenergiekurve - Für alle Atomkerne mit Nukleonenzahlen zwischen 30 und 150 beträgt die mittlere Bindungsenergie je Nukleon ca. 8,5 MeV die halbempirische Bethe-Weizsäcker-Formel

Mehr

Pro und Contra Kernfusionsforschung

Pro und Contra Kernfusionsforschung 1 Pro und Contra Kernfusionsforschung SPD BEZIRK BRAUNSCHWEIG 20. MAI 2015 Prof. Dr. Bruno Thomauske RWTH Aachen Institut für Nukleare Entsorgung und Techniktransfer (NET) 2 INHALT 1. Kernfusion Kernspaltung

Mehr

30 Minuten für den ersten Teil und weitere 30 Minuten für den fakultativen zweiten Teil.

30 Minuten für den ersten Teil und weitere 30 Minuten für den fakultativen zweiten Teil. Posten 7 Kernfusion Sozialform: Bearbeitungszeit: Voraussetzung: Partnerarbeit 30 Minuten für den ersten Teil und weitere 30 Minuten für den fakultativen zweiten Teil. Posten 1 Einsteins Postulate Posten

Mehr

Plasmaphysik und Kernfusion

Plasmaphysik und Kernfusion Plasmaphysik und Kernfusion Julian Butscher 29.05.2015 Zusammenfassung Dieses Handout wurde im Rahmen des theoretisch-physikalischen Seminars zur Elektrodynamik an der Universität Heidelberg unter der

Mehr

Energieerzeugung durch Fusion

Energieerzeugung durch Fusion Energieerzeugung durch Fusion von Simon Friederich Institut für Kernphysik Johannes Guttenberg Universität Betreuer: Dr. Harald Merkel 5. Dezember 2011 1 Kernfusion 1.1 Energieerzeugung durch Kernfusion

Mehr

Vortrag: Prof. Dr. Hartmut Zohm, Direktor des Max-Planck-Instituts für Plasmaforschung, 2015.

Vortrag: Prof. Dr. Hartmut Zohm, Direktor des Max-Planck-Instituts für Plasmaforschung, 2015. Kernfusion Es geht um die Verschmelzung leichter Atomkerne zu schwereren Atomkernen. Dabei wird Energie frei. Die Kernfusion ist eine Energiequelle, sie ist die Energiequelle der Sterne. Unsere Sonne verbrennt

Mehr

Vom Sternenfeuer zum Fusionskraftwerk Günther Hasinger

Vom Sternenfeuer zum Fusionskraftwerk Günther Hasinger Standort Greifswald EURATOM Max-Planck-Institut für Plasmaphysik Vom Sternenfeuer zum Fusionskraftwerk Günther Hasinger Standort Garching Tag der Unternehmerschaft 2010 Düsseldorf 10. Juni 2010 Hotel NIKKO

Mehr

Energie erzeugen wie die Sonne Kernfusion im Energiemix der Zukunft

Energie erzeugen wie die Sonne Kernfusion im Energiemix der Zukunft Energie erzeugen wie die Sonne Kernfusion im Energiemix der Zukunft Sibylle Günter Max-Planck-Institut für Plasmaphysik Garching Grafik: ITER Foto: SOHO (ESA & NASA) Die schier unerschöpfliche Energie

Mehr

ITER Die Kernfusionsforschung tritt in eine neue Ära Ulrich Samm, Forschungszentrum Jülich

ITER Die Kernfusionsforschung tritt in eine neue Ära Ulrich Samm, Forschungszentrum Jülich ITER Die Kernfusionsforschung tritt in eine neue Ära Ulrich Samm, Forschungszentrum Jülich Graduiertenseminar Teilchenphysik, RWTH Aachen, Physikalische Institute I, III, TPE, Bad Honnef, 25.8.2005 ITER

Mehr

Massive Sterne: Gravitationskollaps-Supernovae, Neutronensterne & Pulsare

Massive Sterne: Gravitationskollaps-Supernovae, Neutronensterne & Pulsare Massive Sterne: Gravitationskollaps-, & Uni Mainz Vortrag in Astroteilchenphysik im WS 10/11 18. Januar 2011 Überblick 1 Gravitationskollaps- und Entstehung von n 2 Eigenschaften von n 3 Was ist ein Pulsar?

Mehr

Physikreferat über Kernfusion, techn. Probleme der Kernfusion, Wasserstoffbombe und Vorgänge in Fixsternen

Physikreferat über Kernfusion, techn. Probleme der Kernfusion, Wasserstoffbombe und Vorgänge in Fixsternen Physikreferat über Kernfusion, techn. Probleme der Kernfusion, Wasserstoffbombe und Vorgänge in Fixsternen Kernfusion: (Stefan) - Kernfusion ist das Gegenteil der Kernspaltung - Fusion bedeutet das verschmelzen

Mehr

Fachhochschule Südwestfalen Wir geben Impulse

Fachhochschule Südwestfalen Wir geben Impulse Fachhochschule Südwestfalen Wir geben Impulse Folie 2 (06/2015) Inhalt Grundidee Grundlagen der Kernfusion Projekt ITER Energiegewinnung Gefahren Wirtschaftlichkeit Zukunftsfähigkeit Quellen Folie 3 (06/2015)

Mehr

Sitzungsberichte der Leibniz-Sozietät 82(2005), 105 110

Sitzungsberichte der Leibniz-Sozietät 82(2005), 105 110 Sitzungsberichte der Leibniz-Sozietät 82(2005), 105 110 Johann Lingertat Gesteuerte Kernfusion Kurzfassung eines Vortrages, der im Arbeitskreis Energie-Rohstoff-Versorgung der Leibniz-Sozietät am 4. März

Mehr

Sternentwicklung (3) Wie Sterne Energie erzeugen

Sternentwicklung (3) Wie Sterne Energie erzeugen Sternentwicklung (3) Wie Sterne Energie erzeugen Die Leuchtkraft der Sonne Die Leuchtkraft ist eine Strahlungsleistung. Sie gibt die pro Zeiteinheit (Sekunde) von einem Stern im gesamten Spektralbereich

Mehr

Physik Spezialgebiet Die Kernfusion

Physik Spezialgebiet Die Kernfusion Physik Spezialgebiet Die Kernfusion 1. Allgemeines zur Kernfusion 1.1 Geschichte der Kernfusion (Fusionsforschung) 1.2 Bedeutung der Kernfusion 2. Die natürliche Kernfusion in der Sonne 2.1 Bethe-Weizsäcker-Zyklus

Mehr

Einführung Fusions- forschung. indie

Einführung Fusions- forschung. indie Einführung Fusions- forschung indie Grundlagen der Kernfusion Die Kernbausteine sind von einer Atomsorte zur anderen verschieden stark aneinander gebunden. Durch Umordnung der Kernbausteine in fester verbundene

Mehr

Der Weg zu einem Fusionskraftwerk

Der Weg zu einem Fusionskraftwerk EURATOM Max-Planck-Institut für Plasmaphysik Standort Greifswald Der Weg zu einem Fusionskraftwerk Standort Garching G. Hasinger, IPP Garching TU München Ringvorlesung Umwelt 3. Juni 2009, TU München Das

Mehr

Hauptseminar. Experimentalphysik / Angewandte Physik Wintersemester 2005/06. Thema: Plasmafusion. von. Bernhard Krumme

Hauptseminar. Experimentalphysik / Angewandte Physik Wintersemester 2005/06. Thema: Plasmafusion. von. Bernhard Krumme Hauptseminar Experimentalphysik / Angewandte Physik Wintersemester 005/06 Thema: Plasmafusion von Bernhard Krumme 1 Inhalt 1. Vorwort. Physikalische Grundlagen 3. Reaktorkomponenten und Teilchenbewegung

Mehr

15 Kernphysik Physik für E-Techniker. 15 Kernphysik

15 Kernphysik Physik für E-Techniker. 15 Kernphysik 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 15.5.3 Kettenreaktion 15. Kernphysik 15.

Mehr

Experimentalphysik 4 - SS11 Physik der Atome und Kerne

Experimentalphysik 4 - SS11 Physik der Atome und Kerne Experimentalphysik 4 - SS Physik der Atome und Kerne Prof. Dr. Tilman Pfau 5. Physikalisches Institut Übungsblatt 06 Besprechung: 8. Juni Aufgabe : Koeffizient a C des Coulomb-Terms 4 Punkte In dieser

Mehr

Institut für Plasmaforschung, Universität Stuttgart. Klausur in Nukleare Elektrische Energiesysteme ( ) mit Lösungen

Institut für Plasmaforschung, Universität Stuttgart. Klausur in Nukleare Elektrische Energiesysteme ( ) mit Lösungen 1 Institut für Plasmaforschung, Universität Stuttgart Prof. Dr. Uwe Schumacher Klausur in Nukleare Elektrische Energiesysteme (03.03.2006) mit Lösungen Aufgabe 1 a) Welche elektrische Leistung P el liefern

Mehr

Aufgabe I: Fusionsreaktor und Sonne

Aufgabe I: Fusionsreaktor und Sonne Europa-Gymnasium Wörth Abiturprüfung 2012 Leistungskurs Physik LK2 Aufgabe I: Fusionsreaktor und Sonne Leistungsfachanforderungen Hilfsmittel Formelsammlung (war im Unterricht erstellt worden) Tabelle

Mehr

15 Kernphysik Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne

15 Kernphysik Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne Inhalt 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 15.5.3 Kettenreaktion Der Atomkern

Mehr

Spezielle Relativitätstheorie. Experimente der relativistischen Dynamik

Spezielle Relativitätstheorie. Experimente der relativistischen Dynamik Spezielle Relativitätstheorie Experimente der relativistischen Dynamik Massenzunahme Walter Kaufmann (87-947) wies 90 die Zunahme der Elektronenmasse bei wachsender Geschwindigkeit nach (bis v 0,94 c).

Mehr

9. Kernphysik 9.1. Zusammensetzung der Atomkerne

9. Kernphysik 9.1. Zusammensetzung der Atomkerne Prof. Dieter Suter Physik B2 SS 01 9. Kernphysik 9.1. Zusammensetzung der Atomkerne 9.1.1. Nukelonen Die Atomkerne bestehen aus Protonen und Neutronen. Die Zahl der Nukleonen wird durch die Massenzahl

Mehr

Elektronen, Protonen und Neutronen haben folgende Eigenschaften, die in Tabelle 2.1 wiedergegeben sind:

Elektronen, Protonen und Neutronen haben folgende Eigenschaften, die in Tabelle 2.1 wiedergegeben sind: Aufbau der Atome.1 Elektronen, Protonen, Neutronen, Isotope Atome bestehen aus Elektronen, die die Atomhülle bilden, sowie den im Kern vereinigten Protonen und Neutronen. Die elektromagnetischen Wechselwirkungen

Mehr

Der Stellarator - Ein alternatives Einschlusskonzept für ein Fusionskraftwerk (vorgetragen von R. Wolf)

Der Stellarator - Ein alternatives Einschlusskonzept für ein Fusionskraftwerk (vorgetragen von R. Wolf) Der Stellarator - Ein alternatives Einschlusskonzept für ein Fusionskraftwerk (vorgetragen von R. Wolf) Robert Wolf, Max Planck Institut für Plasmaphysik, EURATOM Assoziation, Teilinstitut Greifswald Kernfusion

Mehr

Fusion bedeutet das Verschmelzen leichter Atome (z.b. Wasserstoff) zu schweren (z.b. Helium).

Fusion bedeutet das Verschmelzen leichter Atome (z.b. Wasserstoff) zu schweren (z.b. Helium). Kernfusion Kernfusion ist das Gegenteil der Kernspaltung. Fusion bedeutet das Verschmelzen leichter Atome (z.b. Wasserstoff) zu schweren (z.b. Helium). Sie findet immer im inneren der Sterne statt, wobei

Mehr

Der Energiemix im 21. Jahrhundert Günther Hasinger

Der Energiemix im 21. Jahrhundert Günther Hasinger Standort Greifswald EURATOM Max-Planck-Institut für Plasmaphysik Der Energiemix im 21. Jahrhundert Günther Hasinger Standort Garching 10. Münchner Wissenschaftstage 23. Oktober 2010 LMU München Das Energie-Dilemma

Mehr

Kernfusion. Ein Referat von Sebastian Titze und Florian Wetzel. Einleitung Nachwort... 9

Kernfusion. Ein Referat von Sebastian Titze und Florian Wetzel. Einleitung Nachwort... 9 Kernfusion Ein Referat von Sebastian Titze und Florian Wetzel Einleitung... 2 Grundlagen der Kernverschmelzung (Kernfusion)... 2 Der Massendefekt... 2 Andere Fusionsvorgänge... 3 Die Coulomb schen Abstoßungskräfte...

Mehr

Über Arbeiten zur Hydromagnetik elektrisch leitender Flüssigkeiten, über Verdichtungsstöße und aus der Hochtemperaturplasmaphysik

Über Arbeiten zur Hydromagnetik elektrisch leitender Flüssigkeiten, über Verdichtungsstöße und aus der Hochtemperaturplasmaphysik WILHELM FUCKS Über Arbeiten zur Hydromagnetik elektrisch leitender Flüssigkeiten, über Verdichtungsstöße und aus der Hochtemperaturplasmaphysik HERMANN L. JORDAN Erzeugung von Plasma hoher Temperatur durch

Mehr

Der Weg zu einem Fusionskraftwerk

Der Weg zu einem Fusionskraftwerk Standort Greifswald EURATOM Max-Planck-Institut für Plasmaphysik Der Weg zu einem Fusionskraftwerk Standort Garching G. Hasinger Physikalisches Kolloquium Universität Heidelberg 4. Dezember 2009 Vielen

Mehr

2. Kontrollierte Kernfusion

2. Kontrollierte Kernfusion 203 2. Kontrollierte Kernfusion a) Einleitung Das Ziel der Forschung zur kontrollierten Kernfusion ist der Bau eines Reaktors, in dem durch Fusion der Wasserstoffisotope zu Helium Energie gewonnen wird.

Mehr

Radioaktivität. den 7 Oktober Dr. Emőke Bódis

Radioaktivität. den 7 Oktober Dr. Emőke Bódis Radioaktivität den 7 Oktober 2016 Dr. Emőke Bódis Prüfungsfrage Die Eigenschaften und Entstehung der radioaktiver Strahlungen: Alpha- Beta- und Gamma- Strahlungen. Aktivität. Zerfallgesetz. Halbwertzeit.

Mehr

Wahlpflichtfach Plasmaphysik

Wahlpflichtfach Plasmaphysik Wahlpflichtfach Plasmaphysik Veranstaltungen SS 2015 apl. Prof. Dr. Emanuele Poli Dr.Thomas Eich Max-Planck-Institut für Plasmaphysik (IPP) Garching www.ipp.mpg.de www.ipp.mpg.de/~emp www.ipp.mpg.de/~teich

Mehr

Praktikumsarbeit. zum Thema. Bestimmung und Verbesserung der Frequenzeigenschaften von Mirnovspulen. Verfasser:...Alexander Haak

Praktikumsarbeit. zum Thema. Bestimmung und Verbesserung der Frequenzeigenschaften von Mirnovspulen. Verfasser:...Alexander Haak Praktikumsarbeit zum Thema Bestimmung und Verbesserung der Frequenzeigenschaften von Mirnovspulen Verfasser:...Alexander Haak Studiengang:...Physikalische Technik und Informationsverarbeitung Durchgeführt

Mehr

Potential und Spannung

Potential und Spannung Potential und Spannung Arbeit bei Ladungsverschiebung: Beim Verschieben einer Ladung q im elektrischen Feld E( r) entlang dem Weg C wird Arbeit geleistet: W el = F C d s = q E d s Vorzeichen: W el > 0

Mehr

Sonne, Mond und Sterne: Die neue Sicht des Universum. III Physik der Sonne und der Sterne

Sonne, Mond und Sterne: Die neue Sicht des Universum. III Physik der Sonne und der Sterne Sonne, Mond und Sterne: Die neue Sicht des Universum III Physik der Sonne und der Sterne Fragen: 1. Wie bilden sich Sterne? 2. Wie wird die Energie im Sterninnern erzeugt? 3. Wie gelangt die Energie aus

Mehr

Numerisches Verfahren für Eigenwert-Probleme aus der Instabilitätstheorie der Plasma-Rand-Wechselwirkung

Numerisches Verfahren für Eigenwert-Probleme aus der Instabilitätstheorie der Plasma-Rand-Wechselwirkung Numerisches Verfahren für Eigenwert-Probleme aus der Instabilitätstheorie der Plasma-Rand-Wechselwirkung D. Löchel Betreuer: M. Hochbruck und M. Tokar Mathematisches Institut Heinrich-Heine-Universität

Mehr

Experimentalphysik Modul PH-EP4 / PH-DP-EP4

Experimentalphysik Modul PH-EP4 / PH-DP-EP4 10 Kernphysik Universität Leipzig, Fakultät für Physik und Geowissenschaften Experimentalphysik Modul PH-EP4 / PH-DP-EP4 Script für Vorlesung 29. Juni 2009 Nachdem in den vorangegangenen Kapiteln die Moleküle

Mehr

Kernmodell der Quantenphysik

Kernmodell der Quantenphysik M. Jakob Gymnasium Pegnitz 10. Dezember 2014 Inhaltsverzeichnis In diesem Abschnitt 1.1 Aufbau 1.2 Starke Wechselwirkungen Aufbau Tröpfchenmodell Atomkerns Wesentliche Eigenschaften von n können im Tröpfchenmodell

Mehr

Kraft. Sonne. der. Mit der FUSIONSENERGIE

Kraft. Sonne. der. Mit der FUSIONSENERGIE FEUERBALL: Die Sonne ist ein riesiger Ball aus glühenden Gasen. Pro Jahr strahlt sie eine Energiemenge auf die Erde ab, die 15.000-mal größer ist als der Energieverbrauch aller Menschen auf der Welt in

Mehr

umwandlungen Atommodelle, Rutherford-Experiment, Atomaufbau, Elektronen, Protonen,

umwandlungen Atommodelle, Rutherford-Experiment, Atomaufbau, Elektronen, Protonen, Wiederholung der letzten Vorlesungsstunde: Atommodelle, Rutherford-Experiment, Atomaufbau, Elektronen, Protonen, Neutronen, Element, Ordnungszahl Thema heute: Aufbau von Atomkernen, Kern- umwandlungen

Mehr

Kernreaktionen. d + 2 H 3 He + n, Q= 3.26MeV d + 3 H 4 He + n, Q= 17.6MeV Quellstärke /s mit keV Deuteronen Energieabhängigkeit

Kernreaktionen. d + 2 H 3 He + n, Q= 3.26MeV d + 3 H 4 He + n, Q= 17.6MeV Quellstärke /s mit keV Deuteronen Energieabhängigkeit Kernreaktionen d + 2 H 3 He + n, Q= 3.26MeV d + 3 H 4 He + n, Q= 17.6MeV Quellstärke 10 10 /s mit 100-300keV Deuteronen Energieabhängigkeit 4 E n = E d + 2 (2 E d E n ) 1/2 cos(θ) + 3Q E d = 300 kev Emission

Mehr

Projektpräsentation Praktikumssemester am Max-Planck-Institut für Plasmaphysik

Projektpräsentation Praktikumssemester am Max-Planck-Institut für Plasmaphysik Projektpräsentation Praktikumssemester am Max-Planck-Institut für Plasmaphysik Raphael Höp;l Hochschule München, FK06 Studiengang: Physikalische Technik Schwerpunkt: Angewandte Physik Studiengruppe: PHB5P

Mehr

Von Wendelstein 1-A zu Wendelstein 7-X

Von Wendelstein 1-A zu Wendelstein 7-X 3 Stellaratoren Von Wendelstein 1-A zu Wendelstein 7-X Thomas Klinger Der erste Stellarator des IPP, Wendelstein 1-A, ging 1960, noch im Gründungsjahr des Instituts in Betrieb, war jedoch im Münchner Max-Planck-Institut

Mehr

Neutralteilchen- und Hochfrequenz-Heizungen

Neutralteilchen- und Hochfrequenz-Heizungen 7 Plasmaheizung Neutralteilchen- und Hochfrequenz-Heizungen Eckehardt Speth, Jean-Marie Noterdaeme, Volker Erckmann Heinrich Laqua, Fritz Leuterer Die Fortschritte der Fusionsforschung sind nicht zuletzt

Mehr

Kernfusion: Energie der Zukunft

Kernfusion: Energie der Zukunft Sonnenenergie reproduzieren Kernfusion: Energie der Zukunft Die Kernfusion ein riesiges schlummerndes Potenzial Die Fusion von Wasserstoff zu Helium ist der Energieprozess, der Sonne und Sterne strahlen

Mehr

Kernfusion die Energiequelle der Zukunft?

Kernfusion die Energiequelle der Zukunft? 1 Friderico-Francisceum-Gymnasium Schuljahr 2003/2004 Bad Doberan Facharbeit des Schülers Martin Knorr im Fach Physik Klasse 10e Thema: Kernfusion die Energiequelle der Zukunft? 2 Inhaltsverzeichnis 1.

Mehr

Die Physik schneller Teilchen in Fusionsplasmen Physics of fast particles in fusion plasmas

Die Physik schneller Teilchen in Fusionsplasmen Physics of fast particles in fusion plasmas Die Physik schneller Teilchen in Physics of fast particles in fusion plasmas Guenter, Sibylle; Lauber, Philipp; Strumberger, Erika Max-Planck-Institut für Plasmaphysik, Garching Korrespondierender Autor

Mehr

Energiegewinnung nach dem Vorbild der Sonne

Energiegewinnung nach dem Vorbild der Sonne Energiegewinnung nach dem Vorbild der Sonne Vakuumtechnik ermöglicht die Herstellung von Fusionsbedingungen Auf der Suche nach alternativen und sauberen Energiequellen gewinnt die Energieerzeugung durch

Mehr

A T O M E N E R G I E

A T O M E N E R G I E A T O M E N E R G I E EINLEITUNG: Wohl keine andere Form der Energiegewinnung wird so kontrovers diskutiert wie die Atomenergie. Tatsache ist, dass auch die Kernenergie eine Energieform ist, die auf endlichen

Mehr

Kernphysik I. Grundlegende Eigenschaften der Atomkerne: Bindungs-, Separationsenergie Massenmessungen Weizsäcker Massenformel

Kernphysik I. Grundlegende Eigenschaften der Atomkerne: Bindungs-, Separationsenergie Massenmessungen Weizsäcker Massenformel Kernphysik I Grundlegende Eigenschaften der Atomkerne: Bindungs-, Separationsenergie Massenmessungen Weizsäcker Massenformel Massendefekt und Bindungsenergie Kerne sind die einzigen gebundenen Systeme,

Mehr

Standard Sonnenmodell

Standard Sonnenmodell Standard Sonnenmodell Max Camenzind Akademie HD - Juli 2016 Inhalt Sonnenmodell Die Sonne in Zahlen Aufbau der Sonne Die Sonne im Gleichgewicht Woher stammt die Energie? Nukleare Prozesse im Sonnenkern

Mehr

KERNFUSION ITER. Max-Planck-Institut für Plasmaphysik, Forschungszentrum Karlsruhe GmbH, Forschungszentrum Jülich GmbH

KERNFUSION ITER. Max-Planck-Institut für Plasmaphysik, Forschungszentrum Karlsruhe GmbH, Forschungszentrum Jülich GmbH KERNFUSION ITER Max-Planck-Institut für Plasmaphysik, Forschungszentrum Karlsruhe GmbH, Forschungszentrum Jülich GmbH Impressum Kernfusion Herausgeber: Redaktion: Layout und Gesamtherstellung: Copyright

Mehr

Kernphysik I. Grundlegende Eigenschaften der Atomkerne: Bindungs-, Separationsenergie Massenmessungen Weizsäcker Massenformel

Kernphysik I. Grundlegende Eigenschaften der Atomkerne: Bindungs-, Separationsenergie Massenmessungen Weizsäcker Massenformel Kernphysik I Grundlegende Eigenschaften der Atomkerne: Bindungs-, Separationsenergie Massenmessungen Weizsäcker Massenformel Massendefekt und Bindungsenergie Kerne sind die einzigen gebundenen Systeme,

Mehr

Forschung für die Energie der Zukunft

Forschung für die Energie der Zukunft Forschung für die Energie der Zukunft 2 Das Forschungsprogramm Aufgabe der rund 1100 Mitarbeiter des Max-Planck-Instituts für Plasmaphysik (IPP) in Garching und Greifswald ist es, die Grundlagen für ein

Mehr

5. Kernzerfälle und Kernspaltung

5. Kernzerfälle und Kernspaltung 5. Kernzerfälle und Kernspaltung 1. Zerfallsgesetz 2. α Zerfall 3. Kernspaltung 4. ß Zerfall 5. γ Zerfall 1 5.1 Das Zerfallsgesetz 2 Mittlere Lebensdauer und Linienbreite 3 Mehrere Zerfallskanäle 4 Zerfallsketten

Mehr

6. Energiegewinnung aus Kernreaktionen

6. Energiegewinnung aus Kernreaktionen 6. Energiegewinnung aus Kernreaktionen 6. Kernspaltung und Kernkraftwerke (KKW) Nützlich: M. Volkmer, Basiswissen Kernphysik (web) http://www.kernenergie.net/ Motivation Bei der Spaltung von kg Uran wird

Mehr

MITARBEITER ABTEILUNG FÜR PLASMAPHYSIK

MITARBEITER ABTEILUNG FÜR PLASMAPHYSIK MITARBEITER ABTEILUNG FÜR PLASMAPHYSIK ASSOZIATION EURATOM-ÖAW Institut für Theoretische Physik Technische Universität Graz Petersgasse 16, 8010 Graz Austria Dipl.-Ing. Dr.techn. Winfried Kernbichler Tel:

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #47 am

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #47 am Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 007 VL #47 am 0.07.007 Vladimir Dyakonov Kernphysik 1 Zusammensetzung von Kernen Atomkerne bestehen

Mehr

Genehmigungsverfahren für die Kernfusion: Wendelstein 7-X

Genehmigungsverfahren für die Kernfusion: Wendelstein 7-X Landesamt für Gesundheit und Soziales Abteilung Arbeitsschutz und technische Sicherheit Grundsatzdezernat Genehmigungsverfahren für die Kernfusion: Wendelstein 7-X Dr. Michael Sieg 25.XI.2016 LPS-Strahlenschutzseminar

Mehr

Kernreaktionen chemisch beschrieben

Kernreaktionen chemisch beschrieben Physics Meets Chemistry Kernreaktionen chemisch beschrieben 1 Kernreaktionen chemisch beschrieben 1. Ausgangslage 2. Ziele 3. Unterrichtsvorschlag mit Übungen Physics Meets Chemistry Kernreaktionen chemisch

Mehr

Die meisten Elemente liegen in gebundener Form als einzelne Moleküle, in Flüssigkeiten oder in Festkörpern vor.

Die meisten Elemente liegen in gebundener Form als einzelne Moleküle, in Flüssigkeiten oder in Festkörpern vor. phys4.025 Page 1 13. Moleküle Nur eine kleine Anzahl von Elementen kommt natürlich in Form von einzelnen Atomen vor. Die meisten Elemente liegen in gebundener Form als einzelne Moleküle, in Flüssigkeiten

Mehr

Franziska Biegalke. Die Relevanz der D 3 He-Fusionsreaktion für einen zukünftigen Fusionsreaktor

Franziska Biegalke. Die Relevanz der D 3 He-Fusionsreaktion für einen zukünftigen Fusionsreaktor Franziska Biegalke Die Relevanz der D 3 He-Fusionsreaktion für einen zukünftigen Fusionsreaktor IPP 11/4 August, 2013 Ernst-Moritz-Arndt-Universität Greifswald Institut für Physik Die Relevanz der D 3

Mehr

2) Berechne die Bindungsenergie je Nukleon für das Nuklid 113 Cd 48, wenn die Masse des Nukleons m Cd = 112,94206.u beträgt.

2) Berechne die Bindungsenergie je Nukleon für das Nuklid 113 Cd 48, wenn die Masse des Nukleons m Cd = 112,94206.u beträgt. Gruppe A 5.Schularbeit aus Physik Lise 4 AB 6.4.2000 Achtung : Alle Beispiele müssen auf dem Angabeblatt gelöst werden. Für richtig beantwortete Fragen ohne ersichtliche Berechnung werden keine Punkte

Mehr

Physik VI Plasmaphysik

Physik VI Plasmaphysik Physik VI Plasmaphysik Inhaltsübersicht 1. Charakteristik des Plasmazustandes 2. Experimentelle Grundlagen der Plasmaphysik 3. Thermodynamische Gleichgewichtsplasmen 4. Plasmen im Magnetfeld 5. Wellen

Mehr

Geochemie 1. 1. Entstehung und Häufigkeit der Nuklide/ Elemente

Geochemie 1. 1. Entstehung und Häufigkeit der Nuklide/ Elemente Geochemie 1 1. Entstehung und Häufigkeit der Nuklide/ Elemente Atome (Elementare Bausteine der Materie) Masse eines Atoms ist im Kern konzentriert (Neutonen + Protonen) Elektronenhülle dominiert das Eigenvolumen

Mehr

Kerne und Teilchen. Aufbau der Kerne (1) Moderne Experimentalphysik III Vorlesung 17.

Kerne und Teilchen. Aufbau der Kerne (1) Moderne Experimentalphysik III Vorlesung 17. Kerne und Teilchen Moderne Experimentalphysik III Vorlesung 17 MICHAEL FEINDT INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK Aufbau der Kerne (1) KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

4. Beispiele für Kräfte

4. Beispiele für Kräfte 4. Beispiele für Kräfte Inhalt 4. Beispiele für Kräfte 4.1 Gravitation 4.2 Elektrische Kraft 4.3 Federkraft 4.4 Reibungskraft 4.5 Magnetische Kraft 4.1 Gravitation 4. Beispiele für Kräfte 4.1 Gravitation

Mehr

Nanoplasma. Nano(cluster)plasmen

Nanoplasma. Nano(cluster)plasmen Nano(cluster)plasmen Nanoplasma Neben der Rumpfniveauspektroskopie an Clustern bietet FLASH die Möglichkeit Cluster unter extremen Bedingungen im Feld eines intensiven Röntgenpulses zu studieren (Nano)Plasmaphysik

Mehr

Der Weg zu einem Fusionskraftwerk oder: Wie könnte die Energieversorgung der Zukunft aussehen?

Der Weg zu einem Fusionskraftwerk oder: Wie könnte die Energieversorgung der Zukunft aussehen? Standort Greifswald EURATOM Max-Planck-Institut für Plasmaphysik Der Weg zu einem Fusionskraftwerk oder: Wie könnte die Energieversorgung der Zukunft aussehen? Standort Garching Günther Hasinger Energiemix

Mehr

Keine Welt ohne explodierende Sterne. Bruno Leibundgut Europäische Südsternwarte (ESO)

Keine Welt ohne explodierende Sterne. Bruno Leibundgut Europäische Südsternwarte (ESO) Keine Welt ohne explodierende Sterne Bruno Leibundgut Europäische Südsternwarte (ESO) Alter der Alpen Entstanden vor etwa 30 bis 35 Millionen Jahren Dinosaurier haben die Alpen nie gekannt! (vor 65 Millionen

Mehr

Nukleosynthese in der Nuklearen Astrophysik

Nukleosynthese in der Nuklearen Astrophysik Nukleosynthese in der Nuklearen Astrophysik Freitag 11 Uhr c.t. - 13:00 Raum NB /170 Tobias Stockmanns und Marius Mertens t.stockmanns@fz-juelich.de m.mertens@fz-juelich.de http://www.ep1.rub.de/lehre/veranstaltungen/ws113/nucsyn/

Mehr

Abiturprüfung Physik, Grundkurs. Aufgabe: Die Helmholtzspule, die Messung des Erdmagnetfeldes sowie seine Wirkung auf geladene Teilchen

Abiturprüfung Physik, Grundkurs. Aufgabe: Die Helmholtzspule, die Messung des Erdmagnetfeldes sowie seine Wirkung auf geladene Teilchen Seite 1 von 6 Abiturprüfung 2012 Physik, Grundkurs Aufgabenstellung: Aufgabe: Die Helmholtzspule, die Messung des Erdmagnetfeldes sowie seine Wirkung auf geladene Teilchen Ein homogenes Magnetfeld in einem

Mehr