1 Prädikatenlogik: Korrektheit, Vollständigkeit, Entscheidbarkeit

Größe: px
Ab Seite anzeigen:

Download "1 Prädikatenlogik: Korrektheit, Vollständigkeit, Entscheidbarkeit"

Transkript

1 1 Prädikatenlogik: Korrektheit, Vollständigkeit, Entscheidbarkeit 1.1 Korrektheit Mit dem Kalkül der Prädikatenlogik, z.b. dem Resolutionskalkül, können wir allgemeingültige Sätze beweisen. Diese Sätze heißen dann beweisbar. Demgegenüber steht die Wahrheit der Sätze. Ein Satz ist allgemeingültig, wenn er in allen möglichen Welten, also unter allen Interpretationen, wahr ist. So ist der Syllogismus x((p (x) Q(x)) P (x)) Q(x)) in allen Welten wahr, und er lässt sich mit dem Resolutionskalkül beweisen. Dabei benutzt der Resolutionskalkül keinen Bezug auf Bedeutungen, er arbeitet nur mit Zeichenketten. Es stellen sich 3 Fragen. Ist der Resolutionskalkül korrekt, vollständig und entscheidbar. Denition 1. Korrektheit Ein Kalkül ist korrekt genau dann, wenn jeder beweisbare Satz auch allgemeingültig ist. Satz 1. Der Resolutionskalkül ist korrekt. Andernfalls wäre er nutzlos. Man könnte dann ja Sätze beweisen, die falsch sein können. Der Beweis ist nicht schwierig. 1.2 Vollständigkeit Denition 2. Vollständigkeit Ein Kalkül ist vollständig genau dann, wenn jeder allgemeingültige Satz auch beweisbar ist. Satz 2. Der Resolutionskalkül ist vollständig. Dieser Satz ist schwierig zu beweisen. Überraschenderweise gilt er aber für die Prädikatenlogik 1. Stufe. Wenn ein Satz allgemeingültig ist, dann kann man ihn mit dem Kalkül auch beweisen, also rein durch Umformung von Zeichenketten. In der Prädikatenlogik 2. Stufe gilt der Vollständigkeitssatz nicht mehr. Die Prädikatenlogik 1. Stufe erlaubt die Anwendung der Quantoren nur auf Individuen (Objekte). In der Prädikatenlogik 2. Stufe kann man die Quantoren auch auf Eigenschaften, also Prädikate anwenden. In der PL 1. Stufe können wir formulieren: x(p (x) Q(x)): Für alle x gilt: hat x die Eigenschaft P, dann hat es auch die Eigenschaft Q.

2 1 PRÄDIKATENLOGIK: KORREKTHEIT, VOLLSTÄNDIGKEIT, ENTSCHEIDBARKEIT In der PL 2. Stufe können wir formulieren: P (P (Sokrates) P (P laton)): Für alle Eigenschaften P gilt: hat Sokrates die Eigenschaft P, dann hat auch Platon diese Eigenschaft. Z.B. kann man dann den folgenden Satz formulieren: Wenn zwei Dinge die gleichen Eigenschaften haben, dann sind sie identisch. x y P ((P (x) P (y)) x = y) 1.3 Entscheidbarkeit Denition 3. Entscheidbarkeit Die Prädikatenlogik ist entscheidbar genau dann, wenn es einen Kalkül gibt, mit dem man für jeden Satz ausrechnen kann, ob er allgemeingültig wahr ist oder nicht. Satz 3. Die Prädikatenlogik ist nicht entscheidbar. Beweisidee: Den Beweis lieferte Alan Turing 1937 mit seinem Aufsatz 'On Computable Numbers, with an Application to the Entscheidungsproblem. In: Proceedings of the London Mathematical Society. 42, S '. Turing hat dafür eine Maschine entwickelt, die Turing-Maschine. Informationen zu Turing: Turing-Maschine Die Turingmaschine ist ein einfaches Computermodell. Sie besteht aus einem unendlich langen Band. Dessen Zellen können Zeichen aus einem festgelegten Alphabet enthalten. Wir benutzen bei unseren Beispielen das Alphabet mir den Zeichen B,0 und 1. Dabei ist B = Blank = Leerzeichen ein besonderes Zeichen, mit dem anfangs alle Zellen beschrieben sind. Für die Ein- und Ausgabe werden nur die Zeichen 0 und 1 verwendet. Die Maschine benutzt einen Schreib-Lese-Kopf. Der kann befehlsgesteuert eine Zelle nach links gehen, eine Zelle nach rechts, das aktuelle Zeichen auf dem Band lesen und das aktuelle Zeichen überschreiben. Zu Anfang steht der Schreib-Lese-Kopf links von der Eingabe. Am Ende des Programmablaufs soll der Kopf links von der Ausgabe stehen. Die Ausgabe ist das Wort rechts vom Kopf, bis zum nächsten B. 2

3 1.3 Entscheidbarkeit Beispiel: Eingabe ist 0101:...B B B B... Ausgabe ist 1010:...B B B B... Die Turingmaschine läuft programmgesteuert. Sie verfügt über einen internen Speicher, in dem sie sich den aktuellen Zustand merkt. Der Zustand ist eine natürliche Zahl. Was sie macht, hängt vom internen Zustand ab und von dem Zeichen, das gerade unter dem Kopf steht. Ein Turing-Programm besteht aus endlich vielen Befehlen. Jeder Befehl hat den Aufbau Zustand Zeichen Aktion Folgezustand Die Maschine sucht den ersten Befehl, der den aktuellen Zustand und das aktuelle Zeichen unter dem Kopf enthält. Es wird dann die Aktion ausgeführt und der Folgezustand zum aktuellen gemacht. Am Anfang der Programmausführung steht der Kopf vor der Eingabe, also auf einem B. Der Anfangszustand ist 1. Die möglichen Aktionen: L: gehe einen Schritt nach links R: gehe einen Schritt nach rechts H: Halte 0: schreibe eine 0 in die aktuelle Zelle 1: schreibe eine 1 in die aktuelle Zelle B: schreibe ein B in die aktuelle Zelle Die Maschine hält, wenn die Aktion H ist. Dabei soll der Folgezustand eine feste Zahl sein, die das Halten anzeigt. Beispiel: Das Programm soll an eine Eingabe eine 0 anhängen und halten. Damit es die 0 anhängen kann, muss die Maschine erst mit dem Kopf an das Ende der Eingabe gehen. Dann muss die 0 geschrieben werden. Danach muss der Kopf wieder an den Anfang des Wortes gebracht werden. Der Startzustand ist 1. Der Zustand 2 soll anzeigen, dass der Kopf nach rechts läuft. Der Zustand 3 steht für das Laufen nach links. 4 soll der Endzustand sein. 3

4 1 PRÄDIKATENLOGIK: KORREKTHEIT, VOLLSTÄNDIGKEIT, ENTSCHEIDBARKEIT Das Programm kann dann so aussehen: Zustand Zeichen Aktion Folgezustand 1 B R R R 2 2 B L L 3 3 B H 4 Eingabe ist 0101: 1 4 Ausgabe ist Beispiel: Das Wort wird als Binärzahl aufgefasst. Es soll 1 addiert werden. Idee: Man geht an das Ende der Zahl und ersetzt von rechts nach links jede 1 durch eine 0. Die erste 0, die gefunden wird, wird durch 1 ersetzt. In diesem Fall sind keine Ersetzungen mehr nötig. Falls am linken Ende B erreicht wird und noch Ersetzungen nötig sind, wird dieses B durch 1 ersetzt. 4

5 1.3 Entscheidbarkeit Vorgehen: Start mit Zustand 1. Mit Zustand 2 nach rechts gehen. Mit Zustand 3 wieder nach links. Mit Zustand 4 Ersetzung vornehmen. Nach letzter Ersetzung im Zustand 5 nach links gehen. Zustand 6 für Halten des Programms. Zustand Zeichen Aktion Folgezustand 1 B R R R 2 2 B L B B L L L 3 5 B H L L 5 Eingabe ist 0101: B B B B B B B B

6 1 PRÄDIKATENLOGIK: KORREKTHEIT, VOLLSTÄNDIGKEIT, ENTSCHEIDBARKEIT Universelle Turing-Maschine Alan Turing konnte zeigen, dass man eine universelle Turingmaschine konstruieren kann. Diese Maschine wird mit einem Programm und einer weiteren Eingabe gefüttert. Die Maschine macht dann genau das, was eine Maschine mit dem eingegebenen Programm auch machen würde. Vorteil: man muss nicht für jedes Problem eine neue Turingmaschine bauen. Es reicht eine einzige universelle Maschine. Man muss nur als zusätzliche Eingabe das Programm angeben, das die Maschine ausführen soll. Wenn P ein Turingprogramm ist, ist die zugehörige Maschine M P. Sie berechnet bei Eingabe von w eine Ausgabe x = M P (w). Die universelle Maschine U berechnet dann U(P, w) = M P (w) = x Halteproblem Denition 4. Halteproblem Das Halteproblem besteht darin, eine Turing-Maschine M zu nden, die bei Eingabe von einem Programm P und einem Wort w eine 0 ausgibt, wenn die Maschine M P bei Eingabe von w nicht hält, und eine 1 sonst. { 0, falls MP (w) hält nicht M(P, w) = 1, falls M P (w) hält Es gibt eine universelle Turingmaschine, die jede andere Maschine simulieren kann. Sie erwartet als Eingabe das Programm einer Turingmaschine und deren Eingabe. Nehmen wir an, wir könnten das Halteproblem lösen. Dann können wir eine Maschine M basteln, die für jede Eingabe entscheidet, ob das Programm mit der Eingabe hält oder nicht: M(x,y) berechnet 1, falls die Maschine mit dem Programm x und der Eingabe y hält M(x,y) berechnet 0, falls die Maschine mit dem Programm x und der Eingabe y nicht hält Jetzt basteln wir eine neue Maschine M', die folgendes für die Eingabe x und y tut: M'(x,y) berechnet 1 und hält, falls M(x,y) 0 berechnet 6

7 1.3 Entscheidbarkeit M'(x,y) geht in eine Endlosschleife, falls M(x,y) 1 berechnet Es gibt zu M' ein Programm p. Berechne jetzt M'(p,y). Es gibt zwei Möglichkeiten: 1. M'(p,y) berechnet 1 und hält. Dann berechnet M(p,y) 0. Das bedeutet aber, dass die Maschine mit dem Programm p für y nicht hält. Das heiÿt aber, da p das Programm zu M' ist, dass M'(p,y) nicht hält. Das ist ein Widerspruch 2. M'(p,y) hält nicht. Dann berechnet M(p,y) 1. Das bedeutet aber, dass die Maschine mit dem Programm p für y hält. Das heiÿt aber, da p das Programm zu M' ist, dass M'(p,y) hält. Das ist ein Widerspruch Es kann also kein Programm M geben, das bei Eingabe eines Turing-Programms und einer weiteren Zeichenkette berechnet, ob die Maschine mit diesem Programm hält oder nicht. Der Grundgedanke ist: falls solch ein Programm existiert, kann man eine Maschine bauen, die mit diesem Programm feststellt, ob sie selber hält oder nicht. Die Maschine kann dann so programmiert werden, dass sie das Gegenteil davon tut, was berechnet wurde. Aus dem gleichen Grund kann es keinen Menschen geben, der seine Zukunft vorhersieht. Er könnte dann z.b. etwas tun, was seiner Vorrausschau widerspricht Beweis der Unentscheidbarkeit Turings Idee war, das Halteproblem durch eine prädikatenlogische Formel auszudrücken. Anfangskonguration: AK(x) : x = (zust = 1 links = kopf = B rechts = ) Endkonguration: EK(x) : x = (zust = 4 links = w1 kopf = B rechts = w2) Folgekonguration: F K(x, y) : x = (zust = 1 kopf = B links = x.a rechts = b.y ) y = (zust = 2 kopf = b links = x.a.b rechts = Y ) x = (zust = 1 kopf = 0 links = x.a rechts = b.y ) y = (zust = 2 kopf = b links = x.a.b rechts = Y )... 7

8 1 PRÄDIKATENLOGIK: KORREKTHEIT, VOLLSTÄNDIGKEIT, ENTSCHEIDBARKEIT x = (zust = 3 kopf = B links = x.a rechts = b.y ) y = (zust = 4 kopf = B links = x.a rechts = b.y ) Erreichbar(x, z) : z = x (Erreichbar(x, y) F K(y, z)) H(x) : AK(x) z(ek(z) Erreichbar(x, z)) H(x) ist wahr, wenn x eine Anfangskonguration ist mit der Bandinschrift und wenn von da aus in endlich vielen Schritten eine Endkonguration erreicht wird, wenn also das Programm nach endlich vielen Rechenschritten hält. Turings Beweisidee: Wenn man entscheiden kann, ob die Formel H(x) wahr ist oder nicht, dann kann man damit auch das Halteproblem lösen. Das ist aber nicht möglich. Also kann man die Wahrheit der prädikatenlogischen Formeln nicht entscheiden. Frage 1: Man könnte doch wegen der Vollständigkeit der Prädikatenlogik versuchen, eine Formel F zu beweisen, und gleichzeitig versuchen, ihre Negation F zu beweisen. Da ein Satz wahr oder falsch ist, muss einer der Beweise gelingen. Dann weiÿ man, of F wahr ist oder nicht. Leider nicht. Prädikatenlogische Formeln können in einigen Welten wahr sein, in anderen falsch. Die Vollständigkeit sagt nur, dass allgemeingültige Formeln immer mit dem Kalkül abgeleitet werden können. Der Satz 'Sokrates ist ein Mensch' ist z.b. nicht allgemeingültig. Deshalb kann er nicht formal bewiesen werden. Aber der Satz 'Sokrates ist kein Mensch' ist auch nicht allgemeingültig. Auch er kann nicht bewiesen werden. Frage 2: Ist die Aussagenlogik korrekt, vollständig und entscheidbar? 8

Unentscheidbarkeitssätze der Logik

Unentscheidbarkeitssätze der Logik Unentscheidbarkeitssätze der Logik Elmar Eder () Unentscheidbarkeitssätze der Logik 1 / 30 Die Zahlentheorie ist nicht formalisierbar Satz (Kurt Gödel) Zu jedem korrekten formalen System der Zahlentheorie

Mehr

1 Aussagenlogischer Kalkül

1 Aussagenlogischer Kalkül 1 Aussagenlogischer Kalkül Ein Kalkül in der Aussagenlogik soll die Wahrheit oder Algemeingültigkeit von Aussageformen allein auf syntaktischer Ebene zeigen. Die Wahrheit soll durch Umformung von Formeln

Mehr

Turingmaschinen. und eine kleine Einführung in Bereiche der theoretischen Informatik

Turingmaschinen. und eine kleine Einführung in Bereiche der theoretischen Informatik Turingmaschinen und eine kleine Einführung in Bereiche der theoretischen Informatik Gliederung Einführung Leben Alan Turing Theoretische Informatik Turingmaschine Aufbau, Definition Beispiele Game of Life

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 17.November 2011 INSTITUT FÜR THEORETISCHE 0 KIT 17.11.2011 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der

Mehr

1936 von Alan Turing zum theoretischen Studium der Berechenbarkeit eingeführt Besteht aus

1936 von Alan Turing zum theoretischen Studium der Berechenbarkeit eingeführt Besteht aus //5 Abstrakte Maschinenmodelle: Turingmaschine (TM) 96 von Alan Turing zum theoretischen Studium der Berechenbarkeit eingeführt Besteht aus einem festen Teil ( "Hardware ) einem variablen Teil ( "Software

Mehr

Was ist ein Computer? Was ist ein Programm? Können Computer Alles?

Was ist ein Computer? Was ist ein Programm? Können Computer Alles? Was ist ein Computer? Was ist ein Programm? Können Computer Alles? Beispiele von Computern Was ist die Essenz eines Computers? Die Turing Maschine Auf jedem Bandquadrat steht ein Buchstabe (Symbol, Zeichen)

Mehr

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 25.

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 25. Formale Logik PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg Wintersemester 16/17 Sitzung vom 25. Januar 2017 Gödels Unvollständigkeitssatz Unvollständigkeit von Axiomensystemen:

Mehr

Klausur: Berechenbarkeit und Komplexität (Niedermeier/Chen/Froese/Sorge, Sommersemester 2016)

Klausur: Berechenbarkeit und Komplexität (Niedermeier/Chen/Froese/Sorge, Sommersemester 2016) Technische Universität Berlin, Berlin, 28.07.2016 Name:... Matr.-Nr.:... Klausur: Berechenbarkeit und Komplexität (Niedermeier/Chen/Froese/Sorge, Sommersemester 2016) Einlesezeit: Bearbeitungszeit: Max.

Mehr

Wie viel Mathematik kann ein Computer?

Wie viel Mathematik kann ein Computer? Wie viel Mathematik kann ein Computer? Die Grenzen der Berechenbarkeit Dr. Daniel Borchmann 2015-02-05 Wie viel Mathematik kann ein Computer? 2015-02-05 1 / 1 Mathematik und Computer Computer sind schon

Mehr

Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung

Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung Informatik III Christian Schindelhauer Wintersemester 2006/07 13. Vorlesung 07.12.2006 1 Überblick: Die Church- Turing-These Turing-Maschinen 1-Band Turing-Maschine Mehrband-Turing-Maschinen Nichtdeterministische

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Turingmaschinen und rekursiv aufzählbare Sprachen (V) 15.07.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie

Mehr

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Akzeptierbarkeit und Entscheidbarkeit. Teil V.

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Akzeptierbarkeit und Entscheidbarkeit. Teil V. Dank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Diese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen

Mehr

Reduktionen. Formalisierung von Sprache A ist nicht schwerer als Sprache B.

Reduktionen. Formalisierung von Sprache A ist nicht schwerer als Sprache B. Reduktionen Formalisierung von Sprache A ist nicht schwerer als Sprache B. Idee: Algorithmus/DTM für B kann genutzt werden, um A zu entscheiden/akzeptieren. WS 2018/19 Reduktionen 1 Zwei einfache Sprachen

Mehr

ALP I Turing-Maschine

ALP I Turing-Maschine ALP I Turing-Maschine Teil I WS 2012/2013 Äquivalenz vieler Berechnungsmodelle Alonzo Church λ-kalkül Kombinatorische Logik Alan Turing Turing-Maschine Mathematische Präzisierung Effektiv Berechenbare

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Turingmaschinen und rekursiv aufzählbare Sprachen (V) 7.07.2016 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie

Mehr

Theoretische Informatik und Logik Übungsblatt 1 (2016S) Lösung

Theoretische Informatik und Logik Übungsblatt 1 (2016S) Lösung Theoretische Informatik und Logik Übungsblatt (26S) en Aufgabe. Sei L = {w#w r w {, } }. Geben Sie eine deterministische Turingmaschine M an, welche die Sprache L akzeptiert. Wählen Sie mindestens einen

Mehr

Informatik A. Prof. Dr. Norbert Fuhr auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser

Informatik A. Prof. Dr. Norbert Fuhr auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser Informatik A Prof. Dr. Norbert Fuhr fuhr@uni-duisburg.de auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser 1 Teil I Logik 2 Geschichte R. Descartes (17. Jhdt): klassische

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik 0 KIT 17.05.2010 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik nationales Forschungszentrum Vorlesung in am

Mehr

7. Übung TGI. Lorenz Hübschle-Schneider, Tobias Maier INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS. 1 Lorenz Hübschle-Schneider, Tobias Maier

7. Übung TGI. Lorenz Hübschle-Schneider, Tobias Maier INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS. 1 Lorenz Hübschle-Schneider, Tobias Maier 7. Übung TGI Lorenz Hübschle-Schneider, Tobias Maier INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 Lorenz Hübschle-Schneider, Tobias Maier KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Mehr

Komplexitätstheorie WiSe 2011/12 in Trier. Henning Fernau Universität Trier

Komplexitätstheorie WiSe 2011/12 in Trier. Henning Fernau Universität Trier Komplexitätstheorie WiSe 2011/12 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Komplexitätstheorie Gesamtübersicht Organisatorisches / Einführung Motivation / Erinnerung / Fragestellungen

Mehr

Beispiel: NTM. M = ({q 0,q 1,q 2 }, {0, 1}, {0, 1, #},δ, q 0, #, {q 2 }) q 2

Beispiel: NTM. M = ({q 0,q 1,q 2 }, {0, 1}, {0, 1, #},δ, q 0, #, {q 2 }) q 2 Beispiel: NTM M = ({q 0,q 1,q 2 }, {0, 1}, {0, 1, #},δ, q 0, #, {q 2 }) 0,1,R 0,0,R q0 1,0,R q1 #,#,R q2 0,0,L Zustand 0 1 # q 0 {(1, R, q 0 )} {(0, R, q 1 )} q 1 {(0, R, q 1 ),(0, L, q 0 )} {(1, R, q

Mehr

Der Lese-Schreib-Kopf kann auch angehalten werden (H). Die Verarbeitung ist dann beendet.

Der Lese-Schreib-Kopf kann auch angehalten werden (H). Die Verarbeitung ist dann beendet. Die Turingmaschine besteht aus der Steuereinheit, die verschiedene Zustände annimmt dem Band, welches unendlich ausgedehnt ist, aber nur auf einem endlichem Bereich mit Zeichen aus einem Alphabet beschrieben

Mehr

Hier ist ein einfaches Turingprogramm. Außer dem Leerzeichen ist das Band nur mit. 1 belegt.

Hier ist ein einfaches Turingprogramm. Außer dem Leerzeichen ist das Band nur mit. 1 belegt. Die Turingmaschine besteht aus der Steuereinheit, die verschiedene Zustände annimmt dem Band, welches unendlich ausgedehnt ist, aber nur auf einem endlichem Bereich mit Zeichen aus einem Alphabet beschrieben

Mehr

Unentscheidbarkeit. 1. Wann sind Sprachen unentscheidbar? 1, A 0, A } = {

Unentscheidbarkeit. 1. Wann sind Sprachen unentscheidbar? 1, A 0, A } = { Unentscheidbarkeit 1. Wann sind Sprachen unentscheidbar? Eine Menge A heisst entscheidbar, falls die charakteristische Funktion von A, nämlich A : {0,1}, berechenbar ist, d.h. gilt: A = { 1, A 0, A } Eine

Mehr

Theoretische Informatik für Wirtschaftsinformatik und Lehramt

Theoretische Informatik für Wirtschaftsinformatik und Lehramt Theoretische Informatik für Wirtschaftsinformatik und Lehramt Entscheidungsprobleme Priv.-Doz. Dr. Stefan Milius stefan.milius@fau.de Theoretische Informatik Friedrich-Alexander Universität Erlangen-Nürnberg

Mehr

Die Unentscheidbarkeit extensionaler Eigenschaften von Turingmaschinen: der Satz von Rice

Die Unentscheidbarkeit extensionaler Eigenschaften von Turingmaschinen: der Satz von Rice Die Unentscheidbarkeit extensionaler Eigenschaften von Turingmaschinen: der Satz von Rice Holger Arnold Dieser Text befasst sich mit der Frage, unter welchen Bedingungen das Problem, zu bestimmen, ob die

Mehr

Was ist ein Computer? Was ist ein Programm? Können Computer Alles?

Was ist ein Computer? Was ist ein Programm? Können Computer Alles? Was ist ein Computer? Was ist ein Programm? Können Computer Alles? Die Turing Maschine Auf jedem Bandquadrat steht ein Buchstabe (Symbol, Zeichen) in A,,Z, a,,z, 0,.,9,$,,., leer Endliches Alphabet Steuereinheit

Mehr

Informatik III. Arne Vater Wintersemester 2006/ Vorlesung

Informatik III. Arne Vater Wintersemester 2006/ Vorlesung Informatik III Arne Vater Wintersemester 2006/07 10. Vorlesung 24.11.2006 1 Turingmaschinen Informatik III 9. Vorlesung - 2 Turingmaschinen Eine (deterministische 1-Band) Turingmaschine (DTM) wird beschrieben

Mehr

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie 1 Einführung 2 Typ-0- und Typ-1-Sprachen 3 Berechnungsmodelle 4 Unentscheidbarkeit 5 Unentscheidbare Probleme 6 Komplexitätstheorie WS 11/12 155 Überblick Zunächst einmal definieren wir formal den Begriff

Mehr

11. Übungsblatt. x y(top(push(x, y)) = y)

11. Übungsblatt. x y(top(push(x, y)) = y) Logik, Berechenbarkeit und Komplexität Sommersemester 2012 Hochschule RheinMain Prof. Dr. Steffen Reith 11. Übungsblatt 1. Ein Keller (engl. stack) ist eine bekannte Datenstruktur. Sei die Signatur S =

Mehr

Kapitel 1.5 und 1.6. Ein adäquater Kalkül der Aussagenlogik

Kapitel 1.5 und 1.6. Ein adäquater Kalkül der Aussagenlogik Kapitel 1.5 und 1.6 Ein adäquater Kalkül der Aussagenlogik Teil 1: Kalküle und Beweisbarkeit und die Korrektheit des Shoenfield-Kalküls Mathematische Logik (WS 2010/11) Kapitel 1.5 und 1.6: Kalküle 1 /

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 11. Kontextsensitive und Typ-0-Sprachen Malte Helmert Gabriele Röger Universität Basel 7. April 2014 Kontextsensitive und allgemeine Grammatiken Wiederholung: (kontextsensitive)

Mehr

Einführung in die Theoretische Informatik Tutorium IX

Einführung in die Theoretische Informatik Tutorium IX Einführung in die Theoretische Informatik Tutorium IX Michael R. Jung 16. & 17. 12. 2014 EThI - Tutorium IX 1 1 Entscheidbarkeit, Semi-Entscheidbarkeit und Unentscheidbarkeit 2 EThI - Tutorium IX 2 Definitionen

Mehr

Unentscheidbarkeit des Halteproblems: Unterprogrammtechnik

Unentscheidbarkeit des Halteproblems: Unterprogrammtechnik Unentscheidbarkeit des Halteproblems: Unterprogrammtechnik Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen Oktober 2011 Berthold Vöcking, Informatik 1 () Vorlesung

Mehr

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 14.

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 14. Formale Logik PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg Wintersemester 16/17 Sitzung vom 14. Dezember 2016 Die formale Sprache der Prädikatenlogik: Zeichen Benutzt werden

Mehr

Übungsblatt Nr. 4. Lösungsvorschlag

Übungsblatt Nr. 4. Lösungsvorschlag Institut für Kryptographie und Sicherheit Prof. Dr. Jörn Müller-Quade Dirk Achenbach Tobias Nilges Vorlesung Theoretische Grundlagen der Informatik Übungsblatt Nr. 4 svorschlag Aufgabe 1: Ein neuer Held

Mehr

Turing-Maschinen: Ein abstrakes Maschinenmodell

Turing-Maschinen: Ein abstrakes Maschinenmodell Wann ist eine Funktion (über den natürlichen Zahlen) berechenbar? Intuitiv: Wenn es einen Algorithmus gibt, der sie berechnet! Was heißt, eine Elementaroperation ist maschinell ausführbar? Was verstehen

Mehr

Präsenzübung Berechenbarkeit und Komplexität

Präsenzübung Berechenbarkeit und Komplexität Lehrstuhl für Informatik 1 WS 2013/14 Prof. Dr. Berthold Vöcking 28.01.2014 Kamal Al-Bawani Benjamin Ries Präsenzübung Berechenbarkeit und Komplexität Musterlösung Name:...................................

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Turingmaschinen und rekursiv aufzählbare Sprachen 1.07.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt 1. Motivation 2. Terminologie

Mehr

Logik und Beweisbarkeit

Logik und Beweisbarkeit Logik und Beweisbarkeit Einleitung Martin Mundhenk Univ. Jena, Institut für Informatik. Februar 0 Einleitung: U ber Sinn und Form Symbolisches Addieren Al-Chwarizmi (etwa 8 80) Problem: Was ist MMMDCCCXCIX

Mehr

Turingmaschinen Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: Komplexitätstheorie und effiziente Algorithmen

Turingmaschinen Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: Komplexitätstheorie und effiziente Algorithmen Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: und effiziente Algorithmen Wintersemester 2011/12 Schematische Darstellung einer Turing-Maschine: Kopf kann sich nach links und

Mehr

Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen. notwendig: Existenz- und Allaussagen

Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen. notwendig: Existenz- und Allaussagen Prädikatenlogik 1. Stufe (kurz: PL1) Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen notwendig: Existenz- und Allaussagen Beispiel: 54 Syntax der Prädikatenlogik erster Stufe (in der

Mehr

Auffrischung Einige (wenige) Grundlagen der Theoretischen Informatik

Auffrischung Einige (wenige) Grundlagen der Theoretischen Informatik Logik, Berechenbarkeit und Komplexität Sommersemester 2008 Fachhochschule Wiesbaden Prof. Dr. Steffen Reith Auffrischung Einige (wenige) Grundlagen der Theoretischen Informatik 1 Turingmaschinen - Ein

Mehr

Weitere universelle Berechnungsmodelle

Weitere universelle Berechnungsmodelle Weitere universelle Berechnungsmodelle Mehrband Turingmaschine Nichtdeterministische Turingmaschine RAM-Modell Vektoradditionssysteme λ-kalkül µ-rekursive Funktionen 1 Varianten der dtm Mehrkopf dtm Kontrolle

Mehr

Entscheidungsprobleme

Entscheidungsprobleme Entscheidungsprobleme übliche Formulierung gegeben: Eingabe x aus einer Grundmenge U Frage: Hat x eine bestimmte Eigenschaft P? Beispiel: gegeben: Frage: n N Ist n eine Primzahl? Formalisierung: Grundmenge

Mehr

2.5 Halteproblem und Unentscheidbarkeit

2.5 Halteproblem und Unentscheidbarkeit 38 25 Halteproblem und Unentscheidbarkeit Der Berechenbarkeitsbegriff ist auf Funktionen zugeschnitten Wir wollen nun einen entsprechenden Begriff für Mengen einführen Definition 255 Eine Menge A Σ heißt

Mehr

Berechnungsmodelle. Mathias Hecht. April 29, 2010

Berechnungsmodelle. Mathias Hecht. April 29, 2010 Berechnungsmodelle Mathias Hecht April 29, 2010 1 Die Turingmaschine 1.1 Definition Eine Turingmaschine wird durch ein Tupel (Γ, Q, δ) beschrieben. Γ ein endliches Alphabet Q : eine endliche Menge an Zuständen

Mehr

Typ-0-Sprachen und Turingmaschinen

Typ-0-Sprachen und Turingmaschinen Typ-0-Sprachen und Turingmaschinen Jean Vancoppenolle Universität Potsdam Einführung in formale Sprachen und Automaten Dr. Thomas Hanneforth (Präsentation aus Foliensätzen von Dr. Thomas Hanneforth und

Mehr

Rekursiv aufzählbare Sprachen

Rekursiv aufzählbare Sprachen Kapitel 4 Rekursiv aufzählbare Sprachen 4.1 Grammatiken und die Chomsky-Hierarchie Durch Zulassung komplexer Ableitungsregeln können mit Grammatiken größere Klassen als die kontextfreien Sprachen beschrieben

Mehr

Halteproblem/Kodierung von Turing-Maschinen

Halteproblem/Kodierung von Turing-Maschinen Halteproblem/Kodierung von Turing-Maschinen Unser Ziel ist es nun zu zeigen, dass das sogenannte Halteproblem unentscheidbar ist. Halteproblem (informell) Eingabe: Turing-Maschine M mit Eingabe w. Frage:

Mehr

Turing Maschine. Thorsten Timmer. SS 2005 Proseminar Beschreibungskomplexität bei Prof. D. Wotschke. Turing Maschine SS 2005 p.

Turing Maschine. Thorsten Timmer. SS 2005 Proseminar Beschreibungskomplexität bei Prof. D. Wotschke. Turing Maschine SS 2005 p. Thorsten Timmer SS 2005 Proseminar Beschreibungskomplexität bei Prof. D. Wotschke Turing Maschine SS 2005 p. 1/35 Inhalt Einführung Formale Definition Berechenbare Sprachen und Funktionen Berechnung ganzzahliger

Mehr

Logik für Informatiker Logic for Computer Scientists

Logik für Informatiker Logic for Computer Scientists Logik für Informatiker Logic for Computer Scientists Till Mossakowski Wintersemester 2014/15 Till Mossakowski Logik 1/ 13 Vollständigkeit der Aussagenlogik Till Mossakowski Logik 2/ 13 Objekt- und Metatheorie

Mehr

Unentscheidbarkeit des Halteproblems, Unterprogrammtechnik

Unentscheidbarkeit des Halteproblems, Unterprogrammtechnik Unentscheidbarkeit des Halteproblems, Unterprogrammtechnik Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 26. Oktober 2009 Berthold Vöcking, Informatik 1 () Vorlesung

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Turingmaschinen und rekursiv aufzählbare Sprachen (V) 16.07.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie

Mehr

Turing Maschinen II Wiederholung

Turing Maschinen II Wiederholung Organisatorisches VL-03: Turing Maschinen II (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger Nächste Vorlesung: Mittwoch, Oktober 25, 14:15 15:45 Uhr, Roter Hörsaal Webseite: http://algo.rwth-aachen.de/lehre/ws1718/buk.php

Mehr

VL-03: Turing Maschinen II. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger

VL-03: Turing Maschinen II. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger VL-03: Turing Maschinen II (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger WS 2017, RWTH BuK/WS 2017 VL-03: Turing Maschinen II 1/27 Organisatorisches Nächste Vorlesung: Mittwoch, Oktober

Mehr

11.1 Kontextsensitive und allgemeine Grammatiken

11.1 Kontextsensitive und allgemeine Grammatiken Theorie der Informatik 7. April 2014 11. Kontextsensitive und Typ-0-Sprachen Theorie der Informatik 11. Kontextsensitive und Typ-0-Sprachen 11.1 Kontextsensitive und allgemeine Grammatiken Malte Helmert

Mehr

Motivation und Geschichte. Geschichte der Logik Logik und Informatik

Motivation und Geschichte. Geschichte der Logik Logik und Informatik Motivation und Geschichte Geschichte der Logik Logik und Informatik Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 2.1 Motivation und Geschichte Geschichte der Logik 13 Aufgaben der Logik

Mehr

Turing-Maschine. Berechenbarkeit und Komplexität Turing-Maschinen. Turing-Maschine. Beispiel

Turing-Maschine. Berechenbarkeit und Komplexität Turing-Maschinen. Turing-Maschine. Beispiel Berechenbarkeit und Komplexität Turing-Maschinen Wolfgang Schreiner Wolfgang.Schreiner@risc.jku.at Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria http://www.risc.jku.at

Mehr

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie 1 Einführung 2 Typ-0- und Typ-1-Sprachen 3 Berechnungsmodelle 4 Unentscheidbarkeit 5 Unentscheidbare Probleme 6 Komplexitätstheorie 139 Unentscheidbarkeit Überblick Zunächst einmal definieren wir formal

Mehr

THEORETISCHE INFORMATIK UND LOGIK

THEORETISCHE INFORMATIK UND LOGIK THEORETISCHE INFORMATIK UND LOGIK 4. Vorlesung: Das Halteproblem und Reduktionen Markus Krötzsch Lehrstuhl Wissensbasierte Systeme TU Dresden, 19. April 2017 Ankündigung Wegen großer Nachfrage wird eine

Mehr

Lösung zur Klausur. Grundlagen der Theoretischen Informatik im WiSe 2003/2004

Lösung zur Klausur. Grundlagen der Theoretischen Informatik im WiSe 2003/2004 Lösung zur Klausur Grundlagen der Theoretischen Informatik im WiSe 2003/2004 1. Geben Sie einen deterministischen endlichen Automaten an, der die Sprache aller Wörter über dem Alphabet {0, 1} akzeptiert,

Mehr

Ein formales Berechnungsmodell: Turingmaschinen. Turingmaschinen 26 / 62

Ein formales Berechnungsmodell: Turingmaschinen. Turingmaschinen 26 / 62 Ein formales Berechnungsmodell: Turingmaschinen Turingmaschinen 26 / 62 Ein formales Rechnermodell Bisher haben wir abstrakt von Algorithmen bzw. Programmen gesprochen und uns dabei JAVA- oder C++-Programme

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informatik Maximilian Haslbeck Fabian Mitterwallner Georg Moser David Obwaller cbr.uibk.ac.at Zusammenfassung der letzten LVA Definition Eine Registermaschine (RM) R ist

Mehr

Proseminar Komplexitätstheorie P versus NP Wintersemester 2006/07. Nichtdeterministische Turingmaschinen und NP

Proseminar Komplexitätstheorie P versus NP Wintersemester 2006/07. Nichtdeterministische Turingmaschinen und NP Proseminar Komplexitätstheorie P versus NP Wintersemester 2006/07 Vortrag am 17.11.2006 Nichtdeterministische Turingmaschinen und NP Yves Radunz Inhaltsverzeichnis 1 Wiederholung 3 1.1 Allgemeines........................................

Mehr

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 18.

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 18. Formale Logik PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg Wintersemester 16/17 Sitzung vom 18. Januar 2017 Kalküle (1) Kalküle (m) sind Regelsysteme, mit denen sich allgemeingültige

Mehr

Übungsblatt 3. Vorlesung Theoretische Grundlagen der Informatik im WS 17/18

Übungsblatt 3. Vorlesung Theoretische Grundlagen der Informatik im WS 17/18 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 3 Vorlesung Theoretische Grundlagen der Informatik im WS 17/18 Ausgabe 21. November 2017 Abgabe 5. Dezember 2017, 11:00 Uhr

Mehr

Deterministische und nichtdeterministische Turing-Maschinen, Typ1- und Typ0-Sprachen

Deterministische und nichtdeterministische Turing-Maschinen, Typ1- und Typ0-Sprachen Dr. Sebastian Bab WiSe 12/13 Theoretische Grundlagen der Informatik für TI Termin: VL 15 + 16 vom 17.12.2012 und 20.12.2012 Deterministische und nichtdeterministische Turing-Maschinen, Typ1- und Typ0-Sprachen

Mehr

Nichtklassische Logiken

Nichtklassische Logiken Nichtklassische Logiken Peter H. Schmitt pschmitt@ira.uka.de UNIVERSITÄT KARLSRUHE Sommersemester 2004 P. H. Schmitt: Nichtklassische Logiken p.1 Inhalt Wiederholung P. H. Schmitt: Nichtklassische Logiken

Mehr

1 Lokale Sprachen. 2 Verallgemeinerung

1 Lokale Sprachen. 2 Verallgemeinerung 1 Lokale Sprachen Es soll um Sprachen gehen die nur aufgrund ihrer Teilworte einer festen Länge entschieden werden können. Anschaulich heisst dies man kann ein Fenster der Länge k über das Eingabewort

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 9. Prädikatenlogik Syntax und Semantik der Prädikatenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Syntax der

Mehr

Berechenbarkeit und Komplexität: Rekursive Aufzählbarkeit und die Technik der Reduktion

Berechenbarkeit und Komplexität: Rekursive Aufzählbarkeit und die Technik der Reduktion Berechenbarkeit und Komplexität: Rekursive Aufzählbarkeit und die Technik der Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität 26. November 2007 Semi-Entscheidbarkeit

Mehr

Wie man eine Sprache versteht

Wie man eine Sprache versteht Aufzählbarkeit Formale Grundlagen der Informatik 1 Kapitel 10 Aufzählbarkeit und (Un-)Entscheidbarkeit Frank Heitmann heitmann@informatik.uni-hamburg.de 11. Mai 2015 Definition 1 Eine Menge M Σ heißt (rekursiv)

Mehr

1 Einführung in die Prädikatenlogik

1 Einführung in die Prädikatenlogik 1 Einführung in die Prädikatenlogik Die Aussagenlogik behandelt elementare Aussagen als Einheiten, die nicht weiter analysiert werden. Die Prädikatenlogik dagegen analysiert die elementaren Aussagen und

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Turingmaschinen und rekursiv aufzählbare Sprachen (III) 8.07.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie

Mehr

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Beispiel einer nicht berechenbaren Funktion: Busy Beaver

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Beispiel einer nicht berechenbaren Funktion: Busy Beaver Dank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Diese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen

Mehr

Referat rekursive Mengen vs. rekursiv-aufzählbare Mengen

Referat rekursive Mengen vs. rekursiv-aufzählbare Mengen Kapitel 1: rekursive Mengen 1 rekursive Mengen 1.1 Definition 1.1.1 informal Eine Menge heißt rekursiv oder entscheidbar, wenn ihre charakteristische Funktion berechenbar ist. 1.1.2 formal Eine Menge A

Mehr

Unentscheidbarkeit von Problemen mittels Turingmaschinen

Unentscheidbarkeit von Problemen mittels Turingmaschinen Unentscheidbarkeit von Problemen mittels Turingmaschinen Daniel Roßberg 0356177 Roland Schatz 0355521 2. Juni 2004 Zusammenfassung In dieser Arbeit befassen wir uns mit der Unentscheidbarkeit von Problemen

Mehr

Das Halteproblem für Turingmaschinen

Das Halteproblem für Turingmaschinen Das Halteproblem für Turingmaschinen Das Halteproblem für Turingmaschinen ist definiert als die Sprache H := { T w : T ist eine TM, die bei Eingabe w {0, 1} hält }. Behauptung: H {0, 1} ist nicht entscheidbar.

Mehr

Berechenbarkeitstheorie 19. Vorlesung

Berechenbarkeitstheorie 19. Vorlesung 1 Berechenbarkeitstheorie Dr. Institut für Mathematische Logik und Grundlagenforschung WWU Münster WS 15/16 Alle Folien unter Creative Commons Attribution-NonCommercial 3.0 Unported Lizenz. Erinnerung:

Mehr

FORMALE SYSTEME. 19. Vorlesung: Nichtdeterminismus und Unentscheidbarkeit. TU Dresden, 18. Dezember 2017

FORMALE SYSTEME. 19. Vorlesung: Nichtdeterminismus und Unentscheidbarkeit. TU Dresden, 18. Dezember 2017 FORMALE SYSTEME 19. Vorlesung: Nichtdeterminismus und Unentscheidbarkeit Markus Krötzsch Professur für Wissensbasierte Systeme TU Dresden, 18. Dezember 2017 Rückblick Alan Turing (5 Jahre alt) Markus Krötzsch,

Mehr

Logik I. Symbole, Terme, Formeln

Logik I. Symbole, Terme, Formeln Logik I Symbole, Terme, Formeln Wie jede geschriebene Sprache basiert die Prädikatenlogik erster Stufe auf einem Alphabet, welches aus den folgenden Symbolen besteht: (a) Variabeln wie zum Beispiel v 0,v

Mehr

VL-06: Unentscheidbarkeit II. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger

VL-06: Unentscheidbarkeit II. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger VL-06: Unentscheidbarkeit II (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger WS 2017, RWTH BuK/WS 2017 VL-06: Unentscheidbarkeit II 1/37 Organisatorisches Nächste Vorlesung: Mittwoch, November

Mehr

De Morgan sche Regeln

De Morgan sche Regeln De Morgan sche Regeln Durch Auswerten der Wahrheitswertetabelle stellen wir fest, dass allgemeingültig ist; ebenso (p q) p q (p q) p q. Diese beiden Tautologien werden als die De Morgan schen Regeln bezeichnet,

Mehr

Klausur zur Vorlesung Mathematische Logik

Klausur zur Vorlesung Mathematische Logik Universität Heidelberg 13. Februar 2014 Institut für Informatik Prof. Dr. Klaus Ambos-Spies Dipl.-Math. Thorsten Kräling Klausur zur Vorlesung Mathematische Logik Musterlösung Aufgabe 1 (Aussagenlogik

Mehr

Clevere Algorithmen programmieren

Clevere Algorithmen programmieren ClevAlg 2017 Theoretische Informatik Clevere Algorithmen programmieren Dennis Komm, Jakub Závodný, Tobias Kohn 06. Dezember 2017 Die zentralen Fragen sind... Was kann man mit einem Computer nicht machen?

Mehr

Rekursive Aufzählbarkeit Die Reduktion

Rekursive Aufzählbarkeit Die Reduktion Rekursive Aufzählbarkeit Die Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen November 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Deterministische Turing-Maschinen

Deterministische Turing-Maschinen Deterministische Turing-Maschinen Um 900 präsentierte David Hilbert auf einem internationalen Mathematikerkongress eine Sammlung offener Fragen, deren Beantwortung er von zentraler Bedeutung für die weitere

Mehr

Semi-Entscheidbarkeit und rekursive Aufzählbarkeit

Semi-Entscheidbarkeit und rekursive Aufzählbarkeit Semi-Entscheidbarkeit und rekursive Aufzählbarkeit Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 9. November 2009 Berthold Vöcking, Informatik 1 () Vorlesung

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Turingmaschinen und rekursiv aufzählbare Sprachen (II) 2.07.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie

Mehr

Das Halteproblem. H = { M w M hält auf w}.

Das Halteproblem. H = { M w M hält auf w}. Das Halteproblem Beim Halteproblem geht es darum, zu entscheiden, ob ein Programm auf einer bestimmten Eingabe terminiert. In der Notation der TM ergibt sich die folgende formale Problemdefinition. H =

Mehr

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie 1 Einführung 2 Typ-0- und Typ-1-Sprachen 3 Berechnungsmodelle 4 Unentscheidbarkeit 5 Unentscheidbare Probleme 6 Komplexitätstheorie 15 Ziele vgl. AFS: Berechnungsmodelle für Typ-0- und Typ-1-Sprachen (Nicht-)Abschlußeigenschaften

Mehr

4 Die Turing-Maschine

4 Die Turing-Maschine 16 4 Die Turing-Maschine 4.1 Wörter und Gödelisierung Ein Alphabet ist eine endliche Menge verschiedener Objekte {a 1, a 2,..., a k }, die wir auch Buchstaben nennen. Dies können die uns bekannten Buchstaben

Mehr

Einführung in die Informatik Turing Machines

Einführung in die Informatik Turing Machines Einführung in die Informatik Turing Machines Eine abstrakte Maschine zur Präzisierung des Algorithmenbegriffs Wolfram Burgard 1 Motivation und Einleitung Bisher haben wir verschiedene Programmiersprachen

Mehr

11.3 Eindimensionale Turingmaschinen

11.3 Eindimensionale Turingmaschinen 11.3 Eindimensionale Turingmaschinen 156 11.3 Eindimensionale Turingmaschinen Turing ging vom schriftlichen Rechnen aus, also vom Beschreiben eines Papiers mit einem Stift. Wollen wir etwas aufschreiben,

Mehr

Formale Grundlagen (Nachträge)

Formale Grundlagen (Nachträge) Inhaltsverzeichnis 1 Aussagenlogik: Funktionale Vollständigkeit................... 1 Bit-Arithmetik mit logischen Operationen.................... 3 Prädikatenlogik: Eine ganz kurze Einführung..................

Mehr

FORMALE SYSTEME. Rückblick. Die Turingmaschine. Church-Turing-These. 19. Vorlesung: Nichtdeterminismus und Unentscheidbarkeit

FORMALE SYSTEME. Rückblick. Die Turingmaschine. Church-Turing-These. 19. Vorlesung: Nichtdeterminismus und Unentscheidbarkeit Rückblick FORMALE SYSTEME 19. Vorlesung: Nichtdeterminismus und Unentscheidbarkeit Markus Krötzsch Professur für Wissensbasierte Systeme Alan Turing (5 Jahre alt) TU Dresden, 18. Dezember 2017 Markus Krötzsch,

Mehr

Einführung in Berechenbarkeit, Komplexität und Formale Sprachen

Einführung in Berechenbarkeit, Komplexität und Formale Sprachen Einführung in Berechenbarkeit, Komplexität und Formale Sprachen V8, 5.11.09 Willkommen zur Vorlesung Einführung in Berechenbarkeit, Komplexität und Formale Sprachen Friedhelm Meyer auf der Heide 1 Rückblick

Mehr