Grundbegriffe der Informatik

Größe: px
Ab Seite anzeigen:

Download "Grundbegriffe der Informatik"

Transkript

1 Grundbegriffe der Informatik Kapitel 15: Graphen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 1 / 65

2 Darstellung von Zusammenhängen oft Objekte durch Linien verbunden, z. B. in dieser Vorlesung in der Vorlesung Programmieren im realen Leben nun allgemein Gegenstand der Betrachtungen GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 2 / 65

3 Königsberg, 1652 (heute Kaliningrad) GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 3 / 65

4 Königsberg, 1652 (heute Kaliningrad) GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 4 / 65

5 Königsberg, 1652 (heute Kaliningrad) Leonard Euler (1736): kein Spaziergang über jede Brücke genau einmal GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 4 / 65

6 Überblick Gerichtete Graphen Graphen und Teilgraphen Pfade und Erreichbarkeit Isomorphie von Graphen Ein Blick zurück auf Relationen Ungerichtete Graphen Übertragung der Grundbegriffe aus dem gerichteten Fall Eine Anmerkung zu Relationen Graphen mit Knoten- oder Kantenmarkierungen Gewichtete Graphen GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 5 / 65

7 Wo sind wir? Gerichtete Graphen Graphen und Teilgraphen Pfade und Erreichbarkeit Isomorphie von Graphen Ein Blick zurück auf Relationen Ungerichtete Graphen Graphen mit Knoten- oder Kantenmarkierungen GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 6 / 65

8 Wo sind wir? Gerichtete Graphen Graphen und Teilgraphen Pfade und Erreichbarkeit Isomorphie von Graphen Ein Blick zurück auf Relationen Ungerichtete Graphen Graphen mit Knoten- oder Kantenmarkierungen GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 7 / 65

9 Gerichteter Graph Paar G = (V, E) Knotenmenge V endlich, nichtleer (Knoten: engl. vertex) Kantenmenge E V V (Kante: engl. edge) also auch endlich darf leer sein statt V = {0, 1, 2, 3, 4, 5} E = {(0, 1), (0, 3), (1, 2), (1, 3), (4, 5), (5, 4)} lieber GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 8 / 65

10 Gerichteter Graph Paar G = (V, E) Knotenmenge V endlich, nichtleer (Knoten: engl. vertex) Kantenmenge E V V (Kante: engl. edge) also auch endlich darf leer sein statt V = {0, 1, 2, 3, 4, 5} E = {(0, 1), (0, 3), (1, 2), (1, 3), (4, 5), (5, 4)} lieber oder GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 9 / 65

11 Man kann den gleichen Graphen verschieden hinmalen Anordnung der Knoten in der Darstellung irrelevant zwei Darstellungen des gleichen Graphen: GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 10 / 65

12 Bäume kamen schon mehrfach vor G = (V, E) mit V = {1} ( i Z 3 {0, 1} ) i = {1, 10, 11, 100, 101, 110, 111} E = {(w,wx) x {0, 1} w V wx V } = {(1, 10), (1, 11), (10, 100), (10, 101), (11, 110), (11, 111)} GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 11 / 65

13 de Bruijn-Graphen V = {0, 1} n und Kanten (xw,wy) Beispiel n = 3: V = {0, 1} 3 = {000, 001, 010, 011, 100, 101, 110, 111} E = {(xw,wy) x,y {0, 1} w {0, 1} 2 } = {(000, 000),..., (010, 101),... } Schlinge: (x, x) E schlingenfrei: ohne Schlingen GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 12 / 65

14 Teilgraph G = (V, E ) ist ein Teilgraph von G = (V, E), wenn V V E E V V, Endpunkte von Kanten in E müssen in V sein Teilgraph des de Bruijn-Graphen GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 13 / 65

15 Wo sind wir? Gerichtete Graphen Graphen und Teilgraphen Pfade und Erreichbarkeit Isomorphie von Graphen Ein Blick zurück auf Relationen Ungerichtete Graphen Graphen mit Knoten- oder Kantenmarkierungen GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 14 / 65

16 Pfade können über mehrere Kanten führen V (+) : Menge der nichtleeren Listen von Elementen aus V p = (v 0,...,v n ) V (+) ist Pfad wenn für jedes i Z n gilt: (v i,v i+1 ) E Länge eines Pfades: Anzahl n = p 1 der Kanten (!) v n von v 0 erreichbar, wenn Pfad p = (v 0,...,v n ) existiert Länge 0 für Pfade erlaubt: p = (v 0 ) GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 15 / 65

17 Zyklen führen zum Ausgangspunkt zurück Pfad mit v 0 = v n heißt geschlossen geschlossenener Pfad heißt Zyklus, wenn n 1 ist. Pfad (v 0,...,v n ) wiederholungsfrei, wenn Knoten v 0,..., v n 1 paarweise verschieden und Knoten v 1,..., v n paarweise verschieden v 0 und v n dürfen gleich sein einfacher Zyklus: wiederholungsfreier Zyklus azyklischer Graph: kein Teilgraph ist Zyklus GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 16 / 65

18 Beispiele für Pfade (100) ist Pfad der Länge 0 (100, 001) ist Pfad der Länge 1 (100, 000, 001) ist Pfad der Länge 2 (110, 101, 011, 111, 111, 111) ist Pfad der Länge 5 (011, 110, 101, 011) ist einfacher Zyklus der Länge 3. GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 17 / 65

19 Beispiele für Pfade (100) ist Pfad der Länge 0 (100, 001) ist Pfad der Länge 1 (100, 000, 001) ist Pfad der Länge 2 (110, 101, 011, 111, 111, 111) ist Pfad der Länge 5 (011, 110, 101, 011) ist einfacher Zyklus der Länge 3. GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 18 / 65

20 Beispiele für Pfade (100) ist Pfad der Länge 0 (100, 001) ist Pfad der Länge 1 (100, 000, 001) ist Pfad der Länge 2 (110, 101, 011, 111, 111, 111) ist Pfad der Länge 5 (011, 110, 101, 011) ist einfacher Zyklus der Länge 3. GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 19 / 65

21 Beispiele für Pfade (100) ist Pfad der Länge 0 (100, 001) ist Pfad der Länge 1 (100, 000, 001) ist Pfad der Länge 2 (110, 101, 011, 111, 111, 111) ist Pfad der Länge 5 (011, 110, 101, 011) ist einfacher Zyklus der Länge 3. GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 20 / 65

22 Beispiele für Pfade zweimal (100) ist Pfad der Länge 0 (100, 001) ist Pfad der Länge 1 (100, 000, 001) ist Pfad der Länge 2 (110, 101, 011, 111, 111, 111) ist Pfad der Länge 5 (011, 110, 101, 011) ist einfacher Zyklus der Länge 3. GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 21 / 65

23 Beispiele für Pfade (100) ist Pfad der Länge 0 (100, 001) ist Pfad der Länge 1 (100, 000, 001) ist Pfad der Länge 2 (110, 101, 011, 111, 111, 111) ist Pfad der Länge 5 (011, 110, 101, 011) ist einfacher Zyklus der Länge 3. GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 22 / 65

24 Teilpfade Teilpfad eines Pfad p = (v 0,...,v n ) V (+) entsteht durch Streiche endlich vieler Knoten am Anfang oder/und am Ende mindestens ein Knoten muss übrig bleiben GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 23 / 65

25 Strenger Zusammenhang gerichteter Graph streng zusammenhängend für jedes Knotenpaar (x,y) V 2 existiert Pfad von x nach y Beispiel: GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 24 / 65

26 Strenger Zusammenhang gerichteter Graph streng zusammenhängend für jedes Knotenpaar (x,y) V 2 existiert Pfad von x nach y Beispiel: hier existieren sogar einfache Zyklen, die alle Knoten enthalten GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 24 / 65

27 Strenger Zusammenhang gerichteter Graph streng zusammenhängend für jedes Knotenpaar (x,y) V 2 existiert Pfad von x nach y Beispiel: hier existieren sogar einfache Zyklen, die alle Knoten enthalten GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 25 / 65

28 Gerichtete Bäume es gibt eine Wurzel r V mit der Eigenschaft zu jedem Knoten x existiert genau ein Pfad gleich: Wurzel immer eindeutig GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 26 / 65

29 Eindeutigkeit der Wurzel Lemma. Die Wurzel eines gerichteten Baumes ist eindeutig. Beweis. Angenommen, r und r wären verschiedene Wurzeln Dann gäbe es einen Pfad von r nach r, weil r Wurzel ist, und einen Pfad von r nach r, weil r Wurzel ist. Hintereinanderhängen dieser Pfade der Länge > 0 ergäbe Pfad von r nach r, der vom Pfad (r ) verschieden wäre. Also wäre der Pfad von r nach r gar nicht eindeutig. GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 27 / 65

30 Knotengrad bei gerichteten Graphen A D B C Eingangsgrad eines Knoten y ist d (y) = {x (x,y) E} Ausgangsgrad eines Knoten x ist d + (x) = {y (x,y) E} Grad eines Knotens ist d(x) = d (x) + d + (x) GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 28 / 65

31 Bäume: Blätter und innere Knoten bei einem Baum sind Blätter Knoten mit Ausgangsgrad = 0 innere Knoten Knoten mit Ausgangsgrad > 0 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 29 / 65

32 Wo sind wir? Gerichtete Graphen Graphen und Teilgraphen Pfade und Erreichbarkeit Isomorphie von Graphen Ein Blick zurück auf Relationen Ungerichtete Graphen Graphen mit Knoten- oder Kantenmarkierungen GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 30 / 65

33 Struktur eines Graphen was ist das? das, was gleich bleibt, wenn man die Knoten umbenennt GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 31 / 65

34 Struktur eines Graphen was ist das? das, was gleich bleibt, wenn man die Knoten umbenennt G 1 = (V 1, E 1 ) isomorph zu G 2 = (V 2, E 2 ), wenn Bijektion f : V 1 V 2 existiert mit der Eigenschaft x V 1 : y V 1 : (x,y) E 1 (f (x), f (y)) E 2 f heißt dann auch ein (Graph-)Isomorphismus Beispiel: und A B C D GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 31 / 65

35 Struktur eines Graphen was ist das? das, was gleich bleibt, wenn man die Knoten umbenennt G 1 = (V 1, E 1 ) isomorph zu G 2 = (V 2, E 2 ), wenn Bijektion f : V 1 V 2 existiert mit der Eigenschaft x V 1 : y V 1 : (x,y) E 1 (f (x), f (y)) E 2 f heißt dann auch ein (Graph-)Isomorphismus f (00) = A f (01) = B f (11) = C f (10) = D Beispiel: und A B C D GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 31 / 65

36 Graphisomorphie hat drei wichtige Eigenschaften Wenn G 1 isomorph zu G 2, dann auch G 2 isomorph zu G 1 : f 1 leistet das Gewünschte. GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 32 / 65

37 Graphisomorphie hat drei wichtige Eigenschaften Wenn G 1 isomorph zu G 2, dann auch G 2 isomorph zu G 1 : f 1 leistet das Gewünschte. Jeder Graph ist isomorph zu sich selbst: wähle f = I V GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 32 / 65

38 Graphisomorphie hat drei wichtige Eigenschaften Wenn G 1 isomorph zu G 2, dann auch G 2 isomorph zu G 1 : f 1 leistet das Gewünschte. Jeder Graph ist isomorph zu sich selbst: wähle f = I V Wenn G 1 isomorph zu G 2 (dank f ) und wenn G 2 isomorph zu G 3 (dank д), dann G 1 isomorph zu G 3 (dank д f ) GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 32 / 65

39 Wo sind wir? Gerichtete Graphen Graphen und Teilgraphen Pfade und Erreichbarkeit Isomorphie von Graphen Ein Blick zurück auf Relationen Ungerichtete Graphen Graphen mit Knoten- oder Kantenmarkierungen GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 33 / 65

40 Graphen sind Relationen Welche Bedeutung hat das Relationenprodukt? G = (V, E) mit E V V E binäre Relation auf V Frage: Bedeutung von E 2 = E E? E E = {(x, z) V V y V : (x,y) E (y, z) E} Pfad der Länge 2: Knotenliste p = (v 0,v 1,v 2 ) mit der Eigenschaft, dass (v 0,v 1 ) E (v 1,v 2 ) E. GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 34 / 65

41 Graphen sind Relationen Welche Bedeutung hat das Relationenprodukt? G = (V, E) mit E V V E binäre Relation auf V Frage: Bedeutung von E 2 = E E? E E = {(x, z) V V y V : (x,y) E (y, z) E} Pfad der Länge 2: Knotenliste p = (v 0,v 1,v 2 ) mit der Eigenschaft, dass (v 0,v 1 ) E (v 1,v 2 ) E. also Knotenpaar (x, z) genau dann in Relation E 2, wenn Pfad (x, y, z) der Länge 2 von x nach z existiert GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 34 / 65

42 Graphen sind Relationen Erreichbarkeit (x,y) E 2 es existiert Pfad der Länge 2 von x nach y. noch leichter (x,y) E 1 es existiert Pfad der Länge 1 von x nach y. (x,y) E 0 es existiert Pfad der Länge 0 von x nach y. GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 35 / 65

43 Graphen sind Relationen Erreichbarkeit (x,y) E 2 es existiert Pfad der Länge 2 von x nach y. noch leichter (x,y) E 1 es existiert Pfad der Länge 1 von x nach y. (x,y) E 0 es existiert Pfad der Länge 0 von x nach y. vollständige Induktion liefert Lemma. Für jeden gerichteten Graphen G = (V, E) und jedes i N 0 gilt: Knotenpaar (x,y) ist genau dann in der Relation E i, wenn in G Pfad der Länge i von x nach y vorhanden GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 35 / 65

44 Graphen sind Relationen Erreichbarkeit Korollar. Es sei G = (V, E) ein gerichteter Graph. Knotenpaar (x,y) ist genau dann in der Relation E, wenn Pfad (evtl. der Länge 0) von x nach y in G existiert. GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 36 / 65

45 Graphen sind Relationen Erreichbarkeit Korollar. Es sei G = (V, E) ein gerichteter Graph. Knotenpaar (x,y) ist genau dann in der Relation E, wenn Pfad (evtl. der Länge 0) von x nach y in G existiert. Korollar. Ein gerichteter Graph G = (V, E) ist genau dann streng zusammenhängend, wenn E = V V ist. GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 36 / 65

46 Was ist wichtig Das sollten Sie mitnehmen: gerichtete Graphen drücken Beziehungen aus (Relationen) Pfade strenger Zusammenhang Bäume Das sollten Sie üben: Benutzung der neuen Begriffe beim Reden Malen von Graphen sehen, wann Graphen isomorph sind GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 37 / 65

47 Wo sind wir? Gerichtete Graphen Ungerichtete Graphen Übertragung der Grundbegriffe aus dem gerichteten Fall Eine Anmerkung zu Relationen Graphen mit Knoten- oder Kantenmarkierungen GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 38 / 65

48 Wo sind wir? Gerichtete Graphen Ungerichtete Graphen Übertragung der Grundbegriffe aus dem gerichteten Fall Eine Anmerkung zu Relationen Graphen mit Knoten- oder Kantenmarkierungen GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 39 / 65

49 Ungerichtete Graphen mit Kanten ohne Richtung manchmal zu jeder Kante (x, y) E auch «umgekehrte Kante» (y, x) E graphische Darstellung der zwei gerichteten Kanten (x, y) und (y, x) durch einen Strich ohne Pfeilspitzen Man spricht dann auch nur von einer Kante. Beispiel GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 40 / 65

50 Ungerichtete Graphen formal definiert Ein ungerichteter Graph ist eine Struktur U = (V, E) mit V : endliche nichtleere Menge von Knoten E: Menge von Kanten mit E { {x,y} x V y V } adjazente Knoten: durch eine Kante miteinander verbunden Schlinge Kante mit identischen Start- und Zielknoten formal ergibt sich {x, y} mit x = y, also einfach {x} Graph ohne Schlingen heißt schlingenfrei GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 41 / 65

51 Beispiel V = {0, 1, 2, 3, 4, 5} E = { {0, 1}, {0, 3}, {1, 3}, {3}, {4, 5} } 4 5 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 42 / 65

52 Beispiel V = {0, 1, 2, 3, 4, 5} E = { {0, 1}, {0, 3}, {1, 3}, {3}, {4, 5} } 4 5 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 42 / 65

53 Teilgraph eines ungerichteten Graphen U = (V, E ) ist Teilgraph eines ungerichteten Graphen U = (V, E), wenn V V und E E { {x,y} x,y V }. Endpunkte jeder Kante von E müssen zu V gehören. GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 43 / 65

54 Wege das ungerichtete Gegenstück zu Pfaden p = (v 0,...,v n ) V (+) ist Weg in einem ungerichteten Graphen, wenn für jedes i Z n gilt: {v i,v i+1 } E Länge eines Weges: Anzahl n = p 1 der Kanten (!) v n von v 0 erreichbar, wenn Weg p = (v 0,...,v n ) existiert Weg (v 0,...,v n ) heißt wiederholungsfrei, wenn gilt: Knoten v 0,..., v n 1 paarweise verschieden und Knoten v 1,..., v n paarweise verschieden v 0 und v n dürfen gleich sein GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 44 / 65

55 Kreise das ungerichtete Gegenstück zu Zyklen geschlossener Weg oder Kreis: p = (v 0,...,v n ) mit v 0 = v n einfacher Kreis wiederholungsfreier Kreis mit mindestens drei verschiedenen Knoten GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 45 / 65

56 Ungerichtete Kanten und Relationen gerichtete Graphen E binäre Relation auf V E i und E haben anschauliche Bedeutung ungerichtete Graphen: E keine binäre Relation, aber GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 46 / 65

57 Ungerichtete Kanten und Relationen gerichtete Graphen E binäre Relation auf V E i und E haben anschauliche Bedeutung ungerichtete Graphen: E keine binäre Relation, aber zu U = (V, E) definiere Kantenrelation E д V V : E д = {(x,y) {x,y} E} G U = (V, E д ) der zu U gehörende gerichtete Graph GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 46 / 65

58 Zusammenhang in ungerichteten Graphen ungerichteter Graph U = (V, E) zusammenhängend, wenn zugehöriger gerichteter G U = (V, E д ) streng zusammenhängend GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 47 / 65

59 Von gerichteten zu ungerichteten Graphen die umgekehrte Richtung ist auch nützlich sei G = (V, E) ein gerichteter Graph definiere E u = { {x,y} (x,y) E} U G = (V, E u ) ist der zu G gehörige ungerichtete Graph U entsteht aus G durch Entfernen der Pfeilspitzen GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 48 / 65

60 Ungerichtete Bäume (ungerichteter) Baum: ungerichteter Graph U = (V, E), zu dem gerichteter Baum G = (V, E ) existiert mit E = E u GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 49 / 65

61 Ungerichtete Bäume (ungerichteter) Baum: ungerichteter Graph U = (V, E), zu dem gerichteter Baum G = (V, E ) existiert mit E = E u Beispiele a e c d b f д h GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 49 / 65

62 Ungerichtete Bäume verschiedene gerichtete Bäume induzieren gleichen ungerichteten Baum Wurzel gerichtet: Wurzel eindeutig zu identifizieren ungerichtet Von jedem Knoten führen Wege) zu jedem anderen «eigentliche» Wurzel manchmal trotzdem «irgendwie klar» notfalls explizit sagen GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 50 / 65

63 Knotengrad in ungerichteten Graphen ein heikles Thema Was macht man mit Schlingen? in der Literatur: verschiedene Vorgehensweisen Grad d(x) des Knotens x V in ungerichtetem Graph: d(x) = {y y x {x,y} E} + 2 falls {x, x} E 0 sonst GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 51 / 65

64 Wo sind wir? Gerichtete Graphen Ungerichtete Graphen Übertragung der Grundbegriffe aus dem gerichteten Fall Eine Anmerkung zu Relationen Graphen mit Knoten- oder Kantenmarkierungen GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 52 / 65

65 Symmetrische Relationen Kantenrelation eines ungerichteten Graphen hat die Eigenschaft: Wenn (x,y) E д, dann immer auch (y, x) E д. so etwas kommt öfter vor Relation R M M symmetrisch, wenn für alle x M und y M gilt: (x,y) R = (y, x) R GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 53 / 65

66 Äquivalenzrelationen Eine Relation, die reflexiv, transitiv und symmetrisch ist, heißt Äquivalenzrelation. Beispiel: Isomorphie von Graphen GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 54 / 65

67 Äquivalenzrelationen Eine Relation, die reflexiv, transitiv und symmetrisch ist, heißt Äquivalenzrelation. Beispiel: Isomorphie von Graphen Beispiel: Kongruenz modulo m es sei m N + definiere m auf Z vermöge der Festlegung x,y Z : x m y gdw. m teilt x y GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 54 / 65

68 Was ist wichtig Das sollten Sie mitnehmen: ungerichtete Graphen: Unterschiede zu gerichteten Graphen Gemeinsamkeiten mit gerichteten Graphen Das sollten Sie üben: Benutzung der Begriffe Malen von Graphen, hübsche und hässliche GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 55 / 65

69 Wo sind wir? Gerichtete Graphen Ungerichtete Graphen Graphen mit Knoten- oder Kantenmarkierungen Gewichtete Graphen GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 56 / 65

70 Graphen mit Beschriftungen manchmal mehr als nur Graphstruktur von Interesse Huffman-Bäume: Symbole an Kanten, Zahlen an Knoten Straßenkarten: Entfernungsangaben an Kanten... knotenmarkierter Graph: G = (V, E) mit Menge M V von (Knoten-)Markierungen Markierungsfunktion m V : V M V kantenmarkierter Graph: G = (V, E) mit Menge M E von (Kanten-)Markierungen Markierungsfunktion m E : E M E GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 57 / 65

71 Beispiel: Färbung von Landkarten Landkarte Quelle: europa/europa_kontinent_cia_2007.jpg GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 58 / 65

72 Beispiel: Färbung von Landkarten Landkarte Nachbarn verschieden gefärbt Quelle: europa/europa_kontinent_cia_2007.jpg GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 58 / 65

73 Beispiel: Färbung von Landkarten Landkarte als Graph jedes Land ein Knoten Quelle: europa/europa_kontinent_cia_2007.jpg GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 58 / 65

74 Beispiel: Färbung von Landkarten Landkarte als Graph jedes Land ein Knoten Kanten zwischen Nachbarn (leider fehlen im Bild welche) Quelle: europa/europa_kontinent_cia_2007.jpg GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 58 / 65

75 Beispiel: Färbung von Landkarten Landkarte als Graph jedes Land ein Knoten Kanten zwischen Nachbarn (leider fehlen im Bild welche) adjazente Knoten verschieden färben Quelle: europa/europa_kontinent_cia_2007.jpg GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 58 / 65

76 Beispiel: Färbung von Landkarten Satz (Appel/Haken, 1976) Für Landkarten reichen vier Farben. Quelle: europa/europa_karte_de.png GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 59 / 65

77 Färbungen von Graphen formal Färbung des Graphen: adjazente Knoten sollen verschiedene Farben bekommen Färbung m V : V M V legal, wenn {x,y} E = m V (x) m V (y) Wieviele Farben braucht man für eine legale Färbung? höchstens V mindestens? dieses Problem ist im Allgemeinen schwer es taucht z. B. im Compilerbau wieder auf GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 60 / 65

78 Wo sind wir? Gerichtete Graphen Ungerichtete Graphen Graphen mit Knoten- oder Kantenmarkierungen Gewichtete Graphen GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 61 / 65

79 Gewichtete Graphen (Kanten-)Markierungen sind Zahlen Beispiele GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 62 / 65

80 Gewichtete Graphen (Kanten-)Markierungen sind Zahlen Beispiele Verkehrsnetz: Kantengewichte: Entfernungen/Reisezeiten Probleme: z. B. finde kürzeste/schnellste Wege GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 62 / 65

81 Gewichtete Graphen (Kanten-)Markierungen sind Zahlen Beispiele Verkehrsnetz: Kantengewichte: Entfernungen/Reisezeiten Probleme: z. B. finde kürzeste/schnellste Wege Kabelnetz: Kantengewichte: Baukosten Probleme: z. B. finde billigste Möglichkeit, alle miteinander zu verbinden GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 62 / 65

82 Gewichtete Graphen (Kanten-)Markierungen sind Zahlen Beispiele Verkehrsnetz: Kantengewichte: Entfernungen/Reisezeiten Probleme: z. B. finde kürzeste/schnellste Wege Kabelnetz: Kantengewichte: Baukosten Probleme: z. B. finde billigste Möglichkeit, alle miteinander zu verbinden Rohrleitungsnetz: Kantengewichte: Rohrquerschnitte Problem: z. B. finde maximal möglichen Fluss GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 62 / 65

83 Eine Grenze der üblichen Formalisierung von Graphen nicht einfach als Graph formalisierbar GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 63 / 65

84 Eine Grenze der üblichen Formalisierung von Graphen nicht einfach als Graph formalisierbar zwischen Knoten höchstens eine Kante!? GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 63 / 65

85 Eine Grenze der üblichen Formalisierung von Graphen nicht einfach als Graph formalisierbar zwischen Knoten höchstens eine Kante!? Auswege andere Modellierung andere Definition Graph mit Mehrfachkanten GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 63 / 65

86 Was ist wichtig Das sollten Sie mitnehmen: vielfältige Beispiele für Knoten- und Kantenmarkierungen man stößt leicht auf diverse Optimierungsprobleme Das könnten Sie mal ausprobieren: an einfachen Beispielen Optimierungen versuchen (leicht? schwer?) GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 64 / 65

87 Zusammenfassung gerichtete und ungerichtete Graphen wichtige Begriffe (Pfad, Zyklus, Baum,...) Gemeinsamkeiten und Unterschiede Relationen symmetrische Relationen Äquivalenzrelationen GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik 65 / 65

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 3. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Algorithmen für Graphen Fragestellungen: Suche

Mehr

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2 1 2 Notation für Wörter Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg w a is die Anzahl der Vorkommen von a in w Beispiel: abba

Mehr

Am Dienstag, den 16. Dezember, ist Eulenfest. 1/48

Am Dienstag, den 16. Dezember, ist Eulenfest. 1/48 Am Dienstag, den 16. Dezember, ist Eulenfest. 1/48 Grundbegriffe der Informatik Einheit 12: Erste Algorithmen in Graphen Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009

Mehr

Graphentheorie 1. Diskrete Strukturen. Sommersemester Uta Priss ZeLL, Ostfalia. Hausaufgaben Graph-Äquivalenz SetlX

Graphentheorie 1. Diskrete Strukturen. Sommersemester Uta Priss ZeLL, Ostfalia. Hausaufgaben Graph-Äquivalenz SetlX Graphentheorie 1 Diskrete Strukturen Uta Priss ZeLL, Ostfalia Sommersemester 2016 Diskrete Strukturen Graphentheorie 1 Slide 1/19 Agenda Hausaufgaben Graph-Äquivalenz SetlX Diskrete Strukturen Graphentheorie

Mehr

1. Einleitung wichtige Begriffe

1. Einleitung wichtige Begriffe 1. Einleitung wichtige Begriffe Da sich meine besondere Lernleistung mit dem graziösen Färben (bzw. Nummerieren) von Graphen (speziell von Bäumen), einem Teilgebiet der Graphentheorie, beschäftigt, und

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

Graphentheorie. Organisatorisches. Organisatorisches. Organisatorisches. Rainer Schrader. 23. Oktober 2007

Graphentheorie. Organisatorisches. Organisatorisches. Organisatorisches. Rainer Schrader. 23. Oktober 2007 Graphentheorie Rainer Schrader Organisatorisches Zentrum für Angewandte Informatik Köln 23. Oktober 2007 1 / 79 2 / 79 Organisatorisches Organisatorisches Dozent: Prof. Dr. Rainer Schrader Weyertal 80

Mehr

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung Gliederung der Vorlesung. Fallstudie Bipartite Graphen. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen. Minimal spannende Bäume. Kürzeste Pfade. Traveling Salesman Problem. Flüsse in Netzwerken

Mehr

2. Repräsentationen von Graphen in Computern

2. Repräsentationen von Graphen in Computern 2. Repräsentationen von Graphen in Computern Kapitelinhalt 2. Repräsentationen von Graphen in Computern Matrizen- und Listendarstellung von Graphen Berechnung der Anzahl der verschiedenen Kantenzüge zwischen

Mehr

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik Prof. Dr. A. Taraz, Dipl-Math. A. Würfl, Dipl-Math. S. König Weihnachtsblatt Aufgabe W.1 Untersuchen Sie nachstehenden

Mehr

Kapitel 4: Minimal spannende Bäume Gliederung der Vorlesung

Kapitel 4: Minimal spannende Bäume Gliederung der Vorlesung Kapitel : Minimal spannende Bäume Gliederung der Vorlesung. Fallstudie Bipartite Graphen 2. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen. Minimal spannende Bäume. Kürzeste Wege. Traveling

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 8: kontextfreie Grammatiken Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester 2009/2010 1/37 Überblick Kontextfreie Grammatiken

Mehr

Graphen. Formale Methoden der Informatik WiSe 2010/2011 teil 2, folie 1 (von 60)

Graphen. Formale Methoden der Informatik WiSe 2010/2011 teil 2, folie 1 (von 60) Graphen Formale Methoden der Informatik WiSe 2010/2011 teil 2, folie 1 (von 60) Teil II: Graphen 1. Einführung 2. Wege und Kreise in Graphen, Bäume 3. Planare Graphen / Traveling Salesman Problem 4. Transportnetzwerke

Mehr

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011 Graphen: Einführung Vorlesung Mathematische Strukturen Zum Ende der Vorlesung beschäftigen wir uns mit Graphen. Graphen sind netzartige Strukturen, bestehend aus Knoten und Kanten. Sommersemester 20 Prof.

Mehr

Kürzeste Wege in Graphen. Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik

Kürzeste Wege in Graphen. Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik Kürzeste Wege in Graphen Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik Gliederung Einleitung Definitionen Algorithmus von Dijkstra Bellmann-Ford Algorithmus Floyd-Warshall Algorithmus

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2007 4. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Traversierung Durchlaufen eines Graphen, bei

Mehr

Vorlesungen vom 5.Januar 2005

Vorlesungen vom 5.Januar 2005 Vorlesungen vom 5.Januar 2005 5 Planare Graphen 5.1 Beispiel: Gas, Wasser, Elektrik Drei eingeschworene Feinde, die im Wald leben, planen Trassen zu den Versorgungswerken für die drei Grundgüter Gas, Wasser

Mehr

Theoretische Informatik 1 WS 2007/2008. Prof. Dr. Rainer Lütticke

Theoretische Informatik 1 WS 2007/2008. Prof. Dr. Rainer Lütticke Theoretische Informatik 1 WS 2007/2008 Prof. Dr. Rainer Lütticke Inhalt der Vorlesung Grundlagen - Mengen, Relationen, Abbildungen/Funktionen - Datenstrukturen - Aussagenlogik Automatentheorie Formale

Mehr

Diskrete Mathematik für Informatiker

Diskrete Mathematik für Informatiker Diskrete Mathematik für Informatiker Markus Lohrey Universität Siegen Wintersemester 2014/2015 Lohrey (Universität Siegen) Diskrete Mathematik Wintersem. 2014/2015 1 / 344 Organisatorisches zur Vorlesung

Mehr

Wiederholung zu Flüssen

Wiederholung zu Flüssen Universität Konstanz Methoden der Netzwerkanalyse Fachbereich Informatik & Informationswissenschaft SS 2008 Prof. Dr. Ulrik Brandes / Melanie Badent Wiederholung zu Flüssen Wir untersuchen Flüsse in Netzwerken:

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 1 Programm des

Mehr

Vorlesung 4. Tilman Bauer. 13. September Wir befassen uns in dieser Vorlesung noch einmal mit Mengen.

Vorlesung 4. Tilman Bauer. 13. September Wir befassen uns in dieser Vorlesung noch einmal mit Mengen. Vorlesung 4 Universität Münster 13. September 2007 1 Kartesische Wir befassen uns in dieser Vorlesung noch einmal mit Mengen. Seien M und N zwei Mengen. Dann bezeichnen wir mit M N das (kartesische) Produkt

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Mathematische Grundbegriffe Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr,

Mehr

3. Musterlösung. Problem 1: Boruvka MST

3. Musterlösung. Problem 1: Boruvka MST Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 06/07 ITI Wagner. Musterlösung Problem : Boruvka MST pt (a) Beweis durch Widerspruch. Sei T MST von G, e die lokal minimale Kante eines

Mehr

Der Vier-Farben-Satz

Der Vier-Farben-Satz , Samuel Hetterich, Felicia Raßmann Goethe-Universität Frankfurt, Institut für Mathematik 21.Juni 2013 Wieviele Farben braucht man zum Färben einer Landkarte? Spielregeln Länder mit einer gemeinsamen Grenze

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 0..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen

Mehr

Randomisierte Algorithmen

Randomisierte Algorithmen Randomisierte Algorithmen Randomisierte Algorithmen 7. Random Walks Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2016/2017 1 / 43 Überblick Überblick Ein randomisierter

Mehr

Graphentheorie Mathe-Club Klasse 5/6

Graphentheorie Mathe-Club Klasse 5/6 Graphentheorie Mathe-Club Klasse 5/6 Thomas Krakow Rostock, den 26. April 2006 Inhaltsverzeichnis 1 Einleitung 3 2 Grundbegriffe und einfache Sätze über Graphen 5 2.1 Der Knotengrad.................................

Mehr

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 4 für die Übung

Mehr

8 Diskrete Optimierung

8 Diskrete Optimierung 8 Diskrete Optimierung Definition 8.1. Ein Graph G ist ein Paar (V (G), E(G)) besteh aus einer lichen Menge V (G) von Knoten (oder Ecken) und einer Menge E(G) ( ) V (G) 2 von Kanten. Die Ordnung n(g) von

Mehr

Gibt es in Königsberg einen Spaziergang, bei dem man jede der. Pregelbrücken. überquert?

Gibt es in Königsberg einen Spaziergang, bei dem man jede der. Pregelbrücken. überquert? Graphentheorie Gibt es in Königsberg einen Spaziergang, bei dem man jede der sieben Pregelbrücken genau einmal überquert? 1 Königsberger Brückenproblem Im Jahre 1736 Leonhard Euler löste das Problem allgemein

Mehr

Algorithmentheorie. 13 - Maximale Flüsse

Algorithmentheorie. 13 - Maximale Flüsse Algorithmentheorie 3 - Maximale Flüsse Prof. Dr. S. Albers Prof. Dr. Th. Ottmann . Maximale Flüsse in Netzwerken 5 3 4 7 s 0 5 9 5 9 4 3 4 5 0 3 5 5 t 8 8 Netzwerke und Flüsse N = (V,E,c) gerichtetes Netzwerk

Mehr

3. Relationen Erläuterungen und Schreibweisen

3. Relationen Erläuterungen und Schreibweisen 3. Relationen Eine Relation ist allgemein eine Beziehung, die zwischen Dingen bestehen kann. Relationen im Sinne der Mathematik sind ausschließlich diejenigen Beziehungen, bei denen stets klar ist, ob

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Kapitel 6: Induktives Vorgehen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische

Mehr

Routing Algorithmen. Begriffe, Definitionen

Routing Algorithmen. Begriffe, Definitionen Begriffe, Definitionen Routing (aus der Informatik) Wegewahl oder Verkehrslenkung bezeichnet in der Telekommunikation das Festlegen von Wegen für Nachrichtenströme bei der Nachrichtenübermittlung über

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen Der Tragödie IV. Theyl Peter F. Stadler & Konstantin Klemm Bioinformatics Group, Dept. of Computer Science & Interdisciplinary Center for Bioinformatics, University

Mehr

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS) Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,

Mehr

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel 3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel EADS 3.1 Konstruktion von minimalen Spannbäumen 16/36

Mehr

Algorithmen und Datenstrukturen (WS 2007/08) 63

Algorithmen und Datenstrukturen (WS 2007/08) 63 Kapitel 6 Graphen Beziehungen zwischen Objekten werden sehr oft durch binäre Relationen modelliert. Wir beschäftigen uns in diesem Kapitel mit speziellen binären Relationen, die nicht nur nur besonders

Mehr

Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist.

Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist. Graphen Definition: Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist. Begriffe: Gerichteter Graph: Alle Kanten haben eine Richtung vom Anfangsknoten

Mehr

Vorlesung 3 MINIMALE SPANNBÄUME

Vorlesung 3 MINIMALE SPANNBÄUME Vorlesung 3 MINIMALE SPANNBÄUME 72 Aufgabe! Szenario: Sie arbeiten für eine Firma, die ein Neubaugebiet ans Netz (Wasser, Strom oder Kabel oder...) anschließt! Ziel: Alle Haushalte ans Netz bringen, dabei

Mehr

5 Graphen und Polyeder

5 Graphen und Polyeder 5 Graphen und Polyeder 5.1 Graphen und Eulersche Polyederformel Ein Graph besteht aus einer Knotenmenge V (engl. vertex) und einer Kantenmenge E (engl. edge). Anschaulich verbindet eine Kante zwei Knoten,

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 5. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Wdhlg.: Dijkstra-Algorithmus I Bestimmung der

Mehr

4.7 Der Algorithmus von Dinic für maximalen Fluss

4.7 Der Algorithmus von Dinic für maximalen Fluss 4.7 Der Algorithmus von Dinic für maximalen Fluss Wir kennen bereits den Algorithmus von Ford Fulkerson zur Suche nach einem maximalen Fluss in einem Graphen. Wir lernen nun einen Algorithmus für maximalen

Mehr

Graphen: Datenstrukturen und Algorithmen

Graphen: Datenstrukturen und Algorithmen Graphen: Datenstrukturen und Algorithmen Ein Graph G = (V, E) wird durch die Knotenmenge V und die Kantenmenge E repräsentiert. G ist ungerichtet, wenn wir keinen Start- und Zielpunkt der Kanten auszeichnen.

Mehr

Effiziente Algorithmen I

Effiziente Algorithmen I H 10. Präsenzaufgabenblatt, Wintersemester 2015/16 Übungstunde am 18.01.2015 Aufgabe Q Ein Reiseveranstalter besitzt ein Flugzeug, das maximal p Personen aufnehmen kann. Der Veranstalter bietet einen Flug

Mehr

Elementargeometrie. Prof. Dr. Andreas Meister SS digital von: Frank Lieberknecht

Elementargeometrie. Prof. Dr. Andreas Meister SS digital von: Frank Lieberknecht Prof. Dr. Andreas Meister SS 2004 digital von: Frank Lieberknecht Geplanter Vorlesungsverlauf...1 Graphentheorie...1 Beispiel 1.1: (Königsberger Brückenproblem)... 1 Beispiel 1.2: (GEW - Problem)... 2

Mehr

Strukturelle Rekursion und Induktion

Strukturelle Rekursion und Induktion Kapitel 2 Strukturelle Rekursion und Induktion Rekursion ist eine konstruktive Technik für die Beschreibung unendlicher Mengen (und damit insbesondere für die Beschreibung unendliche Funktionen). Induktion

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É.

Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Tardos Janick Martinez Esturo jmartine@techfak.uni-bielefeld.de xx.08.2007 Sommerakademie Görlitz Arbeitsgruppe 5 Gliederung

Mehr

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale Kapitel I Reelle Zahlen 1 Axiomatische Charakterisierung der reellen Zahlen R 2 Angeordnete Körper 3 Die natürlichen, die ganzen und die rationalen Zahlen 4 Das Vollständigkeitsaxiom und irrationale Zahlen

Mehr

C++, LEDA und STL Visualisierung minimal/maximal aufspannender Bäume

C++, LEDA und STL Visualisierung minimal/maximal aufspannender Bäume Fachbereich IV, Informatik Softwarepraktikum C++, LEDA und STL Visualisierung minimal/maximal aufspannender Bäume Wintersemester 2004/2005 Dokumentation Algorithmen zur Lösung von MST - Problemen Nicolas

Mehr

Kapitel 6: Graphalgorithmen Gliederung

Kapitel 6: Graphalgorithmen Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

Mathematische Grundlagen der Computerlinguistik

Mathematische Grundlagen der Computerlinguistik Centrum für Informations- und Sprachverarbeitung (CIS) 10. Juni 2014 Table of Contents 1 2 Äquivalenz Der Begriff der Äquivalenz verallgemeinert den Begriff der Gleichheit. Er beinhaltet in einem zu präzisierenden

Mehr

Gliederung. Definition Wichtige Aussagen und Sätze Algorithmen zum Finden von Starken Zusammenhangskomponenten

Gliederung. Definition Wichtige Aussagen und Sätze Algorithmen zum Finden von Starken Zusammenhangskomponenten Gliederung Zusammenhang von Graphen Stark Zusammenhängend K-fach Zusammenhängend Brücken Definition Algorithmus zum Finden von Brücken Anwendung Zusammenhangskomponente Definition Wichtige Aussagen und

Mehr

14. Rot-Schwarz-Bäume

14. Rot-Schwarz-Bäume Bislang: Wörterbuchoperationen bei binären Suchbäume effizient durchführbar, falls Höhe des Baums klein. Rot-Schwarz-Bäume spezielle Suchbäume. Rot-Schwarz-Baum mit n Knoten hat Höhe höchstens 2 log(n+1).

Mehr

Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13)

Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13) Berlin, 21. Februar 2013 Name:... Matr.-Nr.:... Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13) 1 2 3 4 5 6 7 8 9 Σ Bearbeitungszeit: 90 min. max. Punktezahl:

Mehr

16. Flächenfärbungen

16. Flächenfärbungen Chr.Nelius: Graphentheorie (WS 2015/16) 57 16. Flächenfärbungen In der Mitte des 19. Jahrhunderts tauchte eine Vermutung auf, die erst 125 Jahre später bewiesen werden sollte und die eine der bekanntesten

Mehr

Beispiele für Relationen

Beispiele für Relationen Text Relationen 2 Beispiele für Relationen eine Person X ist Mutter von einer Person Y eine Person X ist verheiratet mit einer Person Y eine Person X wohnt am gleichen Ort wie eine Person Y eine Person

Mehr

5.1 Graphentheorie. Ulrik Brandes

5.1 Graphentheorie. Ulrik Brandes 5.1 Graphentheorie Ulrik Brandes Die Graphentheorie ist ein Zweig der Diskreten Mathematik, dessen Entstehung für gewöhnlich auf eine 1736 erschienene Arbeit von Leonhard Euler über das so genannte Königsberger

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 13 (18.6.2014) Binäre Suchbäume IV (Rot Schwarz Bäume) Algorithmen und Komplexität Rot Schwarz Bäume Ziel: Binäre Suchbäume, welche immer

Mehr

Lokalisierung von inneren und äußeren Grenzen in Sensornetzwerken

Lokalisierung von inneren und äußeren Grenzen in Sensornetzwerken Lokalisierung von inneren und äußeren Grenzen in Sensornetzwerken Seminararbeit: Algorithmen für Sensornetzwerke Thomas Gramer 1 Thomas Gramer: KIT Universität des Landes Baden-Württemberg und nationales

Mehr

Spiele in der Informatik

Spiele in der Informatik Spiele in der Informatik Martin Lange Lehr- und Forschungseinheit Theoretische Informatik Informatik-Schnupperstudium an der LMU, 29.3.2010 Übersicht Teil 1 Schokoladenessen für Spieltheoretiker ein kleines

Mehr

Formale Systeme. Binary Decision Diagrams. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Formale Systeme. Binary Decision Diagrams. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert WS / KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz Association

Mehr

Ordnungsrelationen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

Ordnungsrelationen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden Ordnungsrelationen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Geordnete Mengen Eine Relation R A A heißt Ordnung oder Ordnungsrelation, wenn sie reflexiv,

Mehr

Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung

Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung Ulrich Loup 24.03.2006 Prüfungsstoff: Alegebra I, Analysis IV, Graphentheorie I Prüfer: Prof. Dr. Wilhelm Plesken Protokollant: Dipl.

Mehr

Algorithmen und Datenstrukturen Graphen - Einführung

Algorithmen und Datenstrukturen Graphen - Einführung Algorithmen und Datenstrukturen Graphen - Einführung Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Überblick Definition / Eigenschaften Anwendungen Repräsentation

Mehr

Informatik I WS 07/08 Tutorium 24

Informatik I WS 07/08 Tutorium 24 Info I Tutorium 24 Informatik I WS 07/08 Tutorium 24 3.2.07 astian Molkenthin E-Mail: infotut@sunshine2k.de Web: http://infotut.sunshine2k.de Organisatorisches / Review is zum 2.2 müssen alle Praxisaufgaben

Mehr

Stetige Funktionen, Binomischer Lehrsatz

Stetige Funktionen, Binomischer Lehrsatz Vorlesung 13 Stetige Funktionen, Binomischer Lehrsatz 13.1 Funktionenfolgen Wir verbinden nun den Grenzwertbegriff mit dem Funktionsbegriff. Es seien (a n ) n N eine reelle Folge und f : R R eine Funktion.

Mehr

Bäume und Wälder. Bäume und Wälder 1 / 37

Bäume und Wälder. Bäume und Wälder 1 / 37 Bäume und Wälder Bäume und Wälder 1 / 37 Bäume Ein (ungerichteter) Baum ist ein ungerichteter Graph G = (V, E), der zusammenhängend ist und keine einfachen Kreise enthält. Bäume und Wälder 2 / 37 Bäume

Mehr

Planare Graphen, Traveling Salesman Problem, Transportnetze. Formale Methoden der Informatik WiSe 2012/2013 teil 4, folie 1 (von 61)

Planare Graphen, Traveling Salesman Problem, Transportnetze. Formale Methoden der Informatik WiSe 2012/2013 teil 4, folie 1 (von 61) Planare Graphen, Traveling Salesman Problem, Transportnetze Formale Methoden der Informatik WiSe 2012/2013 teil 4, folie 1 (von 61) Teil IV: Planare Graphen / Transportnetze 1. Planare Graphen / Traveling

Mehr

Anmerkungen zur Übergangsprüfung

Anmerkungen zur Übergangsprüfung DM11 Slide 1 Anmerkungen zur Übergangsprüfung Aufgabeneingrenzung Aufgaben des folgenden Typs werden wegen ihres Schwierigkeitsgrads oder wegen eines ungeeigneten fachlichen Schwerpunkts in der Übergangsprüfung

Mehr

Übungen zu Logik und Künstliche Intelligenz Blatt 8

Übungen zu Logik und Künstliche Intelligenz Blatt 8 Heilbronn, den 14.5.2010 Prof. Dr. V. Stahl WS 10/11 Übungen zu Logik und Künstliche Intelligenz Blatt 8 Aufgabe 1. Überlegen Sie, wie man folgende Relationen R grafisch darstellen könnte und entscheiden

Mehr

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie Gliederung 1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. äume / Graphen 5. Hashing 6. Algorithmische Geometrie 4/5, olie 1 2014 Prof. Steffen Lange - HDa/bI

Mehr

RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT BONN INSTITUT FÜR INFORMATIK I

RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT BONN INSTITUT FÜR INFORMATIK I RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT BONN INSTITUT FÜR INFORMATIK I Shanni Cai Verbindende gefärbte Punktmengen 31. Oktober 2006 Seminararbeit im WS 2006/2007 Betreuer: Martin Köhler Sanaz Kamali

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 15: Reguläre Ausdrücke und rechtslineare Grammatiken Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/25 Was kann man mit endlichen

Mehr

Prof. Dr. Jürgen Dassow Otto-von-Guericke-Universität Magdeburg Fakultät für Informatik P E T R I N E T Z E. Vorlesungsskript

Prof. Dr. Jürgen Dassow Otto-von-Guericke-Universität Magdeburg Fakultät für Informatik P E T R I N E T Z E. Vorlesungsskript Prof. Dr. Jürgen Dassow Otto-von-Guericke-Universität Magdeburg Fakultät für Informatik P E T R I N E T Z E Vorlesungsskript Magdeburg, Oktober 2008 Januar 2009 Vorwort Petri-Netze gehören zu den meist

Mehr

Bäume und Wälder. Bäume und Wälder 1 / 37

Bäume und Wälder. Bäume und Wälder 1 / 37 Bäume und Wälder Bäume und Wälder 1 / 37 Bäume Ein (ungerichteter) Baum ist ein ungerichteter Graph G = (V, E), der zusammenhängend ist und keine Kreise enthält. Diese Graphen sind Bäume: Diese aber nicht:

Mehr

Vertiefte Grundlagen Graphentheorie

Vertiefte Grundlagen Graphentheorie Bauinformatik Vertiefte Grundlagen Graphentheorie 5. Semester 8. Vorlesung Graphentheoretische ti h Grundlagen Prof. Dr.-Ing. Nürnberger Str. 3a R. J. Scherer 2. OG, Raum 24 Graphen im Bauwesen Baumanagement

Mehr

Algorithmen und Datenstrukturen Suchbaum

Algorithmen und Datenstrukturen Suchbaum Algorithmen und Datenstrukturen Suchbaum Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Motivation Datenstruktur zur Repräsentation dynamischer Mengen

Mehr

Algorithmen zur Berechnung von Matchings

Algorithmen zur Berechnung von Matchings Algorithmen zur Berechnung von Matchings Berthold Vöcking 1 Einleitung Matchingprobleme sind Zuordnungsprobleme. Es geht darum z.b. Studierenden Plätze in Seminaren zuzuordnen, Bewerber auf freie Stellen

Mehr

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund Lineare Algebra 1 Detlev W. Hoffmann WS 2013/14, TU Dortmund 1 Mengen und Zahlen 1.1 Mengen und Abbildungen Eine Menge ist eine Zusammenfassung wohlunterscheidbarer Objekte unserer Anschauung/unseres Denkens/unserer

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Sommersemester 204 4. Vorlesung Matchings / Paarungen Kombinatorische Anwendungen des Max-Flow-Min-Cut-Theorems Prof. Dr. Alexander Wolff 2 Paarungen (Matchings) Def. Sei

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:

Mehr

Seminar Kompressionsalgorithmen Huffman-Codierung, arithmetische Codierung

Seminar Kompressionsalgorithmen Huffman-Codierung, arithmetische Codierung Huffman-Codierung, arithmetische Codierung Theoretische Informatik RWTH-Aachen 4. April 2012 Übersicht 1 Einführung 2 3 4 5 6 Einführung Datenkompression Disziplin,die Kompressionsalgorithmen entwirft

Mehr

Maximaler Fluß und minimaler Schnitt. Von Sebastian Thurm sebastian.thurm@student.uni-magedburg.de

Maximaler Fluß und minimaler Schnitt. Von Sebastian Thurm sebastian.thurm@student.uni-magedburg.de Maximaler Fluß und minimaler Schnitt Von Sebastian Thurm sebastian.thurm@student.uni-magedburg.de Maximaler Fluß und minimaler Schnitt Wasist das? Maximaler Fluss Minimaler Schnitt Warumtut man das? Logistische

Mehr

Vorlesung 4 BETWEENNESS CENTRALITY

Vorlesung 4 BETWEENNESS CENTRALITY Vorlesung 4 BETWEENNESS CENTRALITY 101 Aufgabe! Szenario: Sie arbeiten bei einem sozialen Online-Netzwerk. Aus der Netzwerk-Struktur Ihrer Benutzer sollen Sie wichtige Eigenschaften extrahieren. [http://www.fahrschule-vatterodt.de/

Mehr

2 Eulersche Polyederformel und reguläre Polyeder

2 Eulersche Polyederformel und reguläre Polyeder 6 2 Eulersche Polyederformel und reguläre Polyeder 2.1 Eulersche Polyederformel Formal besteht ein Graph aus einer Knotenmenge X und einer Kantenmenge U. Jede Kante u U ist eine zweielementige Teilmenge

Mehr

5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c)

5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) 5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) mit V = {1,...,n} und E {(v, w) 1 apple v, w apple n, v 6= w}. c : E!

Mehr

Guten Morgen und Willkommen zur Saalübung!

Guten Morgen und Willkommen zur Saalübung! Guten Morgen und Willkommen zur Saalübung! 1 Wie gewinnt man ein Spiel? Was ist ein Spiel? 2 Verschiedene Spiele Schach, Tic-Tac-Toe, Go Memory Backgammon Poker Nim, Käsekästchen... 3 Einschränkungen Zwei

Mehr

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel. Aufgabe 1. Wir geben nur zwei von sehr vielen möglichen Strategien.

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel. Aufgabe 1. Wir geben nur zwei von sehr vielen möglichen Strategien. Lösungen Übung 13 Aufgabe 1. Wir geben nur zwei von sehr vielen möglichen Strategien. a) Strategie 1 (nächster Nachbar): Jedes Mal reist der Reisende vom Punkt, wo er gerade ist, zur nächstgelegenen Stadt,

Mehr

WS 2008/09. Diskrete Strukturen

WS 2008/09. Diskrete Strukturen WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809

Mehr

Gemischt-ganzzahlige und Kombinatorische Optimierung

Gemischt-ganzzahlige und Kombinatorische Optimierung 5. Präsenzaufgabenblatt, Sommersemester 2015 Übungstunde am 15.06.2015 Aufgabe J Betrachten Sie die LP-Relaxierung max c T x a T x b 0 x i 1 des 0/1-Knapsack-Problems mit n Gegenständen, c 0 und a > 0.

Mehr

Stefan Schmid TU Berlin & T-Labs, Berlin, Germany. Reduktionen in der Berechenbarkeitstheorie

Stefan Schmid TU Berlin & T-Labs, Berlin, Germany. Reduktionen in der Berechenbarkeitstheorie Stefan Schmid TU Berlin & T-Labs, Berlin, Germany Reduktionen in der Berechenbarkeitstheorie Problem: Wie komme ich von hier zum Hamburger Hbf? 2 Beispiel P1 Wie komme ich von hier zum Hamburger Hbf? kann

Mehr

Halbgruppen, Gruppen, Ringe

Halbgruppen, Gruppen, Ringe Halbgruppen-1 Elementare Zahlentheorie Einige Bezeichnungen Halbgruppen, Gruppen, Ringe Die Menge N 0 der natürlichen Zahlen 0, 1, 2, Die Menge N = N 1 der von Null verschiedenen natürlichen Zahlen Die

Mehr