Abitur 2009 Mathematik Seite 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Abitur 2009 Mathematik Seite 1"

Transkript

1 Abitur 2009 Mathematik Seite 1 Name, Vorname:... Aufgabe A0 (beinhaltet die Aufgaben 1 3 des Arbeitsblattes) Arbeitsblatt Dieses Arbeitsblatt ist vollständig und ohne Zuhilfenahme von Tafelwerk und Taschenrechner zu bearbeiten. Das Arbeitsblatt wird nach einer Bearbeitungszeit von genau 45 Minuten eingesammelt. Zusätzliche Lösungsblätter sind mit Ihrem Namen zu versehen und in dieses Arbeitsblatt einzulegen. 1 Analysis 1.1 In dem Koordinatensystem ist der Graph einer der Funktionen f(x) = x 3 + 5x 1 oder g(x) = x 3 + 3x 2 dargestellt. a) Geben Sie an, welche der beiden Funktionen dargestellt ist. Begründen Sie. b) Skizzieren Sie den Verlauf der Ableitungsfunktion der dargestellten Funktion in dasselbe Koordinatensystem. y x Der Graph der Funktion mit der Gleichung f( x) = x + bx+ c hat im Punkt (3 2) den Anstieg 1. Berechnen Sie b und c. 1.3 Begründen Sie, dass der Graph der Funktion besitzt. 4 2 f(x) = x + 5x mit x keinen Wendepunkt

2 Abitur 2009 Mathematik Seite Untersuchen Sie die Monotonie der Funktion x f(x) = 2 e und begründen Sie. 1.5 Berechnen Sie alle Lösungen für k. 2 k (x + 5)dx = Analytische Geometrie 2.1 Ein Dreieck ist durch die Eckpunkte A( 1 1 1), B(3 2 1) und C( 2 3 1) gegeben. Prüfen Sie, ob der Winkel BAC ein rechter Winkel ist. Berechnen Sie die Länge der Strecke AB. Geben Sie den Mittelpunkt der Seite BC an. 2.2 Geben Sie den Vektor x mithilfe der Vektoren a,b und c an. c x b a

3 Abitur 2009 Mathematik Seite Bestimmen Sie einen Wert für k, sodass der Punkt P(3 k 2 k) auf der Geraden AB mit A(1 2 4) und B(0 1 5) liegt. 3 Stochastik 3.1 Eine Tür kann nur mit einem Code, der aus vier Feldern besteht, geöffnet werden. Für jedes Feld stehen die Zeichen 0 oder 1 zur Verfügung. Wie viele verschiedene vierstellige Codes sind höchstens möglich? 3.2 Ein Würfel wird 100-mal geworfen. Formulieren Sie jeweils das Gegenereignis zu den folgenden Ereignissen. A: Weniger als 10-mal erscheint die Augenzahl 6. B: Mindestens bei der Hälfte der Würfe fällt eine 3 oder eine In einem Behälter liegen 2 rote und 3 blaue Kugeln. Es wird eine Kugel zufällig gezogen, ihre Farbe notiert und nicht wieder in den Behälter gelegt. Anschließend wird dieser Vorgang mit einer zweiten Kugel wiederholt. a) Begründen Sie, dass es sich bei diesem Vorgang nicht um eine Bernoulli-Kette handelt. b) Ermitteln Sie die Wahrscheinlichkeit dafür, dass die beiden gezogenen Kugeln die gleiche Farbe besitzen.

4 Abitur 2009 Mathematik mit CAS 2 Hinweise für Schüler Aufgabenwahl: Die Prüfungsarbeit besteht aus den Teilen A und B. Der Teil A ist von allen Prüfungsteilnehmern zu bearbeiten. Von den Aufgaben A1, A2 und A3 sind zwei auszuwählen. Prüfungsteilnehmer, die die Prüfung unter erhöhten Anforderungen ablegen, bearbeiten zusätzlich den Prüfungsteil B. Von den Aufgaben B1, B2 und B3 ist eine auszuwählen. Bearbeitungszeit: Allen Prüfungsteilnehmern steht eine Bearbeitungszeit von 195 Minuten zuzüglich 30 Minuten für die Aufgabenauswahl zur Verfügung. Den Prüfungsteilnehmern, die die Prüfung unter erhöhten Anforderungen ablegen, stehen zusätzlich 60 Minuten Bearbeitungszeit zur Verfügung. Hilfsmittel: Für die Bearbeitung der Aufgaben sind zugelassen: das an der Schule eingeführte Tafelwerk, der an der Schule zugelassene Taschenrechner und das zugelassene CAS, Zeichengeräte ein Wörterbuch der deutschen Rechtschreibung. Hinweis: Die Lösungen sind in einer sprachlich korrekten, mathematisch exakten und äußerlich einwandfreien Form darzustellen. In der Niederschrift müssen die Lösungswege nachvollziehbar sein. Entwürfe können ergänzend zur Bewertung nur herangezogen werden, wenn sie zusammenhängend konzipiert sind und die Reinschrift etwa drei Viertel des zu erreichenden Gesamtumfanges beinhaltet. Sonstiges: Maximal zwei Bewertungseinheiten können zusätzlich vergeben werden bei guter Notation und Darstellung, eleganten, kreativen und rationellen Lösungswegen, vollständiger Lösung einer zusätzlichen Wahlaufgabe. Maximal zwei Bewertungseinheiten können bei mehrfachen Formverstößen abgezogen werden.

5 Abitur 2009 Mathematik mit CAS Seite 3 A1 Analysis 1.1 Untersuchen Sie, ob es eine ganzrationale Funktion vierten Grades mit folgenden Eigenschaften gibt: Ihr Graph schneidet die x-achse an den Stellen 10 und 30 und verläuft 99 durch den Punkt P Die Funktion hat an der Stelle 10 ein lokales Minimum vom Wert Gegeben sind die Funktionenschar h k und die Funktion f mit ihren Gleichungen ,003x + 0,1x f(x) = x + x + h k(x) = k e x,k ; k > Bestimmen Sie die Koordinaten der Schnittpunkte des Graphen von f mit den Koordinatenachsen. Ermitteln Sie die Größe und den Umfang der Fläche F, die der Graph von f mit den Achsen im 1. Quadranten einschließt. Der Graph der Funktion h 2 zerlegt F in zwei Teilflächen. Berechnen Sie den prozentualen Anteil einer der beiden Teilflächen an der Gesamtfläche F Weisen Sie nach, dass jeder Graph der Funktionenschar h k genau einen Hochpunkt hat. Ermitteln Sie deren Koordinaten in Abhängigkeit von k. Geben Sie die Gleichung der Geraden an, auf der alle Hochpunkte liegen H k bezeichnet die Fläche zwischen den Graphen von h k und der x-achse über dem Intervall [0; 50] in Abhängigkeit von k. Bestimmen Sie den Flächeninhalt von H 2. Ermitteln Sie, für welche k der Inhalt von H k größer als 100 FE wird.

6 Abitur 2009 Mathematik mit CAS Seite 4 A2 Analytische Geometrie Im Physikraum befindet sich eine ebene neigbare Projektionsfläche. Legt man den Ursprung des kartesischen Koordinatensystems in einer Ecke des Raumes fest, so ergeben sich für die Projektionsfläche folgende Eckpunkte A( ), B( ), C( ) und D( ). Alle Angaben erfolgen in cm. 2.1 Geben Sie eine Koordinatengleichung der Ebene an, in der sich die Projektionsfläche befindet. 2.2 Untersuchen Sie folgende Aussagen jeweils auf ihren Wahrheitsgehalt. Aussage 1: Die Punkte A, B, C und D bilden ein Parallelogramm. Aussage 2: Die Punkte A, B, C und D bilden ein Rechteck. Aussage 3: Die Punkte A, B, C und D bilden ein Quadrat. 2.3 Die Projektionsfläche ist bezüglich der hinter ihr liegenden senkrechten Wand, welche in der yz-ebene liegt, nach vorn geneigt. Berechnen Sie die Größe des Neigungswinkels der Projektionsfläche. 2.4 Während eines Vortrages benutzt der Lehrer einen Laserpointer. Der Laserstrahl tritt im Punkt P( ) aus dem Pointer aus und hat die Richtung 5 a= Bestimmen Sie die Koordinaten des Punktes S, in dem der Laserstrahl die Projektionsfläche trifft. Berechnen Sie den Abstand des Punktes P vom Punkt S und die Größe des Winkels zwischen Laserstrahl und Projektionsfläche Stellen Sie das Viereck ABCD und den Verlauf des Laserstrahls in einem kartesischen Koordinatensystem grafisch dar. 2.5 Vor der Projektionsfläche befindet sich eine vertikal verschiebbare rechteckige Tafel. In der tiefsten Position haben die Eckpunkte der Tafel die Koordinaten K( ), L( ), M( ) und N( ). Prüfen Sie, ob es möglich ist, die Tafel um 145 cm nach oben zu verschieben, ohne dass es zu einer Kollision mit der in ihrer Neigung unveränderten Projektionsfläche kommt.

7 Abitur 2009 Mathematik mit CAS Seite 5 A3 Stochastik und Analysis Eine mittelständische Firma aus dem Metall verarbeitenden Gewerbe stellt u.a. Räucheröfen her. Mit diesen Produkten präsentiert sich die Firma regelmäßig auf Verbrauchermessen. Langfristige Beobachtungen haben ergeben, dass sich ca. 2 % aller Besucher derartiger Messen speziell für diese Räucheröfen interessieren. 3.1 Bei einer solchen Messe kommen an einem Tag 3450 Besucher Geben Sie an, mit wie vielen Interessenten die Vertreter dieser Firma an diesem Tag rechnen können Berechnen Sie die Wahrscheinlichkeiten für folgende Ereignisse: A: Weniger als 60 Interessenten besuchen an diesem Tag den Stand. B: Mehr als 80 Interessenten besuchen an diesem Tag den Stand. C: Mindestens 60, aber höchstens 70 Interessenten besuchen an diesem Tag den Stand. 3.2 Die Firmenleitung beschließt, ihr Engagement bei der nächsten Messe zu verstärken und bereitet dazu ein Gewinnspiel für 5000 Besucher vor. Gespielt wird mit 4 gewöhnlichen Würfeln, bei denen jeweils die Zahlen 1 bis 6 mit gleicher Wahrscheinlichkeit auftreten. Bei jedem Wurf werden alle 4 Würfel gleichzeitig geworfen. Würfelt man einen 6-er-Pasch, d.h. alle 4 Würfel zeigen zugleich die 6 an, gewinnt man einen Räucherofen im Wert von 690. Würfelt man einen anderen Pasch, gewinnt man ein Buch zum Thema Räuchern im Wert von 15. Weitere Preise gibt es nicht, das Spiel ist für die Besucher kostenlos Berechnen Sie die Wahrscheinlichkeiten für den Gewinn eines Räucherofens bzw. eines Buches bei einem Wurf Berechnen Sie den zu erwartenden Gesamtwert aller Gewinne, wenn 5000 Besucher jeweils genau einmal an diesem Spiel teilnehmen. 3.3 Auf der Messe wird ein neuer Räucherofen zum voraussichtlichen Verkaufspreis von 499 vorgestellt. Abzüglich der Händlerprovision würden dabei die Einnahmen für die Firma 329 je ausgelieferten Räucherofen betragen. Zur Untersuchung der Wirtschaftlichkeit werden als Modell die stetigen Funktionen U und K verwendet. Die Umsatzfunktion U beschreibt die Einnahmen in in Abhängigkeit von der Anzahl x der ausgelieferten Räucheröfen. U(x) = 329 x Die Kostenfunktion K beschreibt den Zusammenhang zwischen der Anzahl x der ausgelieferten Räucheröfen und den Produktionskosten in. K(x) = 0, x 3 2,888 x x Zeichnen Sie die Graphen von K und U in ein Koordinatensystem. Ermitteln Sie für die Anzahl der ausgelieferten Räucheröfen das Intervall, für das die Firma mit Gewinn arbeitet. Bestimmen Sie die Anzahl x, bei der die Firma den größtmöglichen Gewinn erzielt.

8 Abitur 2009 Mathematik mit CAS Seite 6 B1 Analysis Betrachtet wird die Funktion f mit der Gleichung 2 3 f(x) = 2,4x x ; x. Der Graph der Funktion f schließt mit der x-achse die Fläche A vollständig ein. 1.1 Berechnen Sie den Inhalt der Fläche A. 1.2 Die Fläche A soll durch Rechtecke der Breite 1 LE vollständig bedeckt werden. Die Rechtecke können verschiedene Längen besitzen. Die Länge wird in Richtung der y-achse festgelegt. Die Längen der einzelnen Rechtecke sollen möglichst klein sein. Die Rechtecke überdecken sich gegenseitig nicht Stellen Sie den Graphen der Funktion f und die Rechtecke in einem Koordinatensystem für den Fall dar, dass die linke Seite des linken Rechtecks auf der y-achse liegt. Berechnen Sie die Summe der Rechtecklängen Ermitteln Sie rechnerisch die Anzahl und Lage der Rechtecke so, dass die Summe der Rechtecklängen möglichst klein ist und beschreiben Sie die Lage der Rechtecke für diesen Fall.

9 Abitur 2009 Mathematik mit CAS Seite 7 B2 Analytische Geometrie In einem kartesischen Koordinatensystem sind die Punkte durch ihre Koordinaten A( ), B( ), C( ), D( x D y D z D ), S 1 ( ) und S 2 ( ) gegeben. Die Punkte A, B, C und D liegen in der Ebene ε und bilden ein Parallelogramm mit AC als Diagonale. 2.1 Berechnen Sie die Koordinaten des Punktes D. 2.2 Begründen Sie, dass S 1 und S 2 auf verschiedenen Seiten von ε liegen. 2.3 Zeichnen Sie in ein Koordinatensystem die beiden Pyramiden ABCDS 1 und ABCDS 2. Prüfen Sie rechnerisch, ob die beiden Pyramiden ABCDS 1 und ABCDS 2 spiegelsymmetrisch zur Ebene ε liegen Die Gerade g besitzt die Gleichung g:x = 15 + t Zeigen Sie, dass S 1 auf g liegt. Auf der Geraden g gibt es einen Punkt S 3, sodass S 3 die Spitze einer geraden Pyramide mit der Grundfläche ABCD ist. Berechnen Sie die Koordinaten des Punktes S 3.

10 Abitur 2009 Mathematik mit CAS Seite 8 B3 Analytische Geometrie und Stochastik 3.1 Eine Lagerhalle der Firma HAMMER & HART besitzt die Grundfläche ABCD und hat ein Pultdach EFGH (siehe Skizze). Beide Flächen haben die Form eines Rechtecks. In einem kartesischen Koordinatensystem (1 LE = 1 m) besitzen die Eckpunkte folgende Koordinaten: A(4 0 0), B(16 9 0), C( ), D(1 4 0), E(4 0 4), F(16 9 4), G( ), H(1 4 6). (Skizze nicht maßstäblich) Ermitteln Sie eine Koordinatengleichung der Ebene, in der die Dachfläche liegt. Berechnen Sie die Größe des Neigungswinkels der Dachfläche gegenüber der Grundflächenebene An einem im Mittelpunkt der Dachfläche EFGH befestigten Seil soll an dessen Ende im Punkt L ein Beleuchtungskörper aufgehängt werden. Prüfen Sie, ob bei einer Seillänge von 1,00 m der Abstand des Punktes L von der Dachfläche EFGH noch mindestens 0,90 m beträgt Im Punkt H der Dachfläche befindet sich ein in Richtung der z-achse verlaufender Fahnenmast, der 2,00 m aus der Dachfläche herausragt. 7 Bei Einfall von parallelem Sonnenlicht in Richtung des Vektors 1 wirft dieser 3 Mast einen Schatten, der sich zum Teil auf der Dachfläche EFGH befindet. Berechnen Sie die Länge des Schattens auf der Dachfläche EFGH. 3.2 Die Firma HAMMER & HART produziert Geräte, von denen erfahrungsgemäß 2 % als Garantiefälle reklamiert werden Berechnen Sie Wahrscheinlichkeit dafür, dass bei 600 verkauften Geräten die Anzahl der Garantiefälle weniger als 15 beträgt Ermitteln Sie, nach wie vielen verkauften Geräten die Wahrscheinlichkeit für das Auftreten mindestens eines Garantiefalles erstmals über 75 % liegt Es wird vermutet, dass der Anteil der Garantiefälle doch höher sein könnte als angegeben. Dazu sollen 1000 Geräte in ihrer Garantiezeit beobachtet werden. Formulieren und begründen Sie dazu eine Entscheidungsregel, wobei die Irrtumswahrscheinlichkeit zwischen 5 % und 6 % liegen soll.

Zentralabitur 2011 Mathematik mit CAS

Zentralabitur 2011 Mathematik mit CAS Mecklenburg-Vorpommern Zentralabitur 2011 Mathematik mit CAS N Abitur 2011 Mathematik mit CAS N Seite 2 Aufgaben Abitur 2011 Mathematik mit CAS N Seite 3 Hinweise für Schüler Aufgabenwahl: Die Prüfungsarbeit

Mehr

Abitur 2009 Mathematik Seite 1

Abitur 2009 Mathematik Seite 1 Abitur 009 Mathematik Seite Name, Vorname:... Aufgabe A0 (beinhaltet die Aufgaben 3 des Arbeitsblattes) Arbeitsblatt Dieses Arbeitsblatt ist vollständig und ohne Zuhilfenahme von Tafelwerk und Taschenrechner

Mehr

Hinweise für Schüler. Die Arbeitszeit beträgt 210 Minuten zuzüglich 30 Minuten für die Aufgabenauswahl.

Hinweise für Schüler. Die Arbeitszeit beträgt 210 Minuten zuzüglich 30 Minuten für die Aufgabenauswahl. Abitur 2005 Mathematik Gk Seite 2 Hinweise für Schüler Aufgabenauswahl: Bearbeitungszeit: Hilfsmittel: Hinweise: Sonstiges: Die Arbeit besteht aus einem Pflichtteil und einem Wahlteil. Die Pflichtaufgaben

Mehr

Beispielarbeit. MATHEMATIK (ohne CAS)

Beispielarbeit. MATHEMATIK (ohne CAS) Abitur 008 Mathematik (ohne CAS) Beispielarbeit Seite 1 Abitur 008 Mecklenburg-Vorpommern Beispielarbeit MATHEMATIK (ohne CAS) Hinweis: Diese Beispielarbeit ist öffentlich und daher nicht als Klausur verwendbar.

Mehr

Abitur 2010 Mathematik Arbeitsblatt Seite 1

Abitur 2010 Mathematik Arbeitsblatt Seite 1 Abitur 2010 Mathematik Arbeitsblatt Seite 1 Name, Vorname:... Aufgabe A0 (beinhaltet die Aufgaben 1 3 des Arbeitsblattes) Arbeitsblatt Dieses Arbeitsblatt ist vollständig und ohne Zuhilfenahme von Tafelwerk

Mehr

Hinweise für Schüler

Hinweise für Schüler Abitur 2005 Mathematik Lk Seite 2 Hinweise für Schüler Aufgabenauswahl: Bearbeitungszeit: Die Arbeit besteht aus einem Pflichtteil und einem Wahlteil. Die Pflichtaufgaben P1, P2 und P3 sind vollständig

Mehr

Hinweise für Schüler

Hinweise für Schüler Abitur 2007 Mathematik Lk Seite 2 Hinweise für Schüler Aufgabenauswahl: Bearbeitungszeit: Die Arbeit besteht aus einem Pflichtteil und einem Wahlteil. Die Pflichtaufgaben P1, P2 und P3 sind vollständig

Mehr

Beispielarbeit. MATHEMATIK (mit CAS)

Beispielarbeit. MATHEMATIK (mit CAS) Abitur 2008 Mathematik (mit CAS) Beispielarbeit Seite 1 Abitur 2008 Mecklenburg-Vorpommern Beispielarbeit MATHEMATIK (mit CAS) Hinweis: Diese Beispielarbeit ist öffentlich und daher nicht als Klausur verwendbar.

Mehr

Abitur 2010 Mathematik Arbeitsblatt Seite 1

Abitur 2010 Mathematik Arbeitsblatt Seite 1 Abitur 2010 Mathematik Arbeitsblatt Seite 1 Name, Vorname:... Aufgabe A0 (beinhaltet die Aufgaben 1 3 des Arbeitsblattes) Arbeitsblatt Dieses Arbeitsblatt ist vollständig und ohne Zuhilfenahme von Tafelwerk

Mehr

ABITURPRÜFUNG 2002 GRUNDFACH MATHEMATIK (HAUPTTERMIN)

ABITURPRÜFUNG 2002 GRUNDFACH MATHEMATIK (HAUPTTERMIN) ABITURPRÜFUNG 00 GRUNDFACH MATHEMATIK (HAUPTTERMIN) Arbeitszeit: Hilfsmittel: 10 Minuten Taschenrechner (nicht programmierbar, nicht grafikfähig) Tafelwerk Der Prüfungsteilnehmer wählt von den Aufgaben

Mehr

P 0 f (0) schneidet die Gerade mit der Gleichung x Ermitteln Sie die Koordinaten von S.

P 0 f (0) schneidet die Gerade mit der Gleichung x Ermitteln Sie die Koordinaten von S. Zentralabitur 015 im Fach Mathematik Analysis 1 Im nebenstehenden Bild sind die Graphen dreier Funktionen f, g und h dargestellt Geben Sie an, bei welcher der drei Funktionen es sich um eine Stammfunktion

Mehr

Aufgaben sind zum größten Teil ohne CAS zu lösen. Kontrolle mit CAS ist eine gute Übung

Aufgaben sind zum größten Teil ohne CAS zu lösen. Kontrolle mit CAS ist eine gute Übung Aufgaben sind zum größten Teil ohne CAS zu lösen. Kontrolle mit CAS ist eine gute Übung Analysis Aufgabe 2 Bestimmen Sie jeweils die Gleichung einer Funktion f mit folgenden Eigenschaften: a) Die Funktion

Mehr

Mecklenburg - Vorpommern

Mecklenburg - Vorpommern Mecklenburg - Vorpommern Realschulabschlussprüfung 2002 Prüfungsarbeit Mathematik Realschulabschlussprüfung 2002 Mathematik Seite 1 Hinweise für Schülerinnen und Schüler: Die vorliegende Arbeit besteht

Mehr

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur Januar/Februar Mathematik (Grundkurs) Arbeitszeit: 210 Minuten

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur Januar/Februar Mathematik (Grundkurs) Arbeitszeit: 210 Minuten KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT Abitur Januar/Februar 2002 Mathematik (Grundkurs) Arbeitszeit: 210 Minuten Der Prüfling wählt je eine Aufgabe aus den Gebieten G 1, G 2 und G 3 zur Bearbeitung

Mehr

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur Januar/Februar Mathematik (Grundkurs) Arbeitszeit: 210 Minuten

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur Januar/Februar Mathematik (Grundkurs) Arbeitszeit: 210 Minuten SCHRIFTLICHE ABITURPRÜFUNG 200 KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT Abitur Januar/Februar 200 Mathematik (Grundkurs) Arbeitszeit: 210 Minuten Der Prüfling wählt je eine Aufgabe aus den Gebieten

Mehr

Die vorliegende Arbeit besteht aus einem Pflicht- und einem Wahlteil. Im Wahlteil sind von den vier Wahlaufgaben mindestens zwei zu bearbeiten.

Die vorliegende Arbeit besteht aus einem Pflicht- und einem Wahlteil. Im Wahlteil sind von den vier Wahlaufgaben mindestens zwei zu bearbeiten. Realschulabschlussprüfung 2000 Mathematik Seite 1 Hinweise für Schülerinnen und Schüler: Die vorliegende Arbeit besteht aus einem Pflicht- und einem Wahlteil. Im Pflichtteil sind alle vier Aufgaben zu

Mehr

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung

Mehr

Mathematik. Zentrale schriftliche Abiturprüfung Kurs auf erhöhtem Anforderungsniveau mit CAS. Aufgabenvorschlag Teil 2. Aufgabenstellung 2

Mathematik. Zentrale schriftliche Abiturprüfung Kurs auf erhöhtem Anforderungsniveau mit CAS. Aufgabenvorschlag Teil 2. Aufgabenstellung 2 Ministerium für Bildung, Jugend und Sport Senatsverwaltung für Bildung, Jugend und Wissenschaft Zentrale schriftliche Abiturprüfung 2016 Kurs auf erhöhtem Anforderungsniveau mit CAS Aufgabenvorschlag Teil

Mehr

SCHRIFTLICHE ABITURPRÜFUNG 2010 Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten

SCHRIFTLICHE ABITURPRÜFUNG 2010 Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung

Mehr

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT Abitur 2001 Mathematik (Grundkurs) Arbeitszeit: 210 Minuten Der Prüfling wählt nach Empfehlung durch die Lehrkraft je eine Aufgabe aus den Gebieten G 1, G 2

Mehr

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Leistungskurs) Arbeitszeit: 300 Minuten

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Leistungskurs) Arbeitszeit: 300 Minuten Mathematik (Leistungskurs) Arbeitszeit: 300 Minuten Der Prüfling wählt je eine Aufgabe aus den Gebieten L 1, L 2 und L 3 zur Bearbeitung aus. Gewählte Aufgaben (Die drei zur Bewertung vorgesehenen Aufgaben

Mehr

Abiturprüfung. Mecklenburg-Vorpommern Stochastik. Wahl- und Pflichtaufgaben. Aus den Jahren 2009 bis Datei Nr Stand 5.

Abiturprüfung. Mecklenburg-Vorpommern Stochastik. Wahl- und Pflichtaufgaben. Aus den Jahren 2009 bis Datei Nr Stand 5. Abiturprüfung Mecklenburg-Vorpommern Stochastik Wahl- und Pflichtaufgaben Aus den Jahren 2009 bis 2016 Datei Nr. 73111 Stand 5. August 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 73111

Mehr

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife Mathematik (nichttechnische Ausbildungsrichtung)

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife Mathematik (nichttechnische Ausbildungsrichtung) Ergänzungsprüfung zum Erwerb der Fachhochschulreife 2006 Prüfungsfach: Mathematik (nichttechnische Ausbildungsrichtung) Prüfungstag: Donnerstag, 22. Juni 2006 Prüfungsdauer: 09:00 12:00 Uhr Hilfsmittel:

Mehr

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung)

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung) Ergänzungsprüfung zum Erwerb der Fachhochschulreife 004 Prüfungsfach: Mathematik (technische Ausbildungsrichtung) Prüfungstag: Donnerstag, 4. Juni 004 Prüfungsdauer: 09:00-1:00 Uhr Hilfsmittel: elektronischer,

Mehr

Schriftliche Abiturprüfung Grundkursfach Mathematik. - Ersttermin -

Schriftliche Abiturprüfung Grundkursfach Mathematik. - Ersttermin - Sächsisches Staatsministerium Geltungsbereich: für Kultus - Allgemein bildendes Gymnasium - Abendgymnasium und Kolleg Schuljahr 2002/03 - Schulfremde Prüfungsteilnehmer Schriftliche Abiturprüfung Grundkursfach

Mehr

Mathematik Kurs auf erhöhtem Anforderungsniveau Aufgabenvorschlag Teil 2

Mathematik Kurs auf erhöhtem Anforderungsniveau Aufgabenvorschlag Teil 2 Ministerium für Bildung, Jugend und Sport Senatsverwaltung für Bildung, Jugend und Wissenschaft Zentrale schriftliche Abiturprüfung 06 Aufgabenvorschlag Teil Hilfsmittel: Nachschlagewerk zur Rechtschreibung

Mehr

Schriftliche Abiturprüfung Grundkursfach Mathematik

Schriftliche Abiturprüfung Grundkursfach Mathematik Sächsisches Staatsministerium für Kultus Schuljahr 2000/01 Geltungsbereich: - Allgemein bildendes Gymnasium - Abendgymnasium und Kolleg - Schulfremde Prüfungsteilnehmer Schriftliche Abiturprüfung Grundkursfach

Mehr

Testprüfung (Abitur 2013)

Testprüfung (Abitur 2013) Testprüfung (Abitur 2013) Steve Göring, stg7@gmx.de 3. April 2013 Bearbeitungszeit: Zugelassene Hilfsmittel: 270 Minuten Taschenrechner (nicht programmierbar, nicht grafikfähig), Tafelwerk Name: Punkte:

Mehr

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung

Mehr

SCHRIFTLICHE ABITURPRÜFUNG 2006 Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten

SCHRIFTLICHE ABITURPRÜFUNG 2006 Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung

Mehr

SCHRIFTLICHE ABITURPRÜFUNG 2009 Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten

SCHRIFTLICHE ABITURPRÜFUNG 2009 Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung

Mehr

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT Abitur 2001 Mathematik (Leistungskurs) Arbeitszeit: 00 Minuten Der Prüfling wählt nach Empfehlung durch die Lehrkraft je eine Aufgabe aus den Gebieten L 1, L

Mehr

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT Abitur April/Mai 2002 Mathematik (Grundkurs) Arbeitszeit: 210 Minuten Der Prüfling wählt je eine Aufgabe aus den Gebieten G 1, G 2 und G 3 zur Bearbeitung aus.

Mehr

Gymnasium Muttenz Maturitätsprüfung 2013 Mathematik Profile A und B

Gymnasium Muttenz Maturitätsprüfung 2013 Mathematik Profile A und B Gymnasium Muttenz Maturitätsprüfung 2013 Mathematik Profile A und B Name, Vorname:... Hinweise: Klasse:... Die Prüfung dauert 4 Stunden. Es können maximal 48 Punkte erreicht werden. Es werden alle Aufgaben

Mehr

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung

Mehr

Orientierungsaufgaben für das ABITUR 2014 MATHEMATIK

Orientierungsaufgaben für das ABITUR 2014 MATHEMATIK Orientierungsaufgaben für das ABITUR 0 MATHEMATIK Im Auftrag des TMBWK erarbeitet von: Aufgabenkommission Mathematik Gmnasium, Fachberater Mathematik Gmnasium, CAS-Multiplikatoren Hinweise für Prüfungsteilnehmerinnen

Mehr

Mecklenburg-Vorpommern

Mecklenburg-Vorpommern Mecklenburg-Vorpommern Schriftliche Prüfung 2005 Jahrgangsstufe 10 Gymnasium/Gesamtschule Mathematik Aufgaben Schriftliche Prüfung Mathematik 2005 Jahrgangsstufe 10 Gymnasium/Gesamtschule Seite 2 Aufgabenauswahl:

Mehr

Schriftliche Abiturprüfung Grundkursfach Mathematik - E R S T T E R M I N -

Schriftliche Abiturprüfung Grundkursfach Mathematik - E R S T T E R M I N - Sächsisches Staatsministerium für Kultus Schuljahr 2008/09 Geltungsbereich: - allgemeinbildendes Gymnasium - Abendgymnasium und Kolleg - schulfremde Prüfungsteilnehmer Schriftliche Abiturprüfung Grundkursfach

Mehr

Zentrale schriftliche Abiturprüfung Mathematik. Grundkurs

Zentrale schriftliche Abiturprüfung Mathematik. Grundkurs LAND BRANDENBURG Ministerium für Bildung, Jugend und Sport Senatsverwaltung für Bildung, Jugend und Wissenschaft Zentrale schriftliche Abiturprüfung 2012 Aufgabenvorschlag Hilfsmittel: Gesamtbearbeitungszeit:

Mehr

a) Bestimmen Sie rechnerisch die Koordinaten und die Art der Extrempunkte von G. Betrachtet wird die Gleichung

a) Bestimmen Sie rechnerisch die Koordinaten und die Art der Extrempunkte von G. Betrachtet wird die Gleichung Analysis Aufgabe 1.1 Gegeben ist die Funktion f mit 1 3 2 f x x 4 3x 9x 5 und G f Definitionsmenge IR. Die Abbildung zeigt den Graphen von f. a) Bestimmen Sie rechnerisch die Koordinaten und die Art der

Mehr

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (nichttechnische Ausbildungsrichtung)

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (nichttechnische Ausbildungsrichtung) Ergänzungsprüfung zum Erwerb der Fachhochschulreife 008 Prüfungsfach: Mathematik (nichttechnische Ausbildungsrichtung) Prüfungstag: Donnerstag, 6. Juni 008 Prüfungsdauer: 09:00 1:00 Uhr Hilfsmittel: Elektronischer,

Mehr

Aufgaben für das Fach Mathematik

Aufgaben für das Fach Mathematik Niedersächsisches Kultusministerium Referat 33 / Logistikstelle für zentrale Arbeiten August 017 Aufgaben für das Fach Mathematik Eingesetzte Abituraufgaben aus dem länderübergreifenden Abituraufgabenpool

Mehr

Mecklenburg - Vorpommern

Mecklenburg - Vorpommern Realschulabschlussprüfung 2005 Mathematik Seite 1 Mecklenburg - Vorpommern Realschulabschlussprüfung 2005 Prüfungsarbeit Mathematik Realschulabschlussprüfung 2005 Mathematik Seite 2 Hinweise für Schülerinnen

Mehr

Passerelle Mathematik Frühling 2005 bis Herbst 2006

Passerelle Mathematik Frühling 2005 bis Herbst 2006 Passerelle Mathematik Frühling 2005 bis Herbst 2006 www.mathenachhilfe.ch info@mathenachhilfe.ch 079 703 72 08 Inhaltsverzeichnis 1 Algebra 3 1.1 Termumformungen..................................... 3

Mehr

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung)

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung) Ergänzungsprüfung zum Erwerb der Fachhochschulreife 006 Prüfungsfach: Mathematik (technische Ausbildungsrichtung) Prüfungstag: Donnerstag,. Juni 006 Prüfungsdauer: 09:00 1:00 Uhr Hilfsmittel: Elektronischer,

Mehr

Abiturprüfung an den allgemein bildenden Gymnasien. Musteraufgaben 2017 Hilfsmittelfreier Teil Seite 1-2. = 0. (2 VP) e

Abiturprüfung an den allgemein bildenden Gymnasien. Musteraufgaben 2017 Hilfsmittelfreier Teil Seite 1-2. = 0. (2 VP) e MINISTERIUM FÜR KULTUS, JUGEND UND SPORT Abiturprüfung an den allgemein bildenden Gymnasien Prüfungsfach: M a t h e m a t i k Musteraufgaben 2017 Hilfsmittelfreier Teil Seite 1-2 1. Bilden Sie die erste

Mehr

SCHRIFTLICHE ABITURPRÜFUNG 2008 Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten

SCHRIFTLICHE ABITURPRÜFUNG 2008 Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung

Mehr

Schriftliche Abiturprüfung Leistungskursfach Mathematik -ERSTTERMIN-

Schriftliche Abiturprüfung Leistungskursfach Mathematik -ERSTTERMIN- Sächsisches Staatsministerium für Kultus und Sport Schuljahr 2009/10 Geltungsbereich: - allgemeinbildendes Gymnasium - Abendgymnasium und Kolleg - schulfremde Prüfungsteilnehmer Schriftliche Abiturprüfung

Mehr

Zentrale schriftliche Abiturprüfung Mathematik

Zentrale schriftliche Abiturprüfung Mathematik LAND BRANDENBURG Ministerium für Bildung, Jugend und Sport Senatsverwaltung für Bildung, Jugend und Wissenschaft Zentrale schriftliche Abiturprüfung 2012 mit CAS Aufgabenvorschlag Hilfsmittel: Gesamtbearbeitungszeit:

Mehr

SCHRIFTLICHE ABITURPRÜFUNG 2013 MATHEMATIK (ERHÖHTES ANFORDERUNGSNIVEAU) Prüfungsaufgaben

SCHRIFTLICHE ABITURPRÜFUNG 2013 MATHEMATIK (ERHÖHTES ANFORDERUNGSNIVEAU) Prüfungsaufgaben () Prüfungsaufgaben Auswahlzeit: Bearbeitungszeit: 30 Minuten 300 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Entscheiden Sie sich für eine Wahlpflichtaufgabe und kreuzen

Mehr

Schriftliche Abiturprüfung Grundkursfach Mathematik - E R S T T E R M I N -

Schriftliche Abiturprüfung Grundkursfach Mathematik - E R S T T E R M I N - Sächsisches Staatsministerium für Kultus Schuljahr 004/05 Geltungsbereich: - Allgemein bildendes Gymnasium - Abendgymnasium und Kolleg - Schulfremde Prüfungsteilnehmer Schriftliche Abiturprüfung Grundkursfach

Mehr

Musteraufgaben für das Fach Mathematik

Musteraufgaben für das Fach Mathematik Länderübergreifende gemeinsame nteile in den Abiturprüfungen der Länder Bayern, Hamburg, Mecklenburg-Vorpommern, Niedersachsen, Schleswig-Holstein und Sachsen Musteraufgaben für das Fach Mathematik Die

Mehr

BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK

BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK BESONDERE LEISTUNGSFESTSTELLUNG 003 MATHEMATIK Arbeitszeit: Hilfsmittel: 150 Minuten 1. Formeln und Tabellen für die Sekundarstufen I und II. Berlin: Paetec, Ges. für Bildung und Technik. Formeln und Tabellen

Mehr

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 26. 02. 2015 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl (max) 28 15 15 2 60 Notenpunkte PT 1 2 3 4 5 6 7 8 9 P. (max) 2 2 3 5 4 3 3 4 2 WT Ana A.1a) b) c) d) Summe P. (max) 6 4 3

Mehr

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Mathematik (Grundkursniveau) Arbeitszeit: 10 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung

Mehr

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9.

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9. Koordinatengeometrie Aufgabe 1 Gegeben sind der Punkt P (-1; 9) sowie die Geraden g: 3x y + 6 = 0 und h: x + 4y 8 = 0. a) Die Geraden g und h schneiden einander im Punkt S. Berechnen Sie die exakten Koordinaten

Mehr

SCHRIFTLICHE ABITURPRÜFUNG 2013 MATHEMATIK (GRUNDLEGENDES ANFORDERUNGSNIVEAU) Prüfungsaufgaben

SCHRIFTLICHE ABITURPRÜFUNG 2013 MATHEMATIK (GRUNDLEGENDES ANFORDERUNGSNIVEAU) Prüfungsaufgaben () Prüfungsaufgaben Auswahlzeit: Bearbeitungszeit: 30 Minuten 210 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Entscheiden Sie sich für eine Wahlpflichtaufgabe und kreuzen

Mehr

K2 KLAUSUR MATHEMATIK

K2 KLAUSUR MATHEMATIK K2 KLAUSUR MATHEMATIK NACHTERMIN 16.02.2012 Pflichtteil: Aufgabe 1 2 3 4 5 6 7 8 (max) 2 2 3 4 5 3 4 3 Wahlteil Analysis Aufgabe a b c (max) 10 3 5 Wahlteil Geometrie Aufgabe a b c (max) 7 4 5 Gesamtpunktzahl

Mehr

m2l 60.odt Klausur 12/I B 1. Gegeben seien zwei Geraden. Wie gehen Sie vor, um über deren Lagebeziehung eine Aussage zu treffen.

m2l 60.odt Klausur 12/I B 1. Gegeben seien zwei Geraden. Wie gehen Sie vor, um über deren Lagebeziehung eine Aussage zu treffen. 2. Klausur 12/I B Thema: Lagebeziehung Gerade, Ebene 1. Gegeben seien zwei Geraden. Wie gehen Sie vor, um über deren Lagebeziehung eine Aussage zu treffen. 5 6 s 3 0 11 10, g BC : x = 3 u 5 1 2. Gegeben

Mehr

Musteraufgaben für das Fach Mathematik

Musteraufgaben für das Fach Mathematik Musteraufgaben für das Fach Mathematik 2012 Impressum Das vorliegende Material wurde von einer Arbeitsgruppe mit Vertretern aus den Ländern Bayern, Hamburg, Mecklenburg-Vorpommern, Niedersachsen, Sachsen

Mehr

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (nichttechnische Ausbildungsrichtung)

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (nichttechnische Ausbildungsrichtung) Ergänzungsprüfung zum Erwerb der Fachhochschulreife 2005 Prüfungsfach: Mathematik (nichttechnische Ausbildungsrichtung) Prüfungstag: Donnerstag, 16. Juni 2005 Prüfungsdauer: 09:00-12:00 Uhr Hilfsmittel:

Mehr

Gymnasium Muttenz Maturitätsprüfung 2016 Mathematik Profile A und B

Gymnasium Muttenz Maturitätsprüfung 2016 Mathematik Profile A und B Gymnasium Muttenz Maturitätsprüfung 2016 Mathematik Profile A und B Name, Vorname:... Hinweise: Klasse:... Die Prüfung dauert 4 Stunden. Es können maximal 48 Punkte erreicht werden. Es werden alle Aufgaben

Mehr

BESONDERE LEISTUNGSFESTSTELLUNG Schuljahr 2015/2016 MATHEMATIK

BESONDERE LEISTUNGSFESTSTELLUNG Schuljahr 2015/2016 MATHEMATIK Prüfungstag: 11. Mai 2016 (HAUPTTERMIN) Prüfungsbeginn: 08:00 Uhr BESONDERE LEISTUNGSFESTSTELLUNG Schuljahr 2015/2016 MATHEMATIK Hinweise für die Teilnehmerinnen und Teilnehmer Bearbeitungszeit: 180 Minuten

Mehr

Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben

Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben Aufgabe C Gegeben ist eine Funktion f durch f ( ) = + 3. Gesucht sind lineare Funktionen, deren Graphen zum

Mehr

Abiturprüfung 2000 LK Mathematik Baden-Württemberg

Abiturprüfung 2000 LK Mathematik Baden-Württemberg Abiturprüfung 000 LK Mathematik Baden-Württemberg Aufgabe I 1 Analysis ( )² Gegeben ist die Funktion f durch f ( ) = ; D f. Ihr Schaubild sei K. ( 4) a) Geben Sie die maimale Definitionsmenge D f an. Untersuchen

Mehr

Schriftliche Abschlussprüfung Mathematik

Schriftliche Abschlussprüfung Mathematik Sächsisches Staatsministerium für Kultus Schuljahr 1999/ Geltungsbereich: für Klassen 10 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlussprüfung Mathematik Realschulabschluss

Mehr

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur Mathematik. (Grundkurs) Arbeitszeit: 210 Minuten

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur Mathematik. (Grundkurs) Arbeitszeit: 210 Minuten 1 MATHEMATIK (GRUNDKURS) KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT Abitur 2000 Mathematik (Grundkurs) Arbeitszeit: 210 Minuten Der Prüfling wählt nach Empfehlung durch die Lehrkraft je eine Aufgabe aus

Mehr

ABITURPRÜFUNG 2001 LEISTUNGSFACH MATHEMATIK

ABITURPRÜFUNG 2001 LEISTUNGSFACH MATHEMATIK ABITURPRÜFUNG 2001 LEISTUNGSFACH MATHEMATIK (HAUPTTERMIN) Arbeitszeit: Hilfsmittel: grafikfähig) Tafelwerk 270 Minuten Taschenrechner (nicht programmierbar, nicht Der Prüfungsteilnehmer wählt von den Aufgaben

Mehr

Analytische Geometrie

Analytische Geometrie Analytische Geometrie 1 Punkte und Vektoren im Raum G 1.1 Gegeben sind die Vektoren in nebenstehender Abbildung. Drücke die Vektoren AC durch a und b AB durch z und w BC durch c und d DB durch b und u

Mehr

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung)

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung) Ergänzungsprüfung zum Erwerb der Fachhochschulreife 005 Prüfungsfach: Mathematik (technische Ausbildungsrichtung) Prüfungstag: Donnerstag, 16. Juni 005 Prüfungsdauer: 09:00-1:00 Uhr Hilfsmittel: elektronischer,

Mehr

Aufgaben für das Fach Mathematik

Aufgaben für das Fach Mathematik Niedersächsisches Kultusministerium Referat / Logistikstelle für zentrale Arbeiten Januar 06 Aufgaben für das Fach Mathematik Eingesetzte Abituraufgaben aus dem länderübergreifenden Abituraufgabenpool

Mehr

Rahmenbedingungen und Hinweise

Rahmenbedingungen und Hinweise Gymnasium Muttenz Mathematik Matur 2013 Kandidatin/ Kandidat Name:................................................................ Klasse:................ Die Prüfung dauert 4 Stunden. Es werden alle Aufgaben

Mehr

Mathematik. Matur-Aufgaben Stefan Dahinden. 26. Juni 2007

Mathematik. Matur-Aufgaben Stefan Dahinden. 26. Juni 2007 Mathematik Matur-Aufgaben 2006 Stefan Dahinden 26. Juni 2007 Rotationskörper Lassen Sie die Kurve mit der Gleichung y = 9 x für 0 x 9 um die x- Achse rotieren und berechnen Sie das exakte Volumen des entstehenden

Mehr

2016/2017 Abitur Sachsen - Grundkurs Mathematik

2016/2017 Abitur Sachsen - Grundkurs Mathematik Schriftliche Abiturprüfung Grundkurs Mathematik Inhaltsverzeichnis Vorwort...1 Hinweise für den Teilnehmer...2 Bewertungsmaßstab...2 Prüfungsinhalt...2 Aufgabe A...2 Aufgabe B 1...3 Aufgabe B 2...5 Lösungsvorschläge...7

Mehr

Schriftliche Abiturprüfung Leistungskursfach Mathematik - E R S T T E R M I N -

Schriftliche Abiturprüfung Leistungskursfach Mathematik - E R S T T E R M I N - Sächsisches Staatsministerium für Kultus Schuljahr 1998/99 Geltungsbereich: - Allgemein bildendes Gymnasium - Abendgymnasium und Kolleg - Schulfremde Prüfungsteilnehmer Schriftliche Abiturprüfung Leistungskursfach

Mehr

Gymnasium Liestal Maturitätsprüfungen 2004

Gymnasium Liestal Maturitätsprüfungen 2004 Gymnasium Liestal Maturitätsprüfungen 2004 Mathematik Klasse 4LM Bemerkungen: Hilfsmittel: Punkteverteilung: Die Prüfungsdauer beträgt 4 Stunden. Beginnen Sie jede Aufgabe mit einem neuen Blatt! Taschenrechner

Mehr

Der Lösungsweg muss bei allen Aufgaben ersichtlich und vollständig sein. Der Einsatz des CAS- Rechners ist klar anzugeben.

Der Lösungsweg muss bei allen Aufgaben ersichtlich und vollständig sein. Der Einsatz des CAS- Rechners ist klar anzugeben. Gymnasium Muttenz Maturitätsprüfung 2015 Mathematik Profile A und B 1 Name, Vorname: 1 Klasse: 1 Hinweise: Die Prüfung dauert 4 Stunden. Es können maximal 48 Punkte erreicht werden. Es werden alle Aufgaben

Mehr

Unterlagen für die Lehrkraft

Unterlagen für die Lehrkraft Ministerium für Bildung, Jugend und Sport Zentrale Prüfung zum Erwerb der Fachhochschulreife im Schuljahr 0/0 Mathematik B 8. Mai 0 09:00 Uhr Unterlagen für die Lehrkraft . Aufgabe: Differentialrechnung

Mehr

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur April/Mai Mathematik (Grundkurs) Arbeitszeit: 210 Minuten

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur April/Mai Mathematik (Grundkurs) Arbeitszeit: 210 Minuten KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT Abitur April/Mai 004 Mathematik (Grundkurs) Arbeitszeit: 0 Minuten Der Prüfling wählt je eine Aufgabe aus den Gebieten G, G und G 3 zur Bearbeitung aus. Gewählte

Mehr

Aufgabe 1: Vektorgeometrie (12 Punkte)

Aufgabe 1: Vektorgeometrie (12 Punkte) Mathematik schriftlich Klassen: 4IM, 4S, 4Wa, 4WZ, 5KSW Bemerkungen: Hilfsmittel: Die Prüfungsdauer beträgt 4 Stunden. Beginnen Sie jede Aufgabe mit einem neuen Blatt! Taschenrechner TI-Nspire CAS Der

Mehr

Aufgaben zur Übung der Anwendung von GeoGebra

Aufgaben zur Übung der Anwendung von GeoGebra Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,

Mehr

SCHRIFTLICHE ABITURPRÜFUNG 2011 Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten

SCHRIFTLICHE ABITURPRÜFUNG 2011 Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung

Mehr

Mathematik. Zentrale schriftliche Abiturprüfung Leistungskurs Aufgabenvorschlag. Aufgabenstellung 1. Aufgabenstellung 2. Aufgabenstellung 3

Mathematik. Zentrale schriftliche Abiturprüfung Leistungskurs Aufgabenvorschlag. Aufgabenstellung 1. Aufgabenstellung 2. Aufgabenstellung 3 Ministerium für Bildung, Jugend und Sport Senatsverwaltung für Bildung, Jugend und Wissenschaft Zentrale schriftliche Abiturprüfung 2016 Aufgabenvorschlag Hilfsmittel: Gesamtbearbeitungszeit: Nachschlagewerk

Mehr

Hauptprüfung Abiturprüfung 2016 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2016 (ohne CAS) Baden-Württemberg Hauptprüfung Abiturprüfung 26 (ohne CAS) Baden-Württemberg Wahlteil Analytische Geometrie / Stochastik Hilfsmittel: GTR und Formelsammlung allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

Schriftliche Prüfung Schuljahr: 2007/2008 Schulform: Realschule. Mathematik

Schriftliche Prüfung Schuljahr: 2007/2008 Schulform: Realschule. Mathematik Ministerium für Bildung, Jugend und Sport Prüfungen am Ende der Jahrgangsstufe 10 Schriftliche Prüfung Schuljahr: 2007/2008 Schulform: Mathematik Allgemeine Arbeitshinweise Die Prüfungszeit beträgt 160

Mehr

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Wahlpflichtaufgabe

Mehr

Abschlussprüfung 2011 an den Realschulen in Bayern

Abschlussprüfung 2011 an den Realschulen in Bayern Prüfungsdauer: 150 Minuten Abschlussprüfung 2011 an den Realschulen in Bayern Mathematik I Name: Vorname: Klasse: Platzziffer: Punkte: Aufgabe A 1 Nachtermin A 1.0 Lebensmittelchemiker untersuchten das

Mehr

Übungsklausur 2013/2014 im Fach Mathematik Länderübergreifender gemeinsamer Aufgabenpool

Übungsklausur 2013/2014 im Fach Mathematik Länderübergreifender gemeinsamer Aufgabenpool STAATSINSTITUT FÜR SCHULQUALITÄT UND BILDUNGSFORSCHUNG MÜNCHEN Abteilung Gymnasium Referat Mathematik Länderübergreifende gemeinsame Aufgaben in den Abiturprüfungen der Länder Bayern, Hamburg, Mecklenburg-Vorpommern,

Mehr

Besondere Leistungsfeststellung Mathematik ERSTTERMIN

Besondere Leistungsfeststellung Mathematik ERSTTERMIN Sächsisches Staatsministerium für Kultus und Sport Schuljahr 010/11 Geltungsbereich: Schüler der Klassenstufe 10 an allgemeinbildenden Gymnasien ohne Realschulabschluss Besondere Leistungsfeststellung

Mehr

Mathematik. Abiturprüfung 2014. Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden.

Mathematik. Abiturprüfung 2014. Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Mathematik Abiturprüfung 2014 Prüfungsteil A Arbeitszeit: 90 Minuten Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Zu den Themengebieten Analysis, Stochastik und Geometrie

Mehr

Gymnasium Muttenz Maturitätsprüfung Mathematik. (Schwerpunktfächer: F/ G / I / L / M / S / W / Z )

Gymnasium Muttenz Maturitätsprüfung Mathematik. (Schwerpunktfächer: F/ G / I / L / M / S / W / Z ) Gymnasium Muttenz Maturitätsprüfung 2006 Mathematik (Schwerpunktfächer: F/ G / I / L / M / S / W / Z ) Kandidatin / Kandidat Name Vorname:... Klasse:... Hinweise - Die Prüfung dauert 4 Stunden. - Jede

Mehr

Schriftliche Abschlussprüfung Mathematik

Schriftliche Abschlussprüfung Mathematik Sächsisches Staatsministerium für Kultus Schuljahr 2002/2003 Geltungsbereich: für Klassen 10 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlussprüfung Mathematik Realschulabschluss

Mehr

Gymnasium Liestal Maturitätsprüfungen 2006

Gymnasium Liestal Maturitätsprüfungen 2006 Bemerkungen: - Die Prüfungsdauer beträgt 4 Stunden - Beginnen Sie jede Aufgabe mit einem neuen Blatt - Die Arbeit mit dem Taschenrechner muss dokumentiert sein Hilfsmittel: - CAS-Taschenrechner mit Anleitung

Mehr

Abschlussprüfung 2011 an den Realschulen in Bayern

Abschlussprüfung 2011 an den Realschulen in Bayern Prüfungsdauer: 150 Minuten Abschlussprüfung 011 an den Realschulen in Bayern Mathematik II Name: Vorname: Klasse: Platzziffer: Punkte: Aufgabe A 1 Haupttermin A 1.0 In Deutschland wächst derzeit mehr Holz

Mehr

7.6. Prüfungsaufgaben zu Normalenformen

7.6. Prüfungsaufgaben zu Normalenformen 7.6. Prüfungsaufgaben zu Normalenformen Aufgabe () Gegeben sind die Gerade g: x a + r u mit r R und die Ebene E: ( x p ) n. a) Welche geometrische Bedeutung haben die Vektoren a und u bzw. p und n? Veranschaulichen

Mehr

Zentrale Klausur unter Abiturbedingungen Mathematik. Leistungskurs. für Schülerinnen und Schüler

Zentrale Klausur unter Abiturbedingungen Mathematik. Leistungskurs. für Schülerinnen und Schüler Ministerium für Bildung, Jugend und Sport Zentrale Klausur unter Abiturbedingungen 2004 Aufgaben Mathematik für Schülerinnen und Schüler Thema/Inhalt: Hilfsmittel: Bearbeitungszeit: Analytische Geometrie

Mehr

Mathematik. Abiturprüfung 2015. Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden.

Mathematik. Abiturprüfung 2015. Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Mathematik Abiturprüfung 2015 Prüfungsteil A Arbeitszeit: 90 Minuten Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Zu den Themengebieten Analysis, Stochastik und Geometrie

Mehr

Graph der linearen Funktion

Graph der linearen Funktion Graph der linearen Funktion Im unten stehenden Diagramm sind die Grafen der Funktionen f und g gezeichnet (a) Stelle die Gleichungen von f und g auf und berechne die Nullstellen der beiden Funktionen (b)

Mehr