Problem aller bisheriger Methoden: Ergebnis ist nur so gut wie das Modell selbst.

Größe: px
Ab Seite anzeigen:

Download "Problem aller bisheriger Methoden: Ergebnis ist nur so gut wie das Modell selbst."

Transkript

1 2.7 Validierung durch Backtesting Problem aller bisheriger Methoden: Ergebnis ist nur so gut wie das Modell selbst. Modell besteht im Wesentlichen aus zwei Faktoren: 1. Einflussgrößen 2. Modellierungsalgorithmus Einflussgrößen sind oft real beobachtbare Marktdaten, z.b. Aktienpreise -> Keine Genauigkeitsprobleme bei börsengehandelten Produkten Genauigkeit des VaR beim Marktrisiko liegt also in der tatsächlichen VaR-Berechnung 1 Backtesting = Vergleich der prognostizierten VaRs mit den tatsächlich eingetretenen Wertänderungen Vergleich dazu Stresstesting = Analyse möglicher zukünftiger Wertänderungen mittels Szenarien und Expertenschätzungen. Wesentlich für die Auswahl des Backtestingverfahrens sind Beobachtungszeitraum Genauigkeit der Analyse / interner vs. offizieller Backtest Automatisierbarkeit Konfidenzniveau Art der VaR-Berechnung 2 1

2 Regulatorische Vorgaben Seit 1996 können Banken eigene Verfahren zur VaR-Berechnung ihres Marktrisikos verwenden Wie ist der Zusammenhang zwischen VaR und tatsächlich benötigtem Eigenkapital? Banken: VaR = Eigenkapital Problem: Modellrisiko nicht mit eingerechnet 3 Value-at-Risk vs. Eigenkapital Problem: Modellfehler kann zu VaR-Unterschätzungen führen Regulatoren: Eigenkapital = Tatsächliches Risiko inklusive Modellfehler Annahme: Sensitivität des VaR gegenüber dem Modell ist nach oben durch eine Konstante beschränkt VaR(X)/ VaR(Xˆ ) c VaR(X) c VaR(Xˆ ) 4 2

3 Modellfehler bei Normalverteilungsannahme: Tschebyscheff-Ungleichung 1 F(kσ) = P(X > kσ) 1/ k² F 1 (1 1/ k²) kσ Ergebnis für das 99%-Quantil: k=10, d.h. 10σ ist Obergrenze des 99%-Quantils einer beliebigen Verteilung F mit beschränkter Varianz. Vergleich zur Normalverteilung: VaR F 1 F (0,99) MW 10σ 10 = = = 4,29 VaRΦ σφ 1 (0,99) MW 2,33σ 2,33 5 VaR F 1 F (0,99) MW 10σ 10 = = = 4,29 VaRΦ σφ 1 (0,99) MW 2,33σ 2,33 Resultat: Tatsächlicher VaR beim 99%-Quantil ist maximal das 4.29-fache des Normal -VaR. Modellfehler bei anderen Schätzmethoden (Hist. Simulation, MC- Methode) bewegt sich in ähnlichen Rahmen (siehe Stahl, G. Three Cheers, Risk Vol.10, No.5) Gesetzliche Umsetzung: Je nach festgestellter Güte des Modells wird als Eigenkapital das 3-4 fache des berechneten VaR zum Konfidenzniveau 0,99 veranschlagt. 6 3

4 Eigenkapital = VaR * (3 + s), 0 s 1 Wahl von s abhängig vom einfachsten Backtest, der Basler Ampel Basler Ampel zählt VaR-Überschreitungen innerhalb eines Jahres A.d.Ü. < >9 s Grundannahme: 250Tage/Jahr entspricht ca. 2-3 Überschreitungen des 99% VaR. 10 Überschreitungen entsprechen in etwa 96% Konfidenz 7 Analytische Methoden Annahme: Das Ereignis VaR-Überschreitung tritt ein wird beschrieben durch eine B(1;0,01)-Zufallsvariable Die Wahrscheinlichkeit des Eintretens am Tag n ist unabhängig von einem Eintreten am Vortag Die VaR-Überschreitungen in einem festgelegten Zeitraum N sind daher B(N;0,01) verteilt Beispiel: Basler Ampel benutzt eine B(250;0,01)-ZV als Grundlage 8 4

5 Basler Ampel überprüft (stark vereinfacht) die Hypothese, dass das beobachtete Konfidenzniveau mit dem vorgegebenen Konfidenzniveau übereinstimmt. x H 0 : q = qˆ = = 0,01 N x = Anzahl der Überschreitungen N = Anzahl der Messstellen (Backtestingpunkte) q = 1-Konfidenzniveau = x/n = 1-(empirisches Konfidenzniveau) qˆ 9 x H 0 : q = qˆ = = 0,01 N Proportion of Failures (POF) Test überprüft die Nullhypothese dass das beobachtete Quantil mit dem vorgegebenen übereinstimmt POF-Test benutzt Likelihood-Ratio-Statistik x N x q (1 q) LR POF = 2ln x N x qˆ (1 qˆ) LR-Statistik ist asymptotisch χ²-verteilt mit einem Freiheitsgrad. 10 5

6 x N x q (1 q) LR = POF 2ln x N x qˆ (1 qˆ) Überschreitet der Wert der LR-Statistik einen kritischen Wert wie z.b. das 95%-Quantil der Chi-Quadrat(1)-Verteilung wird die Nullhypothese abgelehnt, andernfalls wird sie angenommen Beispiel: In einem Zeitraum von 2 Jahren hat die Bewegung eines Portfolios 8 mal den 99%-VaR überschritten. Ist das VaR-Modell aufgrund dieser Beobachtung zu verwerfen? 2 q=0,01; N=500; x=8; χ 1 ;0, 95 = 3,84 (kritischer Wert) ,01 (1 0,01) 19 7,1 10 LR 2ln 2ln POF = = ,016 (1 0,016) 1,5 10 = 2ln ( 0,463) = 1,53 3, Time until First Failure (TUFF) Test geht davon aus dass im Mittel alle q -1 Tage eine Überschreitung auftritt (bei q=0,01 also alle 100 Tage) Die Nullhypothese dazu lautet 1 H 0 : q = qˆ = = 0,01 ν ν ist die Zahl der Tage bis zur ersten VaR-Überschreitung Überprüfung erneut mittels Likelihood-Ratio-Statistik, die asymptotisch χ²-verteilt ist mit einem Freiheitsgrad. ν 1 q(1 q) LR = POF 2ln ν 1 qˆ(1 qˆ) 12 6

7 Vergleich zwischen POF und TUFF Test: POF-Test untersucht Tragfähigkeit des VaR-Modells über den gesamten Beobachtungszeitraum TUFF-Test untersucht eher zeitlich bedingte Richtigkeit des VaR Nachteil des TUFF-Tests: Sehr geringe Güte, stark abhängig von der Wahl des Zeithorizontes -> Für die Praxis in dieser Form nicht relevant Nachteil des POF-Tests: Keine Aussage über Ausmaß der VaR- Überschreitung -> Gut bewertetes Modell kann VaR dennoch stark unterschätzen 13 Lösung des Überschreitungsproblems: Ausmaß der Überschreitung muss in den Backtest miteinfließen Magnitude Loss Function misst sowohl Anzahl der Überschreitungen als auch Abstand zum tatsächlichen VaR (VaR + = i xi ) für VaR < x C i i 0 sonst und C = i Ci Richtwert für C wird mittels Monte-Carlo-Simulation ermittelt Ist der gemessene Wert größer als der Richtwert, wird das VaR- Modell verworfen. 14 7

8 Magnitude Loss Function verhindert, dass wenige extreme Ausreißer zu einer Akzeptanz des Modells führen (eventuell auch Nachteil) MLF ist allerdings für sich betrachtet wenig aussagekräftig Beispiel: Die maximalen Verluste eines Portfolios im Laufe eines Jahres werden mit zwei VaR-Schätzern zum Konfidenzniveau 99% berechnet. Schätzer A führt an 249 Tagen zu keiner Überschreitung und an einem Tag zu einer Überschreitung von 2237 EUR. Schätzer B führt an 230 Tagen zu keiner Überschreitung und an 20 Tagen zu einer Überschreitung von 500 EUR. C(A)=1+2237²= C(B)=20(1+500²)= CD-Test berücksichtigt nicht nur Überschreitungen sondern bewertet die Güte der gesamten Verteilung. Nachteil: Kann bei Schätzern ohne geschlossene Verteilungsannahme (z.b. EVT) nicht verwendet werden CD-Test nimmt an, dass die Renditen gleichverteilte Ziehungen aus dem VaR-Modell sind, d.h. die empirischen Perzentile sollten einer R(0,1)-Verteilung genügen. Überprüfung der Hypothese mittels Q-Test (vergleicht maximale Abstände zur Gleichverteilung mit einem Benchmark) Durch eine Worry-Funktion wie f(t)=0,5ln(t(1-t)) kann der Fokus des Tests auf die Tails gelegt werden. Der kritische Wert des Q- Tests wird dann mit einer MC-Simulation ermittelt. 16 8

9 Graphische Methoden Neben den analytischen Methoden benutzen insbesondere die Regulatoren auch graphische Methoden zur Überprüfung des VaR- Modells Einfachste graphische Methode: Plot des VaR im Vergleich zur Zeitreihe, bzw. Plot der Überschreitungen Gibt Auskunft darüber wie stark der VaR überschritten wurde. Zeigt eventuelle Abhängigkeiten zwischen den Überschreitungen auf 17 99% und 95% VaR im Vergleich zur Zeitreihe des NASDAQ (long) 18 9

10 Überschreitungen des 99% VaR 19 Überschreitungen des 95% VaR 20 10

11 Einfache graphische Methode zur Überprüfung der Modellannahmen: QQ-Plot, der die Quantile der empirischen Verteilung mit den Quantilen der Modell-Verteilung vergleicht. Oftmals Verwendung findet der QQ-Normal-Plot, der die empirischen Quantile mit den Quantilen der Standardnormalverteilung vergleicht. Stimmen die empirische Verteilung und die Test-Verteilung überein, so liefert der QQ-Plot eine Gerade. Stimmen zusätzlich die Parameter der Verteilung überein, so entsteht eine Gerade mit Steigung QQ-Normal-Plot des NASDAQ 22 11

12 QQ-Plot der empirischen Quantile des NASDAQ gegen eine Pareto-Normal-Pareto-Verteilung 23 Ebenfalls Auskünfte über die Eignung des VaR-Modells kann eine graphische Analyse des CD-Tests geben Perzentile werden sortiert und geplottet. Ist das Ergebnis eine Gerade, so ist die Gleichverteilungsannahme gerechtfertigt Nachteil: Geringe Abweichungen zur Gleichverteilung in den Tails können zu gravierenden Fehlern führen Mögliche Lösung: Histogramm der geordneten Perzentile

13 Geordnete Perzentile des CD-Tests einer historischen VaR-Simulation der EXXON-Aktie (long) 25 Histogramm des CD-Tests 26 13

14 Zusammenfassung Analytische Backtests sind oft blind gegenüber Problemen des VaR-Modells, wie Abhängigkeit der Überschreitungen, Höhe der Überschreitungen, Anzahl der Überschreitungen Graphische Analysen geben oft mehr Aufschluss, können jedoch nicht automatisiert werden Zuverlässiges Backtesting erfordert eine Reihe verschiedener Backtests um die Schwächen der einzelnen Test-Verfahren zu eliminieren Zusätzlich sind oftmals graphische Tests erforderlich um die tatsächlichen Schwächen des Modells aufzudecken 27 Angewandtes Backtesting 28 14

15 29 15

10. Die Normalverteilungsannahme

10. Die Normalverteilungsannahme 10. Die Normalverteilungsannahme Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Bisher haben wir vorausgesetzt, daß die Beobachtungswerte normalverteilt sind. In diesem Fall kann man

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 25. Januar 2013 1 Der χ 2 -Anpassungstest 2 Exakter Test nach Fisher Mendelsche Erbregeln als Beispiel für mehr

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests Nach Verteilungsannahmen: verteilungsabhängig: parametrischer [parametric] Test verteilungsunabhängig: nichtparametrischer [non-parametric] Test Bei parametrischen Tests

Mehr

Nachteile: STD existiert nur für Verteilungen mit E(FL 2 ) <, d.h. nicht ansetzbar bei leptokurtischen ( fat tailed ) Verlustverteilungen;

Nachteile: STD existiert nur für Verteilungen mit E(FL 2 ) <, d.h. nicht ansetzbar bei leptokurtischen ( fat tailed ) Verlustverteilungen; Risikomaße basierend auf die Verlustverteilung Sei F L := F Ln+1 die Verteilung der Verlust L n+1. Die Parameter von F Ln+1 werden anhand von historischen Daten entweder direkt oder mit Hilfe der Risikofaktoren

Mehr

Statistisches Testen

Statistisches Testen Statistisches Testen Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Differenzen Anteilswert Chi-Quadrat Tests Gleichheit von Varianzen Prinzip des Statistischen Tests Konfidenzintervall

Mehr

Abbildung 1: Dieses Quiz soll Ihnen helfen, die Residuenplots besser zu verstehen. Am Schluss kommen noch vermischte Aufgaben zur Wiederholung.

Abbildung 1: Dieses Quiz soll Ihnen helfen, die Residuenplots besser zu verstehen. Am Schluss kommen noch vermischte Aufgaben zur Wiederholung. Residuals vs Fitted Normal Q Q Residuals 2 1 0 1 2 16 18 30 Standardized residuals 2 1 0 1 2 18 30 16 5 10 15 20 25 30 Fitted values 2 1 0 1 2 Theoretical Quantiles Abbildung 1: Dieses Quiz soll Ihnen

Mehr

Als Management Tool: zur Bestimmung der Risiken, die unterschiedliche Einheiten einer Firma eingehen dürfen.

Als Management Tool: zur Bestimmung der Risiken, die unterschiedliche Einheiten einer Firma eingehen dürfen. Verwendungszweck von Risikomanagement: Bestimmung der Mindestkapitalanforderungen: Kapital, das benötigt wird um event. Verluste abzudecken. Als Management Tool: zur Bestimmung der Risiken, die unterschiedliche

Mehr

73 Hypothesentests Motivation Parametertest am Beispiel eines Münzexperiments

73 Hypothesentests Motivation Parametertest am Beispiel eines Münzexperiments 73 Hypothesentests 73.1 Motivation Bei Hypothesentests will man eine gewisse Annahme über eine Zufallsvariable darauf hin überprüfen, ob sie korrekt ist. Beispiele: ( Ist eine Münze fair p = 1 )? 2 Sind

Mehr

Statistik II. Statistische Tests. Statistik II

Statistik II. Statistische Tests. Statistik II Statistik II Statistische Tests Statistik II - 5.5.2006 1 Ausgangslage Wir können Schätzen (z.b. den Erwartungswert) Wir können abschätzen, wie zuverlässig unsere Schätzungen sind: In welchem Intervall

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 1 Inhalt der heutigen Vorlesung Statistik und Wahrscheinlichkeitsrechnung Zusammenfassung der vorherigen Vorlesung Übersicht über Schätzung und

Mehr

Auswertung und Lösung

Auswertung und Lösung Residuals vs Fitted Normal Q Q Residuals 2 1 0 1 2 16 18 30 Standardized residuals 2 1 0 1 2 18 30 16 5 10 15 20 25 30 Fitted values 2 1 0 1 2 Theoretical Quantiles Abbildung 1: Dieses Quiz soll Ihnen

Mehr

Das empirische VaR bzw. CVaR

Das empirische VaR bzw. CVaR Das empirische VaR bzw. CVaR Sei x 1, x 2,..., x n eine Stichprobe der unabhängigen identischverteilten ZV X 1, X 2,..., X n mit Verteilungsfunktion F (Notation: Die ZV X 1, X 2,..., X n sind i.i.d. Empirische

Mehr

3 Grundlagen statistischer Tests (Kap. 8 IS)

3 Grundlagen statistischer Tests (Kap. 8 IS) 3 Grundlagen statistischer Tests (Kap. 8 IS) 3.1 Beispiel zum Hypothesentest Beispiel: Betrachtet wird eine Abfüllanlage für Mineralwasser mit dem Sollgewicht µ 0 = 1000g und bekannter Standardabweichung

Mehr

Value at Risk. Sandra Radl Sandra Radl Value at Risk / 31

Value at Risk. Sandra Radl Sandra Radl Value at Risk / 31 Value at Risk Sandra Radl 24.01.2018 Sandra Radl Value at Risk 24.01.2018 1 / 31 Inhaltsverzeichnis 1 Definition Zeithorizont 2 Berechnungsmethoden Historische Simulation Lineares Modell Quadratisches

Mehr

3.1 Punktschätzer für Mittelwert µ und Varianz σ 2. Messungen x 1,..., x N, die unabhängig voneinander auf gleiche Weise gewonnen worden sind

3.1 Punktschätzer für Mittelwert µ und Varianz σ 2. Messungen x 1,..., x N, die unabhängig voneinander auf gleiche Weise gewonnen worden sind Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 3.1 3.1 Punktschätzer für Mittelwert µ und Varianz σ 2 Messungen x 1,..., x N, die unabhängig voneinander auf gleiche Weise gewonnen worden

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

3) Testvariable: T = X µ 0

3) Testvariable: T = X µ 0 Beispiel 4.9: In einem Molkereibetrieb werden Joghurtbecher abgefüllt. Der Sollwert für die Füllmenge dieser Joghurtbecher beträgt 50 g. Aus der laufenden Produktion wurde eine Stichprobe von 5 Joghurtbechern

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Stetige Zufallsvariable Verteilungsfunktion: Dichtefunktion: Integralrechnung:

Mehr

Vorlesung Gesamtbanksteuerung Mathematische Grundlagen III / Marktpreisrisiken Dr. Klaus Lukas Stefan Prasser

Vorlesung Gesamtbanksteuerung Mathematische Grundlagen III / Marktpreisrisiken Dr. Klaus Lukas Stefan Prasser Vorlesung Gesamtbanksteuerung Mathematische Grundlagen III / Marktpreisrisiken Dr. Klaus Lukas Stefan Prasser 1 Agenda Rendite- und Risikoanalyse eines Portfolios Gesamtrendite Kovarianz Korrelationen

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung 11. Vorlesung Jochen Köhler 10.05.011 1 Inhalt der heutigen Vorlesung Zusammenfassung Parameterschätzung Übersicht über Schätzung und Modellbildung Modellevaluation

Mehr

Die Familie der χ 2 (n)-verteilungen

Die Familie der χ 2 (n)-verteilungen Die Familie der χ (n)-verteilungen Sind Z 1,..., Z m für m 1 unabhängig identisch standardnormalverteilte Zufallsvariablen, so genügt die Summe der quadrierten Zufallsvariablen χ := m Z i = Z 1 +... +

Mehr

Die Familie der χ 2 (n)-verteilungen

Die Familie der χ 2 (n)-verteilungen Die Familie der χ (n)-verteilungen Sind Z 1,..., Z m für m 1 unabhängig identisch standardnormalverteilte Zufallsvariablen, so genügt die Summe der quadrierten Zufallsvariablen χ := m Z i = Z 1 +... +

Mehr

Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL)

Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Prof. Dr. M. Schweizer ETH Zürich Sommer 2018 Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Bitte... Lege deine Legi auf den Tisch. Trage deine Daten in dieses Deckblatt ein, und schreibe auf jedes

Mehr

- Normalverteilung (Gaußverteilung) kann auf sehr viele Zufallsprozesse angewendet werden.

- Normalverteilung (Gaußverteilung) kann auf sehr viele Zufallsprozesse angewendet werden. Normalverteilung und Standardnormalverteilung als Beispiel einer theoretischen Verteilung - Normalverteilung (Gaußverteilung) kann auf sehr viele Zufallsprozesse angewendet werden. - Stetige (kontinuierliche),

Mehr

Auswertung und Lösung

Auswertung und Lösung Dieses Quiz soll Ihnen helfen, Kapitel 4.6 und 4.7 besser zu verstehen. Auswertung und Lösung Abgaben: 59 / 265 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: 0 Durchschnitt: 4.78 1 Frage

Mehr

Statistik II. IV. Hypothesentests. Martin Huber

Statistik II. IV. Hypothesentests. Martin Huber Statistik II IV. Hypothesentests Martin Huber 1 / 22 Übersicht Weitere Hypothesentests in der Statistik 1-Stichproben-Mittelwert-Tests 1-Stichproben-Varianz-Tests 2-Stichproben-Tests Kolmogorov-Smirnov-Test

Mehr

7. Hypothesentests. Ausgangssituation erneut: ZV X repräsentiere einen Zufallsvorgang. X habe die unbekannte VF F X (x)

7. Hypothesentests. Ausgangssituation erneut: ZV X repräsentiere einen Zufallsvorgang. X habe die unbekannte VF F X (x) 7. Hypothesentests Ausgangssituation erneut: ZV X repräsentiere einen Zufallsvorgang X habe die unbekannte VF F X (x) Interessieren uns für einen unbekannten Parameter θ der Verteilung von X 350 Bisher:

Mehr

Wahrscheinlichkeit und Statistik BSc D-INFK

Wahrscheinlichkeit und Statistik BSc D-INFK Prof. Dr. M. Schweizer ETH Zürich Sommer 4 Wahrscheinlichkeit und Statistik BSc D-INFK. a (iii b (ii c (iii d (i e (ii f (i g (iii h (iii i (i j (ii. a Die Anzahl der bestellten Weine in einem Monat kann

Mehr

Tutorial: Anpassungstest

Tutorial: Anpassungstest Tutorial: Anpassungstest An einem Institut gibt es vier UniversitätslehrerInnen, die auch Diplomarbeiten betreuen. Natürlich erfordert die Betreuung einer Diplomarbeit einiges an Arbeit und Zeit und vom

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

Statistik I für Betriebswirte Vorlesung 14

Statistik I für Betriebswirte Vorlesung 14 Statistik I für Betriebswirte Vorlesung 14 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 13. Juli 017 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 14 Version: 8. Juli

Mehr

Tests für Erwartungswert & Median

Tests für Erwartungswert & Median Mathematik II für Biologen 26. Juni 2015 Prolog Varianz des Mittelwerts Beispiel: Waage z-test t-test Vorzeichentest Wilcoxon-Rangsummentest Varianz des Mittelwerts Beispiel: Waage Zufallsvariable X 1,...,X

Mehr

Wahrscheinlichkeitsrechnung und Statistik. 11. Vorlesung /2019

Wahrscheinlichkeitsrechnung und Statistik. 11. Vorlesung /2019 Wahrscheinlichkeitsrechnung und Statistik 11. Vorlesung - 2018/2019 Quantil der Ordnung α für die Verteilung des beobachteten Merkmals X ist der Wert z α R für welchen gilt z 1 2 heißt Median. P(X < z

Mehr

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig) ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels

Mehr

Geburtsjahr Bestand Todesfälle

Geburtsjahr Bestand Todesfälle Aufgabe (30 Punkte) Ein Lebensversicherungsunternehmen ermittelt die Rechnungsgrundlagen für eine gemischte Versicherung gegen Einmalbeitrag (zur Vereinfachung: Eintrittsalter:, Dauer: 3 Jahre, Unise-

Mehr

Mathematische Statistik Aufgaben zum Üben. Schätzer

Mathematische Statistik Aufgaben zum Üben. Schätzer Prof. Dr. Z. Kabluchko Wintersemester 2016/17 Philipp Godland 14. November 2016 Mathematische Statistik Aufgaben zum Üben Keine Abgabe Aufgabe 1 Schätzer Es seien X 1,..., X n unabhängige und identisch

Mehr

Kapitel XIV - Anpassungstests

Kapitel XIV - Anpassungstests Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XIV - Anpassungstests Induktive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh 2. Grundannahme:

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 10. Vorlesung - 017 Quantil der Ordnung α für die Verteilung des beobachteten Merkmals X ist der Wert z α R für welchen gilt z 1 heißt Median. P(X < z α ) α P(X z α ). Falls X stetige zufällige Variable

Mehr

1. Grundbegri e der Stochastik

1. Grundbegri e der Stochastik Wiederholung von Grundwissen der Stochastik. Grundbegri e der Stochastik Menge der Ereignisse. Die Elemente! der Menge heißen Elementarereignisse und sind unzerlegbare Ereignisse. Das Ereignis A tritt

Mehr

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

4.1. Nullhypothese, Gegenhypothese und Entscheidung

4.1. Nullhypothese, Gegenhypothese und Entscheidung rof. Dr. Roland Füss Statistik II SS 8 4. Testtheorie 4.. Nullhypothese, Gegenhypothese und Entscheidung ypothesen Annahmen über die Verteilung oder über einzelne arameter der Verteilung eines Merkmals

Mehr

Statistik I für Betriebswirte Vorlesung 14

Statistik I für Betriebswirte Vorlesung 14 Statistik I für Betriebswirte Vorlesung 14 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 11. Juli 016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Analyse und Modellierung von Daten Von Prof. Dr. Rainer Schlittgen 4., überarbeitete und erweiterte Auflage Fachbereich Materialwissenschaft! der Techn. Hochschule Darmstadt

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management für Betriebswirtschaft und internationales Management Sommersemester 2015 Prof. Dr. Stefan Etschberger Hochschule Augsburg Testverteilungen Chi-Quadrat-Verteilung Sind X 1,..., X n iid N(0; 1)-verteilte

Mehr

Definition 18 (Die verallgemeinerte Pareto Verteilung (GPD)) Die standard GPD G γ : ) 1/γ. G γ,ν,β = 1 (1 + γ x ν β

Definition 18 (Die verallgemeinerte Pareto Verteilung (GPD)) Die standard GPD G γ : ) 1/γ. G γ,ν,β = 1 (1 + γ x ν β Die POT Methode (Peaks over Threshold) Definition 18 (Die verallgemeinerte Pareto Verteilung (GPD)) Die standard GPD G γ : G γ (x) = { 1 (1 + γx) 1/γ für γ 0 1 exp{ x} für γ = 0 wobei x D(γ) D(γ) = { 0

Mehr

Lösung Übungsblatt 5

Lösung Übungsblatt 5 Lösung Übungsblatt 5 5. Januar 05 Aufgabe. Die sogenannte Halb-Normalverteilung spielt eine wichtige Rolle bei der statistischen Analyse von Ineffizienzen von Produktionseinheiten. In Abhängigkeit von

Mehr

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003 Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003. Eine seltene Krankheit trete mit Wahrscheinlichkeit : 0000 auf. Die bedingte Wahrscheinlichkeit, dass ein bei einem Erkrankten durchgeführter

Mehr

Beispiel für Gütefunktionen Rechtsseitiger Test (µ 0 = 500) zum Signifikanzniveau α = 0.10

Beispiel für Gütefunktionen Rechtsseitiger Test (µ 0 = 500) zum Signifikanzniveau α = 0.10 6 Hypothesentests Gauß-Test für den Mittelwert bei bekannter Varianz 6.3 Beispiel für Gütefunktionen Rechtsseitiger Test (µ 0 = 500) zum Signifikanzniveau α = 0.10 G(µ) 0 α 0. 0.4 0.6 0.8 1 n = 10 n =

Mehr

Hypothesentests für Erwartungswert und Median. Statistik (Biol./Pharm./HST) FS 2015

Hypothesentests für Erwartungswert und Median. Statistik (Biol./Pharm./HST) FS 2015 Hypothesentests für Erwartungswert und Median Statistik (Biol./Pharm./HST) FS 2015 Normalverteilung X N μ, σ 2 X ist normalverteilt mit Erwartungswert μ und Varianz σ 2 pdf: pdf cdf:??? cdf 1 Zentraler

Mehr

How To Find Out If A Ball Is In An Urn

How To Find Out If A Ball Is In An Urn Prof. Dr. P. Embrechts ETH Zürich Sommer 2012 Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Schreiben Sie für Aufgabe 2-4 stets alle Zwischenschritte und -rechnungen sowie Begründungen auf. Aufgabe

Mehr

Theorie Parameterschätzung Ausblick. Schätzung. Raimar Sandner. Studentenseminar "Statistische Methoden in der Physik"

Theorie Parameterschätzung Ausblick. Schätzung. Raimar Sandner. Studentenseminar Statistische Methoden in der Physik Studentenseminar "Statistische Methoden in der Physik" Gliederung 1 2 3 Worum geht es hier? Gliederung 1 2 3 Stichproben Gegeben eine Beobachtungsreihe x = (x 1, x 2,..., x n ): Realisierung der n-dimensionalen

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine Universität Düsseldorf 13. Januar 2010 Termine Letzte Vorlesung am 28.01.2010 Letzte Übung am 27.01.2010, und zwar für alle Anfangsbuchstaben

Mehr

Einführung in die Induktive Statistik: Testen von Hypothesen

Einführung in die Induktive Statistik: Testen von Hypothesen Einführung in die Induktive Statistik: Testen von Hypothesen Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Testen: Einführung und Konzepte

Mehr

7. Übung: Aufgabe 1. b), c), e) Aufgabe 2. a), c), e) Aufgabe 3. c), e) Aufgabe 4. Aufgabe 5. Aufgabe 6. Aufgabe 7. Aufgabe 8. Aufgabe 9.

7. Übung: Aufgabe 1. b), c), e) Aufgabe 2. a), c), e) Aufgabe 3. c), e) Aufgabe 4. Aufgabe 5. Aufgabe 6. Aufgabe 7. Aufgabe 8. Aufgabe 9. 7. Übung: Aufgabe 1 b), c), e) Aufgabe a), c), e) Aufgabe 3 c), e) Aufgabe 4 b) Aufgabe 5 a) Aufgabe 6 b) Aufgabe 7 e) Aufgabe 8 c) Aufgabe 9 a), c), e) Aufgabe 10 b), d) Aufgabe 11 a) Aufgabe 1 b) Aufgabe

Mehr

Hypothesen: Fehler 1. und 2. Art, Power eines statistischen Tests

Hypothesen: Fehler 1. und 2. Art, Power eines statistischen Tests ue biostatistik: hypothesen, fehler 1. und. art, power 1/8 h. lettner / physik Hypothesen: Fehler 1. und. Art, Power eines statistischen Tests Die äußerst wichtige Tabelle über die Zusammenhänge zwischen

Mehr

Biomathematik für Mediziner

Biomathematik für Mediziner Institut für Medizinische Biometrie, Informatik und Epidemiologie der Universität Bonn (Direktor: Prof. Dr. Max P. Baur) Biomathematik für Mediziner Klausur SS 2002 Aufgabe 1: Franz Beckenbauer will, dass

Mehr

Seminar im Wintersemester 2010/2011: Quantitative und implementierte Methoden der Marktrisikobewertung

Seminar im Wintersemester 2010/2011: Quantitative und implementierte Methoden der Marktrisikobewertung M.Sc. Brice Hakwa hakwa@uni-wuppertal.de Seminar im Wintersemester 2010/2011: Quantitative und implementierte Methoden der Marktrisikobewertung - Zusammenfassung zum Thema: Berechnung von Value-at-Risk

Mehr

Modellbildung und Simulation

Modellbildung und Simulation Modellbildung und Simulation 6. Vorlesung Wintersemester 2007/2008 Klaus Kasper Value at Risk (VaR) Gaußdichte Gaußdichte der Normalverteilung: f ( x) = 1 2π σ x e 2 2 x ( x µ ) / 2σ x Gaußdichte der Standardnormalverteilung:

Mehr

3.Wiederholung: Toleranzbereiche Für EX Geg:

3.Wiederholung: Toleranzbereiche Für EX Geg: 3.Wiederholung: Toleranzbereiche Für EX Geg: Vl. 24.2.2017 Schätzfunktion für Güte: Ist X Problem: Feb 17 13:21 > Wir berechnen Bereiche (Toleranzbereiche) für sind untere und obere Grenzen, berechnet

Mehr

Aufgaben. d) Seien X und Y Poissonverteilt mit Parameter µ, X, Y P(µ). 2. Dann ist die Summe auch Poissonverteilt mit (X + Y ) P(2µ).

Aufgaben. d) Seien X und Y Poissonverteilt mit Parameter µ, X, Y P(µ). 2. Dann ist die Summe auch Poissonverteilt mit (X + Y ) P(2µ). Aufgaben 1. Bei den folgenden 10 Fragen ist jeweils genau eine Antwort richtig. Es gibt pro richtig beantwortete Frage 1 Punkt und pro falsche Antwort 1/2 Punkt Abzug. Minimal erhält man für die gesamte

Mehr

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandelt die Verteilung einer Variablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem

Mehr

Konfidenzintervalle. Gesucht: U = U(X 1,..., X n ), O = O(X 1,..., X n ), sodass für das wahre θ gilt

Konfidenzintervalle. Gesucht: U = U(X 1,..., X n ), O = O(X 1,..., X n ), sodass für das wahre θ gilt Konfidenzintervalle Annahme: X 1,..., X n iid F θ. Gesucht: U = U(X 1,..., X n ), O = O(X 1,..., X n ), sodass für das wahre θ gilt P θ (U θ O) = 1 α, α (0, 1). Das Intervall [U, O] ist ein Konfidenzintervall

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2

Mehr

Evaluation & Forschungsstrategien. B.Sc.-Seminar. Sitzung IV: Konfidenzintervalle // Normalverteilungstests

Evaluation & Forschungsstrategien. B.Sc.-Seminar. Sitzung IV: Konfidenzintervalle // Normalverteilungstests Evaluation & Forschungsstrategien B.Sc.-Seminar Sitzung V: Konfidenzintervalle // Normalverteilungstests Seminarinhalte Sitzung V: 16.05.2018 Konfidenzintervalle bei bekannter Varianz Konfidenzintervalle

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

0 sonst. a) Wie lautet die Randwahrscheinlichkeitsfunktion von Y? 0.5 y = 1

0 sonst. a) Wie lautet die Randwahrscheinlichkeitsfunktion von Y? 0.5 y = 1 Aufgabe 1 (2 + 2 + 2 + 1 Punkte) Gegeben sei folgende gemeinsame Wahrscheinlichkeitsfunktion f(x, y) = P (X = x, Y = y) der Zufallsvariablen X und Y : 0.2 x = 1, y = 1 0.3 x = 2, y = 1 f(x, y) = 0.45 x

Mehr

3.3 Konfidenzintervalle für Regressionskoeffizienten

3.3 Konfidenzintervalle für Regressionskoeffizienten 3.3 Konfidenzintervalle für Regressionskoeffizienten Konfidenzintervall (Intervallschätzung): Angabe des Bereichs, in dem der "wahre" Regressionskoeffizient mit einer großen Wahrscheinlichkeit liegen wird

Mehr

Nachklausur Wahrscheinlichkeitstheorie und Inferenz II Sommersemester Oktober 2011

Nachklausur Wahrscheinlichkeitstheorie und Inferenz II Sommersemester Oktober 2011 Nachklausur Wahrscheinlichkeitstheorie und Inferenz II Sommersemester 2011 28. Oktober 2011 Prof. Dr. Torsten Hothorn Institut für Statistik Nachname: Vorname: Matrikelnummer: Anmerkungen: ˆ Schreiben

Mehr

Marcel Dettling. GdM 2: LinAlg & Statistik FS 2017 Woche 12. Winterthur, 17. Mai Institut für Datenanalyse und Prozessdesign

Marcel Dettling. GdM 2: LinAlg & Statistik FS 2017 Woche 12. Winterthur, 17. Mai Institut für Datenanalyse und Prozessdesign Marcel Dettling Institut für Datenanalyse und Prozessdesign Zürcher Hochschule für Angewandte Wissenschaften marcel.dettling@zhaw.ch http://stat.ethz.ch/~dettling Winterthur, 17. Mai 2017 1 Verteilung

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Analyse und Modellierung von Daten von Prof. Dr. Rainer Schlittgen Universität Hamburg 12., korrigierte Auflage Oldenbourg Verlag München Inhaltsverzeichnis 1 Statistische Daten

Mehr

Klausur zur Vorlesung

Klausur zur Vorlesung Institut für Mathematische Stochastik WS 2006/2007 Universität Karlsruhe 12. Februar 2007 Priv.-Doz. Dr. D. Kadelka Dipl.-Math. W. Lao Aufgabe 1 (15 Punkte) Klausur zur Vorlesung Statistik für Biologen

Mehr

Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL)

Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Prof. Dr. M. Maathuis ETH Zürich Winter 2010 Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Schreiben Sie für Aufgabe 2-4 stets alle Zwischenschritte und -rechnungen sowie Begründungen auf. Aufgabe

Mehr

Aufgabe (12 Punkte) Sei A A eine σ-algebra. (a) Man zeige: Ist X : Ω R A -messbar, dann ist X A-messbar. (b) Gilt die Umkehrung von (a)?

Aufgabe (12 Punkte) Sei A A eine σ-algebra. (a) Man zeige: Ist X : Ω R A -messbar, dann ist X A-messbar. (b) Gilt die Umkehrung von (a)? Am 5. Mai 2007 wurde zum dritten Mal eine stochastische Eingangsprüfung durchgeführt. Insgesamt konnten maximal 56 Punkte erreicht werden, zum Bestehen der Prüfung waren mindestens 26 Punkte notwendig.

Mehr

Sei θ i = ˆθ. Empirische Verleitungsfunktion von ˆθ(x 1,x 2,...,x n ): I [ θ i, ) Fˆθ für N. Fˆθ. 1, x(i) 2,..., x(i) n, 1 i N. N := 1 N.

Sei θ i = ˆθ. Empirische Verleitungsfunktion von ˆθ(x 1,x 2,...,x n ): I [ θ i, ) Fˆθ für N. Fˆθ. 1, x(i) 2,..., x(i) n, 1 i N. N := 1 N. Ein nicht-parametrisches Bootstrapping Verfahren zu Ermittlung von Konfidenzintervallen der Schätzer Seien die ZV X 1,X 2,...,X n i.i.d. mit Verteilungsfunktion F und sei x 1,x 2,...x n eine Stichprobe

Mehr

bav Risikomanagement in der betrieblichen Altersversorgung FaRis & DAV Symposium, Köln, 14. Juni 2013

bav Risikomanagement in der betrieblichen Altersversorgung FaRis & DAV Symposium, Köln, 14. Juni 2013 Risikomanagement in der betrieblichen Altersversorgung FaRis & DAV Symposium, Köln, 14. Juni 2013 3. Bewertung von biometrischen Risiken in der bav Fachhochschule Köln, Schmalenbach Institut für Wirtschaftswissenschaften

Mehr

Wahrscheinlichkeit und Statistik BSc D-INFK

Wahrscheinlichkeit und Statistik BSc D-INFK Prof. Dr. P. Embrechts ETH Zürich Sommer 2015 Wahrscheinlichkeit und Statistik BSc D-INFK Name: Vorname: Stud. Nr.: Das Folgende bitte nicht ausfüllen! Aufg. Summe Kontr. Pkte.-Max. 1 10 2 10 3 10 4 10

Mehr

Varianzvergleiche bei normalverteilten Zufallsvariablen

Varianzvergleiche bei normalverteilten Zufallsvariablen 9 Mittelwert- und Varianzvergleiche Varianzvergleiche bei zwei unabhängigen Stichproben 9.3 Varianzvergleiche bei normalverteilten Zufallsvariablen Nächste Anwendung: Vergleich der Varianzen σa 2 und σ2

Mehr

Regression und Korrelation

Regression und Korrelation Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandeltdie VerteilungeinerVariablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem dagegen

Mehr

Musterlösung zur Klausur im Fach Fortgeschrittene Statistik am Gesamtpunktzahl: 60

Musterlösung zur Klausur im Fach Fortgeschrittene Statistik am Gesamtpunktzahl: 60 WESTFÄLISCHE WILHELMS - UNIVERSITÄT MÜNSTER Wirtschaftswissenschaftliche Faktultät Prof. Dr. Bernd Wilfling Professur für VWL, insbesondere Empirische Wirtschaftsforschung Musterlösung zur Klausur im Fach

Mehr

Nachklausur zur Vorlesung

Nachklausur zur Vorlesung Institut für Mathematische Stochastik WS 003/004 Universität Karlsruhe 30. April 004 Priv.-Doz. Dr. D. Kadelka Nachklausur zur Vorlesung Statistik für Biologen Musterlösungen Aufgabe 1 Gemessen wurde bei

Mehr

Verteilungen eindimensionaler stetiger Zufallsvariablen Stetige Verteilungen. Chi-Quadrat-Verteilung Studentverteilung Fisher-Verteilung

Verteilungen eindimensionaler stetiger Zufallsvariablen Stetige Verteilungen. Chi-Quadrat-Verteilung Studentverteilung Fisher-Verteilung Verteilungen eindimensionaler stetiger Zufallsvariablen Stetige Verteilungen Chi-Quadrat-Verteilung Studentverteilung Fisher-Verteilung Typisierung der stetigen theoretischen Verteilungen Bibliografie:

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenho Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2 Elementare

Mehr

Modul 141 Statistik. 1. Studienjahr 11. Sitzung Signifikanztests

Modul 141 Statistik. 1. Studienjahr 11. Sitzung Signifikanztests Modul 141 Statistik 1. Studienjahr 11. Sitzung Signifikanztests Inhalt der 11. Sitzung 1. Parametrische Signifikanztests 2. Formulierung der Hypothesen 3. Einseitige oder zweiseitige Fragestellung 4. Signifikanzniveau

Mehr

Tutorial: χ 2 -Test auf vorgegebene Verteilung

Tutorial: χ 2 -Test auf vorgegebene Verteilung Tutorial: χ 2 -Test auf vorgegebene Verteilung Das Management eines Kaufhauses will durch eine Werbekampagne eine Verjüngung der Kundschaft erreichen. Bisher war die Verteilung (in %) auf Altersschichten

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 12. Januar 2011 1 Vergleich zweier Erwartungswerte Was heißt verbunden bzw. unverbunden? t-test für verbundene Stichproben

Mehr

1 Grundlagen der Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsräume. Ein erster mathematischer Blick auf Zufallsexperimente...

1 Grundlagen der Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsräume. Ein erster mathematischer Blick auf Zufallsexperimente... Inhaltsverzeichnis 1 Grundlagen der Wahrscheinlichkeitsrechnung 1 1.1 Wahrscheinlichkeitsräume Ein erster mathematischer Blick auf Zufallsexperimente.......... 1 1.1.1 Wahrscheinlichkeit, Ergebnisraum,

Mehr

Tutorial:Unabhängigkeitstest

Tutorial:Unabhängigkeitstest Tutorial:Unabhängigkeitstest Mit Daten aus einer Befragung zur Einstellung gegenüber der wissenschaftlich-technischen Entwicklungen untersucht eine Soziologin den Zusammenhang zwischen der Einstellung

Mehr