Übersicht 2. Mathematik als Beruf? Von logischen Strukturen und spannenden Aufgaben. Martin Oellrich. wer das Problem löste 4

Größe: px
Ab Seite anzeigen:

Download "Übersicht 2. Mathematik als Beruf? Von logischen Strukturen und spannenden Aufgaben. Martin Oellrich. wer das Problem löste 4"

Transkript

1 Mathematik als Beruf? Von logischen Strukturen und spannenden Aufgaben Übersicht 5. April April 009 Martin Oellrich 1 vom Problem zur Theorie die Idee weiter denken 3 MathematikerIn werden? Gibt es einen Wanderweg, der über jede der Brücken (rot) genau einmal führt? ein Problem vor der Haustür 3 wer das Problem löste 4 Trug maßgebliche Fortschritte bei in Königsberg 1736: sieben Brücken über den Pregel Frage: gibt es einen Wanderweg, der über jede der Brücken (rot) genau einmal führt? Leonhard Euler schweizer Mathematiker ( ) Algebra / Zahlentheorie Analysis / Funktionentheorie (Euler-Zahl e) Differential- und Integralgleichungen Kombinatorik / Graphentheorie (Begründer) history/mathematicians/euler.html

2 die Vorbereitung 5 die Lösung 6 Eulers Idee: Abstraktion durch einen Graphen Eulers Beobachtung: beim Durchlaufen eines Weges werden in allen inneren Knoten eine gerade Anzahl Kanten verbraucht jede Landmasse wird repräsentiert durch einen Knoten jede Brücke wird repräsentiert durch eine Kante Eulers Einsicht: die wesentliche Problemstruktur steckt in diesem Modell! die eigentliche Leistung 7 Eulers Schluss: für einen Weg über alle Kanten darf es höchstens zwei Knoten mit ungerader Anzahl Kanten geben das ist nicht erfüllt! Übersicht 8 Was bedeutet Eulers Erkenntnis? klar: der Fall Königsberg ist gelöst Graphen: eine neuartige Idee, die Realität nachzubilden flexibles Instrument mit enormer Tragweite der Beweis: allgemeingültige Struktur in allen vergleichbaren Situationen 1 vom Problem zur Theorie die Idee weiter denken 3 MathematikerIn werden? Neubegründung der Graphentheorie hier wird noch heute geforscht!

3 Problemlösung mit Graphen 9 Aufgabe A 10 Aufgabe A Aufgabe B Frage: Gibt es für einen Springer einen Weg auf dem Schachbrett, der über jedes Feld genau einmal führt? Gibt es für einen Springer einen Weg auf dem 4 4-Schachbrett, der über jedes Feld genau einmal führt? Kann man das 4 4-Schachbrett ohne die beiden Ecken lückenlos mit 1 -Dominosteinen überdecken? Aufgabe A 11 Aufgabe B 1 Frage: Kann man das 4 4-Schachbrett ohne die beiden Ecken lückenlos mit 1 -Dominosteinen überdecken? Beobachtung: der Weg benutzt in jedem Knoten genau zwei Kanten. Wegen des eindeutigen Wegs durch die Eckfelder entsteht ein Kurzkreis kein vollständiger Weg möglich.

4 Aufgabe B 13 ein einfaches Problem? Jeder Dominostein entspricht im Graphen einer Kante, die einen weißen mit einem schwarzen Knoten verbindet. Es gibt verschieden viele weiße und schwarze Knoten keine vollständige Überdeckung möglich. Wie kann man die Deutschlandkarte mit möglichst wenigen Farben so einfärben, dass benachbarte Länder verschiedene Farben bekommen? ein einfaches Problem? 15 Geschichte des Landkartenproblems 16 allgemeine Aufgabe: färbe die Knoten eines ebenen Graphen so, dass die Enden jeder Kante verschiedene Farben bekommen. Frage: Geht das immer mit höchstens 4 Farben? Kartographen kommen schon immer mit 4 Farben aus 185: Francis Guthrie formuliert die Vermutung mathematisch 1878 bringt Arthur Cayley das Problem in die London Mathematical Society 1879 veröffentlicht Alfred Kempe einen ersten Beweis 1890 erkennt Percy Heawood ihn als falsch, kann aber beweisen, dass fünf Farben ausreichen 1969 hat Heinrich Heesch entscheidende Ideen für einen Beweis, kann sie aber technisch nicht durchführen 1976 gelingt Ken Appel und Wolfgang Haken ein Beweis mit Computerhilfe 1996 reduzieren 4 Mathematiker den Rechenaufwand auf 1 3 Mathe ist weltweites Teamwork

5 die Geschichte geht weiter 17 Euler heute: Rundfahrt der Müllabfuhr 18 noch heute wird gearbeitet an einem computerfreien Beweis an den Farbanzahlen anderer Oberflächen Torus: 7 Farben Frage: Wie kann die Müllabfuhr möglichst schnell alle Straßen abfahren? an schnelleren Verfahren zur Konstruktion von 4-Färbungen? Euler heute: Rundfahrt der Müllabfuhr 19 Graphen heute: Navigationssysteme 0 Frage: Wie kann die Müllabfuhr möglichst schnell alle Straßen abfahren? Sackgassen streichen 0 ungerade Knoten! Straßenkarten sind riesige Graphen allgemeine Aufgabe: finde eine Rundfahrt, die (trotz der ungeraden Knoten) so wenig wie möglich Straßen wiederholt. kürzeste Strecken müssen möglichst schnell gefunden werden

6 Graphen heute: Mobilfunk 1 Übersicht 1 vom Problem zur Theorie die Idee weiter denken Antennen stören einander muss mit möglichst wenig Frequenzen auskommen 3 MathematikerIn werden? der Trend 3 das Studium 4 TU Berlin: Bachelor in 6 Semestern Mathematik: allgemein, mit eigenem Schwerpunkt Statistik: Aussagen aus (sehr) vielen Daten Technomathematik: physikalisch-technische Prozesse Wirtschaftsmathematik: Finanzströme, Wirtschaftsmodelle Grundausbildung gleich, Spezialisierung durch Schwerpunkte. Beuth Hochschule Berlin: Bachelor in 7 Semestern Mathematik und Technik: physikalisch-technische Prozesse Wirtschaftsmathematik: Finanzströme, Wirtschaftsmodelle Ausbildung praxisnäher als Uni, ein Praxissemester extra. Quelle: Dieter et al., Zahlen rund um das Mathematikstudium I, MDMV 16/08 HU Berlin: stark in Mathematik für Lehramt FU Berlin: Mathe Einführungskurs. Juni 3. Juli 009 Anmeldeschluss: 1. Juni!

7 die Rolle des Computers 5 die Message 6 Studierende lernen: Verhalten von Zahlen auf einem Computer algorithmische Abläufe für Berechnungen Programmieren in einer Hochsprache, z.b. Java Mathe ist eine jahrtausende lange Erfolgsstory Mathe erfordert Geduld, Grips und Liebe zum Detail Mathe ist abwechslungsreich, nichts wird doppelt gemacht Mathe ist heute Teamwork Mathe belohnt durch Anerkennung sachlicher Ergebnisse Mathe hat Jobs Mathe ist Zukunft! keine Vorliebe für Computer oder Perfektion im Programmieren nötig! Schwerpunkt bleibt auf den Abläufen, nicht der Maschine

Übersicht 2. Mathematik als Beruf? Von logischen Strukturen und spannenden Aufgaben. Martin Oellrich. ein Problem vor der Haustür 3

Übersicht 2. Mathematik als Beruf? Von logischen Strukturen und spannenden Aufgaben. Martin Oellrich. ein Problem vor der Haustür 3 Mathematik als Beruf? Von logischen Strukturen und spannenden Aufgaben Übersicht vom Problem zur Theorie 0. Juni 008 0. Juni 008 Martin Oellrich die Idee weiter denken MathematikerIn werden? Gibt es einen

Mehr

Vier Farben reichen! Von farbigen Landkarten und kniffeligen Beweisen. Martin Oellrich. Warum eine Karte? 3. Warum stetige Grenzen?

Vier Farben reichen! Von farbigen Landkarten und kniffeligen Beweisen. Martin Oellrich. Warum eine Karte? 3. Warum stetige Grenzen? Vier Farben reichen! Von farbigen Landkarten und kniffeligen Beweisen Problemstellung Deutsche Bundesländer in vier Farben 4. April 06 Martin Oellrich Warum geht das immer? Gegeben: Karte eines Gebietes

Mehr

16. Flächenfärbungen

16. Flächenfärbungen Chr.Nelius: Graphentheorie (WS 2015/16) 57 16. Flächenfärbungen In der Mitte des 19. Jahrhunderts tauchte eine Vermutung auf, die erst 125 Jahre später bewiesen werden sollte und die eine der bekanntesten

Mehr

Vier-Farbenproblem. (c) Ein etwas schwereres Beispiel...

Vier-Farbenproblem. (c) Ein etwas schwereres Beispiel... Vier-Farbenproblem Kann man jede Landkarte mit vier Farben färben, sodass keine aneindander angrenzenden Länder die gleiche Farbe haben? Versuchen Sie die Karte Deutschlands oder eines der anderen Bilder

Mehr

Gibt es in Königsberg einen Spaziergang, bei dem man jede der. Pregelbrücken. überquert?

Gibt es in Königsberg einen Spaziergang, bei dem man jede der. Pregelbrücken. überquert? Graphentheorie Gibt es in Königsberg einen Spaziergang, bei dem man jede der sieben Pregelbrücken genau einmal überquert? 1 Königsberger Brückenproblem Im Jahre 1736 Leonhard Euler löste das Problem allgemein

Mehr

4 Färbungen Begriffe Komplexität Greedy-Algorithmus Knotenreihenfolgen Das 4-Farben-Problem...

4 Färbungen Begriffe Komplexität Greedy-Algorithmus Knotenreihenfolgen Das 4-Farben-Problem... Inhaltsverzeichnis 4 Färbungen 41 4.1 Begriffe....................... 41 4.2 Komplexität..................... 42 4.3 Greedy-Algorithmus................ 42 4.4 Knotenreihenfolgen................. 43 4.5

Mehr

Kapitel 3. Kapitel 3 Graphentheorie

Kapitel 3. Kapitel 3 Graphentheorie Graphentheorie Inhalt 3.1 3.1 Grundlagen 3.2 3.2 Das Das Königsberger Brückenproblem 3.3 3.3 Bäume 3.4. 3.4. Planare Graphen 3.5 3.5 Färbungen Seite 2 3.1 Grundlagen Definition. Ein Ein Graph besteht aus

Mehr

Gibt es in Königsberg einen Spaziergang, bei dem man jede der sieben Pregelbrücken genau einmal überquert?

Gibt es in Königsberg einen Spaziergang, bei dem man jede der sieben Pregelbrücken genau einmal überquert? Graphentheorie Gibt es in Königsberg einen Spaziergang, bei dem man jede der sieben Pregelbrücken genau einmal überquert? Königsberger Brückenproblem Gibt es in Königsberg einen Spaziergang, bei dem man

Mehr

Der Vier-Farben-Satz

Der Vier-Farben-Satz , Samuel Hetterich, Felicia Raßmann Goethe-Universität Frankfurt, Institut für Mathematik 21.Juni 2013 Wieviele Farben braucht man zum Färben einer Landkarte? Spielregeln Länder mit einer gemeinsamen Grenze

Mehr

Alexandra Kuhls Proseminar Das Buch der Beweise

Alexandra Kuhls Proseminar Das Buch der Beweise Der Fünf Farben Satz Alexandra Kuhls Proseminar Das Buch der Beweise 30.11.2017 Der Fünf Farben Satz Ist es möglich, die Gebiete einer ebenen Karte so Ist es möglich, die Gebiete einer ebenen Karte so

Mehr

Wozu ist Mathematik gut? M. Hinze

Wozu ist Mathematik gut? M. Hinze Wozu ist Mathematik gut? M. Hinze Technische Universität Dresden Institut für Numerische Mathematik hinze@math.tu-dresden.de www.math.tu-dresden.de/ hinze Technische Universität Dresden Institut für Numerische

Mehr

Sudoku und Mathematik

Sudoku und Mathematik Sudoku und Mathematik Ulrich Görtz http://www.esaga.uni-due.de/ulrich.goertz 24. September 2010 1 Einführung 2 Lösungsstrategien 3 Färben von Graphen Sudoku Sudoku erfunden 1979 als number place von Howard

Mehr

Wiederholung aus Diskreter Mathematik I: I: Graphentheorie

Wiederholung aus Diskreter Mathematik I: I: Graphentheorie Wiederholung aus Diskreter Mathematik I: I: Graphentheorie Inhalt: W.1 Grundlagen W.2 Das Königsberger Brückenproblem W.3 Bäume W.4 Planare Graphen W.5 Färbungen W.1 Grundlagen Ein Ein Graph besteht aus

Mehr

Brückenkurs Mathematik. Jörn Steuding (Uni Würzburg), 13. Januar 2018

Brückenkurs Mathematik. Jörn Steuding (Uni Würzburg), 13. Januar 2018 Brückenkurs Mathematik Jörn Steuding (Uni Würzburg), 3. Januar 08 unser Programm. November:. Zahlen und einfache Gleichungen Zahlen, Rechengesetze, lineare u. quadratische Gleichungen, Dezimalbrüche, ein

Mehr

Begrüßung zum Bachelor-Studium Mathematik. 16. Oktober IfM INSTITUT FÜR MATHEMATIK

Begrüßung zum Bachelor-Studium Mathematik. 16. Oktober IfM INSTITUT FÜR MATHEMATIK Begrüßung zum Bachelor-Studium Mathematik 16. Oktober 2012 Übersicht 1. Was ist Mathematik? 2. Informationen zum Studium Was ist Mathematik? Mathematik... ist eine wunderbare Landschaft, die es zu entdecken

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Bernd Döring. Wege, Plätten, Färben. Vom Problem zur Theorie der Graphen

Bernd Döring. Wege, Plätten, Färben. Vom Problem zur Theorie der Graphen Bernd Döring Wege, Plätten, Färben Vom Problem zur Theorie der Graphen Bernd Döring, 2002-2005 Bernd Döring Johannes-Althusius-Gymnasium Früchteburger Weg 28 26721 Emden - 2 - Inhaltsverzeichnis 0. Einleitung

Mehr

Bemerkung: Der vollständige Graph K n hat n(n 1)

Bemerkung: Der vollständige Graph K n hat n(n 1) Bemerkung: Der vollständige Graph K n hat n(n 1) 2 Kanten. Bew: Abzählen! Definition 111. Graphen mit n paarweise zyklisch verbundenen Kanten heißen Kreise (vom Grad n) und werden mit C n bezeichnet. Beispiel

Mehr

Diskrete Strukturen Kapitel 4: Graphentheorie (Euler-Hamilton)

Diskrete Strukturen Kapitel 4: Graphentheorie (Euler-Hamilton) WS 2015/16 Diskrete Strukturen Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

in einem Zug finden, egal, wie lange man probiert? b) Warum kann man von bestimmten Ecken aus niemals eine Lösung

in einem Zug finden, egal, wie lange man probiert? b) Warum kann man von bestimmten Ecken aus niemals eine Lösung Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Graphentheorie... oder das Haus vom Nikolaus! Graphentheorie man könnte meinen, dass es hier um Funktionsgraphen geht, wie ihr sie

Mehr

Einführung in die Diskrete Mathematik

Einführung in die Diskrete Mathematik Einführung in die Diskrete Mathematik Sommersemester 2014 PD Dr. Nils Rosehr Inhaltsverzeichnis I Einleitung 5 II Kombinatorik 5 1 Grundlagen der Kombinatorik 6 1.1 Standardbezeichnungen......................

Mehr

WS 2015/16 Diskrete Strukturen Kapitel 4: Graphen (Planare Graphen, Färbung)

WS 2015/16 Diskrete Strukturen Kapitel 4: Graphen (Planare Graphen, Färbung) WS 2015/16 Diskrete Strukturen Kapitel 4: Graphen (Planare Graphen, Färbung) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

Formale Grundlagen. Graphentheorie 2008W. Vorlesung im 2008S

Formale Grundlagen. Graphentheorie 2008W. Vorlesung im 2008S Minimale Formale Grundlagen Graphentheorie Franz Binder Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Minimale Inhalt Minimale

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker Vorlesung 6: Modellierung Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 1/30 MOTIVATION FÜR AUSSAGENLOGIK Aussagenlogik erlaubt Repräsentation

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Der Fünffarbensatz Proseminar: Graphentheorie Sommersemester 2006 Isa Topac, Markus Kunder, Tim Hahn

Der Fünffarbensatz Proseminar: Graphentheorie Sommersemester 2006 Isa Topac, Markus Kunder, Tim Hahn Der Fünffarbensatz Proseminar: Graphentheorie Sommersemester 2006 Isa Topac, Markus Kunder, Tim Hahn 1. Geschichte - Frage kommt Mitte des 19 Jahrhunderts auf Wie viele Farben benötigt man um eine Karte

Mehr

Vier-Farben-Vermutung (1)

Vier-Farben-Vermutung (1) Vier-Farben-Vermutung (1) Landkarten möchte man so färben, dass keine benachbarten Länder die gleiche Farbe erhalten. Wie viele Farben braucht man zur Färbung einer Landkarte? Vier-Farben-Vermutung: Jede

Mehr

Diskrete Strukturen Kapitel 1: Einleitung

Diskrete Strukturen Kapitel 1: Einleitung WS 2015/16 Diskrete Strukturen Kapitel 1: Einleitung Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

Graphentheorie. Formale Grundlagen (WIN) 2008S, F. Binder. Vorlesung im 2008S

Graphentheorie. Formale Grundlagen (WIN) 2008S, F. Binder. Vorlesung im 2008S Minimale Graphentheorie Formale Grundlagen (WIN) Franz Binder Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Minimale Inhalt

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 6: Graphentheorie

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 6: Graphentheorie Referenzen zum Nacharbeiten: Diskrete Mathematik Sebastian Iwanowski FH Wedel Kap. 6: Graphentheorie Lang 6 Beutelspacher 8.1-8.5 Meinel 11 zur Vertiefung: Aigner 6, 7 (7.4: Algorithmus von Dijkstra) Matousek

Mehr

Seminar: Einladung in die Mathematik

Seminar: Einladung in die Mathematik Seminar: Einladung in die Mathematik Marius Kling 11.11.2013 Übersicht 1. Königsberger Brückenproblem 2. Diskrete Optimierung 3. Graphentheorie in der Informatik 4. Zufällige Graphen 5. Anwendungen von

Mehr

Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen

Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2009/10 1 Bernhard Ganter, TU Dresden Modul

Mehr

Vorlesung 1: Graphentheorie. Markus Püschel David Steurer. Algorithmen und Datenstrukturen, Herbstsemester 2018, ETH Zürich

Vorlesung 1: Graphentheorie. Markus Püschel David Steurer. Algorithmen und Datenstrukturen, Herbstsemester 2018, ETH Zürich Vorlesung 1: Graphentheorie Markus Püschel David Steurer Algorithmen und Datenstrukturen, Herbstsemester 2018, ETH Zürich Plan für die ersten Vorlesungen Vorlesungen 1,2: wichtige mathematische Grundlagen;

Mehr

Diskrete Strukturen. Chair for Foundations of Software Reliability and Theoretical Computer Science Technische Universität München

Diskrete Strukturen. Chair for Foundations of Software Reliability and Theoretical Computer Science Technische Universität München Diskrete Strukturen c Javier Esparza und Michael Luttenberger Chair for Foundations of Software Reliability and Theoretical Computer Science Technische Universität München Montag 16 Oktober, 2017 p.2 Was

Mehr

Achilles und die Schildkröte Sommersemester 2008

Achilles und die Schildkröte Sommersemester 2008 Achilles und die Schildkröte Sommersemester 2008 Färbbarkeit planarer Graphen Alexander Damarowsky 20.05.2008 V6, 15.05.2008 Problemstellung /Ziel des Vortrags: Wie viele Farben werden benötigt, um jeden

Mehr

Der Fünffarbensatz. Ausarbeitung des Seminarvortrags vom

Der Fünffarbensatz. Ausarbeitung des Seminarvortrags vom Philipps-Universität Marburg Fachbereich 12: Mathematik und Informatik PS Über klassische Probleme der Mathematik Leitung: Prof. Harald Upmeier, Benjamin Schwarz Referentin: Sabrina Klöpfel Wintersemester

Mehr

Planare Graphen und Färbungen. Kapitel 7. Peter Becker (H-BRS) Graphentheorie Wintersemester 2018/ / 296

Planare Graphen und Färbungen. Kapitel 7. Peter Becker (H-BRS) Graphentheorie Wintersemester 2018/ / 296 Kapitel 7 Peter Becker (H-BRS) Graphentheorie Wintersemester 2018/19 256 / 296 Inhalt Inhalt 7 Färbungen Peter Becker (H-BRS) Graphentheorie Wintersemester 2018/19 257 / 296 Jordankurve Zentrale Frage

Mehr

Färbungen auf Graphen

Färbungen auf Graphen Färbungen auf Graphen Robert Siegfried Seminar Algorithmische Graphentheorie FH Wedel, 26.06.2003 Agenda Einleitung Definitionen Färben von Landkarten Anwendungsbeispiele Algorithmen Folie 2 Einleitung

Mehr

Die Abstraktion der Schwanzlänge des Hundes

Die Abstraktion der Schwanzlänge des Hundes Die Abstraktion der Schwanzlänge des Hundes Prof. Dr. Sonja Prohaska und Dr. Marc Hellmuth Interdisziplinäres Zentrum für Biologie und Informatik Universität Leipzig 2. DEZEMBER 2010 Was ist diskrete Mathematik?

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker Vorlesung 5: Normalformen Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 2. November 2017 1/37 MOTIVATION FÜR AUSSAGENLOGIK Aussagenlogik

Mehr

WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER. Über 7 Brücken... wissen leben WWU Münster. Dietmar Lammers Hochschultag 201

WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER. Über 7 Brücken... wissen leben WWU Münster. Dietmar Lammers Hochschultag 201 MÜNSTER Über 7 Brücken... Dietmar Lammers Hochschultag 201 MÜNSTER Über 7 Brücken... 2/29 > Dauerwerbeveranstaltung für ein Studium der Informatik- aber mit mathematischem Inhalt! Hier: Ein Auszug aus

Mehr

Diskrete Mathematik. Hamiltonsche Graphen Teil I. Karina Arndt

Diskrete Mathematik. Hamiltonsche Graphen Teil I. Karina Arndt Diskrete Mathematik Hamiltonsche Graphen Teil I Karina Arndt 21.06.2006 Übersicht Einleitung Hamiltonsch und eulersch Hamiltonsche Kreise Hamiltonsche Graphen neu zeichnen Kreise und Wege Reguläre Graphen

Mehr

Diskrete Mathematik. Kryptographie und Graphentheorie

Diskrete Mathematik. Kryptographie und Graphentheorie Diskrete Matheatik Kryptographie und Graphentheorie Jochen Hores & Jonas Bühler 14.06.006 Jochen Hores, Jonas Bühler Kryptographie & Graphentherorie 1 Inhaltsverzeichnis Inhaltsverzeichnis 1. Kryptographie

Mehr

2. Graphentheorie, Reinhard Diestel, Springer Verlag, 4. Auflage, 2012

2. Graphentheorie, Reinhard Diestel, Springer Verlag, 4. Auflage, 2012 Das vorliegende Skript beschäftigt sich mit dem Thema Graphentheorie. Das Skript entsteht entlang einer Unterrichtsreihe in der Mathematischen Schülergesellschaft(MSG) im Jahr 2013. Die vorliegende Version

Mehr

Beschluss AK-Mathematik 01/

Beschluss AK-Mathematik 01/ TU Berlin Marchstraße 6 10587 Berlin Auszug aus dem (noch nicht genehmigten) Protokoll der 02. Sitzung der Ausbildungskommission Mathematik im Jahr 2013 am Dienstag, den 28. Mai 2013, Raum MA 415 Beschluss

Mehr

Einführungsveranstaltung für den Lehramtsstudiengang Mathematik (Bachelor/Master)

Einführungsveranstaltung für den Lehramtsstudiengang Mathematik (Bachelor/Master) Einführungsveranstaltung für den Lehramtsstudiengang Mathematik (Bachelor/Master) Prof. Sebastian Walcher, Dr. Wolfgang Herff 11. Oktober 2016 S. Walcher, W. Herff (Fachgr. Math.) Einführungsveranst. Lehramt

Mehr

Mathematik ohne Formeln gibt s denn das?

Mathematik ohne Formeln gibt s denn das? Mathematik ohne Formeln gibt s denn das? Ein Stück Mathematik der anderen Art Daniel Grieser Institut für Mathematik Universität Oldenburg Der Läufer Ein Läufer im Schach kann nur schräg ziehen. Kann er......

Mehr

Ilse Fischer. Fakultät für Mathematik, Universität Wien, Nordbergstraße 15, A-1090 Wien, Austria.

Ilse Fischer. Fakultät für Mathematik, Universität Wien, Nordbergstraße 15, A-1090 Wien, Austria. GRAPHEN MÜSSEN NICHT IMMER FUNKTIONEN DARSTELLEN Ilse Fischer Fakultät für Mathematik, Universität Wien, Nordbergstraße 15, A-1090 Wien, Austria. E-mail: Ilse.Fischer@univie.ac.at Zusammenfassung. In der

Mehr

Hamiltonsche Graphen (2. Teil)

Hamiltonsche Graphen (2. Teil) Hamiltonsche Graphen (2. Teil) Themen des Vortrages Für Schachspieler Hamiltons Spiel Sitzordnungen Eine billige Rundreise Ein vielleicht unlösbares Problem Bäcker mit Kenntnissen in Graphentheorie Fazit

Mehr

Knotenfärbung. Def.: Eine Knotenfärbung eines Graphen G=(V,E) mit k Farben ist eine Abbildung c:v {1,...,k}, so dass c(u) c(v) für alle {u,v} E.

Knotenfärbung. Def.: Eine Knotenfärbung eines Graphen G=(V,E) mit k Farben ist eine Abbildung c:v {1,...,k}, so dass c(u) c(v) für alle {u,v} E. Knotenfärbung Def.: Eine Knotenfärbung eines Graphen G=(V,E) mit k Farben ist eine Abbildung c:v {1,...,k}, so dass c(u) c(v) für alle {u,v} E. Die chromatische Zahl χ(g) eines Graphen G ist die minimale

Mehr

In diesem Skript werden folgende Begriffe anhand von einfachen Beispielen eingeführt:

In diesem Skript werden folgende Begriffe anhand von einfachen Beispielen eingeführt: Färbungsprobleme Einstieg In diesem Skript werden folgende Begriffe anhand von einfachen Beispielen eingeführt: Graphentheorie Der Vier-Farben-Satz Algorithmen Komplexität von Algorithmen NP-Probleme Die

Mehr

3. Die Datenstruktur Graph

3. Die Datenstruktur Graph 3. Die Datenstruktur Graph 3.1 Einleitung: Das Königsberger Brückenproblem Das Königsberger Brückenproblem ist eine mathematische Fragestellung des frühen 18. Jahrhunderts, die anhand von sieben Brücken

Mehr

1. Einleitung wichtige Begriffe

1. Einleitung wichtige Begriffe 1. Einleitung wichtige Begriffe Da sich meine besondere Lernleistung mit dem graziösen Färben (bzw. Nummerieren) von Graphen (speziell von Bäumen), einem Teilgebiet der Graphentheorie, beschäftigt, und

Mehr

1 Pfade in azyklischen Graphen

1 Pfade in azyklischen Graphen Praktikum Algorithmen-Entwurf (Teil 5) 17.11.2008 1 1 Pfade in azyklischen Graphen Sei wieder ein gerichteter Graph mit Kantengewichten gegeben, der diesmal aber keine Kreise enthält, also azyklisch ist.

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 7 und 8: Euler- und Hamilton-Graphen Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 17. April 2018 1/96 WIEDERHOLUNG Eulersche

Mehr

Was ist Diskrete Mathematik und wozu?

Was ist Diskrete Mathematik und wozu? Was ist und wozu? Fakultät für Mathematik, Universität Wien Was ist? Was ist? diskret... Was ist? diskret... 1) unauällig, unaufdringlich (Brockhaus) Was ist? diskret... 1) unauällig, unaufdringlich (Brockhaus)

Mehr

Hausarbeit aus. Graphentheorie Formale Grundlagen Professor Franz Binder. zum Thema. Herbert Huber k Seite 1 von 21

Hausarbeit aus. Graphentheorie Formale Grundlagen Professor Franz Binder. zum Thema. Herbert Huber k Seite 1 von 21 Hausarbeit aus 368.712 Formale Grundlagen Professor Franz Binder zum Thema Graphentheorie Herbert Huber k0455780 Seite 1 von 21 Inhaltsverzeichnis Graphen Grundlagen und Begriffsdefinitionen...3 Graphenstrukturen...6

Mehr

Informationen zum Bachelor Technische Mathematik. Studienplan neu ab 1. Oktober 2018

Informationen zum Bachelor Technische Mathematik. Studienplan neu ab 1. Oktober 2018 Informationen zum Bachelor Technische Mathematik Studienplan neu ab 1. Oktober 2018 Änderungen im Überblick keine Bachelorprüfung Umbenennungen (z.b. Computersysteme -> Programmierung 2) Aufteilung von

Mehr

Westfählische Wilhelms-Universität. Eulersche Graphen. Autor: Jan-Hendrik Hoffeld

Westfählische Wilhelms-Universität. Eulersche Graphen. Autor: Jan-Hendrik Hoffeld Westfählische Wilhelms-Universität Eulersche Graphen Autor: 21. Mai 2015 Inhaltsverzeichnis 1 Das Königsberger Brückenproblem 1 2 Eulertouren und Eulersche Graphen 2 3 Auffinden eines eulerschen Zyklus

Mehr

Def. 1.1: Graph, Knoten, Kanten, adjazent. Notwendige Bedingungen für Isomorphie. Das 3-Brunnen Problem, der vollständige bipartite Graph K 3,3

Def. 1.1: Graph, Knoten, Kanten, adjazent. Notwendige Bedingungen für Isomorphie. Das 3-Brunnen Problem, der vollständige bipartite Graph K 3,3 Stand: 27. Januar 2004 1. Kapitel: Was ist ein Graph? Beispiel: Mannschafts-Wettkämpfe Def. 1.1: Graph, Knoten, Kanten, adjazent Nullgraphen, vollständige Graphen K n, komplementäre Graphen Isomorphie

Mehr

Mathematik-Studium an der Freien Universität Was ist Mathematik? Günter M. Ziegler Freie Universität Berlin

Mathematik-Studium an der Freien Universität Was ist Mathematik? Günter M. Ziegler Freie Universität Berlin -Studium an der Freien Universität Was ist? Freie Universität Berlin EinS@FU, 20. November 2017 Berlin studium Die mathematischen Schwerpunkte : Reine Algebra Algebraische Geometrie Zahlentheorie Berlin

Mehr

Technomathematik. Bachelor of Science. Fakultät für Mathematik, Physik und Informatik

Technomathematik. Bachelor of Science. Fakultät für Mathematik, Physik und Informatik Technomathematik Bachelor of Science Fakultät für Mathematik, Physik und Informatik Neben der fachlichen Qualität fördern wir in Bayreuth insbesondere Abstraktionsvermögen, Präzision, Problemlösungskompetenz,

Mehr

Studienverlaufsplan: Lehramt nach GymPO I in Mathematik

Studienverlaufsplan: Lehramt nach GymPO I in Mathematik Studienverlaufsplan: Lehramt nach GymPO I in Mathematik Bemerkungen zum Studienverlaufsplan Lehramt in Mathematik Der Studienverlaufsplan ist ein Vorschlag, wie die geforderten Veranstaltungen auf die

Mehr

Die. Ramsey-Zahlen

Die. Ramsey-Zahlen Westfälische Willhelms-Universität Münster Fachbereich 10 Mathematik und Informatik Seminar Graphentheorie Sommersemester 2015 Dozent: Dr. Thomas Timmermann Die Ramsey-Zahlen 01.06.15 Kirsten Voß k_voss11@uni-muenster.de

Mehr

Königsberger Brückenproblem

Königsberger Brückenproblem Philipps-Universität Marburg Fachbereich 12: Mathematik und Informatik PS: Klassische Probleme der Mathematik Leitung: Prof. Dr. Harald Upmeier, Benjamin Schwarz Referentin: Lene Baur WS 2009/2010 Königsberger

Mehr

Vorlesung. Vollständige Induktion 1

Vorlesung. Vollständige Induktion 1 WS 015/16 Vorlesung Vollständige Induktion 1 1 Einführung Bei der vollständigen Induktion handelt es sich um ein wichtiges mathematisches Beweisverfahren, mit dem man Aussagen, die für alle natürlichen

Mehr

durch Einfügen von Knoten konstruiert werden kann.

durch Einfügen von Knoten konstruiert werden kann. Satz von Kuratowski Definition Unterteilung eines Graphen Sei G = (V, E) und e = {u, v} E. 1 Das Einfügen eines neuen Knoten w in die Kante e führt zum Graphen G = (V {w}, E \ e {{u, w}, {w, v}}). 2 Der

Mehr

Schachmatt? Ein Schachbrett mit (64 Feldern) kann man so mit 32 Dominosteinen bedecken, dass jeder Dominostein genau 2 Felder bedeckt.

Schachmatt? Ein Schachbrett mit (64 Feldern) kann man so mit 32 Dominosteinen bedecken, dass jeder Dominostein genau 2 Felder bedeckt. Schachmatt? Ein Schachbrett mit (64 Feldern) kann man so mit 32 Dominosteinen bedecken, dass jeder Dominostein genau 2 Felder bedeckt. Ist es möglich, auf einem Schachbrett, aus dem zwei der Ecken entfernt

Mehr

Informationsveranstaltung zum freiwilligen Wechsel in die Prüfungsordnung 2015

Informationsveranstaltung zum freiwilligen Wechsel in die Prüfungsordnung 2015 Informationsveranstaltung zum freiwilligen Wechsel in die Prüfungsordnung 2015 Weyertal 86-90 50931 Köln 21. Oktober 2015 1 / 21 Inhaltsverzeichnis 1. Allgemeine Hinweise 2. Bachelorstudiengang Mathematik

Mehr

Bachelor Mathematik Masterstudiengänge (aufbauend auf Bachelor) Lehramt Mathematik (Gymnasium, Berufsschule, Realschule, Hauptschule)

Bachelor Mathematik Masterstudiengänge (aufbauend auf Bachelor) Lehramt Mathematik (Gymnasium, Berufsschule, Realschule, Hauptschule) Studiengänge Bachelor Mathematik Masterstudiengänge (aufbauend auf Bachelor) Angewandte Mathematik Mathematische Grundlagenforschung Visual Computing (interdisziplinär) Master in der Informatik Lehramt

Mehr

Graphen. Leonhard Euler ( )

Graphen. Leonhard Euler ( ) Graphen Leonhard Euler (1707-1783) 2 Graph Ein Graph besteht aus Knoten (nodes, vertices) die durch Kanten (edges) miteinander verbunden sind. 3 Nachbarschaftsbeziehungen Zwei Knoten heissen adjazent (adjacent),

Mehr

Vorlesung Netzwerkcodierung

Vorlesung Netzwerkcodierung Sommersemester 2010 Organisation Im Internet: http://www.ifn.et.tu-dresden.de/tnt/lehre/vl/nwcod Vorlesungen finden wöchentlich statt: Donnerstag, 5. DS, BAR 213 Übungen finden 2-wöchentlich statt: Freitag,

Mehr

17. Berliner Tag der Mathematik 2012 Wettbewerb Stufe III: Klassen 11 bis 12/13

17. Berliner Tag der Mathematik 2012 Wettbewerb Stufe III: Klassen 11 bis 12/13 17. Berliner Tag der Mathematik 2012 Wettbewerb Stufe III: Klassen 11 bis 12/13 Aufgabe 1 Sei M eine Menge von in einem Dreieck verlaufenden Strecken, über die Folgendes vorausgesetzt wird: Die Kanten

Mehr

Schulbesuch Erich-Kästner Gesamtschule 07. April 2011

Schulbesuch Erich-Kästner Gesamtschule 07. April 2011 Schulbesuch Erich-Kästner Gesamtschule 07. April 0 Bünde Fakultät für Mathematik Universität Bielefeld dotten@math.uni-bielefeld.de Übersicht Was ist ein Sudoku-Rätsel? Die Regeln und das Ziel Zentrale

Mehr

Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen

Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen Bernhard Ganter WS 2013/14 1 Eulersche Graphen Kantenzug Ein Kantenzug in einem Graphen (V, E) ist eine Folge (a 0, a 1,..., a n ) von Knoten

Mehr

Vorlesung 2: Graphentheorie

Vorlesung 2: Graphentheorie Vorlesung 2: Graphentheorie Markus Püschel David Steurer Peter Widmayer Algorithmen und Datenstrukturen, Herbstsemester 2017, ETH Zürich Funktionsgraph bekannt aus der Schule hat aber leider nichts mit

Mehr

Einführung zur Einführung in die Mathematik

Einführung zur Einführung in die Mathematik Einführung zur Einführung in die Mathematik Jens Jordan Universität Würzburg Institut für Mathematik Tutoren: Julia Koch, Rintaro Ono, Ruben Schulze und Florian Göpfert 12.10.2009 Wer seid Ihr? Der Vorkurs

Mehr

A Berlin, 10. April 2017

A Berlin, 10. April 2017 A Berlin, 10. April 2017 Name:... Matr.-Nr.:... Wiederholung der schriftlichen Prüfung zur Vorlesung Diskrete Strukturen (Niedermeier/Molter/Froese, Wintersemester 2016/17) Einlesezeit: 15 Minuten Bearbeitungszeit:

Mehr

Schachbrettaufgaben vom mathematischen Duell

Schachbrettaufgaben vom mathematischen Duell Schachbrettaufgaben vom mathematischen Duell ROBERT GERETSCHLÄGER (GRAZ) Seit einem viertel Jahrhundert gibt es nun schon das Mathematische Duell, einen mathematischen Wettbewerb von Schulen aus Österreich,

Mehr

Graphen. Graphen und ihre Darstellungen

Graphen. Graphen und ihre Darstellungen Graphen Graphen und ihre Darstellungen Ein Graph beschreibt Beziehungen zwischen den Elementen einer Menge von Objekten. Die Objekte werden als Knoten des Graphen bezeichnet; besteht zwischen zwei Knoten

Mehr

KARL-FRANZENS-UNIVERSITÄT GRAZ. Seminar aus Reiner Mathematik. Die Museumswächter. Krupic Mustafa Wintersemester 2013/14

KARL-FRANZENS-UNIVERSITÄT GRAZ. Seminar aus Reiner Mathematik. Die Museumswächter. Krupic Mustafa Wintersemester 2013/14 KARL-FRANZENS-UNIVERSITÄT GRAZ Seminar aus Reiner Mathematik Die Museumswächter Krupic Mustafa Wintersemester 2013/14 Inhaltsverzeichnis 2 Inhaltsverzeichnis 1 Einleitung 3 2 Museumswächter-Satz 6 2.1

Mehr

1 Grundlagen. 1.1 Aussagen

1 Grundlagen. 1.1 Aussagen 1 Grundlagen 1.1 Aussagen In der Mathematik geht es um Aussagen. Eine Aussage ist ein statement, das entweder wahr oder falsch sein kann. Beides geht nicht! Äußerungen, die nicht die Eigenschaft haben,

Mehr

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume)

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) WS 2016/17 Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Nichts als die mathematische Wahrheit

Nichts als die mathematische Wahrheit 1 Nichts als die mathematische Wahrheit Holger Stephan Weierstraß Institut für Angewandte Analysis und Stochastik (WIAS), Berlin Lange Nacht der Wissenschaften 10. Mai 2014 2 Anregungen zu folgenden Fragen

Mehr

Fünf-Farben-Satz. Seminar aus reiner Mathematik, WS 13/14. Schweighofer Lukas, November Seite 1

Fünf-Farben-Satz. Seminar aus reiner Mathematik, WS 13/14. Schweighofer Lukas, November Seite 1 Der Fünf- Farben-Satz Seminar aus reiner Mathematik, WS 13/14 Schweighofer Lukas, November 2013 Seite 1 Inhaltsverzeichnis Vorwort...3 Graphentheoretische Grundlagen...4 Satz 2 (Eulerscher Polyedersatz)...7

Mehr

Kap. IV: Färbungen von Graphen

Kap. IV: Färbungen von Graphen Chr.Nelius: Graphentheorie (WS 2016/17) 46 Kap. IV: Färbungen von Graphen 12. Eckenfärbungen Bereits im 6 ten Paragraphen haben wir Eckenfärbungen benutzt, um bipartite Graphen charakterisieren zu können.

Mehr

Mathematik Bachelor, Master, Doktorat

Mathematik Bachelor, Master, Doktorat Mathematik Bachelor, Master, Doktorat Mathematik die zentrale Wissenschaft Bankomatkarte, MP3-Player, Computertomographie, Stahlblech, Navigationssysteme all das wäre ohne Mathematik nicht denkbar. Mit

Mehr

Verflixt, warum geht das nicht? Unmöglichkeitsbeweise in der Mathematik

Verflixt, warum geht das nicht? Unmöglichkeitsbeweise in der Mathematik Verflixt, warum geht das nicht? Unmöglichkeitsbeweise in der Mathematik Daniel Grieser Institut für Mathematik Universität Oldenburg Tag der Mathematik, 5. November 2008 Der Läufer Ein Läufer im Schach

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Diskrete Strukturen. wissen leben WWU Münster

Diskrete Strukturen. wissen leben WWU Münster MÜNSTER Diskrete Strukturen Dietmar Lammers Vorlesung SoSe 2010 MÜNSTER Diskrete Strukturen 269/260 MÜNSTER Diskrete Strukturen 270/260 Im WLAN gibt es 6 Frequenzen und die AccessPoints müssen so verteilt

Mehr

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik - WS 11/12. Klausurvorbereitung

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik - WS 11/12. Klausurvorbereitung Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik - WS 11/12 Prof. Dr. A. Taraz, Dr. O. Cooley, Klausurvorbereitung Die Klausur zum Propädeutikum Diskrete Mathematik findet

Mehr

Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung.

Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung. Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 14. November 2007 1 / 22 2 / 22 Gliederung eulersche und semi-eulersche Graphen Charakterisierung eulerscher Graphen Berechnung eines

Mehr

Universität zu Köln Institut für Mathematikdidaktik Lehrangebot für das Wintersemester 2017/2018

Universität zu Köln Institut für Mathematikdidaktik Lehrangebot für das Wintersemester 2017/2018 Universität zu Köln Institut für didaktik Lehrangebot für das Wintersemester 2017/2018 Das Vorlesungsverzeichnis für das WS 2017/2018 weist Veranstaltungen für Bachelor- und Master-Studierende sowie für

Mehr

1 Studienpläne bis zum Vordiplom und Bachelor-Abschluss

1 Studienpläne bis zum Vordiplom und Bachelor-Abschluss 1 Studienpläne bis zum Vordiplom und Bachelor-Abschluss Die Pflichtvorlesungen für das Studium Lehramt Mathematik an Gymnasien (LG) stimmen in den ersten Semestern weitgehend mit denen des Studiengangs

Mehr

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik Prof. Dr. A. Taraz, Dipl-Math. A. Würfl, Dipl-Math. S. König Weihnachtsblatt Aufgabe W.1 Untersuchen Sie nachstehenden

Mehr

Algorithmische Mathematik und Programmieren

Algorithmische Mathematik und Programmieren Algorithmische Mathematik und Programmieren Martin Lanser Universität zu Köln WS 2016/2017 Organisatorisches M. Lanser (UzK) Alg. Math. und Programmieren WS 2016/2017 1 Ablauf der Vorlesung und der Übungen

Mehr