Abitur Mathematik Bayern G Musterlösung. Bayern Aufgabe 1. Abitur Mathematik: Musterlösung. Geometrie II. a) ZEICHNUNG

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Abitur Mathematik Bayern G Musterlösung. Bayern Aufgabe 1. Abitur Mathematik: Musterlösung. Geometrie II. a) ZEICHNUNG"

Transkript

1 Abitur Mathematik: Musterlösung Bayern 212 Aufgabe 1 a) ZEICHNUNG LAGE DER GRUNDFLÄCHE ABC Man kann anhand der gleichen x 1 -Koordinate 1 bei allen drei Punkten erkennen, dass die Grundfläche ABC parallel zur x 2 -x -Ebene liegt. FLÄCHINHALT DER GRUNDFLÄCHE Flächeninhalt der dreieckigen Grundfläche ABC ist A D = 1 2 g D h D, wobei g D die Grundseite und h D die zugehörige Höhe des Dreiecks ist. Wähle z. B. als Grundseite AB. Die Länge dieser Seite ist einfach die Differenz der x 2 -Koordinaten von A und B, also g D = 8 2 = 6. Die Höhe ist der Abstand des Punktes C von der x 1 -x 2 -Ebene, in der die Seite AB liegt. Diese Höhe ist also einfach die x -Koordinate von C, also h D =. Somit ist A D = = 9 [FE]. VOLUM DES PRISMAS Die Höhe des Prismas h P ist die Länge AR = 8 [LE], weil AR senkrecht auf der Grundfläche ABC steht. 1

2 Das Volumen des Prismas ist Grundfläche mal Höhe, also V P = A D h P = 9 8 = 72 [VE]. b) NORMALVEKTOR Die Ebene ist durch die drei Punkte B, C und S bestimmt, denn dies sind drei Ecken eines Rechtecks, liegen also nicht auf einer Geraden. Normalenvektor: n 1 = BC BS = (OC OB ) (OS OB ) = (( 4 ) ( 8 )) (( 8) ( 8 )) 8 = ( 4) ( ) = ( 24) 2 vereinfachter Normalenvektor: n = 1 n 8 1 = ( ). 4 EBGLEICHUNG Die Komponenten des Normalenvektors sind Koeffizienten einer Koordinatengleichung: E: x 2 + 4x + c = Einsetzen von B liefert c = c = 24 vollständige Ebenengleichung E: x 2 + 4x 24 =. c) FORMEL UND PASSDE VEKTOR Formel cos(φ) = Skalarprodukt Längenprodukt Passende Vektoren dafür sind: CA = ( 2) und CB = ( 4 ) ; Längen: CA = 2² + ² = 1 und CB = 4² + ² = 2 = 2

3 Skalarprodukt: CA CB = ( 2) ( 4 ) = 2 4 ( ) = 1 GESUCHTER WINKEL φ = Winkel(CA, CB ) = cos 1 ( CA CB CA CB ) = 1 cos 1 ( ) 86,8. 1 Dies ist kleiner als 9, also ist φ der gesuchte spitze Winkel. d) GROBE SKIZZE Die Ebene F ist eindeutig durch ihren Schnittpunkt mit der Strecke [AB] bestimmt. Dieser Schnittpunkt sei P. Die zwei Teilvolumina sind wiederum gerade dreiseitige Prismen. P muss so gewählt werden, dass die zwei Teilprismen dasselbe Volumen haben. Das Volumen eines Prismas ist das Produkt aus der Höhe und der Grundfläche. Die beiden Teilprismen haben aber dieselbe Höhe, nämlich CT = 8 (Höhe des ursprünglichen Prismas), siehe Teilaufgabe a). Also sind die Volumina genau dann gleich, wenn die dreieckigen Grundflächen APC und PBC gleich groß sind. TEILUNGSPUNKT P IM DREIECK ABC FIND Die Flächeninhalte der Dreiecke APC und PBC berechnen sich jeweils aus der horizontalen Seitenlänge ( AP bzw. PB ) und der Höhe h AB des Punktes C über der x 1 -x 2 -Ebene:

4 Die Flächen APC und PBC stimmen also genau dann überein, wenn die Seitenlängen AP und PB gleich sind. Das bedeutet, dass P der Mittelpunkt der Strecke AB sein muss: OP = 1 2 (OA + OB ) = [( 2 ) + ( 8 )] = ( ) P(1 ) SCHNITTFIGUR IN DER ZEICHNUNG e) TEILKÖRPER Der eine Teilkörper hat die Ecken A, B, C und T. ABCT ist eine dreiseitige gerade Pyramide mit der Grundfläche ABC und der Spitze T: 4

5 VERGLEICH DER VOLUMINA Die Pyramide ABCT und das Prisma ABCRST haben die gleiche Grundfläche, nämlich das Dreieck ABC, und die gleiche Höhe, nämlich die Strecke [CT]. Also gilt für ihre Volumina: V Prisma = G h und V Pyramide = 1 G h mit gleichem G und h. Somit nimmt die Pyramide ABCT ein Drittel des Prismenvolumens ein und der andere Teilkörper ABSRT muss folglich zwei Drittel des Volumens vom Prisma besitzen. Damit sind die Volumina der beiden Teilkörper verschieden. f) ZUSAMMHANG Die Seitenfläche BSTC ist Teil der Ebene E aus Teilaufgabe b). Der Berührpunkt W ist der Lotfußpunkt des Mittelpunktes M in der Ebene. GERADE g L DURCH M SKRECHT ZU E Mit dem Aufpunkt M und dem Richtungsvektor n ergibt sich: + λ g L : X = M + λ n = ( 6,) + λ ( ) = ( 6, + λ) 4 + 4λ BERÜHRPUNKT W

6 W ist der Schnittpunkt von g L und E. g L in E einsetzen: (6, + λ) + 4 ( + 4λ) 24 = 19, + 9λ λ 24 = 2λ = 7, λ =, Man setzt diesen Wert für λ in g ein und erhält: OW = ( 6,), ( ) = ( 6,,9) = (,6) 4 1,2 1,8 Damit ergibt sich der Berührpunkt W(,6 1,8). RADIUS r DER KUGEL r = d(m, W) = MW = OW OM = (,6) ( 6,) = (,9) 1,8 1,2 = 2 + (,9) 2 + ( 1,2) 2 = 1, [LE]. g) GLEICHUNG VON g g: X = M + λ CB = ( 6,) + λ ( 4 ) DPUNKT H DES WEGES VOM KUGELMITTELPUNKT Die Kugel rollt so, dass sich ihr Mittelpunkt von M bis zu einem Punkt H bewegt: 6

7 Der Punkt H muss zwei Bedingungen erfüllen: 1. Er muss auf der Geraden g liegen, weil der Mittelpunkt sich durchgehend auf dieser Geraden bewegt. 2. Im Moment, wenn die Kugel den Boden berührt, befindet sich ihr Mittelpunkt genau r = 1, LE vom Boden entfernt. Also muss die x -Koordinate von H den Wert 1, haben. h 1 Also ist OH = ( h 2 ) = ( 6,) + λ ( 4 ) für geeignetes λ R. 1, Aus der Gleichung für die x -Koordinate: 1, = λ folgt λ =, und: H = ( 6,) +, ( 4 ) = ( 8,) H( 8, 1,) 1, LÄNGE DES GESUCHT WEGES Länge des vom Kugelmittelpunkt zurückgelegten Weges: MH = OH OM = ( 8,) ( 6,) = ( 2 ) 1, 1, MH = 2² + ( 1,)² = 2, [LE] Somit beträgt die Länge des Weges des Kugelmittelpunktes 2, LE. 7

Bayern Aufgabe 1. Abitur Mathematik: Musterlösung. V = 1 G h, wobei G die Fläche des quadratischen Bodens und h die Höhe V = = 384 [VE]

Bayern Aufgabe 1. Abitur Mathematik: Musterlösung. V = 1 G h, wobei G die Fläche des quadratischen Bodens und h die Höhe V = = 384 [VE] Abitur Mathematik: Bayern 2 Aufgabe a). SCHRITT: KOORDINATEN DES PUNKTS B ANGEBEN 2 2 OB = OA + AB = OA + DC = ( ) + ( 2) = ( 2) B(2 2 ) 2. SCHRITT: VOLUMEN BERECHNEN V = G h, wobei G die Fläche des quadratischen

Mehr

Prüfungsteil B, Aufgabengruppe 2: Geometrie

Prüfungsteil B, Aufgabengruppe 2: Geometrie Bundesabitur Mathematik: Bayern 01 Aufgabe 1 a) 1. SCHRITT: VEKTOR CH BESTIMMEN CH = ( 8 108 ) ( 10) = ( 0 ). 3. SCHRITT: LÄNGE DES VEKTORS BERECHNEN CH = ( ) + 3 =. 3. SCHRITT: BERECHNUNG DES FLÄCHENINHALTS

Mehr

Bayern Aufgabe a. Abitur Mathematik: Musterlösung. Die Koordinaten von C sind die Komponenten des Vektors PC (denn P ist

Bayern Aufgabe a. Abitur Mathematik: Musterlösung. Die Koordinaten von C sind die Komponenten des Vektors PC (denn P ist Abitur Mathematik Bayern 201 Abitur Mathematik: Bayern 201 Aufgabe a 1. SCHRITT: VORÜBERLEGUNG Die Koordinaten von C sind die Komponenten des Vektors PC (denn P ist der Ursprung). Dabei ist PC = PB + BC

Mehr

Abitur 2013 Mathematik Geometrie V

Abitur 2013 Mathematik Geometrie V Seite 1 http://www.abiturloesung.de/ Seite Abitur 1 Mathematik Geometrie V Teilaufgabe b ( BE) Ein auf einer horizontalen Fläche stehendes Kunstwerk besitzt einen Grundkörper aus massiven Beton, der die

Mehr

Abitur 2010 Mathematik GK Geometrie VI

Abitur 2010 Mathematik GK Geometrie VI Seite http://www.abiturloesung.de/ Seite Abitur Mathematik GK Geometrie VI In einem kartesischen Koordinatensystem mit Ursprung O sind die Punkte A( ), B( ) und die Gerade g : x = O A + λ, λ R, gegeben.

Mehr

Aufgabe 4: Analytische Geometrie (WTR)

Aufgabe 4: Analytische Geometrie (WTR) Abitur Mathematik: Nordrhein-Westfalen 2013 Aufgabe 4 a) (1) SEITENLÄNGEN BERECHNEN Die Seitenlängen sind die Abstände der Eckpunkte voneinander:, 31 30 1 12 10 2 14 16 2 1 4 4 9 3, 31 32 1 12 11 1 14

Mehr

Abitur 2016 Mathematik Geometrie V

Abitur 2016 Mathematik Geometrie V Seite http://www.abiturloesung.de/ Seite Abitur Mathematik Geometrie V Betrachtet wird der abgebildete Würfel A B C D E F G H. Die Eckpunkte D, E, F und H dieses Würfels besitzen in einem kartesischen

Mehr

Oktaeder. Bernhard Möller. 22. Dezember 2010

Oktaeder. Bernhard Möller. 22. Dezember 2010 Oktaeder Bernhard Möller. Dezember 00 Ein Oktaeder ist ein regelmäßiges Polyeder, dessen Oberfläche aus acht kongruenten, gleichseitigen Dreiecken besteht. Jedes Oktaeder kann einem Würfel so einbeschrieben

Mehr

Abitur 2011 G8 Abitur Mathematik Geometrie VI

Abitur 2011 G8 Abitur Mathematik Geometrie VI Seite http://www.abiturloesung.de/ Seite Abitur 0 G8 Abitur Mathematik Geometrie VI In einem kartesischen Koordinatensystem sind die Punkte A( 7 ), B(6 7 ) und C( ) gegeben. Teilaufgabe a (4 BE) Weisen

Mehr

Abitur 2011 G8 Musterabitur Mathematik Geometrie VI

Abitur 2011 G8 Musterabitur Mathematik Geometrie VI Seite http://www.abiturloesung.de/ Seite Abitur G8 Musterabitur Mathematik Geometrie VI In einem kartesischen Koordinatensystem ist ein Würfel W der Kantenlänge gegeben. Die Eckpunkte G ( ) und D ( ) legen

Mehr

Abitur 2017 Mathematik Geometrie VI

Abitur 2017 Mathematik Geometrie VI Seite http://www.abiturloesung.de/ Seite Abitur 7 Mathematik Geometrie VI Gegeben sind die beiden bezüglich der x x 3 -Ebene symmetrisch liegenden Punkte A( 3 ) und B( 3 ) sowie der Punkt C( ). Teilaufgabe

Mehr

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie Abitur Mathematik: Prüfungsteil, Aufgabe 4 Analytische Geometrie Nordrhein-Westfalen 0 LK Aufgabe a (). SCHRITT: MITTELPUNKT DER GRUNDFLÄCHE BERECHNEN Die Spitze befindet sich einen Meter senkrecht über

Mehr

Abitur 2011 G9 Abitur Mathematik GK Geometrie VI

Abitur 2011 G9 Abitur Mathematik GK Geometrie VI Seite http://www.abiturloesung.de/ Seite Abitur G9 Abitur Mathematik GK Geometrie VI Auf dem Boden des Mittelmeeres wurde ein antiker Marmorkörper entdeckt, der ersten Unterwasseraufnahmen zufolge die

Mehr

Prüfungsteil B, Aufgabengruppe 1, Geometrie. Bayern Aufgabe 1. a b. Bundesabitur Mathematik: Musterlösung. Abitur Mathematik Bayern 2014

Prüfungsteil B, Aufgabengruppe 1, Geometrie. Bayern Aufgabe 1. a b. Bundesabitur Mathematik: Musterlösung. Abitur Mathematik Bayern 2014 Abitur Mathematik Bayern Prüfungsteil B; Aufgabengruppe : Bundesabitur Mathematik: Prüfungsteil B, Aufgabengruppe, Bayern Aufgabe a) SCHRITT: BERECHNUNG DER VEKTOREN AB UND AC Den Flächeninhalt eines Dreiecks

Mehr

MATHEMATIK K1. Aufgabe F Punkte (max) Punkte. Gesamtpunktzahl /30 Notenpunkte

MATHEMATIK K1. Aufgabe F Punkte (max) Punkte. Gesamtpunktzahl /30 Notenpunkte MATHEMATIK K1.06.015 Aufgabe 1 5 6 7 8 9 10 F Punkte (max 11 1 1 Punkte Gesamtpunktzahl /0 Notenpunkte Für vorbildliche Darstellung wird ein Extrapunkt vergeben. (1 Bestimmen sie die ersten beiden Ableitungen

Mehr

Wahlteil: Analytische Geometrie II 1

Wahlteil: Analytische Geometrie II 1 Abitur Mathematik: Wahlteil: Analytische Geometrie II Baden-Württemberg 202 Aufgabe II a). SCHRITT: AUFSTELLEN DER KOORDINATENGLEICHUNG FÜR E Die Verbindungsvektoren AB und AP von je zwei der drei vorgegebenen

Mehr

Abitur 2010 Mathematik LK Geometrie V

Abitur 2010 Mathematik LK Geometrie V Seite http://www.abiturloesung.de/ Seite Abitur Mathematik LK Geometrie V Gegeben sind in einem kartesischen Koordinatensystem des R der Punkt A( ) und die Menge der Punkte B k ( k) mit k R. Die Punkte

Mehr

Lösungen zum Thema Kreis & Kugel

Lösungen zum Thema Kreis & Kugel Lösungen zur Aufg. : a r ; r 8 (,8 ; M M m m M M Dann gilt: r +r + 8 > M M und weiter: r r 8, < M M b Aus r r < M M

Mehr

Abitur 2012 Mathematik Geometrie VI

Abitur 2012 Mathematik Geometrie VI Seite 1 http://www.biturloesung.de/ Seite Abitur 1 Mthemtik Geometrie VI In einem krtesischen Koordintensystem sind die Punkte A(1 ), B(1 8 ), C(1 ), R( ), S( 8 ) und T ( ) gegeben. Der Körper A B C R

Mehr

Ministerium für Schule und Berufsbildung Schleswig-Holstein Kernfach Mathematik. Schriftliche Abiturprüfung 2015

Ministerium für Schule und Berufsbildung Schleswig-Holstein Kernfach Mathematik. Schriftliche Abiturprüfung 2015 Bei der Bearbeitung der Aufgabe dürfen alle Funktionen des Taschenrechners genutzt werden. Aufgabe 3: Analytische Geometrie Das Modell einer Gartenlaterne kann als Stumpf einer regelmäßigen quadratischen

Mehr

Abitur 2011 G8 Abitur Mathematik Geometrie V

Abitur 2011 G8 Abitur Mathematik Geometrie V Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 211 G8 Abitur Mathematik Geometrie V In einem kartesischen Koordinatensystem sind die Punkte A( 6 ), B( 8 6 6) und C( 8 6) gegeben. Teilaufgabe 1a (8

Mehr

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie Abitur Mathematik: Prüfungsteil, Aufgabe 4 Analytische Geometrie Nordrhein-Westfalen 0 GK Aufgabe a (). SCHRITT: MITTELPUNKT DER GRUNDFLÄCHE BERECHNEN Die Spitze befindet sich einen Meter senkrecht über

Mehr

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01 . Klasse TOP 0 Grundwissen Geradengleichungen 0 Punkt-Richtungs-Form Geraden sind gegeben durch einen Aufpunkt A (mit Ortsvektor a) auf der Geraden und einen Richtungsvektor u: x = a + λ u, λ IR. (Interpretation:

Mehr

Teilaufgabe 1 (2 BE) Geben Sie die Koordinaten der beiden Eckpunkte A und C sowie die Spitze S an. C c T C ( )

Teilaufgabe 1 (2 BE) Geben Sie die Koordinaten der beiden Eckpunkte A und C sowie die Spitze S an. C c T C ( ) Abschlussprüfung Berufliche Oberschule 1 Mathematik 1 Technik - B I - Lösung Vor dem Louvre, dem berühmten Pariser Kunstmuseum, wurde im Jahre 1989 eine Glaspyramide erbaut, welche den unterirdisch liegenden

Mehr

Lage zweier Ebenen. Suche alle Punkte von E 1 die in E 2 enthalten sind. Setze also die Parameterform von E 1 in die Koordinatenform von E 2.

Lage zweier Ebenen. Suche alle Punkte von E 1 die in E 2 enthalten sind. Setze also die Parameterform von E 1 in die Koordinatenform von E 2. LAGE Lage zweier Ebenen Suche alle Punkte von E die in E 2 enthalten sind. Setze also die Parameterform von E in die Koordinatenform von E 2. B = E : X E 2 : x + x 2 + x 3 = Parameterform (PF) in Koordinatenform

Mehr

Algebra 4.

Algebra 4. Algebra 4 www.schulmathe.npage.de Aufgaben In einem kartesischen ( Koordinatensystem ) sind die Punkte A( ), B( ), C(5 ), D( 4 0) und S gegeben. a) Die Punkte A, B und C liegen in einer Ebene E. Stellen

Mehr

1993 III Aufgabe. In einem kartesischen Koordinatensystem sind die Gerade

1993 III Aufgabe. In einem kartesischen Koordinatensystem sind die Gerade 993 III Aufgabe In einem kartesischen Koordinatensystem sind die Gerade = g : X mit R sowie die beiden Punkte A( -) und C(- 2 ) gegeben. A und C bestimmen die Gerade h..a) Begründen Sie, dass der Mittelpunkt

Mehr

a, b und c aus. Linearkombination der Vektoren b) Für einen Punkt P gilt: AP = a

a, b und c aus. Linearkombination der Vektoren b) Für einen Punkt P gilt: AP = a Aufgabe Die drei linear unabhängigen Vektoren a = OA, b = OB,c = OC spannen ein dreiseitiges Prisma auf. Dabei ist S der Schwerpunkt des Dreiecks OAB, M der Schnittpunkt der Diagonalen in der Seitenfläche

Mehr

FOS 1994, Ausbildungsrichtungen Technik und Agrarwirtschaft Analytische Geometrie, Aufgabengruppe B I

FOS 1994, Ausbildungsrichtungen Technik und Agrarwirtschaft Analytische Geometrie, Aufgabengruppe B I FOS 994, Ausbildungsrichtungen Technik und Agrarwirtschaft Aufgabenstellung In einem kartesischen Koordinatensystem sind die Punkte A( ), B(3 ) und C( ) gegeben, sowie die Punkte D a (a a a + ) mit a R..

Mehr

Bestimme ferner die Koordinaten des Bildpunktes von B bei der Spiegelung

Bestimme ferner die Koordinaten des Bildpunktes von B bei der Spiegelung Vektoren - Skalar- und Vektorprodukt ================================================================== 1. Gegeben sind die Punkte A 1 2 3 und B 3 4 1 bzgl. eines kartesischen Koordina- tensystems mit

Mehr

Abiturprüfung Mathematik 8 Baden-Württemberg (ohne CAS) Wahlteil Aufgaben Analytische Geometrie II, Aufgabe II. Die Punkte A(//), B(//), C(//), F(//), G(//) und H(//) sind die Ecken eines dreiseitigen

Mehr

K2 - Klausur Nr. 3. Generalprobe mit allen Themen. keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt.

K2 - Klausur Nr. 3. Generalprobe mit allen Themen. keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. K2 - Klausur Nr. 3 Generalprobe mit allen Themen Pflichtteil keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Name: 0. Für Pflicht- und Wahlteil gilt: saubere und übersichtliche Darstellung,

Mehr

Mathematikaufgaben > Vektorrechnung > Parallelogrammpyramide

Mathematikaufgaben > Vektorrechnung > Parallelogrammpyramide Michael Buhlmann, Mathematikaufgaben > Vektorrechnung > Parallelogrammpyramide Michael Buhlmann Mathematikaufgaben > Vektorrechnung > Parallelogrammpyramide Aufgabe: a) Zeige, dass das Viereck ABCD mit

Mehr

Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg

Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz wwwmathe-aufgabencom September 6 Abituraufgaben (Haupttermin) Aufgabe

Mehr

FOS 1995, Ausbildungsrichtungen Technik und Agrarwirtschaft Analytische Geometrie, Aufgabengruppe B II

FOS 1995, Ausbildungsrichtungen Technik und Agrarwirtschaft Analytische Geometrie, Aufgabengruppe B II Aufgabenstellung In einem kartesischen Koordinatensystem sind die Punkte A( ), B( 3) und C( 3) gegeben.. Die Punkte A und B bestimmen die Gerade g. Die Ebene E enthält den Punkt C und steht senkrecht auf

Mehr

Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK

Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK 1. In einem kartesischen Koordinatensystem sind der Punkt C(4 4, die Ebene E 1 : x 1 x +x 3 + = und die Gerade g: x = ( + λ( 1 gegeben. a Zeigen Sie,

Mehr

Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg

Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz wwwmathe-aufgabencom September 7 Abituraufgaben (Haupttermin) Aufgabe

Mehr

2010 B I Angabe. sind der. 2 1 Geben Sie die Koordinaten der beiden Eckpunkte A und C sowie der Spitze S an.

2010 B I Angabe. sind der. 2 1 Geben Sie die Koordinaten der beiden Eckpunkte A und C sowie der Spitze S an. B I Angabe Vor dem Louvre, dem berühmten Pariser Kunstmuseum, wurde im Jahr 989 eine Glaspyramide erbaut, welche den unterirdisch liegenden Haupteingang beherbergt. Diese Pyramide wurde der Cheops-Pyramide

Mehr

K2 KLAUSUR 2. Aufgabe Punkte (max) Punkte. (1) Bestimmen Sie die Ableitung von f(x) = 2 x

K2 KLAUSUR 2. Aufgabe Punkte (max) Punkte. (1) Bestimmen Sie die Ableitung von f(x) = 2 x K2 KLAUSUR 2 PFLICHTTEIL 202 Aufgabe 2 3 4 5 6 7 8 Punkte (max) 2 2 3 3 5 3 5 3 Punkte () Bestimmen Sie die Ableitung von f(x) = 2 x 2 + 4. (2) Berechnen Sie das Integral 4 ( ) x 2 dx. (3) Lösen Sie die

Mehr

Algebra Für welche reellen Zahlen m hat das folgende Gleichungssystem nur die triviale

Algebra Für welche reellen Zahlen m hat das folgende Gleichungssystem nur die triviale Algebra 1 www.schulmathe.npage.de Aufgaben 1. Für welche reellen Zahlen m hat das folgende Gleichungssystem nur die triviale Lösung? x + y + mz = 0 mx y + z = 0 x + y + z = 0. Welche Punkte P z der z-achse

Mehr

Abituraufgaben Analytische Geometrie Wahlteil 2008 BW

Abituraufgaben Analytische Geometrie Wahlteil 2008 BW Aufgabe B In einem Würfel mit den Eckpunkten, und befindet sich eine Pyramide mit einem Dreieck als Grundfläche und der Spitze (vgl. Skizze). Die Eckpunkte der Pyramidengrundfläche sind 6, 6 und 5. a)

Mehr

Mathematik LK 12 M1, 3. Kursarbeit Analytische Geometrie Lösung

Mathematik LK 12 M1, 3. Kursarbeit Analytische Geometrie Lösung Mathematik LK M,. Kursarbeit Analytische Geometrie Lösung 7..4 Aufgabe : Wandle die Gleichungen der folgenden Geraden und Ebenen in die angegebene Form um.. g : x= +t 6 4 =+6t II. x =+4t in die Koordinatenform.

Mehr

1 Rund um die Kugel. a) Mathematische Beschreibung

1 Rund um die Kugel. a) Mathematische Beschreibung Rund um die Kugel a) Mathematische Beschreibung Die Punkte der Oberfläche haben vom Mittelpunkt M alle die Entfernung r. Oder, mit den Mitteln der analytischen Geometrie: Für alle Punkte der Kugeloberfläche

Mehr

Schrägbilder von Körpern Quader

Schrägbilder von Körpern Quader Schrägbilder von Körpern Quader Vervollständige die Zeichnung jeweils zum Schrägbild eines Quaders. Bezeichne die für die Berechnung des Volumens und des Oberflächeninhalts notwendigen Seiten und bestimme

Mehr

Mathematik LK 12 M1, 3. KA LA I / Analytische Geometrie Lösung

Mathematik LK 12 M1, 3. KA LA I / Analytische Geometrie Lösung Mathematik LK M,. KA LA I / Analytische Geometrie Lösung 6..7 Aufgabe : Rechnen mit Vektoren Berechne... und vereinfache das Ergebnis so weit wie möglich. Falls der Term keinen gültigen Ausdruck darstellt,

Mehr

Abitur 2011 G8 Musterabitur Mathematik Geometrie V

Abitur 2011 G8 Musterabitur Mathematik Geometrie V Seite http://www.abiturloesung.de/ Seite Abitur G Musterabitur Mathematik Geometrie V In einem kartesischen Koordinatensystem beschreibt die x x -Ebene eine flache Landschaft, in der sich ein Flughafen

Mehr

Abituraufgaben Analytische Geometrie Wahlteil 2016 BW

Abituraufgaben Analytische Geometrie Wahlteil 2016 BW Abituraufgaben Analytische Geometrie Wahlteil 216 BW Aufgabe B1.1 In einem Koordinatensystem be-schreiben die Punkte 15, 15 2 und 2 6 Eckpunkte der rechteckigen Nutzfläche einer Tribüne (alle Koordinatenangaben

Mehr

Abiturprüfung Mathematik, Leistungskurs. Prüfungsteil B: Aufgaben mit Hilfsmitteln. Abbildung

Abiturprüfung Mathematik, Leistungskurs. Prüfungsteil B: Aufgaben mit Hilfsmitteln. Abbildung M LK HT B3 GTR (GG) Seite von 3 Name: Abiturprüfung 07 Mathematik, Leistungskurs Prüfungsteil B: Aufgaben mit Hilfsmitteln Aufgabenstellung: In einem kartesischen Koordinatensystem sind die Punkte O (0

Mehr

Hauptprüfung Fachhochschulreife Baden-Württemberg

Hauptprüfung Fachhochschulreife Baden-Württemberg Hauptprüfung Fachhochschulreife 05 Baden-Württemberg Aufgabe 4 Analytische Geometrie Hilfsmittel: grafikfähiger Taschenrechner Berufskolleg Alexander Schwarz www.mathe-aufgaben.com Juni 05 Ein Papierflieger

Mehr

FOS 1994, Ausbildungsrichtungen Technik und Agrarwirtschaft Analytische Geometrie, Aufgabengruppe B II

FOS 1994, Ausbildungsrichtungen Technik und Agrarwirtschaft Analytische Geometrie, Aufgabengruppe B II FOS, Ausbildungsrichtungen Technik und Agrarwirtschaft Aufgabenstellung. In einem kartesischen Koordinatensystem ist die Gerade g gegeben mit der Gleichung g : x = + σ σ R (a) Die drei Punkte A( ), B(

Mehr

Klasse Schulaufgabe Mathematik (Thema: Raumgeometrie)

Klasse Schulaufgabe Mathematik (Thema: Raumgeometrie) Klasse 11 2. Schulaufgabe Mathematik (Thema: Raumgeometrie) Aufgabe 1 Gegeben sind die Punkte A ( 2 12 4 ); B ( 4 22 6 ); C ( 6 20 8 ); S ( 0 14 14 ) a) Zeigen Sie, dass das Dreieck ABC gleichschenklig

Mehr

Mathematik Name: Nr.5 K2 Punkte: /30 Note: Schnitt:

Mathematik Name: Nr.5 K2 Punkte: /30 Note: Schnitt: Pflichtteil (etwa min) Ohne Taschenrechner und ohne Formelsammlung (Dieser Teil muss mit den Lösungen abgegeben sein, ehe der GTR und die Formalsammlung verwendet werden dürfen.) Aufgabe 1: [P] Bestimmen

Mehr

Formelsammlung Analytische Geometrie

Formelsammlung Analytische Geometrie Formelsammlung http://www.fersch.de Klemens Fersch. September 8 Inhaltsverzeichnis 6 6. Vektorrechung in der Ebene.............................................. 6.. Vektor - Abstand - Steigung - Mittelpunkt.................................

Mehr

Übungen Mathematik I, M

Übungen Mathematik I, M Übungen Mathematik I, M Übungsblatt, Lösungen (Stoff aus Mathematik 0).0.0. Berechnen Sie unter Verwendung des binomischen Lehrsatzes ( x + y) 7 Lösung: Nach dem binomischen Lehrsatz ist ( x + y) 7 = 7

Mehr

Algebra 2.

Algebra 2. Algebra 2 www.schulmathe.npage.de Aufgaben 1. In einem kartesischen Koordinatensystem sind die Punkte A(10 0 0), B(0 4 0) und C(0 0 6) sowie die Ebenenschar E t : 3y + tz 3t = 0 (t R) gegeben. Die Punkte

Mehr

Aufgabe A6/13. Aufgabe A7/13. Aufgabe A6/14

Aufgabe A6/13. Aufgabe A7/13. Aufgabe A6/14 Aufgabe A6/ Gegeben sind die Ebene 4 : Abituraufgaben Analytische Geometrie (Pflichtteil) ab und : 8. Bestimmen Sie eine Gleichung der Schnittgeraden. (Quelle Abitur BW Aufgabe 6) Aufgabe A7/ Gegeben sind

Mehr

Formelsammlung Analytische Geometrie

Formelsammlung Analytische Geometrie Formelsammlung Analytische Geometrie http://www.fersch.de Klemens Fersch 6. August 6 Inhaltsverzeichnis 6 Analytische Geometrie 6. Vektorrechung in der Ebene......................................... 6..

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema, Aufgabe 4) Im R seien die beiden Ebenen E : 6 x + 4 y z = und E : + s + t 4 gegeben.

Mehr

Aufgaben zur Vektorrechnung

Aufgaben zur Vektorrechnung ) Liegt der Punkt P(; -; 2) auf der Geraden 4 g: x = 5+t 2? 6 2 Aufgaben zur Vektorrechnung 2) a) Wie groß ist der Abstand der Punkte A(4; 2; -4) und B(;-2;-4) zueinander? b) Gesucht wir der Mittelpunkt

Mehr

Wahlteil Geometrie/Stochastik B 1

Wahlteil Geometrie/Stochastik B 1 Abitur Mathematik: Wahlteil Geometrie/Stochastik B 1 Baden-Württemberg 214 Aufgabe B 1.1 a) 1. SCHRITT: SKIZZE ANFERTIGEN Die Lage der Pyramide im Koordinatensystem ist wie folgt: 2. KOORDINATENGLEICHUNG

Mehr

Pflichtteil. Baden-Württemberg Aufgabe 1. Aufgabe 2. Musterlösung. Abitur Mathematik Baden-Württemberg Abitur Mathematik: Musterlösung

Pflichtteil. Baden-Württemberg Aufgabe 1. Aufgabe 2. Musterlösung. Abitur Mathematik Baden-Württemberg Abitur Mathematik: Musterlösung Abitur Mathematik: Baden-Württemberg 14 Aufgabe 1 1. SCHRITT: STRUKTUR DER FUNKTION BESCHREIBEN Der Funktionsterm von f ist das Produkt einer einfachen Funktion u(x) = x und einer Verkettung v(x) = e x

Mehr

Mathematik LK 12 M1, 2. Kursarbeit LA I / An. Geometrie Lösung

Mathematik LK 12 M1, 2. Kursarbeit LA I / An. Geometrie Lösung Mathematik LK M,. Kursarbeit LA I / An. Geometrie Lösung..7 Aufgabe : Rechnen mit Vektoren Berechne... und vereinfache das Ergebnis so weit wie möglich. Falls der Term keinen gültigen Ausdruck darstellt,

Mehr

Ausführliche Lösungen

Ausführliche Lösungen Bohner Ott Deusch Mathematik für berufliche Gymnasien Lineare Algebra Vektorgeometrie Ausführliche Lösungen zu im Buch gekennzeichneten Aufgaben ab. Auflage 6 ISBN 978--8-68-5 Das Werk und seine Teile

Mehr

6.6. Abstandsbestimmungen

6.6. Abstandsbestimmungen 6.6. Abstandsbestimmungen 6. Geraden und Ebenen im Raum In diesem Kapitel werden folgende Fälle vorgestellt:. Abstand zweier Punkte. Abstand zweier paralleler Geraden 3. Abstand einer Ebene zu einer zur

Mehr

7.6. Prüfungsaufgaben zu Normalenformen

7.6. Prüfungsaufgaben zu Normalenformen 7.6. Prüfungsaufgaben zu Normalenformen Aufgabe () Gegeben sind die Gerade g: x a + r u mit r R und die Ebene E: ( x p ) n. a) Welche geometrische Bedeutung haben die Vektoren a und u bzw. p und n? Veranschaulichen

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Hauptprüfung Abiturprüfung 04 (ohne CAS) Baden-Württemberg Wahlteil Analytische Geometrie / Stochastik Hilfsmittel: GTR und Formelsammlung allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

Abstände und Zwischenwinkel

Abstände und Zwischenwinkel Abstände und Zwischenwinkel Die folgenden Grundaufgaben wurden von Oliver Riesen, KS Zug, erstellt und von Stefan Gubser, KS Zug, überarbeitet. Aufgabe 1: Bestimme den Abstand der beiden Punkte P( 3 /

Mehr

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt:

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt: Geometrie 1. Vektoren Die Menge aller zueinander parallelen, gleich langen und gleich gerichteten Pfeile werden als Vektor bezeichnet. Jeder einzelne Pfeil heißt Repräsentant des Vektors. Bei Ortsvektoren:

Mehr

Pflichtteilaufgaben zu Beschreiben und Begründen. Baden-Württemberg

Pflichtteilaufgaben zu Beschreiben und Begründen. Baden-Württemberg Pflichtteilaufgaben zu Beschreiben und Begründen Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com September 06 Abituraufgaben (Haupttermin) Aufgabe

Mehr

Abituraufgaben Analytische Geometrie Wahlteil 2005 BW

Abituraufgaben Analytische Geometrie Wahlteil 2005 BW Lösung B1 Lösungslogik a) Koordinaten von und : Wir schneiden die Geraden durch die Punkte und bzw. und mit der Ebene. Nachweis gleichschenkliges Trapez : Nachweis des Trapezes über Parallelität zweier

Mehr

Lösung Abiturprüfung 1997 Grundkurs (Baden-Württemberg)

Lösung Abiturprüfung 1997 Grundkurs (Baden-Württemberg) Lösung Abiturprüfung 997 Grundkurs (Baden-Württemberg) Analysis I.. a) f x= x5 x = x5 x = x5 x = f x Somit ist f punktsymmetrisch zum Ursprung. f x= x x ; x = ; x = 5 ; x =5 f geht durch den Urpsrung:

Mehr

Übungen 3. Vektoren. 1) Gesucht sind alle möglichen Vektoren c mit der Länge 6, die senkrecht auf den Vektoren a und b stehen.

Übungen 3. Vektoren. 1) Gesucht sind alle möglichen Vektoren c mit der Länge 6, die senkrecht auf den Vektoren a und b stehen. Vektoren Übungen ) Gesucht sind alle möglichen Vektoren c mit der Länge, die senkrecht auf den Vektoren a und b stehen. a = ( ); b = ( ) a) Ein Dreieck in R ist durch die Punkte O( ), A( ), B( ) definiert.

Mehr

n n x a 1 a 2 = 0 n 1 x 1 + n 2 x 2 + ( n 1 a 1 n 2 a 2 )

n n x a 1 a 2 = 0 n 1 x 1 + n 2 x 2 + ( n 1 a 1 n 2 a 2 ) IX. Normalformen ================================================================== 9.1 Die Normalenform einer Geradengleichung im 2-dimensionalen Punktraum ----------------------------------------------------------------------------------------------------------------

Mehr

Aufgaben zu Kapitel 9

Aufgaben zu Kapitel 9 9 9 a) b) Ist oder, so ist offenbar Sind und kollinear, also eta λ, so ist λ λ λ λ λ λ λ λ λ Sei umgekehrt und sei Dann ist mindestens eine Komponente on, eta ungleich Aus folgt: ------ ------ und ferner

Mehr

Algebra 3.

Algebra 3. Algebra 3 www.schulmathe.npage.de Aufgaben 1. In einem kartesischen Koordinatensystem sind die Punkte A( 3), B( ) sowie für jedes a (a R) ein Punkt P a (a a a) gegeben. a) Zeigen Sie, dass alle Punkte

Mehr

Analytische Geometrie

Analytische Geometrie Analytische Geometrie Allg. Gymnasien: Ab J / Q Berufliche Gymnasien: Ab Klasse Alexander Schwarz August 08 Aufgabe : Bestimme den Abstand des Punktes R(4/0/7) von der Ebene E:xx 6x E mit Hilfe einer Lotgeraden.

Mehr

Vorkurs Mathematik Intensiv. Geraden, Ebenen und lineare Gleichungssysteme - Musterlösung

Vorkurs Mathematik Intensiv. Geraden, Ebenen und lineare Gleichungssysteme - Musterlösung Prof. Dr. J. Dorfmeister und Tutoren Vorkurs Mathematik Intensiv TU München WS 06/07 Geraden, Ebenen und lineare Gleichungssysteme - Musterlösung. Gegeben seien die Gerade G und die Ebene E : G : x (0,

Mehr

Kantonsschule Reussbühl Maturitätsprüfung 1999, Typus AB Be/Sw Mathematik Lösungen Sw / 2003

Kantonsschule Reussbühl Maturitätsprüfung 1999, Typus AB Be/Sw Mathematik Lösungen Sw / 2003 Lösung der Aufgabe a) Nullstelle: : = Ableitungen: f () = : - = : = a f (a) = - e < : ist Stelle eines Maimums f () = : = : = a f (a) = e - : ist Wendestelle b) = e unabhängig von a tan = e ; = 69,8...

Mehr

Parameter Das Buch Inhaltsverzeichnis Stichwortverzeichnis Aufgaben zum Selberrechnen Die Strukturierung

Parameter Das Buch   Inhaltsverzeichnis Stichwortverzeichnis Aufgaben zum Selberrechnen Die Strukturierung Das Buch: Dieses Kapitel ist Teil eines Buches. Das vollständige Buch können Sie unter www.mathe-laden.de bestellen (falls Sie das möchten). Sie werden in diesem Buch ein paar Sachen finden, die nicht

Mehr

3. Mathematikschulaufgabe

3. Mathematikschulaufgabe Arbeitszeit 40min 1.0 Gegeben sind die Punkte A (-I1) und B (6I-1), sowie die Gerade g mit der Gleichung y = 0,5x + 3. Führe die folgenden Berechnungen jeweils auf zwei Stellen gerundet aus. 1.1 Berechne

Mehr

Abituraufgaben bis 2018 Baden-Württemberg. Geraden, Ebenen, Abstand

Abituraufgaben bis 2018 Baden-Württemberg. Geraden, Ebenen, Abstand Abituraufgaben bis 8 Baden-Württemberg Geraden, Ebenen, Abstand allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com August 8 Aufgabe : (Abiturprüfung 8) Gegeben sind die Ebenen E: xx x

Mehr

Abschlussprüfung Berufliche Oberschule 2017 Mathematik 12 Technik - B II - Lösung

Abschlussprüfung Berufliche Oberschule 2017 Mathematik 12 Technik - B II - Lösung Abschlussprüfung Berufliche Oberschule 7 Mathematik Technik - B II - Lösung Teilaufgabe. Die Abbildung zeigt einen Wintergarten, dessen Boden in der x -x -Ebene eines kartesischen Koorindatensystems liegt.

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 5/6): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr 5, Thema, Aufgabe ) Sei V ein reeller Vektorraum. a) Wann nennt man eine Teilmenge U

Mehr

. Da Symmetrieebene ist, ist auch die Ebene durch, und Symmetrieebene. Der Mittelpunkt liegt in der -Ebene auf einer Geraden durch den Ursprung und.

. Da Symmetrieebene ist, ist auch die Ebene durch, und Symmetrieebene. Der Mittelpunkt liegt in der -Ebene auf einer Geraden durch den Ursprung und. Abitur BW 2 Aufgabe Lösungslogik a) Gleichschenkliges Dreieck : Zwei Dreiecksseiten müssen gleich lang sein. Koordinaten des Punktes : Berechnung der Koordinaten von über Vektoraddition. Innenwinkel der

Mehr

Aus folgt: 1; 3 Eingesetzt in : $$$$$ #! * 1 + ; # $$$$$$$ # $$$$$ 2 $$$$$! * 3 Der Bildpunkt hat die Koordinaten

Aus folgt: 1; 3 Eingesetzt in : $$$$$ #! * 1 + ; # $$$$$$$ # $$$$$ 2 $$$$$! * 3 Der Bildpunkt hat die Koordinaten Abituraufgaben Analytische Geometrie (Pflichtteil) ab Lösung A6/ Wir stellen die gegebene Normalengleichung von in die Koordinatengleichung um und bilden. Im Gleichungssystem mit drei Unbekannten und zwei

Mehr

Mathematik LK M1, 3. KA Analytische Geometrie II / LA II Lösung =( )

Mathematik LK M1, 3. KA Analytische Geometrie II / LA II Lösung =( ) Aufgabe 1: Rechnen mit Matrizen und Vektoren Gegeben sind die folgenden Zahlen, Vektoren und Matrizen: r= 1 2 ; s=5; t= 4 25 a= 1 3 ; b= 2 A= 2 2 4 2 1 G= 2 1 2 1 1 6 ; c= 2 1 = ; d 4 4 2 1 ; C= 1 3 5

Mehr

Mathematik 12. Jahrgangsstufe - Hausaufgaben

Mathematik 12. Jahrgangsstufe - Hausaufgaben Mathematik. Jahrgangsstufe - Hausaufgaben Inhaltsverzeichnis Raumgeometrie. Punkte einer Geraden............................... Punkte und Geraden................................ Geraden und Punkte................................5

Mehr

Prüfungsteil 2, Aufgabe 5 Analytische Geometrie

Prüfungsteil 2, Aufgabe 5 Analytische Geometrie Abitur Mathematik: Prüfungsteil, Aufgabe 5 Analytische Geometrie Nordrhein-Westfalen 1 LK Aufgabe a (1) 1. SCHRITT: DIE VEKTOREN, UND BERECHNEN 1 3 5 3 5 1 4. SCHRITT: DEN RECHTEN WINKEL NACHWEISEN Ein

Mehr

Übersicht Analytische Geometrie Grundkurs bis zur 4 Klausur Q1

Übersicht Analytische Geometrie Grundkurs bis zur 4 Klausur Q1 Übersicht Analytische Geometrie Grundkurs bis zur 4 Klausur Q1 F Vektorrechnung F1 Verschiebungen durch Vektoren sowie Punkte im Raum durch Ortsvektoren und Vektorketten beschreiben und damit realitätsnahe

Mehr

Grundkursabitur 2011 Analytische Geometrie Aufgabe III. In einem kartesischen Koordinatensystem sind die Punkte A 3 0 0,,

Grundkursabitur 2011 Analytische Geometrie Aufgabe III. In einem kartesischen Koordinatensystem sind die Punkte A 3 0 0,, Grundkursabitur 2011 Analytische Geometrie Aufgabe III In einem kartesischen Koordinatensystem sind die Punkte A 0 0,, B 0 0 C 0 und S 0 0 6 gegeben. 1. a) Das Dreieck ABC liegt in der x 1 x 2 -Ebene.

Mehr

Mathematik LK M1, 3. KA Analytische Geometrie II / LA II Lösung = )

Mathematik LK M1, 3. KA Analytische Geometrie II / LA II Lösung = ) Mathematik LK M,. KA Analytische Geometrie II / LA II Lösung 6..25 Aufgabe : Rechnen mit Matrizen und Vektoren Gegeben sind die folgenden Zahlen, Vektoren und Matrizen: r 4 ; s2 ; t,5 a 2 ; b 4 2 ; c A

Mehr

Erweiterte Beispiele 1 1/1

Erweiterte Beispiele 1 1/1 Erweiterte Beispiele 1 1/1 Gegeben ist das Dreieck ABC [A(-20/-9), B(30/-9), C(12/15)]. Die Seitenmittelpunkte D, E, F bilden ein Dreieck. Zeige, dass der Umkreis dieses Dreiecks den Inkreis des Dreiecks

Mehr

Kugel - Kugelgleichung, Lagebeziehungen

Kugel - Kugelgleichung, Lagebeziehungen . Kugelgleichung. Lage Punkt / Kugel 3. Lage Gerade / Kugel 3. Standardverfahren 3. Alternative Kugel - Kugelgleichung, Lagebeziehungen. Lage Ebene / Kugel 5. Lage Kugel / Kugel (Schnittkreis, Berührungspunkt).

Mehr

3. Mathematikschulaufgabe

3. Mathematikschulaufgabe Arbeitszeit 40min 1.0 Gegeben sind die Punkte A(-I1) und B(6I-1), sowie die Gerade g mit der Gleichung y = 0,5x + 3. Führe die folgenden Berechnungen jeweils auf zwei Stellen gerundet aus. 1.1 Berechne

Mehr

Abituraufgaben Analytische Geometrie Wahlteil 2012 BW

Abituraufgaben Analytische Geometrie Wahlteil 2012 BW Aufgabe B1 Die Ebene enthält die Punkte 6 1, 2 3 und 3 2,5. a) Bestimmen Sie eine Koordinatengleichung von. Stellen Sie die Ebene in einem Koordinatensystem dar. Unter welchem Winkel schneidet die -Achse?

Mehr

Abituraufgaben Analytische Geometrie Wahlteil 2014 BW

Abituraufgaben Analytische Geometrie Wahlteil 2014 BW Abituraufgaben Analytische Geometrie Wahlteil 24 BW Aufgabe B Gegeben sind die Punkte 5 5, 5 5, 5 5 und 5 5. Das Quadrat ist die Grundfläche einer Pyramide mit der Spitze 2. a) Die Seitenfläche liegt in

Mehr

03. Vektoren im R 2, R 3 und R n

03. Vektoren im R 2, R 3 und R n 03 Vektoren im R 2, R 3 und R n Unter Verwendung eines Koordinatensystems kann jedem Punkt der Ebene umkehrbar eindeutig ein Zahlenpaar (x, y) zugeordnet werden P (x, y) Man nennt x und y die kartesischen

Mehr

Abituraufgaben Analytische Geometrie Wahlteil 2010 BW

Abituraufgaben Analytische Geometrie Wahlteil 2010 BW Lösung B Lösungslogik a) Gleichschenkliges Dreieck : Zwei Dreiecksseiten müssen gleich lang sein. Koordinaten des Punktes : Berechnung der Koordinaten von über Vektoraddition. Innenwinkel der Raute: Innenwinkel

Mehr

Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans

Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans josef.coenen@web.de Abitour Analytische Geometrie Leistungskurs Aufgaben 1. Welche Lagebeziehungen zwischen

Mehr