Workshop: Grundvorstellungen aufbauen. Sebastian Wartha, Karlsruhe

Größe: px
Ab Seite anzeigen:

Download "Workshop: Grundvorstellungen aufbauen. Sebastian Wartha, Karlsruhe"

Transkript

1 Workshop: Grundvorstellungen aufbauen Sebastian Wartha, Karlsruhe

2 Küchenzurufe Vom Zählen zum Grundvorstellungen, keine Regeln Auf s Übersetzen kommt es an; Verinnerlichen von Handlungen Diagnose & Förderung aktueller Stoff genügt nicht 3 zentrale Symptome wissen Zählendes Mangelndes Stellenwertverständnis Grundvorstellungsdefizite Beides da, wo die Probleme beginnen, nicht, wo sie aufhören

3 Erstes mit Buchstaben Ein kleiner Versuch: Stellen Sie sich vor, die Buchstaben des Alphabets sind Zahlworte (a=1, b=2, v=22) Zählen Sie vorwärts ab q. Zählen Sie rückwärts ab k. Stellen Sie g ein. Welche Zahl ist eingestellt? Berechnen Sie f + h

4 Grundvorstellungen: f + h Zählen, Zählprozess Handlung kontrollieren, Ergebnis k, l, n Realität Symbole GV: Hinzufügen GV: (Alles-) Zählen GV: Kardinalzahl f + h Konsequenz n

5 Grundvorstellungen: f + h Handlung Ergebnis Realität Symbole Mengenvorstellung GV: Schrittweise? j Dazutun GV: (Alles-) Zahlbeziehungen Zahlzerlegungen als wichtige GV: zu f, Zählen zwischen (Weiter-) von h Zahl? und j, h f Zählen oder und n? f? h? f + h Konsequenz

6 Ablösen vom Zählenden Quasisimultane Zahlauffassung

7

8

9

10

11

12

13

14

15

16

17

18 Hunderter-Punktefeld

19

20

21

22

23

24

25

26 16?

27 52?

28 3 Funktionen von (1) als Lösungshilfe Hilft bei der (handelnden) Lösung einer Rechenaufgabe Abzählen Verdoppeln Nie unreflektierter Einsatz (sonst gleich Taschenrechner) Zu Beginn des Lernprozesses sehr bedeutsam, später nachrangig Quelle: Schipper (2009), S. 288 ff

29 3 Funktionen von (2) als Lernhilfe Unterstützung der Entwicklung tragfähiger Rechenstrategien (durch verinnerlichte Handlungen) Zerlegen Verdoppeln Hilfsaufgaben Zahlbeziehungen, wichtige Zahlen werden mitgelernt Diese Funktion ist zentral!

30 3 Funktionen von (3) als Argumentations- und Kommunikationshilfe Unterstützung der Darstellung der eigenen Vorgehensweise Erklärungen in einer Rechenkonferenz Adressaten: Lernende und Lehrende Diagnostischer Nutzen Hilft den Lernenden, ihre Gedankengänge zu versprachlichen und bewusst zu machen Quelle: Lorenz (2002)

31 Aufgaben des s Wann ist ein geeignet für Grundvorstellungen? Gleichbleibende und fortsetzbare Struktur Übersichtlichkeit Verlässliche und bekannte Strukturen Wenn das (bzw. die Handlung daran) den Aufbau der entsprechenden mentalen Repräsentationen ermöglicht Vivien:

32 Aufgaben des s Auswahlkriterien Zählen möglich? Nichtzählen möglich? Fortsetzung möglich? Entspricht die Handlung der Strategie? Kann die Handlung auch im Kopf durchgeführt werden? Quelle: Lorenz (2002), Schipper (2009)

33 Aufgaben der Lehrkraft Arbeiten mit Ulla (3. Jgst.) Niklas (3. Jgst) Svenja (2. Jgst) Umgang mit muss gelernt werden, muss also Gegenstand des Unterrichts sein

34 Ablösung vom zählenden Küchenzurufe: - muss geklärt werden - Nicht jedes Alltagsmaterial ist auch ein gutes didaktisches - Es gibt, das Fehler provoziert - Übersetzungsprozesse sind unerlässlich

35 Ablösung vom zählenden durch strukturiertes durch Übungen zur Zahlauffassung (schnelles Sehen) durch Rechenkonferenzen durch die Thematisierung verschiedener Strategien durch das Verinnerlichen der Handlungen ABER: Verbieten des Zählens ist verboten (das ist ein notwendiger Lernschritt). Stattdessen: Alternativen anbieten!

36 Grundvorstellungen Grundprinzip: Verinnerlichung von Handlungen am Beispiel Zehnerübergang 1. Phase: Handlung am geeigneten mit Versprachlichen 2. Phase: Beschreibung der handlung mit Sicht auf das 3. Phase: Beschreibung der handlung ohne Sicht auf das 4. Phase: Üben, Verfestigen und Vernetzen.

37 Grundvorstellungen Grundprinzip bei Zahlzerlegungen 1. Phase: Handlung am geeigneten mit Versprachlichen 2. Phase: Beschreibung der handlung mit Sicht auf das 3. Phase: Beschreibung der handlung ohne Sicht auf das 4. Phase: Üben, Verfestigen und Vernetzen

38 Arbeitsmittel Hunderterpunktefeld als Rechenhilfe? 47 5 =

39 und schrittweises = = = 47 Zwei Rechenschritte, die zwei handlungen erfordern

40 und schrittweises = = = 47 handlung um das Verständnis zu festigen, dass sich an den Einern nichts ändert Gleichzeitig Thematisierung der Analogie bedeutet 8Z 3Z

41 Grundvorstellungen: ZE Z Grundprinzip: Verinnerlichung von Handlungen 1. Phase: Handlung am geeigneten mit Versprachlichen 2. Phase: Beschreibung der handlung mit Sicht auf das 3. Phase: Beschreibung der handlung ohne Sicht auf das 4. Phase: Üben, Verfestigen und Vernetzen

42 und schrittweises = = = 47 Zwei Rechenschritte, die zwei handlungen IM KOPF erfordern Eigentliche Herausforderung für die Kinder: Auswahl des richtigen s für den jeweiligen Rechenschritt

43 GVn: Schreiben von nat. Zahlen 1. Phase: Handlung am geeigneten mit Versprachlichen 2. Phase: Beschreibung der handlung mit Sicht auf das 3. Phase: Beschreibung der handlung ohne Sechsundsiebzig Sicht auf das 4. Phase: Üben, Verfestigen und Vernetzen 7 Z 6 E 76

44 Fazit Förderung und Prävention Die Arbeit am aktuellen Stoff (in den Klassen 3 bis 13) wird keinen langfristigen Erfolg haben Die Erarbeitung von grundlegendem Verständnis für die mathematischen Inhalte muss im Vordergrund stehen Verständnis kommt vor Regelwissen Langfristige Lernerfolge sind wichtiger als eine 2 in der nächsten Mathearbeit (obwohl diese überaus motivierend ist)

45 Besondere Kinder: Rechenschwäche Förderung und Prävention Die Förderung muss sich primär mit mathematischen Inhalten befassen (kein ausschließliches Training der visuellen Wahrnehmung, Motivation, ) Der (anfängliche) Schwerpunkt der Förderung muss in aller Regel auf der Ablösung von zählendem liegen Die Arbeit mit Veranschaulichungsmitteln ist notwendig; ebenso wichtig ist es aber auch, Übungen zur Ablösung von der handlung vorzunehmen

46 Facit / Konsequenzen Zählen ist für die Entwicklung von Zahlverständnis und erstes unverzichtbar Unterschiedliche Strategien erwarten, beobachten und zunächst akzeptieren Nicht-zählende Verfahren (simultane und quasisimultane Zahlauffassung und darstellung) herausfordern, wo immer es geht Auswendigwissen größere Beachtung schenken Verdoppeln & Halbieren Kleines 1+1 & 1-1 Zahlzerlegungen

47 Küchenzurufe (letztmals!) Das brauchen wir nicht: Menschliche Taschenrechner (sondern mündige Bürger) Tests (sondern diagnostisches Wissen) Viele Aufgaben (sondern ein guter Umgang damit) Etikette für Kinder (sondern Möglichkeiten der Hilfe) Das brauchen wir: Prozesse, keine Produkte Übersetzungen, nicht in der Suppe kochen Fehler machen, nicht vermeiden Warum immer fragen Handlungen, die verinnerlicht werden

48 Grundvorstellungen Problem Lösung Realität Mathematik Grundvorstellung Grundvorstellung Problem Lösung

49 Ein halbes Jahr Förderung

50 Dank und Wunsch Vielen Dank für Ihre Aufmerksamkeit und erfolgreiche Weiterarbeit! Sebastian Wartha

51 Literatur

52

Workshop: Prävention und Förderung

Workshop: Prävention und Förderung Workshop: Prävention und Förderung SINUS Schwaben Fischach, 05.02.2011 Sebastian Wartha Küchenzurufe Vom Zählen zum Grundvorstellungen, keine Regeln Auf s Übersetzen kommt es an; Verinnerlichen von Handlungen

Mehr

Rechenstörungen als schulische Herausforderung. SINUS an Grundschulen Regionaltagung West. Elmshorn, Sebastian Wartha, Karlsruhe

Rechenstörungen als schulische Herausforderung. SINUS an Grundschulen Regionaltagung West. Elmshorn, Sebastian Wartha, Karlsruhe Rechenstörungen als schulische Herausforderung SINUS an Grundschulen Regionaltagung West Elmshorn, 5.11.11 Sebastian Wartha, Karlsruhe Fragestellungen Was sind Rechenstörungen? Welcher Gestalt sind besonders

Mehr

Bad Münster

Bad Münster Diagnose und Förderung von Kindern mit en Bad Münster 18.11.2009 Sebastian Wartha Universität Bielefeld Übersicht Erstes Probleme und Begriffe Erstes und Weiterführendes Diagnose Förderung / Eine Fallstudie

Mehr

PReSch Input 4. Vom Zählen zum Rechnen im Übergang vom 1. zum 2. Schuljahr und darüber hinaus Prävention und Intervention von Rechenschwierigkeiten

PReSch Input 4. Vom Zählen zum Rechnen im Übergang vom 1. zum 2. Schuljahr und darüber hinaus Prävention und Intervention von Rechenschwierigkeiten PReSch Input 4 Vom Zählen zum Rechnen im Übergang vom 1. zum 2. Schuljahr und darüber hinaus Prävention und Intervention von Rechenschwierigkeiten Prof. Dr. Andrea Peter-Koop Fakultät für Mathematik Universität

Mehr

Prozess- und kompetenzorientierte Diagnose von Rechenstörungen

Prozess- und kompetenzorientierte Diagnose von Rechenstörungen Prozess- und kompetenzorientierte von Rechenstörungen SINUS an Grundschulen Bayern / Schwaben Fischach, 05.02.2011 Sebastian Wartha, Karlsruhe Fragestellungen Was sind Rechenstörungen? Welcher Gestalt

Mehr

Kriterien zur Beurteilung von Arbeitsmitteln (nach Radatz et al., 1996) (1)

Kriterien zur Beurteilung von Arbeitsmitteln (nach Radatz et al., 1996) (1) Kriterien zur Beurteilung von Arbeitsmitteln (nach Radatz et al., 1996) (1) Didaktische Kriterien: (D1) Erlaubt das Material simultane Zahlauffassung und -darstellung bis 4? (D2) Erlaubt das Material quasi-simultane

Mehr

Schulische Diagnostik und individuelle Förderung bei Rechenschwierigkeiten

Schulische Diagnostik und individuelle Förderung bei Rechenschwierigkeiten Schulische Diagnostik und individuelle Förderung bei Rechenschwierigkeiten Dr. Thomas Rottmann Prüm, 21. November 2011 Schulische Diagnostik und individuelle Förderung bei Rechenschwierigkeiten Möglichkeiten

Mehr

Didaktik der Grundschulmathematik 1.1

Didaktik der Grundschulmathematik 1.1 Didaktik der Grundschulmathematik 1.1 Didaktik der Grundschulmathematik Didaktik der Grundschulmathematik 1.2 Inhaltsverzeichnis Didaktik der Grundschulmathematik 1 Anschauungsmittel 2 Zahlbegriff 3 Addition

Mehr

Schulleiterdienstbesprechungen des MBWWK 2013

Schulleiterdienstbesprechungen des MBWWK 2013 Schulleiterdienstbesprechungen des MBWWK 2013 Weiterentwicklung der Grundschule Bildungsstandards konkret- Aufbau von mathematischen Grundvorstellungen Überblick 1. Grundlagen 2. Grundvorstellungen aufbauen

Mehr

Diagnose und Förderung von Grundvorstellungen zu mathematischen Inhalten. Waiblingen 06.11.2013. Sebastian Wartha, Karlsruhe

Diagnose und Förderung von Grundvorstellungen zu mathematischen Inhalten. Waiblingen 06.11.2013. Sebastian Wartha, Karlsruhe Diagnose und Förderung von Grundvorstellungen zu mathematischen Inhalten Waiblingen 06.11.2013 Sebastian Wartha, Karlsruhe Fragestellungen Definition Symptome Diagnose Förderung Vortrag Zielsetzung des

Mehr

Diagnose, Prävention und Förderung bei Rechenstörungen. Sebastian Wartha, Karlsruhe

Diagnose, Prävention und Förderung bei Rechenstörungen. Sebastian Wartha, Karlsruhe , Prävention und Förderung bei Rechenstörungen Sebastian Wartha, Karlsruhe Fragestellungen Was sind Rechenstörungen? Welcher Gestalt sind besonders große Schwierigkeiten beim Lernen von Mathematik? Wie

Mehr

Rechenproblemen vorbeugen

Rechenproblemen vorbeugen Diagnoseleitfaden Vorwärtszählen Vorwärtszählen ab einer Zahl Zähle, bis ich stopp sage. Zähle ab 54 weiter. Kann das Kind sicher zählen, wendet es die Zählprinzipien an? Zählt das Kind flüssig über Zehnerübergänge

Mehr

8.3 Differenzieren und Fördern im Mathematikunterricht Rechenschwäche/Rechenstörung/Dyskalkulie

8.3 Differenzieren und Fördern im Mathematikunterricht Rechenschwäche/Rechenstörung/Dyskalkulie Sommersemester 2016 8.3 Differenzieren und Fördern im Mathematikunterricht Rechenschwäche/Rechenstörung/Dyskalkulie Mi, 08-10 Uhr, Audimax V 1 (13.04.) Klärung von Begriffen; Diskussion von Ursachen V

Mehr

Von diagnostischen Befunden zu individuellen Förderplänen

Von diagnostischen Befunden zu individuellen Förderplänen PReSch Input 3 PReSch Input 3 Von diagnostischen Befunden zu individuellen Förderplänen Folie 1 Prävention und Therapie PReSch Input 3 Leitfragen Welche Hürden müssen Kinder im mathematischen Anfangsunterricht

Mehr

Diagnose und Fördermöglichkeiten bei Dyskalkulie/Rechenschwäche. Salzburg, Jens Holger Lorenz, Heidelberg

Diagnose und Fördermöglichkeiten bei Dyskalkulie/Rechenschwäche. Salzburg, Jens Holger Lorenz, Heidelberg Diagnose und Fördermöglichkeiten bei Dyskalkulie/Rechenschwäche Salzburg, 06.06.09 Jens Holger Lorenz, Heidelberg www.jh-lorenz.de Repräsentation der Zahlen und Rechenoperationen Wie rechnen Sie 47 +

Mehr

Zahlbeziehungen erkennen

Zahlbeziehungen erkennen Zahlbeziehungen erkennen Grundlagen für die Entwicklung von Rechenstrategien schaffen Aufbau eines tragfähigen Zahlbegriffs als Grundlage zum Erwerb von Rechenstrategien im ersten Schuljahr Lilo Verboom

Mehr

Würfelbilder als visuelle Unterstützung bei Kopfrechnen und Rechenstrategien

Würfelbilder als visuelle Unterstützung bei Kopfrechnen und Rechenstrategien Würfelbilder als visuelle Unterstützung bei Kopfrechnen und Rechenstrategien Vortrag von Miriam Hörth Dipl. Soz.Päd. Diplomierte Legasthenie- und Dyskalkulietrainerin Spieleautorin bei der 21. Fachtagung

Mehr

3.3 Lösungsstrategien für mündliches und halbschriftliches Rechnen

3.3 Lösungsstrategien für mündliches und halbschriftliches Rechnen 3.3 Lösungsstrategien für mündliches und halbschriftliches Rechnen 3.3.1 Halbschriftliche Addition und Subtraktion 3.3.2 Halbschriftliche Multiplikation und Division Übungsaufgabe Lösen Sie folgende Aufgabe:

Mehr

Anregungen zum Fördern und Herausfordern im Fach Mathematik

Anregungen zum Fördern und Herausfordern im Fach Mathematik Anregungen zum Fördern und Herausfordern im Fach Mathematik Prümer- Grundschulforum, 21.11.2011 Arithmetische Vorkenntnisse von Schulanfängern zentrale Ideen beim Fördern und Herausfordern: Einlassen auf

Mehr

Zahlzerlegungen und Teil-Ganzes-Beziehungen

Zahlzerlegungen und Teil-Ganzes-Beziehungen und Teil-Ganzes-Beziehungen Eine wichtige Grundlage für die Entwicklung von Rechenstrategien von Andrea Peter-Koop und Thomas Rottmann Ein Selbstversuch Rechnen mit Buchstaben Wir möchten diesen Beitrag

Mehr

Zahlverständnis (LB 1.1) bei Schülerinnen und Schülern mit Förderschwerpunkt geistige Entwicklung

Zahlverständnis (LB 1.1) bei Schülerinnen und Schülern mit Förderschwerpunkt geistige Entwicklung Zahlverständnis (LB 1.1) bei Schülerinnen und Schülern mit Stand: 06.09.2016 Was bedeutet Zahlverständnis für Schülerinnen und Schüler mit Förderschwerpunkt geistige Entwicklung? Zum Zeitpunkt der Einschulung

Mehr

Wie kann kann im Unterricht vorgegangen werden?

Wie kann kann im Unterricht vorgegangen werden? 1:1 richtig üben Die Division nimmt als eine der vier Grundrechenarten einen eher kleinen Stellenwert im Lehrplan der Mathematik ein. Trotzdem sollen den Kindern in der Grundschule auch Lerngelegenheiten

Mehr

Unterrichtsschwerpunkt. Abschnitt 1: Zahlen überall Seiten 4 25 (ca Woche) Anzahlen bestimmen und darstellen. Zum großen Ziel: Meine Zahlen

Unterrichtsschwerpunkt. Abschnitt 1: Zahlen überall Seiten 4 25 (ca Woche) Anzahlen bestimmen und darstellen. Zum großen Ziel: Meine Zahlen Strichliste als Darstellungsmittel für Anzahlen Mathematische Sachverhalte mit eigenen Worten Anzahlen herstellen und bildlich und symbolisch darstellen, verschiedene Darstellungsformen zueinander in Beziehung

Mehr

9. Fortbildungsveranstaltung SINUS-Transfer Grundschule 12. September 2008 Wolfgang Grohmann Lessing-Grundschule Braunsbedra.

9. Fortbildungsveranstaltung SINUS-Transfer Grundschule 12. September 2008 Wolfgang Grohmann Lessing-Grundschule Braunsbedra. 9. Fortbildungsveranstaltung SINUS-Transfer Grundschule 12. September 2008 Wolfgang Grohmann Lessing-Grundschule Braunsbedra Rechenschwäche 9. Fortbildungsveranstaltung SINUS-Transfer Grundschule 12.

Mehr

Rechenkonzept der Förderschule an der Untermosel

Rechenkonzept der Förderschule an der Untermosel Rechenkonzept der Förderschule an der Untermosel Bevor wir uns mit Zahlen und Rechenoperationen in diesem Lernbereich beschäftigen, schaffen wir zunächst eine Grundlage im vorzahligen (pränumerischen)

Mehr

Fördern und Diagnose mit dem Blitzrechenkurs 25. Symposium Mathe TU Dortmund

Fördern und Diagnose mit dem Blitzrechenkurs 25. Symposium Mathe TU Dortmund Fördern und Diagnose mit dem Blitzrechenkurs 25. Symposium Mathe 2000+ TU Dortmund 25.04.2015 Referent: Günther Röpert Entwicklungsstand siebenjähriger Kinder 8 7 6 5 4 3 2 1 0 1 2 4 6 4 2 1 5,5 6,0 6,5

Mehr

Modul 5.3: Vom halbschriftlichen zum schriftlichen Rechnen! Teil 1: Aufgezeigt am Beispiel der Addition und Subtraktion

Modul 5.3: Vom halbschriftlichen zum schriftlichen Rechnen! Teil 1: Aufgezeigt am Beispiel der Addition und Subtraktion Haus 5: Fortbildungsmaterial Individuelles und gemeinsames Lernen Modul 5.3: Vom halbschriftlichen zum schriftlichen Rechnen! Teil 1: Aufgezeigt am Beispiel der Addition und Subtraktion September 2010

Mehr

Erarbeitung der Operation Addition. Handlungssituationen und Rechenstrategien

Erarbeitung der Operation Addition. Handlungssituationen und Rechenstrategien Erarbeitung der Operation Addition Handlungssituationen und Rechenstrategien Vorkenntnisse von Schulanfängern ngern zum Addieren (nach einer Untersuchung von Hendrickson, 1979) Testaufgaben: Lege 2 von

Mehr

Wie kommen die Zahlen und das Rechnen in den Kopf?

Wie kommen die Zahlen und das Rechnen in den Kopf? Wie kommen die Zahlen und das Rechnen in den Kopf? Voraussetzungen: konkrete Handlungen Handlungen erzeugen Vorstellungsbilder 1 Veranschaulichungsmittel Materialien, die als zentrale Hilfsmittel den Kindern

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Rechenstrategien im Zahlenraum bis 20 trainieren

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Rechenstrategien im Zahlenraum bis 20 trainieren Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Rechenstrategien im Zahlenraum bis 20 trainieren Das komplette Material finden Sie hier: School-Scout.de Bergedorfer Unterrichtsideen

Mehr

Kompetenzorientiert unterrichten: -Argumentieren -Kommunizieren -Problemlösen -Modellieren -Darstellen

Kompetenzorientiert unterrichten: -Argumentieren -Kommunizieren -Problemlösen -Modellieren -Darstellen Sommersemester 2016 Didaktik der Grundschulmathematik Di, 12-14 Uhr, HS 1 I Zahlen und Operationen V 1 12.04. Arithmetik in der Grundschule V 2 19.04. Die Entwicklung mathematischer Kompetenzen V 3 26.04.

Mehr

Übergang vom Zwanzigerfeld zu den Mehrsystemblöcken und zum leeren Zahlenstrahl

Übergang vom Zwanzigerfeld zu den Mehrsystemblöcken und zum leeren Zahlenstrahl Übergang vom Zwanzigerfeld zu den Mehrsystemblöcken und zum leeren Zahlenstrahl Im mathematischen Anfangsunterricht sollten nicht zu viele Materialien verwendet werden. In der Förderung am Institut für

Mehr

Additions- und Subtraktionsaufgaben im Zahlenraum bis 20 lassen sich grundsätzlich zählend lösen

Additions- und Subtraktionsaufgaben im Zahlenraum bis 20 lassen sich grundsätzlich zählend lösen 1. Zählendes Rechnen Additions- und Subtraktionsaufgaben im Zahlenraum bis 20 lassen sich grundsätzlich zählend lösen Zählmethoden sind der natürliche Zugang zur Lösung derartiger Aufgaben Auch Erwachsene

Mehr

Einführung. Anliegen: Ablösung vom zählenden Rechnen

Einführung. Anliegen: Ablösung vom zählenden Rechnen Einführung Einführung Die Ablösung vom zählenden Rechnen stellt für Kinder in der Grundschule einen entscheidenden Schritt für ein erfolgreiches Mathematiklernen dar. Allerdings reicht es in der Regel

Mehr

Fortsetzung zu: Diagnostische Verfahren. Gestaltung des mathematischen Anfangsunterrichtes

Fortsetzung zu: Diagnostische Verfahren. Gestaltung des mathematischen Anfangsunterrichtes Fortsetzung zu: Diagnostische Verfahren Gestaltung des mathematischen Anfangsunterrichtes Untersuchungsergebnisse: Vorkenntnissen von Schulanfängern (1) (nach Schmidt/ Weiser, 1982) 99 % der Schulanfänger

Mehr

Vorwort zur 6. Auflage 11. Kehrwert! Malnehmen! 13

Vorwort zur 6. Auflage 11. Kehrwert! Malnehmen! 13 Inhalt Vorwort zur 6. Auflage 11 Kehrwert! Malnehmen! 13 Teil I Zur Theorie Rechenschwächen erkennen 19 I. Neuropsychologische Voraussetzungen für mathematisches Denken 21 1. Zur neurologischen Organisation

Mehr

Schuleigener Arbeitsplan im Fach Mathematik 2. Schuljahr Unterrichtswerk: Welt der Zahl Schroedel Stand:

Schuleigener Arbeitsplan im Fach Mathematik 2. Schuljahr Unterrichtswerk: Welt der Zahl Schroedel Stand: Schuleigener Arbeitsplan im Fach Mathematik 2. Schuljahr Unterrichtswerk: Welt der Zahl Schroedel Stand: 10.11.2010 Inhalte des Schulbuches Wiederholung und Vertiefung Seiten Prozessbezogene Kompetenzen

Mehr

Lernen mit Material im arithmetischen Anfangsunterricht

Lernen mit Material im arithmetischen Anfangsunterricht Erschienen in: Baum, M. / Wielpütz, H. (Hrsg.)(2003): Mathematik in der Grundschule Ein Arbeitsbuch. Seelze: Kallmeyer, S. 221-237. Wilhelm Schipper Lernen mit Material im arithmetischen Anfangsunterricht

Mehr

Schuleigener Arbeitsplan im Fach Mathematik 1. Schuljahr Unterrichtswerk: Welt der Zahl, Schroedel Stand:

Schuleigener Arbeitsplan im Fach Mathematik 1. Schuljahr Unterrichtswerk: Welt der Zahl, Schroedel Stand: Schuleigener Arbeitsplan im Fach Mathematik 1. Schuljahr Unterrichtswerk: Welt der Zahl, Schroedel Stand: 10.11.2010 Inhalte des Schulbuches Zahlen überall 4-19 Seiten Prozessbezogene Kompetenzen Zahlen

Mehr

Schuleigener Arbeitsplan für das Fach Mathematik

Schuleigener Arbeitsplan für das Fach Mathematik Schuleigener Arbeitsplan für das Fach Mathematik Overbergschule Vechta Kath. Grundschule Overbergstraße 12 49377 Vechta Beschluss FK: 17.02.2014 Seite 1 von 61 Inhaltsverzeichnis 1. Eingeführte Unterrichtswerke

Mehr

Super M 1. Bildungsplan 2016, Grundschule, Mathematik Umsetzung der Teilkompetenzen Klasse Schuljahr Schülerbuch

Super M 1. Bildungsplan 2016, Grundschule, Mathematik Umsetzung der Teilkompetenzen Klasse Schuljahr Schülerbuch Bildungsplan 2016, Grundschule, Mathematik Umsetzung der Teilkompetenzen Klasse 1 Super M 1 1. Schuljahr Schülerbuch 978-3-06-083022-0 Cornelsen Verlag GmbH, Berlin 2015, www.cornelsen.de 1/12 Zahlen und

Mehr

Nussknacker Mein Mathematikbuch

Nussknacker Mein Mathematikbuch Stoffverteilungsplan Nussknacker Mein Mathematikbuch Klasse 1 Ausgabe Sachsen 1 Nussknacker - Mein Mathematikbuch Klasse 1 / Sachsen Monat Schulwoche Lernziel SB September 1. 2. Lernbereich 2: Arithmetik

Mehr

2014 Cornelsen Schulverlage GmbH, Berlin. Alle Rechte vorbehalten.

2014 Cornelsen Schulverlage GmbH, Berlin. Alle Rechte vorbehalten. Themenheft Beschreibung der Lernbereiche 1. HJ 2. HJ Anzahlen bestimmen, Zahlen schreiben Zahlenreihen bis 10 und mehr Ordnungszahlen 1 Zahlzerlegungen bis 10 Zahlbeziehungen Geometrische Grundformen erkennen

Mehr

Vorlesung zur Arithmetik V1 18./ Arithmetik in der Grundschule V2 -./ Die Entwicklung des Zahlbegriffs beim Kind V3 02./03.05.

Vorlesung zur Arithmetik V1 18./ Arithmetik in der Grundschule V2 -./ Die Entwicklung des Zahlbegriffs beim Kind V3 02./03.05. Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind V3 02./03.05. Natürliche Zahlen im Anfangsunterricht V4 09./10.05. Die Grundrechenoperationen

Mehr

Verbindliche Anforderungen im Mathematikunterricht am Ende der 2. Klasse

Verbindliche Anforderungen im Mathematikunterricht am Ende der 2. Klasse Verbindliche Anforderungen im Mathematikunterricht am Ende der 2. Klasse in: Grundlagen ausbauen und sichern von Anfang an DIDAKTISCHER LEITFADEN UND MEDIEN FÜR DIE SCHULINTERNE FORTBILDUNG Ursula Manten

Mehr

Didaktik der Arithmetik für Lehrerausbildung und Lehrerfortbildung

Didaktik der Arithmetik für Lehrerausbildung und Lehrerfortbildung Friedhelm Padberg Didaktik der Arithmetik für Lehrerausbildung und Lehrerfortbildung 3. erweiterte, völlig überarbeitete Auflage ELSEVIER SPEKTRUM AKADEMISCHER VERLAG Spektrum kjlakademischer VERLAG Inhaltsverzeichnis

Mehr

Datum Kursbeschreibung und Inhalte der Förderung Ziele Kinder

Datum Kursbeschreibung und Inhalte der Förderung Ziele Kinder Förderkurs im Schuljahr 2016/17 VS Großarl Förderkurs: Mathematik (Festigung und Förderung der mathematischen Basiskompetenzen, Festigung der Grundrechnungsarten, Sachaufgaben verstehen und lösen, Training

Mehr

ReEL Rechenförderung mit Eltern und Lehrkräften

ReEL Rechenförderung mit Eltern und Lehrkräften ReEL Rechenförderung mit Eltern und Lehrkräften Ein Projekt der Schulpsychologischen Beratungsstellen Bielefeld * Gütersloh * Herford Sevinc Sunar* Monika Rammert* Angelika Meister ReEL Warum? 2 häufiger

Mehr

Blitzrechnen 3. Klasse Portfolio

Blitzrechnen 3. Klasse Portfolio Blitzrechnen 3. Klasse Portfolio 1 2+3 4+5 6 9 10 7+8 11+12 13 14 Gesamttest 3. Klasse Informationen an die Eltern Vers. 5.8.14 Es gibt gewisse mathematische Kompetenzen, die Voraussetzung für den Erwerb

Mehr

Zählen oder rechnen? Kinder entwickeln Strategien zur strukturierten Anzahlerfassung. Ina Herklotz (GS Roßtal)

Zählen oder rechnen? Kinder entwickeln Strategien zur strukturierten Anzahlerfassung. Ina Herklotz (GS Roßtal) Kinder entwickeln Strategien zur strukturierten Anzahlerfassung Leitfaden Präzisierung der Fragestellung und Begrifflichkeit Tierkarten und Würfelbilder als Anschauungsmaterial Didaktische Aspekte Beispiele

Mehr

Modul 2.2: Darstellungsmittel für Grundschule und Sek. I

Modul 2.2: Darstellungsmittel für Grundschule und Sek. I Haus 2: Fortbildungsmaterial Kontinuität von Klasse 1 bis 6 Modul 2.2: Darstellungsmittel für Grundschule und Sek. I 1 1 1 Darstellungsformen und Darstellungsmittel Erinnerung: Mathematische Sachverhalte

Mehr

Entwicklung und Lernen junger Kinder

Entwicklung und Lernen junger Kinder Entwicklung und Lernen junger Kinder Tagung der Schweizerischen Gesellschaft für Lehrerinnen- und Lehrerbildung SGL 28. Januar 2009, St.Gallen Übersicht Vielfalt unterstützen und eigenes Denken stärken:

Mehr

Sachinfo Modul 3.2: Mathe in den Kopf?! Wie geht das eigentlich?

Sachinfo Modul 3.2: Mathe in den Kopf?! Wie geht das eigentlich? Sachinfo Modul 3.2: Mathe in den Kopf?! Wie geht das eigentlich? Ziel des heutigen Mathematikunterrichts in der Grundschule ist, dass jedes Kind sicher Addieren, Subtrahieren, Multiplizieren und Dividieren

Mehr

Inhaltsverzeichnis Vorwort Grundlagen der Arithmetik

Inhaltsverzeichnis Vorwort Grundlagen der Arithmetik Inhaltsverzeichnis Vorwort.............................................. 7 Grundlagen der Arithmetik............................... 8 A) Zahlbereichserweiterung und Stellenwertsystem............. 8 1.

Mehr

Mathematik Jahrgangsstufe 2

Mathematik Jahrgangsstufe 2 Grundschule Bad Münder Stand: 02.11.2016 Schuleigener Arbeitsplan Mathematik Jahrgangsstufe 2 Zeitraum Kompetenzen Verbindliche Sommerferien bis Herbstferien eigene Vorgehensweisen beschreiben Problemlösen

Mehr

Mathematik Jahrgangsstufe 2

Mathematik Jahrgangsstufe 2 Grundschule Bad Münder Stand: 12.03.2014 Schuleigener Arbeitsplan Mathematik Jahrgangsstufe 2 Zeitraum Kompetenzen Verbindliche Sommerferien bis Herbstferien Kommunizieren und eigene Vorgehensweisen beschreiben

Mehr

Handreichungen Aufgaben für zu Hause 4. Schuljahr

Handreichungen Aufgaben für zu Hause 4. Schuljahr Handreichungen Aufgaben für zu Hause 4. Schuljahr Liebe Eltern, in der Liebfrauenschule wurden die Hausaufgaben durch Lernzeiten ersetzt. Wir finden es dennoch weiterhin wichtig, dass Sie zu Hause mit

Mehr

Vorlesungsübersicht WS 2015/16

Vorlesungsübersicht WS 2015/16 Vorlesungsübersicht WS 2015/16 Di 10-12 Audimax Einführen in mathematische Grundvorstellungen 27.10. V1 Mathematik in der Grundschule 03.11. V2 Kinder mit Lernschwierigkeiten 10.11. V3 Mathematisch begabte

Mehr

-Förderbox Mathematik Zahlenraum bis 1000 Größen

-Förderbox Mathematik Zahlenraum bis 1000 Größen -Förderbox Mathematik Zahlenraum bis 00 Größen. Lernstandskontrollen. Lernstandskontrollen mit Lösungen. Kompetenzübersicht. Lerner-Mini. Faltanleitung zum Lerner-Mini Finken-Verlag www.finken.de LOGICO-Förderbox

Mehr

Mathematik Jahrgangsstufe 1

Mathematik Jahrgangsstufe 1 Grundschule Bad Münder Stand: 26.02.2015 Schuleigener Arbeitsplan Mathematik Jahrgangsstufe 1 Zeitraum Kompetenzen Verbindliche Sommerferien bis Herbstferien Zahlen und auffassen: Aufbau erster Vorstellungsbilder

Mehr

Arithmetik in der Grundschule Di 08-10 Uhr HS 1. Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind

Arithmetik in der Grundschule Di 08-10 Uhr HS 1. Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind Sommersemester 2016 Arithmetik in der Grundschule Di 08-10 Uhr HS 1 V 1 12.04. V 2 19.04 Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind V 3 26.04. Zahlenraum

Mehr

Arithmetik in der Grundschule Di Uhr HS 1. Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind

Arithmetik in der Grundschule Di Uhr HS 1. Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind Sommersemester 2016 Arithmetik in der Grundschule Di 08-10 Uhr HS 1 V 1 12.04. V 2 19.04 Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind V 3 26.04. Zahlenraum

Mehr

Arithmetik in der Grundschule Di Uhr HS 1. Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind

Arithmetik in der Grundschule Di Uhr HS 1. Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind Sommersemester 2016 Arithmetik in der Grundschule Di 08-10 Uhr HS 1 V 1 12.04. V 2 19.04 Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind V 3 26.04. Zahlenraum

Mehr

Mathematik PS- Halbschriftlichkeit

Mathematik PS- Halbschriftlichkeit Mathematik PS- Halbschriftlichkeit 1. Rahmenbedingungen (Lehrplan) mit Beispielen 2. Ausblick Deutschschweizer Lehrplan 3. Was ist halbschriftliches Rechnen? 4. Warum halbschriftlich rechnen? Gründe mit

Mehr

Bildungsplan 2016, Grundschule, Mathematik Umsetzung der Teilkompetenzen Klasse 1/2

Bildungsplan 2016, Grundschule, Mathematik Umsetzung der Teilkompetenzen Klasse 1/2 Bildungsplan 2016, Grundschule, Mathematik Umsetzung der Teilkompetenzen Klasse 1/2 Fredo 2 Mathematik Schülerbuch 2. Schuljahr Schülerbuch 978-3-637-01863-1 1/12 Zahlen und Operationen Zahldarstellungen

Mehr

Einführung in die Fördermaterialen Operationsverständnis

Einführung in die Fördermaterialen Operationsverständnis Lernstand 5 Mathematik Einführung in die Fördermaterialen Operationsverständnis Inhaltsverzeichnis 1 Diagnosegeleitete Förderung im Anschluss an die Lernstandsanalyse... 2 1.1 Operationsverständnis Beschreibung...

Mehr

Rechenschwäche (Dyskalkulie) in der weiterführenden Schule

Rechenschwäche (Dyskalkulie) in der weiterführenden Schule Rechenschwäche (Dyskalkulie) in der weiterführenden Schule Studientag Institut für Mathematisches Lernen Überblick 1. Phänomene der Rechenschwäche (RS) 2. Entstehung und Verfestigung einer RS 3. Reaktionen

Mehr

Vorlesung zur Arithmetik V1 18./ Arithmetik in der Grundschule V2 -./ Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den

Vorlesung zur Arithmetik V1 18./ Arithmetik in der Grundschule V2 -./ Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den Anfangsunterricht V3 02./03.05. Natürliche Zahlen im Anfangsunterricht

Mehr

Rechenstrategien im Zahlenraum bis 20

Rechenstrategien im Zahlenraum bis 20 Daniel Sinner im Zahlenraum bis 20 Handlungsanleitungen, Übungen und Arbeitsblätter zur Ablösung des zählenden Rechnens in Klasse 1 Grundschule u Daniel Sinner ner Downloadauszug aus dem Originaltitel:

Mehr

Was ist Mathe macht stark Grundschule?

Was ist Mathe macht stark Grundschule? Gliederung Vorbemerkungen Erfolgreiches Mathematiklehren in 1/2 Aufgabenmaterial zur Diagnose und Förderung Fortbildung Mathe Coach Zusammenfassung Was ist Mathe macht stark Grundschule? Kronshagen,1.

Mehr

Bildungsplan 2016, Grundschule, Mathematik Umsetzung der Teilkompetenzen Klasse 1/2. Fredo 1 Mathematik Schülerbuch. 1. Schuljahr

Bildungsplan 2016, Grundschule, Mathematik Umsetzung der Teilkompetenzen Klasse 1/2. Fredo 1 Mathematik Schülerbuch. 1. Schuljahr Bildungsplan 2016, Grundschule, Mathematik Umsetzung der Teilkompetenzen Klasse 1/2 Fredo 1 Mathematik Schülerbuch 1. Schuljahr Schülerbuch 978-3-637-01862-4 Oldenbourg Schulbuchverlag, Berlin 2015, www.oldenbourg.de

Mehr

Ein Lernprogramm zum Verständnis von Addition und Subtraktion für Kinder mit Förderbedarf

Ein Lernprogramm zum Verständnis von Addition und Subtraktion für Kinder mit Förderbedarf Ein Lernprogramm zum Verständnis von Addition und Subtraktion für Kinder mit Förderbedarf Gerhild Merdian Sicher unterwegs im Zahlenraum ist eine umfassende und systematisch aufgebaute Sammlung erprobter

Mehr

Wahl des Fachdidaktischen Schwerpunkts in der Primarstufe

Wahl des Fachdidaktischen Schwerpunkts in der Primarstufe Übersicht Wahl des Fachdidaktischen Schwerpunkts in der Primarstufe Raum und Form Daten und Zufall Zahlen und Operationen Muster und Strukturen Messen und Größen Jgst. 3 und 4 Jgst. 1 und 2 1 Thema 1:

Mehr

Inhalte des Schulbuches Kompetenzen und Inhalte Erweiterte Materialien aus dem Lehrwerksverbund

Inhalte des Schulbuches Kompetenzen und Inhalte Erweiterte Materialien aus dem Lehrwerksverbund Wiederholung (S. 4 9) Der Zahlenraum bis 100 (S. 10 23) Wiederholung der zentralen Inhalte im Bereich Arithmetik unter dem Aspekt des beziehungsreichen Übens, des Festigens der bereits bekannten Rechenstrategien

Mehr

1. Theorie der Darstellungsebenen (E-I-S-Schema, E-I-S-Prinzip nach Jerome BRUNER)

1. Theorie der Darstellungsebenen (E-I-S-Schema, E-I-S-Prinzip nach Jerome BRUNER) 1. Theorie der Darstellungsebenen (E-I-S-Schema, E-I-S-Prinzip nach Jerome BRUNER) Nach BRUNER lassen sich drei Formen der Repräsentation von Wissen unterscheiden: 1. enaktive Repräsentation (Handlungen)

Mehr

Das kleine Einmaleins

Das kleine Einmaleins Das kleine Einmaleins Kompetenzerwartungen Jahrgangsstufen 1/2 Jahrgangsstufen 3/4 M 1.2 Im Zahlenraum bis Hundert rechnen und Strukturen nutzen Die Schülerinnen und Schüler ordnen den vier Grundrechenarten

Mehr

Stoffverteilungsplan Mathematik Klassenstufe 1 (ZR ) Schuljahr: Schule:

Stoffverteilungsplan Mathematik Klassenstufe 1 (ZR ) Schuljahr: Schule: Stoffverteilungsplan Mathematik Klassenstufe 1 (ZR 10-20 - 100) Schuljahr: Schule: ZEIT INHALTE KOMPETENZEN Rechenrakete Bemerkungen Schulwochen 10 1-8 Zahlen 3, 2, 1, 0, 4 und 5 Zahlen bis 5 darstellen,

Mehr

Lernziele Klasse 1. Schülerbuch. Leitideen Lernziele des Schülerbuches Klasse 1

Lernziele Klasse 1. Schülerbuch. Leitideen Lernziele des Schülerbuches Klasse 1 Lernziele Klasse 1 Leitideen Lernziele des Schülerbuches Klasse 1 Schülerbuch Arbeitsblätter Kompetenzen Zahl Zahlen überall 4-17 Zahlen von 1 bis 10 benennen und unterscheiden 4-5 1 Mengen vergleichen

Mehr

Ein Deutschprogramm für SchülerInnen mit nichtdeutscher Muttersprache. Didaktisches Konzept. Georg Ratz

Ein Deutschprogramm für SchülerInnen mit nichtdeutscher Muttersprache. Didaktisches Konzept. Georg Ratz Ein Deutschprogramm für SchülerInnen mit nichtdeutscher Muttersprache Didaktisches Konzept Georg Ratz www.elsy.at Einleitung: Ein Problem an vielen Schulstandorten in Ballungszentren sind Kinder, die unter

Mehr

M ATHEMATIK Klasse 2. Stoffverteilungsplan Niedersachsen. Wiederholung (S. 4 9) Der Zahlenraum bis 100 (S )

M ATHEMATIK Klasse 2. Stoffverteilungsplan Niedersachsen. Wiederholung (S. 4 9) Der Zahlenraum bis 100 (S ) Wiederholung (S. 4 9) Der Zahlenraum bis 100 (S. 10 23) Wiederholung der zentralen Inhalte im Bereich Arithmetik unter dem Aspekt des beziehungsreichen Übens, des Festigens der bereits bekannten Rechenstrategien

Mehr

Aufgaben für zu Hause Handreichungen. 1. Schuljahr

Aufgaben für zu Hause Handreichungen. 1. Schuljahr Aufgaben für zu Hause Handreichungen 1. Schuljahr Liebe Eltern, in der Liebfrauenschule wurden die Hausaufgaben durch Lernzeiten ersetzt. Wir finden es dennoch weiterhin wichtig, dass Sie zu Hause mit

Mehr

Glückliche und erfolgreiche Schulkinder! Null Bock auf Mathe!

Glückliche und erfolgreiche Schulkinder! Null Bock auf Mathe! Null Bock auf Mathe! 3 der größten Schwierigkeiten, die sich aus einem nicht erkannten, fehlenden mathematischen Verständnis entwickeln und dazu führen, dass Kinder Mathe nicht mögen und von sich selbst

Mehr

Mathematikunterricht. Volksschule. in der. Maria Koth

Mathematikunterricht. Volksschule. in der. Maria Koth Mathematikunterricht in der Volksschule Maria Koth Herzlich Willkommen! Mathematiklehrplan der Volksschule Mathematiklehrplan der Volksschule Gegliedert in: Grundstufe I: 1. + 2. Schulstufe Grundstufe

Mehr

Bildungsplan 2016, Grundschule, Mathematik Umsetzung der Teilkompetenzen Klasse 1/2. Einstern 1: Mathematik für Grundschulkinder

Bildungsplan 2016, Grundschule, Mathematik Umsetzung der Teilkompetenzen Klasse 1/2. Einstern 1: Mathematik für Grundschulkinder Bildungsplan 2016, Grundschule, Mathematik Umsetzung der Teilkompetenzen Klasse 1/2 Einstern 1: Mathematik für Grundschulkinder 1. Schuljahr Themenhefte 1 5 im Schuber Verbrauchsmaterial 978-3-06-083682-6

Mehr

21 Augen. -Mathematik am Spielwürfel- Ina Herklotz (GS Roßtal)

21 Augen. -Mathematik am Spielwürfel- Ina Herklotz (GS Roßtal) 21 Augen -Mathematik am Spielwürfel- Leitfaden Herausforderungen im heutigen Unterrichtsalltag als Anschauungsmaterial/ Didaktische Aspekte Beispiele aus der Praxis Leitfaden Herausforderungen im heutigen

Mehr

BLITZRECHNEN. 2. Klasse

BLITZRECHNEN. 2. Klasse BLITZRECHNEN 2. Klasse Informationen an die Eltern Das Kind übt immer nur mit Hilfe eines Erwachsenen. Nur die eingekreisten und in der Schule besprochenen Übungen sollen geübt werden. Überfordern sie

Mehr

Zum Verhältnis der Wissenschaften Mathematik und Didaktik des Mathematikunterrichts. Hans Dieter Sill, Universität Rostock

Zum Verhältnis der Wissenschaften Mathematik und Didaktik des Mathematikunterrichts. Hans Dieter Sill, Universität Rostock Zum Verhältnis der Wissenschaften Mathematik und Didaktik des Mathematikunterrichts Hans Dieter Sill, Universität Rostock Gliederung 1. Phänomene 2. Ursachen 3. Konsequenzen 2 Phänomene Studenten, Lehrer

Mehr

Bildungsplan 2016, Grundschule, Mathematik Umsetzung der Teilkompetenzen Klasse 2. Zahlenzauber. 2. Schuljahr

Bildungsplan 2016, Grundschule, Mathematik Umsetzung der Teilkompetenzen Klasse 2. Zahlenzauber. 2. Schuljahr Bildungsplan 2016, Grundschule, Mathematik Umsetzung der Teilkompetenzen Klasse 2 Zahlenzauber 2. Schuljahr Schülerbuch 978-3-637-01872-3 Oldenbourg Schulbuchverlag, Berlin 2015, www.oldenbourg.de1/12

Mehr

Aufgaben für zu Hause Handreichungen 2. Schuljahr

Aufgaben für zu Hause Handreichungen 2. Schuljahr Aufgaben für zu Hause Handreichungen 2. Schuljahr Liebe Eltern, in der Liebfrauenschule wurden die Hausaufgaben durch Lernzeiten ersetzt. Wir finden es dennoch weiterhin wichtig, dass Sie zu Hause mit

Mehr

Amrei Naujoks und Marei Böttcher

Amrei Naujoks und Marei Böttcher Amrei Naujoks und Marei Böttcher Das Fach Mathematik ist das einzige Fach in der Schule, das stark hierarchisch aufgebaut ist. wer am Anfang etwas verpasst, kann nicht mehr folgen. In der Grundschule

Mehr

Wie lehre ich sicheres Rechnen?

Wie lehre ich sicheres Rechnen? Wie lehre ich sicheres Rechnen? Rechenschwierigkeiten vermeiden durch neuartiges Unterrichtsverfahren: integrativ-strukturelle Methode Zahlen-Struktur-Körper Dr. Günther Heil Vortrag, gehalten am 18. Mai

Mehr

8.3 Differenzieren und Fördern im Mathematikunterricht Rechenschwäche/Rechenstörung/Dyskalkulie. Klärung von Begriffen; Diskussion von Ursachen

8.3 Differenzieren und Fördern im Mathematikunterricht Rechenschwäche/Rechenstörung/Dyskalkulie. Klärung von Begriffen; Diskussion von Ursachen Sommersemester 2016 Mi, 08-10 Uhr, Audimax 8.3 Differenzieren und Fördern im Mathematikunterricht Rechenschwäche/Rechenstörung/Dyskalkulie V 1 (13.04.) V 2 (20.04.) V 3 (27.04.) V 4 (04.05.) V 5 (11.05.)

Mehr

Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens

Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens Inhalt Lehrplan Mathematik für die Grundschule des Landes NRW Arithmetische Vorkenntnisse am Schulanfang Zahlaspekte, Zählen, Zahlzeichen

Mehr

Handreichung zum Einsatz des Fördermoduls (für Stufen 2 und 3) Multiplikative Strukturen in Punktefeldern erkennen und nutzen

Handreichung zum Einsatz des Fördermoduls (für Stufen 2 und 3) Multiplikative Strukturen in Punktefeldern erkennen und nutzen Lernstand 5 Mathematik Operationsverständnis Handreichung zum Einsatz des Fördermoduls (für Stufen 2 und 3) Multiplikative Strukturen in Punktefeldern erkennen und nutzen Inhaltsverzeichnis 1 Ziele und

Mehr

2. Zeitraumbezogenes Curriculum

2. Zeitraumbezogenes Curriculum 2. Zeitraumbezogenes Curriculum 2.1. Sommer-Herbst Hauptkompetenzbereich Inhalt Muster und Strukturen - Zahlenraum bis 10 - Zahlzerlegung Erwartete inhaltliche und prozessbezogene* Kompetenzen nach dem

Mehr

Bedeutung von Vorläuferfähigkeiten für das schulische Mathematiklernen

Bedeutung von Vorläuferfähigkeiten für das schulische Mathematiklernen PReSch Input 3 Bedeutung von Vorläuferfähigkeiten für das schulische Mathematiklernen Folie 1 Zahlbegriffsentwicklung Grundlegende Fähigkeiten für die Zahlbegriffsentwicklung nach Piaget Vergleichen Folie

Mehr

Lernen in der Landschaft - Halbschriftliches Rechnen

Lernen in der Landschaft - Halbschriftliches Rechnen Lernen in der Landschaft - Halbschriftliches Rechnen ab Klasse 3 Laut Kernlehrplan ist das halbschriftliche Rechnen neben dem mündlichen und dem schriftlichen Rechnen die dritte wichtige Rechenmethode,

Mehr

Nicht-zählende Lösungsstrategien von Anfang an auch und gerade für "lernschwache Rechner"!

Nicht-zählende Lösungsstrategien von Anfang an auch und gerade für lernschwache Rechner! 18. Symposion mathe 2000 Dortmund, 20. September 2008: Nicht-zählende Lösungsstrategien von Anfang an auch und gerade für "lernschwache Rechner"! Michael Gaidoschik, Wien Zum begrenzten Nutzen von Vorträgen:

Mehr

mit innovativen Lernmaterialien

mit innovativen Lernmaterialien Übersicht Lernhefte * Diagnose * KOKI Erfolgreich lernen! mit innovativen Lernmaterialien Basiskompetenzen im Elementarbereich Mathematik - Rechenschwäche vorbeugen Deutsch - Schreiblehrgänge Konzentrationstraining

Mehr

Mathematikunterricht in jahrgangsgemischten Eingangsklassen 1/2. Beschreibung einer erprobten Konzeption

Mathematikunterricht in jahrgangsgemischten Eingangsklassen 1/2. Beschreibung einer erprobten Konzeption Mathematikunterricht in jahrgangsgemischten Eingangsklassen 1/2 Beschreibung einer erprobten Konzeption Agenda Inhaltliche Überlegungen Organisatorische Überlegungen Beschreibung der Arbeit Gemeinsame

Mehr