27. Wärmestrahlung. rmestrahlung, Quantenmechanik

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "27. Wärmestrahlung. rmestrahlung, Quantenmechanik"

Transkript

1 24. Vorlesung EP 27. Wärmestrahlung rmestrahlung, Quantenmechanik V. STRAHLUNG, ATOME, KERNE 27. Wärmestrahlung, Quantenmechanik Photometrie Plancksches Strahlungsgesetz Welle/Teilchen Dualismus für Strahlung und Materie Versuche: Quadratisches Abstandsgesetz für Bestrahlungsstärke Lesliewürfel (Emissionsvermögen verschiedener Oberflächen) Schwarzer Strahler (Kasten mit Loch) Fotoeffekt: Entladung einer Metallplatte durch Licht Fotoeffekt: Bestimmung von h Elektronenbeugung

2 27. Strahlung, Quantenmechanik V.STRAHLUNG, ATOME,KERNE Jeder Körper emittiert und absorbiert elektromagnet. Strahlung im therm. Gleichgewicht tauscht ein Körper so lange Energie mit seiner Umgebung aus, bis er die gleiche Temperatur angenommen hat. Intensität der Strahlung als Funktion der Wellenlänge: a) kontinuierliche Strahlung: Spektrum stark temperaturabhängig -> Wärmestrahlung b) diskrete Strahlung: Linienspektren stark von strahlender Substanz abhängig -> Atomphysik

3

4

5 27. Strahlung, Quantenmechanik Licht transportiert Energie: Intensität E = ausgestrahlte Energie Flächenelement Zeit Das Verhältnis E/A ist für alle Oberflächen gleich und hängt nur von T ab.

6 27. Wärmestrahlung rmestrahlung, Quantenmechanik Schwarzkörperstrahlung Für alle Körper ist das Verhältnis E(=Emissionsvermögen)/A(=Absorptionsvermögen) nur von der Temperatur abhängig, nicht von der Oberfläche. Für den Schwarzen Körper (realisiert durch Hohlraum) ist A = 1, d.h. alle Energie wird absorbiert. Man findet E schwarzer Körper = σ T 4 mit Stefan-Bolzmann Konstante σ Strahlungsgesetz: Spektrum der Wärmestrahlung Wie viele Schwingungen (= stehende elektromagnetische Wellen) passen in einen Hohlraum?

7 Die Häufigkeit der Schwingungsmoden ist ~ (1 / λ) 2, d.h. für die Häufigkeit der Frequenz gilt W(f) = const f 2 Die const. ist proportional zur Temperatur. Dieses Rayleigh-Jeans- Strahlungsgesetz beschreibt die Wärmestrahlung bei niedrigen Frequenzen korrekt, aber bei hohen Frequenzen (kleinen Wellenlängen) versagt die klassische Theorie der Schwarzkörperstrahlung: W (λ) ~ (1/λ) 2 wächst für λ 0 unendlich an! ( Ultraviolettkatastrophe ) Man mißt aber : 27. Wärmestrahlung rmestrahlung, Quantenmechanik

8 27. Wärmestrahlung rmestrahlung, Quantenmechanik Rettung durch Max Planck (1904) Energie ist quantisiert. Kleinstes Quant: E = h f = (h c) / λ mit h = 6, [J s] Der Austausch von Energie kann nur in Einheiten von (h f) gequantelt stattfinden. Dadurch wird bei einer statistischen Verteilung der Energie auf die Schwingungsmoden die Häufigkeit kleiner λ unterdrückt und das Strahlungsspektrum wird richtig beschrieben ( Kurven auf nächster Folie Wiensches Verschiebungsgesetz )

9 27. Wärmestrahlung rmestrahlung, Quantenmechanik Wiensches Verschiebungsgesetz: Die Wellenlänge des Strahlungsmaximums verschiebt sich mit der Temperatur gemäß dem Wienschen Verschiebungsgesetz: λ max. T= m. K Sonnentemperatur: ~ 5700 K -> Wellenlänge λ max ~ 480 nm 0,5 µm * Glühlampe (2000K): λ max = 1 µm (infrarot) Mensch: 10 µm *Energie h f 3eV für die gesamte abgestrahlte Leistung gilt: Wellenlänge [nm] P ~ T 4 : Stefan-Boltzmann-Gesetz

10 Lichtquanten verhalten sich wie Wellen (-> Interferenzen), aber auch wie Teilchen: Beispiele für Teilchencharakter: Photoeffekt (Einstein) Comptoneffekt: elastische Streuung von γ an e - Wie Stoß zweier Kugeln! (Energien E max bzw. E unabhängig von der Lichtintensität)

11 27. Wärmestrahlung rmestrahlung, Quantenmechanik Was ist Licht: Teilchen oder Welle? Photoeffekt: Ein Metall wird mit Licht einer Wellenlänge (Farbe) bestrahlt und die Energie der emittierten Photoelektronen wird gemessen (Gegenfeldmethode: wenn gerade keine Elektronen die Anode mehr erreichen ist eu=mv 2 /2) Beobachtung: die Energie der Photonen wird nur durch die Farbe des Lichts (λ) bestimmt, nicht durch die Intensität. (mehr Licht -> mehr Elektronen) Erklärung: (Einstein 1905) Auch das Licht wechselwirkt in gequantelten Beträgen h. f -> weitere Methode, die Naturkonstante h zu bestimmen: h=e. U/ f f U

12 27. Wärmestrahlung rmestrahlung, Quantenmechanik Wellen- und Photonencharakter des Lichts Licht (elektromagnetische Wellen) verhält sich bei der Ausbreitung wie eine Welle -> Interferenz, Beugung Licht wechselwirkt auf atomarem Niveau (Absorption beim Photoeffekt) wie ein Teilchen (Photon) mit Energie hf Wellenpaket: Lokalisierung durch Überlagerung verschiedener Frequenzen (s. Schwebung). x groß schmale Frequenzverteilung (schmale Impulsverteilung) x klein breite Impulsverteilung Allgemein gilt die Heisenbergsche Unschärferelation: h p x =h ebenso E t h 2π Benimmt sich Materie anders als Licht? NEIN

13 27. Wärmestrahlung rmestrahlung, Quantenmechanik Wellencharakter massiver Teilchen: Wenn Licht Teilchencharakter besitzt, kann man dann auch bei (Elementar-)Teilchen einen Wellencharakter finden? Test: Interferenzexperimente mit Elektronenstrahlen geht sogar mit einzelnen Elektronen -> Wellenpaket de Broglie (1924): f wie bei Licht diese Wellenlänge ist sehr klein (energieabhängig): 1 kev Elektron-> 39 pm h = h 2π 2π, k = λ

14

15

16 Zusammenfassung:

23. Vorlesung EP. IV Optik 26. Beugung (Wellenoptik) V Strahlung, Atome, Kerne 27. Wärmestrahlung und Quantenmechanik

23. Vorlesung EP. IV Optik 26. Beugung (Wellenoptik) V Strahlung, Atome, Kerne 27. Wärmestrahlung und Quantenmechanik 23. Vorlesung EP IV Optik 26. Beugung (Wellenoptik) V Strahlung, Atome, Kerne 27. Wärmestrahlung und Quantenmechanik Strahlung: Stoff der Optik, Wärme-, Elektrizitätslehre u. Quantenphysik Photometrie

Mehr

22. Wärmestrahlung. rmestrahlung, Quantenmechanik

22. Wärmestrahlung. rmestrahlung, Quantenmechanik 22. Wärmestrahlung rmestrahlung, Quantenmechanik Plancksches Strahlungsgesetz: Planck (1904): der Austausch von Energie zwischen dem strahlenden System und dem Strahlungsfeld kann nur in Einheiten von

Mehr

Für Geowissenschaftler. EP WS 2009/10 Dünnweber/Faessler

Für Geowissenschaftler. EP WS 2009/10 Dünnweber/Faessler Für Geowissenschaftler Termin Nachholklausur Vorschlag Mittwoch 14.4.10 25. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Wärmestrahlung und Quantenmechanik Photometrie Plancksches Strahlungsgesetze, Welle/Teilchen

Mehr

Wärmestrahlung. Einfallende Strahlung = absorbierte Strahlung + reflektierte Strahlung

Wärmestrahlung. Einfallende Strahlung = absorbierte Strahlung + reflektierte Strahlung Wärmestrahlung Gleichheit von Absorptions- und Emissionsgrad Zwei Flächen auf gleicher Temperatur T 1 stehen sich gegenüber. dunkelgrau hellgrau Der Wärmefluss durch Strahlung muss in beiden Richtungen

Mehr

Grundlagen der Quantentheorie

Grundlagen der Quantentheorie Grundlagen der Quantentheorie Ein Schwarzer Körper (Schwarzer Strahler, planckscher Strahler, idealer schwarzer Körper) ist eine idealisierte thermische Strahlungsquelle: Alle auftreffende elektromagnetische

Mehr

Physik IV Einführung in die Atomistik und die Struktur der Materie

Physik IV Einführung in die Atomistik und die Struktur der Materie Physik IV Einführung in die Atomistik und die Struktur der Materie Sommersemester 011 Vorlesung 04 1.04.011 Physik IV - Einführung in die Atomistik Vorlesung 4 Prof. Thorsten Kröll 1.04.011 1 Versuch OH

Mehr

Klassische Mechanik. Elektrodynamik. Thermodynamik. Der Stand der Physik am Beginn des 20. Jahrhunderts. Relativitätstheorie?

Klassische Mechanik. Elektrodynamik. Thermodynamik. Der Stand der Physik am Beginn des 20. Jahrhunderts. Relativitätstheorie? Der Stand der Physik am Beginn des 20. Jahrhunderts Klassische Mechanik Newton-Axiome Relativitätstheorie? Maxwell-Gleichungen ok Elektrodynamik Thermodynamik Hauptsätze der Therm. Quantentheorie S.Alexandrova

Mehr

Physik für Maschinenbau. Prof. Dr. Stefan Schael RWTH Aachen

Physik für Maschinenbau. Prof. Dr. Stefan Schael RWTH Aachen Physik für Maschinenbau Prof. Dr. Stefan Schael RWTH Aachen Vorlesung 11 Brechung b α a 1 d 1 x α b x β d 2 a 2 β Totalreflexion Glasfaserkabel sin 1 n 2 sin 2 n 1 c arcsin n 2 n 1 1.0 arcsin

Mehr

1.2 Grenzen der klassischen Physik Michael Buballa 1

1.2 Grenzen der klassischen Physik Michael Buballa 1 1.2 Grenzen der klassischen Physik 23.04.2013 Michael Buballa 1 1.2 Grenzen der klassischen Physik Die Konzepte klassischer Teilchen und Wellen haben ihren Ursprung in unserer Alltagserfahrung, z.b. Teilchen:

Mehr

Das plancksche Strahlungsgesetz Das plancksche Strahlungsgesetz

Das plancksche Strahlungsgesetz Das plancksche Strahlungsgesetz Das plancksche Strahlungsgesetz 1 Historisch 164-177: Newton beschreibt Licht als Strom von Teilchen 1800 1900: Licht als Welle um 1900: Rätsel um die "Hohlraumstrahlung" Historisch um 1900: Rätsel um

Mehr

14 Teilchen und Wellen

14 Teilchen und Wellen 14 Teilchen und Wellen 14.1 Teilchencharakter von elektromagnetischen Wellen 1411 14.1.1 Strahlung schwarzer Körper 14.1.2 Der Photoeffekt 14.1.3 Technische Anwendungen 14.2 Wellencharakter von Teilchen

Mehr

Max Planck: Das plancksche Wirkungsquantum

Max Planck: Das plancksche Wirkungsquantum Max Planck: Das plancksche Wirkungsquantum Überblick Person Max Planck Prinzip schwarzer Strahler Klassische Strahlungsgesetze Planck sches Strahlungsgesetz Beispiele kosmische Hintergrundstrahlung Sternspektren

Mehr

CMB Echo des Urknalls. Max Camenzind Februar 2015

CMB Echo des Urknalls. Max Camenzind Februar 2015 CMB Echo des Urknalls Max Camenzind Februar 2015 Lemaître 1931: Big Bang des expandierenden Universums Big Bang : Photonenhintergrund + Neutrinohintergrund 3-Raum expandiert: dx a(t) dx ; Wellenlängen

Mehr

2. Max Planck und das Wirkungsquantum h

2. Max Planck und das Wirkungsquantum h 2. Max Planck und das Wirkungsquantum h Frequenzverteilung eines schwarzen Strahlers Am 6. Dezember 1900, dem 'Geburtsdatum' der modernen Physik, hatte Max Planck endlich die Antwort auf eine Frage gefunden,

Mehr

= 6,63 10 J s 8. (die Plancksche Konstante):

= 6,63 10 J s 8. (die Plancksche Konstante): 35 Photonen und Materiefelder 35.1 Das Photon: Teilchen des Lichts Die Quantenphysik: viele Größen treten nur in ganzzahligen Vielfachen von bestimmten kleinsten Beträgen (elementaren Einheiten) auf: diese

Mehr

Strahlungsgesetze. Stefan-Boltzmann Gesetz. Wiensches Verschiebungsgesetz. Plancksches Strahlungsgesetz

Strahlungsgesetze. Stefan-Boltzmann Gesetz. Wiensches Verschiebungsgesetz. Plancksches Strahlungsgesetz Tell me, I will forget Show me, I may remember Involve me, and I will understand Chinesisches Sprichwort Strahlungsgesetze Stefan-Boltzmann Gesetz Wiensches Verschiebungsgesetz Plancksches Strahlungsgesetz

Mehr

Vorlesung 21: Roter Faden: Das Elektron als Welle Heisenbergsche Unsicherheitsrelation. Versuch: Gasentladung

Vorlesung 21: Roter Faden: Das Elektron als Welle Heisenbergsche Unsicherheitsrelation. Versuch: Gasentladung Vorlesung 21: Roter Faden: Das Elektron als Welle Heisenbergsche Unsicherheitsrelation Versuch: Gasentladung Juli 7, 2006 Ausgewählte Kapitel der Physik, Prof. W. de Boer 1 Erste Experimente mit Elektronen

Mehr

1 Physikalische Hintergrunde: Teilchen oder Welle?

1 Physikalische Hintergrunde: Teilchen oder Welle? Skript zur 1. Vorlesung Quantenmechanik, Montag den 11. April, 2011. 1 Physikalische Hintergrunde: Teilchen oder Welle? 1.1 Geschichtliches: Warum Quantenmechanik? Bis 1900: klassische Physik Newtonsche

Mehr

10 Teilchen und Wellen. 10.1 Strahlung schwarzer Körper

10 Teilchen und Wellen. 10.1 Strahlung schwarzer Körper 10 Teilchen und Wellen Teilchen: m, V, p, r, E, lokalisierbar Wellen: l, f, p, E, unendlich ausgedehnt (harmonische Welle) Unterscheidung: Wellen interferieren 10.1 Strahlung schwarzer Körper JEDER Körper

Mehr

Quantenphänomene und Strahlungsgesetze

Quantenphänomene und Strahlungsgesetze Quantenphänomene und Strahlungsgesetze Ludwig Prade, Armin Regler, Pascal Wittlich 17.03.2011 Inhaltsverzeichnis 1 Quantenphänomene 2 1.1 Ursprünge....................................... 2 1.2 Photoeffekt......................................

Mehr

Welle-Teilchen-Dualismus

Welle-Teilchen-Dualismus Welle-Teilchen-Dualismus Andreas Pfeifer Proseminar, 2013 Andreas Pfeifer (Bielefeld) Welle-Teilchen-Dualismus 22. April 2013 1 / 10 Gliederung 1 Lichttheorie, -definition Newtons Korpuskulatortheorie

Mehr

Bohrsches Atommodell / Linienspektren. Experimentalphysik für Biologen und Chemiker, O. Benson & A. Peters, Humboldt-Universität zu Berlin

Bohrsches Atommodell / Linienspektren. Experimentalphysik für Biologen und Chemiker, O. Benson & A. Peters, Humboldt-Universität zu Berlin Bohrsches Atommodell / Linienspektren Quantenstruktur der Atome: Atomspektren Emissionslinienspektren von Wasserstoffatomen im sichtbaren Bereich Balmer Serie (1885): 1 / λ = K (1/4-1/n 2 ) 656.28 486.13

Mehr

Experimentelle Betrachtung Theoretische Betrachtung. Photoeffekt. 9. April 2012

Experimentelle Betrachtung Theoretische Betrachtung. Photoeffekt. 9. April 2012 9. April 2012 Inhalt Experimentelle Betrachtung 1 Experimentelle Betrachtung 2 Einleitung Experimentelle Betrachtung Photoelektrischer Effekt beschreibt drei verschiedene Arten von Wechselwirkung von Photonen

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Übung Qi Li, Bernhard Loitsch, Hannes Schmeiduch Donnerstag, 08.03.2012 1 Schwarzer Körper Außerhalb der Erdatmosphäre misst man das Maximum des Sonnenspektrums bei einer

Mehr

lichen auf sehr engem Raum konzentriert ist und die positive Ladung trägt

lichen auf sehr engem Raum konzentriert ist und die positive Ladung trägt lichen auf sehr engem Raum konzentriert ist und die positive Ladung trägt Kanalstrahlexperimente hatten schwere, positiv geladene Teilchen beim Wasserstoff nachgewiesen Aufgrund von Streuexperimenten postulierte

Mehr

Einteilung der Vorlesung

Einteilung der Vorlesung Einteilung der Vorlesung VL1. Einleitung Die fundamentalen Bausteine und Kräfte der Natur VL2. Experimentelle Grundlagen der Atomphysik 2.1. Masse, Größe der Atome 2.2. Elementarladung, spezifische Ladung

Mehr

Die seltsame Welt der Quanten

Die seltsame Welt der Quanten Saturday Morning Physics Die seltsame Welt der Quanten Wie spielt Gott sein Würfelspiel? 12. 11. 2005 Gernot Alber und Gerhard Birkl Institut für Angewandte Physik Technische Universität Darmstadt gernot.alber@physik.tu-darmstadt.de

Mehr

Klausurtermin: Nächster Klausurtermin: September :15-11:15

Klausurtermin: Nächster Klausurtermin: September :15-11:15 Klausurtermin: 10.02.2017 Gruppe 1: 9:15 11:15 Uhr Gruppe 2: 11:45-13:45 Uhr Nächster Klausurtermin: September 2017 9:15-11:15 Fragen bitte an: Antworten: t.giesen@uni-kassel.de direkt oder im Tutorium

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Wintersemester 2014/2015 Thomas Maier, Alexander Wolf Lösung 4 Quantenphänomene Aufgabe 1: Photoeffekt 1 Ein monochromatischer Lichtstrahl trifft auf eine Kalium-Kathode

Mehr

Welle-Teilchen- Dualismus. Miguel Muñoz Rojo Seminar zur Quantenphysik

Welle-Teilchen- Dualismus. Miguel Muñoz Rojo Seminar zur Quantenphysik Welle-Teilchen- Dualismus Miguel Muñoz Rojo Seminar zur Quantenphysik I. Korpuskelcharakter von Wellen Gesetz von Planck Lichtelektrische Effekt Compton Effekt Gesetz von Planck Die Energie von einem Oszillator

Mehr

Vorbereitung. Wärmestrahlung. Versuchsdatum:

Vorbereitung. Wärmestrahlung. Versuchsdatum: Vorbereitung Wärmestrahlung Carsten Röttele Stefan Schierle Versuchsdatum: 15.5.212 Inhaltsverzeichnis Theoretische Grundlagen 2.1 Wärmestrahlung................................ 2.2 Plancksches Strahlungsgesetz.........................

Mehr

FK Experimentalphysik 3, Lösung 4

FK Experimentalphysik 3, Lösung 4 1 Sterne als schwarze Strahler FK Experimentalphysik 3, 4 1 Sterne als schwarze Strahler Betrachten sie folgende Sterne: 1. Einen roten Stern mit einer Oberflächentemperatur von 3000 K 2. einen gelben

Mehr

Ein schwarzer Körper und seine Strahlung

Ein schwarzer Körper und seine Strahlung Quantenphysik 1. Hohlraumstrahlung und Lichtquanten 2. Max Planck Leben und Persönlichkeit 3. Das Bohrsche Atommodell 4. Niels Bohr Leben und Persönlichkeit 5. Wellenmechanik 6. Doppelspaltexperiment mit

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/Thermodynamik Wintersemester 007 Vladimir Dyakonov #16 am 0.0.007 Folien im PDF Format unter: http://www.physik.uni-wuerzburg.de/ep6/teaching.html Raum E143, Tel.

Mehr

Von der Kerze zum Laser: Die Physik der Lichtquanten

Von der Kerze zum Laser: Die Physik der Lichtquanten Von der Kerze zum Laser: Die Physik der Lichtquanten Jörg Weber Institut für Angewandte Physik/Halbleiterphysik Technische Universität Dresden Was ist Licht? Wie entsteht Licht? Anwendungen und offene

Mehr

7.4.4 Drei schwarze Körper ****** 1 Motivation. 2 Experiment

7.4.4 Drei schwarze Körper ****** 1 Motivation. 2 Experiment 7.4.4 ****** 1 Motivation Drei mit unterschiedlichen Materialien ausgekleidete Würfel sind mit kleinen Öffnungen versehen. Die aus diesen Öffnungen austretende Strahlung entspricht recht gut der Strahlung

Mehr

Vortragsthema: Die Unschärferelationen Ort/Impuls Energie/Zeit. An einigen Beispielen erläutern

Vortragsthema: Die Unschärferelationen Ort/Impuls Energie/Zeit. An einigen Beispielen erläutern Vortragsthema: Die Unschärferelationen Ort/Impuls Energie/Zeit An einigen Beispielen erläutern 5. Das Photon: Welle und Teilchen 5.4. Die Plancksche Strahlungsformel Wichtige Punkte: u( ν, T ) = 8πh c

Mehr

Vorlesung 3: Das Photon

Vorlesung 3: Das Photon Vorlesung 3: Das Photon Roter Faden: Eigenschaften des Photons Photoeffekt Comptonstreuung ->VL3 Gravitation Plancksche Temperaturstrahlung ->VL4 Folien auf dem Web: http://www-ekp.physik.uni-karlsruhe.de/~deboer/

Mehr

Quantenobjekte. M. Jakob. 16. September Gymnasium Pegnitz

Quantenobjekte. M. Jakob. 16. September Gymnasium Pegnitz Quantenobjekte M. Jakob Gymnasium Pegnitz 16. September 2015 Inhaltsverzeichnis 1 Wellen- und Teilchencharakter des Lichts (6 Std.) Wellencharakter Teilchencharakter Photonen Das Planck sche Wirkungsquantum

Mehr

Praktikumsvorbereitung Wärmestrahlung

Praktikumsvorbereitung Wärmestrahlung Praktikumsvorbereitung Wärmestrahlung André Schendel, Silas Kraus Gruppe DO-20 14. Juni 2012 I. Allgemein Schwarzer Körper Ein schwarzer Körper ist ein idealisiertes Objekt, das jede elektromagnetische

Mehr

Quantenmechanik. Eine Kurzvorstellung für Nicht-Physiker

Quantenmechanik. Eine Kurzvorstellung für Nicht-Physiker Quantenmechanik Eine Kurzvorstellung für Nicht-Physiker Die Quantenvorstellung Der Ursprung: Hohlraumstrahlung Das Verhalten eines Von Interesse: idealen Absorbers Energiedichte in Abhängigkeit zur Wellenlänge

Mehr

Physikalische Grundlagen zur Wärmegewinnung aus Sonnenenergie

Physikalische Grundlagen zur Wärmegewinnung aus Sonnenenergie 7 Physikalische Grundlagen zur Wärmegewinnung aus Sonnenenergie Umwandlung von Licht in Wärme Absorptions- und Emissionsvermögen 7.1 Umwandlung von Licht in Wärme Zur Umwandlung von Solarenergie in Wärme

Mehr

27. Wärmestrahlung, Quantenmechanik (Abschluß: Welle-Teilchen-Dualismus

27. Wärmestrahlung, Quantenmechanik (Abschluß: Welle-Teilchen-Dualismus 26. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Wärmestrahlung, Quantenmechanik (Abschluß: Welle-Teilchen-Dualismus 28. Atomphysik, Röntgenstrahlung, Bohrsches Atommodell Versuche: Elektronenbeugung Linienspektrum

Mehr

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 28. Atomphysik, Röntgenstrahlung (Fortsetzung: Röntgenröhre, Röntgenabsorption) 29. Atomkerne, Radioaktivität (Nuklidkarte, α-, β-, γ-aktivität, Dosimetrie)

Mehr

Quantenmechanik I. Jens Kortus TU Bergakademie Freiberg

Quantenmechanik I. Jens Kortus TU Bergakademie Freiberg Quantenmechanik I Jens Kortus Jens.Kortus@physik.tu-freiberg.de TU Bergakademie Freiberg Literatur: Fließbach, Quantenmechanik, Spektrum Akademischer Verlag Nolting, Grundkurs Theoretische Physik, Quantenmechanik

Mehr

Klausur -Informationen

Klausur -Informationen Klausur -Informationen Datum: 4.2.2009 Uhrzeit und Ort : 11 25 im großen Physikhörsaal (Tiermediziner) 12 25 ibidem Empore links (Nachzügler Tiermedizin, bitte bei Aufsichtsperson Ankunft melden) 11 25

Mehr

9. Atomphysik und Quantenphysik 9.0 Atom (historisch)

9. Atomphysik und Quantenphysik 9.0 Atom (historisch) 9. Atomphysik und Quantenphysik 9.0 Atom (historisch) Atom: átomos (gr.) unteilbar. 5-4 Jh. v. Chr.: Demokrit und sein Lehrer Leukippos von Millet entwickeln Theorie der Atome Fragment 125 aus den Schriften

Mehr

Welche Strahlen werden durch die Erdatmosphäre abgeschirmt? Welche Moleküle beeinflussen wesentlich die Strahlendurchlässigkeit der Atmosphäre?

Welche Strahlen werden durch die Erdatmosphäre abgeschirmt? Welche Moleküle beeinflussen wesentlich die Strahlendurchlässigkeit der Atmosphäre? Spektren 1 Welche Strahlen werden durch die Erdatmosphäre abgeschirmt? Welche Moleküle beeinflussen wesentlich die Strahlendurchlässigkeit der Atmosphäre? Der UV- und höherenergetische Anteil wird fast

Mehr

Die Welt der Quanten Murmeln oder Wellen? Max Camenzind Senioren Uni WS2013

Die Welt der Quanten Murmeln oder Wellen? Max Camenzind Senioren Uni WS2013 Die Welt der Quanten Murmeln oder Wellen? Max Camenzind Senioren Uni Würzburg @ WS2013 Die Krise des mechanischen Weltbildes und die Gründerväter der modernen Physik. Elektromagnetische Strahlung Maxwell,

Mehr

V Abbildung 1: Versuchsanordnung. Wärmestrahlung

V Abbildung 1: Versuchsanordnung. Wärmestrahlung 7.4.9 ****** 1 Motivation Die von Objekten mit unterschiedlicher Oberfläche und Temperatur wird gemessen. 2 Experiment Abbildung 1: Versuchsanordnung Wir betrachten drei Gläser: das erste ist schwarz,

Mehr

Abbildung 1: Versuchsanordnung

Abbildung 1: Versuchsanordnung 7.4.1 ****** 1 Motivation Dieses Experiment verdeutlicht das Kirchhoffsche Gesetz auf äusserst anschauliche Weise. Es wird die Wärmestrahlung eines mit kochend heissem Wasser gefüllten Würfels gemessen,

Mehr

Periodensystem, elektromagnetische Spektren, Atombau, Orbitale

Periodensystem, elektromagnetische Spektren, Atombau, Orbitale Periodensystem, elektromagnetische Spektren, Atombau, Orbitale Als Mendelejew sein Periodensystem aufstellte waren die Edelgase sowie einige andere Elemente noch nicht entdeck (gelb unterlegt). Trotzdem

Mehr

Thema heute: Aufbau der Materie: Das Bohr sche Atommodell

Thema heute: Aufbau der Materie: Das Bohr sche Atommodell Wiederholung der letzten Vorlesungsstunde: Erste Atommodelle, Dalton Thomson, Rutherford, Atombau, Coulomb-Gesetz, Proton, Elektron, Neutron, weitere Elementarteilchen, atomare Masseneinheit u, 118 bekannte

Mehr

Wind/Strömung September Wind und Strömung... 2

Wind/Strömung September Wind und Strömung... 2 Wind/Strömung Inhalt Wind und Strömung... 2 Strömung... 2 Strömungsfeld, stationäre Strömung... 2 Reibungsfreie Strömung... 2 Laminare Strömung... 2 Beaufort... 2 Temperaturstrahlung... 3 Strahlungsgesetze...

Mehr

Welle-Teilchen-Dualismus

Welle-Teilchen-Dualismus Physik A VL4 (01.0.013) Welle-Teilchen-Dualismus Strahlung schwarzer Körper Wärmestrahlung und schwarzer Körper Spektrum der Strahlung schwarzer Körper Die Planck sche Strahlungsformel Lichtstrahlung Welle

Mehr

4. Quantenmechanik. Offene Fragen am Ende des 19. Jahrhunderts:

4. Quantenmechanik. Offene Fragen am Ende des 19. Jahrhunderts: 4. Quantenmechanik Offene Fragen am Ende des 19. Jahrhunderts: - Strahlungsspektrum schwarzer Körper (z.b. der Sonne) - Merkwürdigkeiten beim lichtelektrische Effekt (Photoeffekt) - Aufbau der Atome -

Mehr

2. Kapitel Der Photoeffekt

2. Kapitel Der Photoeffekt 2. Kapitel Der Photoeffekt 2.1 Lernziele Sie wissen, was allgemein unter dem Begriff Photoeffekt zu verstehen ist. Sie können den inneren Photoeffekt vom äusseren unterscheiden. Sie können das Experiment

Mehr

Das Versagen der klassischen Physik Die Entwicklung der Quantenphysik. Quantenmechanische Lösung

Das Versagen der klassischen Physik Die Entwicklung der Quantenphysik. Quantenmechanische Lösung Das Versagen der klassischen Physik Die Entwicklung der Quantenphysik Problem Thermisches Strahlungsspektrum Photoelektrischer Effekt, Compton Effekt Quantenmechanische Lösung Planck sche Strahlungsformel:

Mehr

13.5 Photonen und Phononen

13.5 Photonen und Phononen Woche 11 13.5 Photonen und Phononen Teilchen mit linearem Dispersionsgesetz: E = c p, c - Ausbreitungsgeschwindigkeit (Licht- oder Schallgeschwindigkeit). 13.5.1 Photonen Quantisierung der Eigenschwingungen

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/Thermodynamik Wintersemester 007 Vladimir Dyakonov #15 am 01.0.007 Folien im PDF Format unter: http://www.physik.uni-wuerzburg.de/ep6/teaching.html Raum E143, Tel.

Mehr

Projektarbeit zur Schwarzkörperstrahlung

Projektarbeit zur Schwarzkörperstrahlung Projektarbeit zur Schwarzkörperstrahlung Quantenmechanik SS 004 Gruppe 9 Gruppenmitglieder Simon Außerlechner Florian Hebenstreit Martin Horn Alexander Reinmüller Christoph Stieb Inhaltverzeichnis. Einleitung....

Mehr

Vorlesung Physik für Pharmazeuten PPh - 11

Vorlesung Physik für Pharmazeuten PPh - 11 Vorlesung Physik für Pharmazeuten PPh - 11 Optik &Atomphysik 09.07.2007 und 16.07.2007 Der Hertzsche Dipol Der Hertzér Original Aufbau Höchste Frequenzen lassen sich bei kleinsten Werten von L und C erzielen.

Mehr

Äußerer lichtelektrischer Effekt (Äußerer Fotoeffekt; HALLWACHS-Effekt)

Äußerer lichtelektrischer Effekt (Äußerer Fotoeffekt; HALLWACHS-Effekt) Äußerer lichtelektrischer Effekt (Äußerer Fotoeffekt; HALLWACHS-Effekt) Experiment 1: Bestrahlung einer elektrisch geladene Zinkplatte mit Licht Rotlichtlampe; positive Ladung Quecksilberdampflampe; positive

Mehr

Hochschule Düsseldorf University of Applied Sciences. 04. Oktober 2016 HSD. Solarenergie. Die Sonne

Hochschule Düsseldorf University of Applied Sciences. 04. Oktober 2016 HSD. Solarenergie. Die Sonne Solarenergie Die Sonne Wärmestrahlung Wärmestrahlung Lichtentstehung Wärme ist Bewegung der Atome Im Festkörper ist die Bewegung Schwingung Diese Schwingungen können selber Photonen aufnehmen und abgeben

Mehr

Quantenphysik. Der äußere Lichtelektrische Effekt (Photoeffekt)

Quantenphysik. Der äußere Lichtelektrische Effekt (Photoeffekt) Quantenphysik Der äußere Lichtelektrische Effekt (Photoeffekt) 1. Experiment (qualitativ): Eine negativ geladene Zinkplatte wird mit UV-Licht bestrahlt. Licht als elektromagnetische Welle (so dachte man)

Mehr

Klimawandel. Inhalt. CO 2 (ppm)

Klimawandel. Inhalt. CO 2 (ppm) Klimawandel CO 2 (ppm) Sommersemester '07 Joachim Curtius Institut für Physik der Atmosphäre Universität Mainz Inhalt 1. Überblick 2. Grundlagen 3. Klimawandel heute: Beobachtungen 4. CO 2 5. Andere Treibhausgase

Mehr

Einführung in die Quantentheorie der Atome und Photonen

Einführung in die Quantentheorie der Atome und Photonen Einführung in die Quantentheorie der Atome und Photonen 23.04.2005 Jörg Evers Max-Planck-Institut für Kernphysik, Heidelberg Quantenmechanik Was ist das eigentlich? Physikalische Theorie Hauptsächlich

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #25 03/12/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Atomphysik Teil 1 Atommodelle, Atomspektren, Röntgenstrahlung Atomphysik Die Atomphysik ist ein

Mehr

Einführung in die Quantenphysik

Einführung in die Quantenphysik Einführung in die Quantenphysik Klassische Optik Der lichtelektrische Effekt Effekte elektromagnetischer Strahlung Kopenhagen-Interpretation Elektronen Quantenphysik und klassische Physik Atomphysik Klassische

Mehr

Entwicklung der Atommodelle

Entwicklung der Atommodelle Entwicklung der Atommodelle Entwicklung der Atommodelle Demokrit 460 v Chr. Nur scheinbar hat ein Ding eine Farbe, nur scheinbar ist es süß oder bitter; in Wirklichkeit gibt es nur Atome im leeren Raum.

Mehr

7. Das Bohrsche Modell des Wasserstoff-Atoms. 7.1 Stabile Elektronbahnen im Atom

7. Das Bohrsche Modell des Wasserstoff-Atoms. 7.1 Stabile Elektronbahnen im Atom phys4.08 Page 1 7. Das Bohrsche Modell des Wasserstoff-Atoms 7.1 Stabile Elektronbahnen im Atom Atommodell: positiv geladene Protonen (p + ) und Neutronen (n) im Kern negative geladene Elektronen (e -

Mehr

Äußerer lichtelektrischer Effekt

Äußerer lichtelektrischer Effekt Grundexperiment 1 UV-Licht Video: 301-1 Grundexperiment 2 UV-Licht Grundexperiment 3 Rotes Licht Video: 301-2 Grundexperiment 3 UV-Licht Glasplatte Video: 301-2 Herauslösung von Elektronen aus Metallplatte

Mehr

Der lichtelektrische Effekt (Photoeffekt)

Der lichtelektrische Effekt (Photoeffekt) Der lichtelektrische Effekt (Photoeffekt) Versuchsanordnung Zn-Platte, amalgamiert Wulfsches Elektrometer Spannung, ca. 800 V Knappe Erklärung des Versuches Licht löst aus der Zn-Platte Elektronen aus

Mehr

A. EINSTEIN und die Natur des Lichts. Lothar Ley Institut für Technische Physik Universität Erlangen-Nürnberg

A. EINSTEIN und die Natur des Lichts. Lothar Ley Institut für Technische Physik Universität Erlangen-Nürnberg A. EINSTEIN und die Natur des Lichts Lothar Ley Institut für Technische Physik Universität Erlangen-Nürnberg A. Einstein, Annalen der Physik, 17, 132 (1905) Über einen die Erzeugung und Verwandlung des

Mehr

7.4.5 Schwarzer und glänzender Körper im Ofen ****** 1 Motivation. 2 Experiment

7.4.5 Schwarzer und glänzender Körper im Ofen ****** 1 Motivation. 2 Experiment 7.4.5 ****** 1 Motivation Das unterschiedliche Reflexions, Absorptions und Emissionsvermögen eines metallisch glänzenden und eines matten Körpers wird bei einer Temperatur von 750 C vorgeführt. Dies ist

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #26 08/12/2010 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Atomphysik Teil 1 Atommodelle, Atomspektren, Röntgenstrahlung Atomphysik Die Atomphysik ist ein

Mehr

VI. Quantenphysik. VI.1 Ursprünge der Quantenphysik, Atomphysik. Physik für Mediziner 1

VI. Quantenphysik. VI.1 Ursprünge der Quantenphysik, Atomphysik. Physik für Mediziner 1 VI. Quantenphysik VI.1 Ursprünge der Quantenphysik, Atomphysik Physik für Mediziner 1 Mikroskopische Welt Physik für Mediziner 2 Strahlung des Schwarzen Körpers Schwarzer Körper: eintretendes Licht im

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Quantenphänomene Qi Li, Bernhard Loitsch, Hannes Schmeiduch Heinrich Grabmayr Donnerstag, 27.03.2012 Inhaltsverzeichnis 1 Quantenmechanische Eigenschaften von Licht & Teilchen

Mehr

Hochschule Düsseldorf University of Applied Sciences. 29. September 2015 HSD. Solarenergie. Die Sonne

Hochschule Düsseldorf University of Applied Sciences. 29. September 2015 HSD. Solarenergie. Die Sonne Solarenergie Die Sonne Wärmestrahlung Wärmestrahlung Lichtentstehung Wärme ist Bewegung der Atome Im Festkörper ist die Bewegung Schwingung Diese Schwingungen können selber Photonen aufnehmen und abgeben

Mehr

Äußerer lichtelektrischer Effekt Übungsaufgaben

Äußerer lichtelektrischer Effekt Übungsaufgaben Lösung: LB S.66/1 Ein Modell ist ein Ersatzobjekt für ein Original. Es stimmt in einigen Eigenschaftenmit dem Original überein, in anderen nicht. Einsolches Modell kann ideel (in Form eines Aussagesystems)

Mehr

Grundbausteine des Mikrokosmos (7) Wellen? Teilchen? Beides?

Grundbausteine des Mikrokosmos (7) Wellen? Teilchen? Beides? Grundbausteine des Mikrokosmos (7) Wellen? Teilchen? Beides? Experimentelle Überprüfung der Energieniveaus im Bohr schen Atommodell Absorbierte und emittierte Photonen hν = E m E n Stationäre Elektronenbahnen

Mehr

Grundbausteine des Mikrokosmos (5) Die Entdeckung des Wirkungsquantums

Grundbausteine des Mikrokosmos (5) Die Entdeckung des Wirkungsquantums Grundbausteine des Mikrokosmos (5) Die Entdeckung des Wirkungsquantums Ein weiterer Zugang zur Physik der Atome, der sich als fundamental erweisen sollte, ergab sich aus der Analyse der elektromagnetischen

Mehr

Eigenschaften des Photons

Eigenschaften des Photons Eigenschaften des Photons Das Photon ist das Energiequant der elektromagnetischen Wellen, d.h. Licht hat wie von Einstein postuliert nicht nur Wellencharakter, sondern auch Teilchencharakter mit den oben

Mehr

FK Ex 4 - Musterlösung Probeklausur

FK Ex 4 - Musterlösung Probeklausur FK Ex 4 - Musterlösung Probeklausur Quickies (a) Was ist Licht? (b) Welche verschiedenen Arten von Polarisationen gibt es? (c) Durch welche Effekte kann man aus unpolarisiertem Licht polarisiertes Licht

Mehr

Quantenphysik. Albert Einstein Mitbegründer der Quantenphysik. Modellvorstellung eines Quants

Quantenphysik. Albert Einstein Mitbegründer der Quantenphysik. Modellvorstellung eines Quants Quantenphysik Albert Einstein Mitbegründer der Quantenphysik Modellvorstellung eines Quants Die Wechselwirkung von Licht und Materie 1888 Wilhelm Hallwachs Bestrahlung von unterschiedlichen Metallplatten

Mehr

Intensität in Erdnähe: Am Sonnenrand: Strahlungsfluss

Intensität in Erdnähe: Am Sonnenrand: Strahlungsfluss 3. Thermische Strahlung und Lichtquanten Strahlungsgrößen dω Leistung ϑ da da Strahlungsstärke Flächenstück: Spezifische Ausstrahlung Intensität Beispiel: Sonne Intensität in Erdnähe: Am Sonnenrand: Strahlungsfluss

Mehr

Examensaufgaben QUANTENPHYSIK

Examensaufgaben QUANTENPHYSIK Examensaufgaben QUANTENPHYSIK Aufgabe 1 (Juni 2006) Bei einem Versuch wurden folgende Messwerte ermittelt : Wellenlänge des Lichtes (nm) Gegenspannung (V) 436 0,83 578 0,13 a) Berechne aus diesen Werten

Mehr

Lösungen zu den Aufg. S. 363/4

Lösungen zu den Aufg. S. 363/4 Lösungen zu den Aufg. S. 363/4 9/1 Die gemessene Gegenspannung (s. Tab.) entspricht der max. kin. Energie der Photoelektronen; die Energie der Photonen = E kin der Elektronen + Austrittsarbeit ==> h f

Mehr

10. Thermodynamik Wärmetransport Wämeleitung Konvektion Wärmestrahlung Der Treibhauseffekt. 10.

10. Thermodynamik Wärmetransport Wämeleitung Konvektion Wärmestrahlung Der Treibhauseffekt. 10. 10.5 Wärmetransport Inhalt 10.5 Wärmetransport 10.5.1 Wämeleitung 10.5.2 Konvektion 10.5.3 Wärmestrahlung 10.5.4 Der Treibhauseffekt 10.5.1 Wärmeleitung 10.5 Wärmetransport an unterscheidet: Wärmeleitung

Mehr

Licht und Farbe. Genesis (1.Buch Mose)

Licht und Farbe. Genesis (1.Buch Mose) Licht und Farbe Am Anfang schuf Gott Himmel und Erde. Und die Erde war wüst und leer, und es war finster auf der Tiefe; und der Geist Gottes schwebte auf dem Wasser. Und Gott sprach: Es werde Licht! Und

Mehr

7.Lichtquanten. Der Siegeszug der Wellentheorie war voll im Gang als Chr. Hallwachs 1888 auf anregung von H. Hertz folgende Entdeckung machte.

7.Lichtquanten. Der Siegeszug der Wellentheorie war voll im Gang als Chr. Hallwachs 1888 auf anregung von H. Hertz folgende Entdeckung machte. 7.1 Der Photoeffekt 7.Lichtquanten Der Siegeszug der Wellentheorie war voll im Gang als Chr. Hallwachs 1888 auf anregung von H. Hertz folgende Entdeckung machte. Hg Lampe Zn Platte Elektroskop Ist die

Mehr

LD DIDACTIC Leyboldstrasse 1 D Hürth Phone: (02233) Fax: (02233)

LD DIDACTIC Leyboldstrasse 1 D Hürth Phone: (02233) Fax: (02233) Optik Lichtintensität Strahlungsgesetze LD Handblätter Physik P5.5.2.4 Das Wien sche Verschiebungsgesetz spektrale Aufnahme der Schwarzkörperstrahlung Beschreibung aus SpectraLab (467 250) LD DIDACTIC

Mehr

Klausurinformation. Sie dürfen nicht verwenden: Handy, Palm, Laptop u.ae. Weisses Papier, Stifte etc. Proviant, aber keine heiße Suppe u.dgl.

Klausurinformation. Sie dürfen nicht verwenden: Handy, Palm, Laptop u.ae. Weisses Papier, Stifte etc. Proviant, aber keine heiße Suppe u.dgl. Klausurinformation Zeit: Mittwoch, 3.Februar, 12:00, Dauer :90 Minuten Ort: Veterinärmediziner: Großer Phys. Hörsaal ( = Hörsaal der Vorlesung) Geowissenschaftler u.a.: Raum A140, Hauptgebäude 1. Stock,

Mehr

Ein Unterrichtsprojekt zur Quantenmechanik am Begabungsstützpunkt

Ein Unterrichtsprojekt zur Quantenmechanik am Begabungsstützpunkt Ein Unterrichtsprojekt zur Quantenmechanik am Begabungsstützpunkt Andreas Kellerer (BSG Memmingen) Prof. Dr. Reinhold Rückl (Universität Würzburg) Die Rahmenbedingungen: Unterrichtsprojekt für den Kurs

Mehr

Einführung in die Astronomie und Astrophysik I

Einführung in die Astronomie und Astrophysik I Einführung in die Astronomie und Astrophysik I Teil 6 Jochen Liske Hamburger Sternwarte jochen.liske@uni-hamburg.de Themen Einstieg: Was ist Astrophysik? Koordinatensysteme Astronomische Zeitrechnung Sonnensystem

Mehr

Eigenschaften des Photons

Eigenschaften des Photons Eigenschaften des Photons Das Photon ist das Energiequant der elektromagnetischen Wellen, d.h. Licht hat wie von Einstein postuliert nicht nur Wellencharakter, sondern auch Teilchencharakter mit den oben

Mehr

Der Welle-Teilchen-Dualismus

Der Welle-Teilchen-Dualismus Quantenphysik Der Welle-Teilchen-Dualismus Welle-Teilchen-Dualismus http://bluesky.blogg.de/2005/05/03/fachbegriffe-der-modernen-physik-ix/ Welle-Teilchen-Dualismus Alles ist gleichzeitig Welle und Teilchen.

Mehr