Klausur Schwingungstechnik 20. September Name Vorname Matr. - Nr. Punkte

Größe: px
Ab Seite anzeigen:

Download "Klausur Schwingungstechnik 20. September Name Vorname Matr. - Nr. Punkte"

Transkript

1 1 Aufgaben FB Maschinenbau Institut für Mechanik FG Maschinendynamik Prof. Dr.-Ing. H. Irretier Dipl.-Ing. A. Stein Klausur Schwingungstechnik 0. September 011 Name Vorname Matr. - Nr. Punkte =50 Aufgabe 1: (7 Punkte) 0 l g Ein mathematisches Pendel(Masse m, Länge l) ist im Schwerefeld der Erde(Fallbeschleunigung g) reibungsfrei aufgehängt und führt freie, ungedämpfte Schwingungen aus. m (a) Stellen Sie in jeweils einem Diagramm die Eigenkreisfrequenz des Pendels in Abhängigkeit von der Masse und der Länge dar. (b) Stellen Sie in einem weiteren Diagramm die Periodendauer des Pendels in Abhängigkeit von der Länge dar. (c) Um wie viel muss die Länge des Pendels vergrößert werden, damit sich seine Periodendauer verdoppelt? Gegeben: m, l, g 1

2 Aufgabe : (10 Punkte) Das dargestellte Feder-Masse-Dämpfer-System dient zur Kraftmessung eines Boxschlages, der über den horizontal angebrachten masselosen, reibungsfrei gelagerten Balken in das System eingebracht wird. Die Schlagkraft beträgt F 0. Die Scheibe rollt auf dem Untergrund ohne zu Rutschen. (t) k C R d m, J C (a) Zeichnen Sie das zugehörige Freikörperbild der kreisförmigen Scheibe! Stellen Sie das Massenträgheitsmoment bezüglich des Momentanpols auf und ermitteln Sie die Bewegungsgleichung der Scheibe. (b) Bestimmen Sie die ungedämpfte Eigenkreisfrequenz ω 0, den Dämpfungsgrad D, die gedämpfte Eigenkreisfrequenz ω D und das logarithmische Dekrement ϑ. Gegeben: F 0, d, R, m, C, k

3 Aufgabe 3: (16 Punkte) Eine Kinderschaukel wird am Aufhängpunkt durch eine horizontale, harmonische Wegerregung u(t) = û cos(ωt) (Erregeramplitude û, Erregerkreisfrequenz Ω) zu Schwingungen angeregt. Die Länge der Stange beträgt L, die Masse eines auf dem Balken der Schaukel sitzenden Kindes ist m. L m A u(t) (a) Wie lautet die Bewegungsgleichung der Schaukel? (b) Wie groß ist die ungedämpfte Eigenkreisfrequenz der Schaukel? (c) In welchem Bereich darf die Erregerkreisfrequenz nicht liegen, damit der Winkel der Schaukel eine Amplitude nicht überschreitet? Gegeben: û = 0.3m ; L = 0.5m ; m = 30kg ; D = 0.05 ; = 0 Hinweis: Durch die Parallelführung des Balkens entspricht die Schaukel einem mathematischen Pendel mit der Masse des Kindes und der Länge der Stangen!

4 Aufgabe 4: (17 Punkte) k u(t) m w(t) Gegeben ist das Ersatzmodell für eine Maschine, die auf einer Feder und einem Dämpfer (Federkonstante k 1, Dämpferzahl d ), auf dem Untergrund aufgestellt ist. Über eine zweite Feder (Federkonstante k ) wird die Maschine durch eine periodische Funktion k 1 d u(t) = 1 ûsinωt mit der Periodendauer T zu vertikalen Schwingungen angeregt. (a) Zeichnen Sie die Funktion u(t) im Intervall [0;T]. (b) Entwickeln Sie die Erregerfunktion in einer FOURIER-Reihe und berechnen Sie die ersten drei Harmonischen. (c) Welche Harmonische der FOURIER-Reihe besitzt die maximale Amplitude und welche Harmonische erzeugt die maximale Verstärkung? Gegeben: u(t) = 1 ûsinωt ; û = 4mm ; T = 1s ; m = 680kg ; k 1 = 50 N mm ; k = 60 N mm

5 Loesung Aufgabe 1: (7 Punkte) (a) Eigenkreisfrequenz eines mathematischen Pendels: ω 0 = g l Graphische Darstellung der Eigenkreisfrequenz ω 0 als Funktion der Masse m und der Länge L: ω 0 [1/s] 6 4 ω 0 [1/s] m [kg] (b) Periodendauer: T = π ω 0 T = π L [m] L g Graphische Darstellung der Periodendauer T als Funktion der Länge L: 5

6 5 4 T [s] L [m] (c) Periodendauer: T L T L Verdopplung der Periodendauer: T T L 4L

7 Aufgabe : (10 Punkte) (a) Massenträgheitsmoment: (t) F 0 F F C F D R m, J C MP J ges = J Zylinder +J Steiner = 1 mr +mr J ges = 3 mr Bewegungsgleichung über Drallsatz: J ges ϕ = F F (R+C) F D (R+C)+F 0 R mit F F = k(r+c)ϕ ; F D = d(r+c) ϕ ϕ+ (R+C) J ges d ϕ+ (R+C) J ges kϕ = R J ges F 0 (b) ω 0 = ϑ = πd 1 D (R+C) k J ges ; D = (R+C) d ω 0 J ges ; ω D = ω 0 1 D ;

8 Aufgabe 3: (16 Punkte) (a) Bewegungsgleichung: Ersatzsystem für die Schaukel mathematisches Pendel: Drallsatz bezüglich des horizontal bewegten Aufhängepunktes A: mg Lsin(ϕ) mü Lcos(ϕ) = J A ϕ Massenträgheitsmoment: J A = ml ml ϕ+mg Lsin(ϕ) = mü Lcos(ϕ) Kleine Schwingungen: ϕ 1 sin(ϕ) ϕ ; cos(ϕ) 1 ml ϕ+mgl ϕ = ml ü (b) Nichtzulässiger Bereich für die Erregerkreisfrequenz: Umstellung der Bewegungsgleichung: ϕ+ g L ϕ = ü L Harmonische Wegerregung des Aufhängepunktes: u = ûcos(ωt) ü = ûω cos(ωt) ϕ+ g L ϕ = û L Ω cos(ωt) Eigenkreisfrequenz: ω0 = g L ω 0 = g L Erregeramplitude: ˆr 1 = û L Frequenzverhältnis:η = Ω ω 0 ϕ+ω 0ϕ = ω0ˆr 1 η cos(ωt) Erzwungene Schwingung: ϕ = ˆr 1 V 1 cos(ωt Ψ 1 ) Verzerrungsfunktion: V 1 = η ±(1 η ) Phasenfunktion: Ψ 1 = 0 bzw. 180 Amplitude: ˆϕ = ˆr 1 V 1 Forderung: ˆϕ ˆr 1 V 1 ˆr 1 η ±(1 η )

9 ˆr 1 η (1 η ) ( ) η < 1 : η > 1 : ( ˆr 1 +1 ˆr 1 1 ) ( ) ˆr 1 ±1 η ±1 η +1 η 1 ( ) 1+ ˆr 1 η 1 η 1 ( ) 1 ˆr 1 Zahlenwerte: ω 0 = 9,81 m s,5 m = 3,9 s ω 0 = 1,98 s 1 ˆr 1 = û L = 0,3 m,5 m = 0,1 ˆr 1 = 0,1 0,35 = 0,34 mit ϕ zul = 0 0,35 rad η < 1 : η 1 (1+0,34) Ω 1,7 s 1 η > 1 : η 1 (1 0,34) Ω,44s 1 = 0,75 η 0,87 = 1,5 η 1,3 Nicht zulässiger Bereich für die Erregerkreisfrequenz: 1,7 s 1 Ω,44 s 1

10 Aufgabe 4: (17 Punkte) (a).5 u(t) u [mm] T T t [s] (b) FOURIER-Reihe: u(t) = u o + 3 ν=1ûνcos(νωt β ν ) mit u 0 = û neu π ; û neu = û (siehe Ausgangsformel u(t)) û ν = 0 für ν = 1,3,5,... û ν = 4û (ν 1)(ν+1)π für ν =,4,6,... β ν = π ; Ω = π T = π1 s ; Ω ν = νω û = 8 3π mm ; û 4 = 8 15π mm ; û 6 = 8 35π mm Ω = 4π 1 s ; Ω 4 = 8π 1 s ; Ω 6 = 1π 1 s (c) Bewegungsgleichung: mẅ = dẇ k 1 w k (w u) ẅ + d mẇ + k 1+k m w = k m u

11 (d) Maximale Amplitude und maximale Verstärkung: û νmax = û = 0,85mm Die maximale Verstärkung tritt bei η 1 auf, es gilt: η = Ω ω 0 1 k Ω ω 0 ; ω 0 = 1 +k m = 1,7191 s Die maximale Verstärkung tritt bei ν = auf.

Aufgabe 1: (18 Punkte)

Aufgabe 1: (18 Punkte) MODULPRÜFUNG TECHNISCHE MECHANIK IV (PO 2004) VOM 26.07.2011 Seite 1 Aufgabe 1: (18 Punkte) Zwei Massenpunkte m 1 = 5 kg und m 2 = 2 kg sind durch ein dehnstarres und massenloses Seil über eine reibungsfrei

Mehr

Musterlösungen (ohne Gewähr)

Musterlösungen (ohne Gewähr) Seite /9 Frage ( Punkte) Eine Waschmaschine hat einen mit Feder und Dämpfer gelagerten Motor (Masse m), an dem ohne Unwucht die Trommel befestigt ist. Wieviel Wäsche m u kann geschleudert werden, wenn

Mehr

Übung zu Mechanik 4 Seite 28

Übung zu Mechanik 4 Seite 28 Übung zu Mechanik 4 Seite 28 Aufgabe 47 Auf ein Fundament (Masse m), dessen elastische Bettung durch zwei Ersatzfedern dargestellt wird, wirkt die periodische Kraft F(t) = F 0 cos (Ω t). Die seitliche

Mehr

TECHNISCHE MECHANIK III (DYNAMIK)

TECHNISCHE MECHANIK III (DYNAMIK) Klausur im Fach TECHNISCHE MECHANIK III (DYNAMIK) WS 2014 / 2015 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 Summe Punkte: 15 7 23 15 60 Davon erreicht Bearbeitungszeit: Hilfsmittel:

Mehr

Klausur Technische Mechanik

Klausur Technische Mechanik Institut für Mechanik und Fluiddynamik Prof. Dr.-Ing. Ams Matrikelnummer: Klausur Technische Mechanik 05/02/13 Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: Die Bearbeitungszeit

Mehr

2. Freie Schwingungen

2. Freie Schwingungen 2. Freie Schwingungen Die einfachsten schwingungsfähigen Systeme sind lineare Systeme: Die Rückstellkräfte sind proportional zur Auslenkung. Die Dämpfungskräfte sind proportional zur Geschwindigkeit. Bei

Mehr

Schwingungen. a. Wie lautet die Gleichung für die Position der Masse als Funktion der Zeit? b. Die höchste Geschwindigkeit des Körpers.

Schwingungen. a. Wie lautet die Gleichung für die Position der Masse als Funktion der Zeit? b. Die höchste Geschwindigkeit des Körpers. Schwingungen Aufgabe 1 Sie finden im Labor eine Feder. Wenn Sie ein Gewicht von 100g daran hängen, dehnt die Feder sich um 10cm. Dann ziehen Sie das Gewicht 6cm herunter von seiner Gleichgewichtsposition

Mehr

ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern

ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern WS 12/13, 13.02.2013 1. Aufgabe: (TM III) Um vom Boden aufzustehen, rutscht ein Mensch mit konstanter Geschwindigkeitv

Mehr

06/02/12. Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise:

06/02/12. Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: Prof Dr-Ing Ams Klausur Technische Mechanik C 06/0/1 Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: - Die Prüfungszeit beträgt zwei Stunden - Erlaubte Hilfsmittel

Mehr

Übung zu Mechanik 4 Seite 17

Übung zu Mechanik 4 Seite 17 Übung zu Mechanik 4 Seite 17 Aufgabe 31 Gegeben sei der dargestellte, gedämpfte Schwinger. Die beiden homogenen Kreisscheiben (m B, r B und m C, r C ) sind fest miteinander verbunden und frei drehbar auf

Mehr

Musterlösungen (ohne Gewähr)

Musterlösungen (ohne Gewähr) Seite /9 Frage ( Punkte) Bei einer Messung ist ein harmonishes Geshwindigkeitssignal v(t) = ˆv os(ωt + ϕ ) aufgezeihnet worden. a) Wie groß ist die komplexe Amplitude ˆv der Geshwindigkeit bei Verwendung

Mehr

Maschinendynamik. Klausur Frühjahr Name: Matrikel-Nr.:

Maschinendynamik. Klausur Frühjahr Name: Matrikel-Nr.: Maschinendynamik Klausur Frühjahr 2009 Name: Matrikel-Nr.: Punkte Aufgabe 1 Aufgabe 2 Aufgabe 3 Aufgabe 4 Aufgabe 5 Aufgabe 6 erreichte Punkte mögliche Punkte 60 Maschinendynamik Klausur Frühjahr 2009

Mehr

Lineare Systeme mit einem Freiheitsgrad

Lineare Systeme mit einem Freiheitsgrad Höhere Technische Mechanik Lineare Systeme mit einem Freiheitsgrad Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/200 Übersicht. Grundlagen der Analytischen

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

ÜBUNGSAUFGABEN PHYSIK SCHWINGUNGEN KAPITEL S ZUR. Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl UND WELLEN.

ÜBUNGSAUFGABEN PHYSIK SCHWINGUNGEN KAPITEL S ZUR. Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl UND WELLEN. ÜBUNGSAUFGABEN ZUR PHYSIK KAPITEL S SCHWINGUNGEN UND WELLEN Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl IEUT 10/05 Kohl 1. Schwingungen 10/2005-koh 1. Welche Auslenkung hat ein schwingender

Mehr

Probeklausur zur T1 (Klassische Mechanik)

Probeklausur zur T1 (Klassische Mechanik) Probeklausur zur T1 (Klassische Mechanik) WS 006/07 Bearbeitungsdauer: 10 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

Klausur mit Lösung. Baudynamik. 17. Februar 2014

Klausur mit Lösung. Baudynamik. 17. Februar 2014 Klausur mit Lösung Bauynamik 7. Februar 04 Aufgabe (ca. 5 % er Gesamtpunktzahl) a) Die freien Schwingungen eines -FHG-Systems sollen in einem Phaseniagramm argestellt weren. Zeichnen Sie zu iesem Zweck

Mehr

Matr.-Nummer Fachrichtung

Matr.-Nummer Fachrichtung Institut für Technische und Num. Mechanik Technische Mechanik II+III Profs. P. Eberhard, M. Hanss WS 2015/16 P 1 18. Februar 2016 Bachelor-Prüfung in Technischer Mechanik II+III Nachname, Vorname E-Mail-Adresse

Mehr

Vorbereitung: Pendel. Marcel Köpke Gruppe

Vorbereitung: Pendel. Marcel Köpke Gruppe Vorbereitung: Pendel Marcel Köpke Gruppe 7 10.1.011 Inhaltsverzeichnis 1 Augabe 1 3 1.1 Physikalisches Pendel.............................. 3 1. Reversionspendel................................ 6 Aufgabe

Mehr

1. Aufgabe: (ca. 14% der Gesamtpunkte)

1. Aufgabe: (ca. 14% der Gesamtpunkte) Institut für Mechanik Prof. Dr.-Ing. habil. P. Betsch Prof. Dr.-Ing. habil. Th. Seelig Prüfung in Baudynamik 23. Juli 2018 1. Aufgabe: (ca. 14% der Gesamtpunkte) a) Geben Sie Amplitude, Frequenz und Phasenverschiebung

Mehr

9. Periodische Bewegungen

9. Periodische Bewegungen Inhalt 9.1 Schwingungen 9.1.2 Schwingungsenergie 9.1.3 Gedämpfte Schwingung 9.1.4 Erzwungene Schwingung 9.1 Schwingungen 9.1 Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen

Mehr

Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss. Aufgabensammlung mit Kurzlösungen

Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss. Aufgabensammlung mit Kurzlösungen Prof. Dr.-Ing. Prof. E.h. P. Eberhard / Prof. Dr.-Ing. M. Hanss SS 17 Ü1 Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss Aufgabensammlung mit Kurzlösungen Sommersemester 017 Prof. Dr.-Ing.

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Seite 1 Theoretische Physik: Mechanik Blatt 4 Fakultät für Physik Technische Universität München 27.09.2017 Inhaltsverzeichnis 1 Trägheitsmoment & Satz von Steiner 2 2 Trägheitstensor einer dünnen Scheibe

Mehr

Klausur Technische Mechanik

Klausur Technische Mechanik Institut für Mechanik und Fluiddynamik Klausur Technische Mechanik 11/02/14 Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: Die Bearbeitungszeit der Klausur beträgt

Mehr

Fakultät für Physik der LMU

Fakultät für Physik der LMU Fakultät für Physik der LMU 21.02.2013 Klausur zur Vorlesung E1: Mechanik für Studenten der Physik für das Lehramt an Gymnasien und im Nebenfach (6 ECTS) Wintersemester 2012/13 Prof. Dr. Joachim O. Rädler

Mehr

Übungen zu Lagrange-Formalismus und kleinen Schwingungen

Übungen zu Lagrange-Formalismus und kleinen Schwingungen Übungen zu Lagrange-Formalismus und kleinen Schwingungen Jonas Probst 22.09.2009 1 Teilchen auf der Stange Ein Teilchen der Masse m wird durch eine Zwangskraft auf einer masselosen Stange gehalten, auf

Mehr

Aufgabe 1 (14 Punkte)

Aufgabe 1 (14 Punkte) Technische Mechanik & Fahrzeugdynamik TM II Prof. Dr.-Ing. habil. D. Bestle 8. September 1 Familienname, Vorname Matrikel-Nummer Prüfungsklausur Technische Mechanik II Fachrichtung 1. Die Prüfung umfasst

Mehr

ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern

ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern WS 16/17, 25.2.217 1. Aufgabe: (TM3) a g y a S v S ϕ x m P A 1111111 1111111 1111 1111 Die abgebildete homogene

Mehr

TU Dortmund. Vorname: Nachname: Matr.-Nr.: Aufgabe 1 (Seite 1 von 3)

TU Dortmund. Vorname: Nachname: Matr.-Nr.: Aufgabe 1 (Seite 1 von 3) Aufgabe 1 (Seite 1 von 3) Das unten abgebildete System befindet sich im Schwerefeld (Erdbeschleunigung g). Es besteht aus einer Rolle (Masse m, Radius r), die über zwei Federn (Federsteifigkeit c) und

Mehr

Baudynamik. Jan Höffgen 18. Februar Koordinatensysteme 2

Baudynamik. Jan Höffgen 18. Februar Koordinatensysteme 2 Baudynamik Jan Höffgen 8. Februar 204 Inhaltsverzeichnis Koordinatensysteme 2 2 Bewegungsgleichungen 2 2. Allgemeines................................................ 2 2.2 Synthetische Methode nach d Alembert................................

Mehr

8. Periodische Bewegungen

8. Periodische Bewegungen 8. Periodische Bewegungen 8.1 Schwingungen 8.1.1 Harmonische Schwingung 8.1.2 Schwingungsenergie 9.1.3 Gedämpfte Schwingung 8.1.4 Erzwungene Schwingung 8. Periodische Bewegungen Schwingung Zustand y wiederholt

Mehr

04/02/13. Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise:

04/02/13. Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: Klausur Technische Mechanik C 04/0/ Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: - Die Prüfungszeit beträgt zwei Stunden - Erlaubte Hilfsmittel sind: Formelsammlungen,

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

3.2 Das physikalische Pendel (Körperpendel)

3.2 Das physikalische Pendel (Körperpendel) 18 3 Pendelschwingungen 32 Das physikalische Pendel (Körperpendel) Ein starrer Körper (Masse m, Schwerpunkt S, Massenträgheitsmoment J 0 ) ist um eine horizontale Achse durch 0 frei drehbar gelagert (Bild

Mehr

Klausur Technische Mechanik C

Klausur Technische Mechanik C Klausur Technische Mechanik C 8/7/ Name: Matrikel: Studiengang: Hinweise: - Die Prüfungszeit beträgt zwei Stunden - Erlaubte Hilfsmittel sind: Formelsammlungen, Deckblätter der Übungsaufgaben und Taschenrechner

Mehr

Klausur zur Vorlesung E1: Mechanik für Studenten mit Nebenfach Physik (6 ECTS)

Klausur zur Vorlesung E1: Mechanik für Studenten mit Nebenfach Physik (6 ECTS) Fakultät für Physik der LMU 23.02.2017 Klausur zur Vorlesung E1: Mechanik für Studenten mit Nebenfach Physik (6 ECTS) Wintersemester 2016/2017 Prof. Dr. Joachim O. Rädler, PD Dr. Bert Nickel Name:... Vorname:...

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Gedämpfte & erzwungene Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 16. Dez. 16 Harmonische Schwingungen Auslenkung

Mehr

Klausur Technische Mechanik C

Klausur Technische Mechanik C Klausur Technische Mechanik C 8/07/11 Name: Matrikel: Studiengang: Hinweise: - Die Prüfungszeit beträgt zwei Stunden - Erlaubte Hilfsmittel sind: Formelsammlungen, Deckblätter der Übungsaufgaben und Taschenrechner

Mehr

Vorkurs Mathematik-Physik, Teil 8 c 2016 A. Kersch

Vorkurs Mathematik-Physik, Teil 8 c 2016 A. Kersch Aufgaben Dynamik Vorkurs Mathematik-Physik, Teil 8 c 6 A. Kersch. Ein D-Zug (Masse 4t) fährt mit einer Geschwindigkeit von 8km/h. Er wird auf einer Strecke von 36m mit konstanter Verzögerung zum Stehen

Mehr

VORBEREITUNG: GALVANOMETER

VORBEREITUNG: GALVANOMETER VORBEREITUN: ALVANOMETER FREYA NAM, RUPPE 6, DONNERSTA SCHWINVERHALTEN DES ALVANOMETERS Das alvanometern ist ein sensibles Messgerät mit dem auch kleine Ströme und Spannungen gemessen werden können. Es

Mehr

Physik I Einführung in die Physik Mechanik

Physik I Einführung in die Physik Mechanik Physik I Einführung in die Physik Mechanik Winter 00/003, Prof. Thomas Müller, Universität Karlsruhe Lösung 13; Letztes Lösungsblatt 1. Torsionspendel (a) Vergleichen Sie die Größen rehwinkel ϕ, Winkelgeschwindigkeit

Mehr

() = Aufgabe 1 ( Punkte) Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 2012 P 2

() = Aufgabe 1 ( Punkte) Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 2012 P 2 Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 212 P 2 BachelorPrüfung in Technischer Mechanik II/III Nachname, Vorname Matr.Nummer Fachrichtung 28.

Mehr

Praktikum I PP Physikalisches Pendel

Praktikum I PP Physikalisches Pendel Praktikum I PP Physikalisches Pendel Hanno Rein Betreuer: Heiko Eitel 16. November 2003 1 Ziel der Versuchsreihe In der Physik lassen sich viele Vorgänge mit Hilfe von Schwingungen beschreiben. Die klassische

Mehr

Musterlösung 2. Klausur Physik für Maschinenbauer

Musterlösung 2. Klausur Physik für Maschinenbauer Universität Siegen Sommersemester 2010 Fachbereich Physik Musterlösung 2. Klausur Physik für Maschinenbauer Prof. Dr. I. Fleck Aufgabe 1: Freier Fall im ICE Ein ICE bewege sich mit der konstanten Geschwindigkeit

Mehr

2. Physikalisches Pendel

2. Physikalisches Pendel 2. Physikalisches Pendel Ein physikalisches Pendel besteht aus einem starren Körper, der um eine Achse drehbar gelagert ist. A L S φ S z G Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.2-1 2.1 Bewegungsgleichung

Mehr

1. Aufgabe: (ca. 13% der Gesamtpunkte)

1. Aufgabe: (ca. 13% der Gesamtpunkte) Institut für Mechani Prof. Dr.-Ing. habil. P. Betsch Prof. Dr.-Ing. habil. Th. Seelig Prüfung in Baudynami 3. Juli 07. Aufgabe: (ca. 3% der Gesamtpunte) a) Was versteht man unter stationärer Lösung einer

Mehr

Vorbereitung. Resonanz. Carsten Röttele. 17. Januar Drehpendel, freie Schwingungen 3. 2 Drehpendel, freie gedämpfte Schwingungen 3

Vorbereitung. Resonanz. Carsten Röttele. 17. Januar Drehpendel, freie Schwingungen 3. 2 Drehpendel, freie gedämpfte Schwingungen 3 Vorbereitung Resonanz Carsten Röttele 17. Januar 01 Inhaltsverzeichnis 1 Drehpendel, freie Schwingungen 3 Drehpendel, freie gedämpfte Schwingungen 3 3 Messung der Winkelrichtgröße D 4 4 Drehpendel, erzwungene

Mehr

Lösungen Aufgabenblatt 11

Lösungen Aufgabenblatt 11 Ludwig Maximilians Universität München Fakultät für Physik Lösungen Aufgabenblatt 11 Übungen E1 Mechanik WS 2017/2018 ozent: Prof. r. Hermann Gaub Übungsleitung: r. Martin Benoit und r. Res Jöhr Verständnisfragen

Mehr

Tutorium Physik 2. Schwingungen

Tutorium Physik 2. Schwingungen 1 Tutorium Physik 2. Schwingungen SS 16 2.Semester BSc. Oec. und BSc. CH 2 Themen 7. Fluide 8. Rotation 9. Schwingungen 10. Elektrizität 11. Optik 12. Radioaktivität 3 9. SCHWINGUNGEN 9.1 Bestimmen der

Mehr

Klausur Technische Mechanik C

Klausur Technische Mechanik C Klausur Technische Mechanik C 1/2/14 Matrikel: Studiengang: Hinweise: - Die Prüfungszeit beträgt zwei Stunden - Erlaubte Hilfsmittel sind: Formelsammlungen, Deckblätter der Übungsaufgaben und Taschenrechner

Mehr

Feder-, Faden- und Drillpendel

Feder-, Faden- und Drillpendel Dr Angela Fösel & Dipl Phys Tom Michler Revision: 30092018 Eine Schwingung (auch Oszillation) bezeichnet den Verlauf einer Zustandsänderung, wenn ein System auf Grund einer Störung aus dem Gleichgewicht

Mehr

Klausur zur Vorlesung E1: Mechanik für Studenten mit Hauptfach Physik (9 ECTS)

Klausur zur Vorlesung E1: Mechanik für Studenten mit Hauptfach Physik (9 ECTS) Fakultät für Physik der LMU 23.02.2017 Klausur zur Vorlesung E1: Mechanik für Studenten mit Hauptfach Physik (9 ECTS) Wintersemester 2016/2017 Prof. Dr. Joachim O. Rädler, PD Dr. Bert Nickel Name:... Vorname:...

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2013 Übung 4 - Angabe Technische Universität München 1 Fakultät für Physik 1 Trägheitstensor 1. Ein starrer Körper besteht aus den drei Massenpunkten mit

Mehr

Wiederholung Physik I - Mechanik

Wiederholung Physik I - Mechanik Universität Siegen Wintersemester 2011/12 Naturwissenschaftlich-Technische Fakultät Prof. Dr. M. Risse, M. Niechciol Department Physik 9. Übungsblatt zur Vorlesung Physik II für Elektrotechnik-Ingenieure

Mehr

MR Mechanische Resonanz

MR Mechanische Resonanz MR Mechanische Resonanz Blockpraktikum Herbst 2007 (Gruppe 2b) 24. Oktober 2007 Inhaltsverzeichnis Grundlagen 2. Freie, ungedämpfte Schwingung....................... 2.2 Freie, gedämpfte Schwingung........................

Mehr

Ferienkurs Mechanik: Probeklausur

Ferienkurs Mechanik: Probeklausur Ferienkurs Mechanik: Probeklausur Simon Filser 5.9.09 1 Kurze Fragen Geben Sie möglichst kurze Antworten auf folgende Fragen: a) Ein Zug fährt mit konstanter Geschwindigkeit genau von Norden nach Süden.

Mehr

Formelzusammenstellung

Formelzusammenstellung Übung zu Mechanik 4 - ormelsammlung Seite 4 ormelzusammenstellung. Grundbegriffe Harmonische Schwingung Sinusschwingung: (t) sin ( t + ϕ) Schwingungsamplitude: Kreisfrequenz: Phasenwinkel: requenz: f Schwingungsdauer,

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am 8..04 Arbeitszeit: 0 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe 3 4

Mehr

2. Freie gedämpfte Schwingungen

2. Freie gedämpfte Schwingungen 2. Freie gedämpfte Schwingungen Bei realen Systemen werden die Schwingungsausschläge mit der Zeit kleiner, und die Schwingung kommt zum Stillstand. Ursache sind Energieverluste durch Reibungs- und Dämpfungskräfte:

Mehr

Übungsaufgaben Physik II

Übungsaufgaben Physik II Fachhochschule Dortmund Blatt 1 1. Ein Auto hat leer die Masse 740 kg. Eine Nutzlast von 300 kg senkt den Wagen in den Radfedern um 6 cm ab. Welche Periodendauer hat die vertikale Schwingung, die der Wagen

Mehr

Gekoppelte Schwingung

Gekoppelte Schwingung Versuch: GS Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: C. Blockwitz am 01. 07. 000 Bearbeitet: E. Hieckmann J. Kelling F. Lemke S. Majewsky i.a. Dr. Escher Aktualisiert: am 16. 09. 009

Mehr

2. Freie gedämpfte Schwingungen

2. Freie gedämpfte Schwingungen 2. Freie gedämpfte Schwingungen Bei realen Systemen werden die Schwingungsausschläge mit der Zeit kleiner, und die Schwingung kommt zum Stillstand. Ursache sind Energieverluste durch Reibungs- und Dämpfungskräfte:

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester Physik-Institut der Universität Zürich

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester Physik-Institut der Universität Zürich Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester 2016 Physik-Institut der Universität Zürich Inhaltsverzeichnis 4 Resonanz (R) 4.1 4.1 Einleitung........................................

Mehr

Berechnen Sie die Ersatzfedersteifigkeiten für die Gruppierungen, die am oberen (c o ) und am unteren (c u ) Seil befestigt sind.

Berechnen Sie die Ersatzfedersteifigkeiten für die Gruppierungen, die am oberen (c o ) und am unteren (c u ) Seil befestigt sind. Aufgabe 1 (Seite 1 von 3) a) Das nebenstehende System besteht aus einer um den Punkt A drehbar gelagerten Stufenrolle (Radien r und R = 2r). Die Massenträgheitsmomente der beiden Stufen bezogen auf den

Mehr

a) Wir nutzen den Drallsatz für die Rolle und horizontale Komponente des Schwerpunktsatzes, für kleine Auslenkungen: Abb.

a) Wir nutzen den Drallsatz für die Rolle und horizontale Komponente des Schwerpunktsatzes, für kleine Auslenkungen: Abb. Tutoriumsaufgaben. Aufgabe a) Wir nutzen den Drallsatz für die olle und horizontale Komponente des Schwerpunktsatzes, für kleine Auslenkungen: Θ S φ = M(t) rs + cos(φ) F c + F H () m x = S + F H F c Gl.

Mehr

Klausur Technische Mechanik

Klausur Technische Mechanik Klausur Technische Mechanik 10.09.2012 Matrikel: Folgende Angaben sind freiwillig: Name: Studiengang: Hinweise: Die Bearbeitungszeit der Klausur beträgt drei Stunden. Die Prüfung umfasst die drei Stoffgebiete

Mehr

Klausur Technische Mechanik

Klausur Technische Mechanik Klausur Technische Mechanik 05/08/13 Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: Die Bearbeitungszeit der Klausur beträgt drei Stunden. Die Prüfung umfasst die

Mehr

Klassische und relativistische Mechanik

Klassische und relativistische Mechanik Klassische und relativistische Mechanik Othmar Marti 15. 02. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und relativistische Mechanik

Mehr

4.3 Schwingende Systeme

4.3 Schwingende Systeme Dieter Suter - 217 - Physik B3 4.3 Schwingende Systeme Schwingungen erhält man immer dann, wenn die Kraft der Auslenkung entgegengerichtet ist. Ist sie außerdem proportional zur Kraft, so erhält man eine

Mehr

Beispiel 1:Der Runge-Lenz Vektor [2 Punkte]

Beispiel 1:Der Runge-Lenz Vektor [2 Punkte] Übungen Theoretische Physik I (Mechanik) Blatt 9 (Austeilung am: 1.9.11, Abgabe am 8.9.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.

Mehr

Experimentalphysik 1

Experimentalphysik 1 Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 016/17 Übung 4 Ronja Berg (ronja.berg@ph.tum.de) Katharina Scheidt (katharina.scheidt@tum.de) A. Übungen A.1. Schwingung

Mehr

Klausur Maschinendynamik I

Klausur Maschinendynamik I Name: Matrikel: Studiengang: Klausur Maschinendynamik I 4/03/10 Aufgabe 1 Ein mathematisches Pendel der Länge a ist im Punkt A frei drehbar gelagert. Die Punktmasse m ist über eine stets horizontal wirkende

Mehr

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder 6. Schwingungen Schwingungen Schwingung: räumlich und zeitlich wiederkehrender (=periodischer) Vorgang Zu besprechen: ungedämpfte freie Schwingung gedämpfte freie Schwingung erzwungene gedämpfte Schwingung

Mehr

Theoretische Physik I: Weihnachtszettel Michael Czopnik

Theoretische Physik I: Weihnachtszettel Michael Czopnik Theoretische Physik I: Weihnachtszettel 21.12.2012 Michael Czopnik Aufgabe 1: Rudolph und der Weihnachtsmann Der Weihnachtsmann (Masse M) und sein Rentier Rudolph (Masse m) sind durch ein Seil mit konstanter

Mehr

M 10 Resonanz und Phasenverschiebung bei der mechanischen Schwingung

M 10 Resonanz und Phasenverschiebung bei der mechanischen Schwingung Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum M 1 esonanz und Phasenverschiebung bei der mechanischen Schwingung Aufgaben 1. Bestimmen Sie die Frequenz der freien gedämpften Schwingung

Mehr

Klausur Technische Mechanik

Klausur Technische Mechanik Institut für Mechanik und Fluiddynamik Institut für Mechanik und Fluiddynamik Klausur Technische Mechanik 10/02/10 Aufgabe S1 Gegeben ist ein durch eine Pendelstütze und ein Festlager A abgestütztes Fachwerk.

Mehr

Klassische und relativistische Mechanik

Klassische und relativistische Mechanik Klassische und relativistische Mechanik Othmar Marti 13. 02. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und relativistische Mechanik

Mehr

MR - Mechanische Resonanz Blockpraktikum Herbst 2005

MR - Mechanische Resonanz Blockpraktikum Herbst 2005 MR - Mechanische Resonanz, Blockpraktikum Herbst 5 7. September 5 MR - Mechanische Resonanz Blockpraktikum Herbst 5 Assistent Florian Jessen Tübingen, den 7. September 5 Vorwort In diesem Versuch ging

Mehr

Physikalisches Grundpraktikum Abteilung Mechanik

Physikalisches Grundpraktikum Abteilung Mechanik M6 Physikalisches Grundpraktikum Abteilung Mechanik Resonanzkurven 1 Vorbereitung Physikalische Größen der Rotationsbewegung, Zusammenhang zwischen Drehmoment, Winkelbeschleunigung und Trägheitsmoment,

Mehr

TU Dortmund. Vorname: Nachname: Matr.-Nr.: Aufgabe 1 (Seite 1 von 3)

TU Dortmund. Vorname: Nachname: Matr.-Nr.: Aufgabe 1 (Seite 1 von 3) Vorname: Nachname: Matr.-Nr.: Aufgabe 1 (Seite 1 von 3) Eine Kugel (Masse m 1 ) bewegt sich in Punkt A mit der initialen Geschwindigkeit v A unter dem Winkel γ zur Horizontalen. Nach dem Auftreffen auf

Mehr

Abbildung 1: Atwoodsche Fallmaschine mit Feder

Abbildung 1: Atwoodsche Fallmaschine mit Feder Philipp Landgraf Christina Schindler Ferienkurs Theoretische Mechanik SS 04 Abbildung : Atwoodsche Fallmaschine mit Feder A Probeklausur. Atwoodsche Fallmaschine Die Atwoodsche Fallmaschine besteht aus

Mehr

Institut für Technische und Num. Mechanik Technische Mechanik III Prof. Dr.-Ing. Prof. E. h. P. Eberhard WS 08/09 K 2. Aufgabe 1 (5 Punkte)

Institut für Technische und Num. Mechanik Technische Mechanik III Prof. Dr.-Ing. Prof. E. h. P. Eberhard WS 08/09 K 2. Aufgabe 1 (5 Punkte) Institut für Technische und Num. Mechanik Technische Mechanik III Prof. Dr.-Ing. Prof. E. h. P. Eberhard WS 8/9 K 6. Februar 9 Klausur in Technische Mechanik III Nachname Vorname Aufgabe (5 Punkte) Der

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Übung zu Mechanik 3 Seite 21

Übung zu Mechanik 3 Seite 21 Übung zu Mechanik 3 Seite 21 Aufgabe 34 Ein Hebel wird mit der Winkelgeschwindigkeit ω 0 angetrieben. Bestimmen Sie für den skizzierten Zustand die momentane Geschwindigkeit des Punktes D! Gegeben: r,

Mehr

Klausur zur Vorlesung E1 Mechanik (9 ECTS)

Klausur zur Vorlesung E1 Mechanik (9 ECTS) Ludwig Maximilians Universität München Fakultät für Physik Klausur zur Vorlesung E1 Mechanik WS 2013/2014 17. Feb. 2014 für Studierende im Hauptfach Physik und Meteorologie (9 ECTS) Prof. J. Rädler, Prof.

Mehr

ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern

ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuh für Technische Mechanik, TU Kaisersautern SS 2012, 24.07.2012 1. Aufgabe: (TM III: MV, BI) Eine Waze ist im Punkt A drehbar geagert und dreht sich mit einer

Mehr

2. Klausur zur Theoretischen Physik I (Mechanik)

2. Klausur zur Theoretischen Physik I (Mechanik) 2. Klausur zur Theoretischen Physik I (echanik) 09.07.2004 Aufgabe 1 Physikalisches Pendel 4 Punkte Eine homogene, kreisförmige, dünne Platte mit Radius R und asse ist am Punkt P so aufgehängt, daß sie

Mehr

Klausur Technische Mechanik

Klausur Technische Mechanik Klausur Technische Mechanik 07/02/12 Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: Die Bearbeitungszeit der Klausur beträgt drei Stunden. Die Prüfung umfasst die

Mehr

Versuch P1-20 Pendel Vorbereitung

Versuch P1-20 Pendel Vorbereitung Versuch P1-0 Pendel Vorbereitung Gruppe Mo-19 Yannick Augenstein Versuchsdurchführung: 9. Januar 01 Inhaltsverzeichnis Aufgabe 1 1.1 Reduzierte Pendellänge............................. 1. Fallbeschleunigung

Mehr

5 Schwingungen und Wellen

5 Schwingungen und Wellen 5 Schwingungen und Wellen Schwingung: Regelmäßige Bewegung, die zwischen zwei Grenzen hin- & zurückführt Zeitlich periodische Zustandsänderung mit Periode T ψ ψ(t) [ ψ(t-τ)] Wellen: Periodische Zustandsänderung

Mehr

4. Drehschwinger. B 2 Schwerpunkt S. c 2 P 2. S P 1 c 1 m, J B 1. Prof. Dr. Wandinger 6. Schwingungen Dynamik

4. Drehschwinger. B 2 Schwerpunkt S. c 2 P 2. S P 1 c 1 m, J B 1. Prof. Dr. Wandinger 6. Schwingungen Dynamik c 2 B 2 Schwerpunkt S P 2 S P 1 c 1 m, J O O B 1 Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.4-1 Aufgabenstellung: 4. Drehschwinger Der Drehschwinger besteht aus einem starren Körper, der im Punkt

Mehr

Repetitorium Theoretische Mechanik, SS 2008

Repetitorium Theoretische Mechanik, SS 2008 Physik Departement Technische Universität München Dominik Fauser Blatt Repetitorium Theoretische Mechanik, SS 8 Aufgaben zum selbständigen Lösen. Ring mit Kugel Ein Ring, auf dem eine Kugel angebracht

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 4 - Lösung Technische Universität München 1 Fakultät für Physik 1 Zwei Kugeln und der Satz von Steiner Nehmen Sie zwei Kugeln mit identischem Radius R und

Mehr

β = 1 2 ω ist? Begründung!

β = 1 2 ω ist? Begründung! achhochschule Hannover MA 9..6 achbereich Maschinenbau Zeit: 9 min ach: Physik II im WS56 Hilfsmittel: ormelsammlung zur Vorlesung. Zur Bestimmung der Dichte einer unbekannten üssigkeit mit Dichte ρ untersucht

Mehr

M6 PhysikalischesGrundpraktikum

M6 PhysikalischesGrundpraktikum M6 PhysikalischesGrundpraktikum Abteilung Mechanik Resonanzkurven 1 Vorbereitung Physikalische Größen der Rotationsbewegung, Zusammenhang zwischen Drehmoment, Winkelbeschleunigung und Trägheitsmoment,

Mehr