4.5 Wegunabhängige Arbeit, konservative Kräfte

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "4.5 Wegunabhängige Arbeit, konservative Kräfte"

Transkript

1 4 Arbeit, Energie, Leistung 4.0 Exkurs: Skalarprodukt 4. Arbeit 4. Energie 4.3 Energieformen 4.4 Leistung 4.5 Wegunabhängige Arbeit, konservative Kräfte 4.7 Einfache Maschinen R. Girwidz 4 Arbeit, Energie, Leistung Exkurs: Skalarprodukt Skalarprodukt grafisch: R. Girwidz

2 4 Arbeit, Energie, Leistung Exkurs: Skalarprodukt Skalarprodukt mit Zwischenwinkel: Im kartesischen Koordinatensystem: a ab a a Skalarprodukt grafisch: x y z b b b x y z a b a b cos a, b abcos ab ab ab x x y y z z R. Girwidz 3 4 Arbeit, Energie, Leistung Versuch: Gewicht in Hand auf elast. Unterlage (Schwamm) auf Tisch R. Girwidz 4

3 4. Arbeit Der physikalische Arbeitsbegriff unterscheidet sich vom alltagssprachlichen Kriterium: Eine Kraft wirkt über eine bestimmte Strecke hinweg (Ortsänderung evtl. Bewegungszustand geändert) Verschiebt eine Kraft F einen Körper um eine Wegstrecke ds, so verrichtet sie mechanische Arbeit dw. Plausibel: Der Wert ist durch F und ds bestimmt. dw F ds R. Girwidz 5 4. Arbeit W F ds Fx dx Fy dy x x y y z z F z dz Anm.: Stehen F und ds senkrecht, so ist dw = 0 (siehe Skalarprodukt) Vorzeichen Konvention: W > 0: am System wird Arbeit verrichtet (zugeführt) W < 0: das System verrichtet Arbeit R. Girwidz 6 3

4 4. Energie Versuch: Wagen kann an schiefer Ebene Wägen anheben Sprungscheibe "Klick" Wagen kann schiefe Ebene hochfahren Körper kann Körper heben (Flaschenzug) Unter der Energie eines Systems versteht man dessen Fähigkeit Arbeit zu verrichten (sein Arbeitsvermögen ) R. Girwidz Energieformen Grundformen: Kinetische Energieformen (Bewegungsenegie) Potentielle Energieformen ( Lageenergie ) a) Kinetische Energie F m x a x allg.: E kin W zu Ekin m v Ekin m v m a x x v WB mit v ax x (aus Ruhe) (Beschleunigungsarbeit) R. Girwidz 8 4

5 4.3 Energieformen b) Hubarbeit und Höhenenergie F m g ; EPot, h m g h Versuch: Galilei-Pendel c) Spannenergie einer Feder R. Girwidz Energieformen b) Hubarbeit und Höhenenergie F m g ; EPot, h m g h Versuch: Galilei-Pendel c) Spannenergie einer Feder F D x ; s W E Sp Pot, Sp E Pot, Sp D x xs 0 s D x dx R. Girwidz 0 5

6 4.3 Energieformen Weitere Energieformen: Rotationsenergie Wärme / Innere Energie Elektrische Energie Magnetische Energie Strahlungsenergie Chemische Energie / Bindungsenergie Kernenergie / Bindungsenergie der Nukleonen R. Girwidz 4.3 Energieformen Quellen für unseren Energiebedarf: Chemische Energie Kernenergie Mechanische Energie Strahlungsenergie Wärmetauscher (Reduktion von Verlustenergie) Fossile Energieträger (Holz, Kohle, Öl, Gas), chemische Zellen (z. B. Blei-Akku, Zinkchlorid-, Natrium-Schwefel-Batterien) Wasserstoff-Verbrennung Kernspaltung und Kernfusion Wasser, Wind Solarstrahlung Erdwärme, Temperaturunterschiede des Meeres Nutzung von Abwärme R. Girwidz 6

7 4.3 Energieformen Heizwerte - pro kg Benzin Heizöl Erdgas Steinkohle Braunkohle Holz Rinde / Holzschnitzel 44 MJ 4 MJ 36 MJ 4-30 MJ 0 MJ 4-8 MJ 6-8 MJ R. Girwidz Energieformen Größenordnung einiger Energie-"Portionen" Gravitationsenergie zw. Schülern 0-6 J Geflüstertes Einsagen 0-3 J Hufeisenmagnet KFZ (voller Tank) Blitz 0 J 0 6 J 0 9 J 90 Jahre Nahrung 0 0 J Atombombe Wasserstoffbombe 0 3 J 0 6 J R. Girwidz 4 7

8 4.3 Energieformen Verbrennungswärme der Nährstoffe Kohlenhydrate, Eiweiß Fett ca. 6 kj / g ca. 38 kj / g Energieinhalt (Nährwert) von Speisen pro 00 g Schokolade 300 kj Brot 000 kj Schnitzel 000 kj Spagetti 600 kj Kartoffeln 40 kj Verbrennung meist unvollständig R. Girwidz Energieformen Verbrennungswärme der Nährstoffe Kohlenhydrate, Eiweiß Fett ca. 6 kj / g ca. 38 kj / g Energieinhalt (Nährwert) von Speisen pro 00 g Schokolade 300 kj Brot 000 kj Schnitzel 000 kj Spagetti 600 kj Kartoffeln 40 kj Kostmaß pro Tag: ca. 500 g ca. 60 g ca. 0 g Kohlenhydrate Fette Eiweiß Verbrennung meist unvollständig R. Girwidz 6 8

9 4.4 Leistung Leistung: Arbeit, die pro Zeitintervall verrichtet wird P dw dt d dt F ds F v falls F zeitunabhängig R. Girwidz Leistung Leistung: Arbeit, die pro Zeitintervall verrichtet wird P dw dt d dt F ds F v falls F zeitunabhängig Leistung ist ein Skalar P J W s früher (PS = 735,5 W) R. Girwidz 8 9

10 4.4 Leistung Menschliche Leistungen (Messung z. B. mit Ergometern) 75 W ganztägig 50 W ca. 5 h 300 W ca. 30 Min 750 W ca. Min 500 W ca. 5 s R. Girwidz Leistung Leistungswerte Kraftwerke Motoren - Flugzeuge -PKW Energieaufkommen / Leistung je Bürger (Tagesmittel) Nahrungsverbrauch (über Tag gemittelt) - Schwerarbeiter - Durchschnittsbürger Glühlampen Mensch - (Höchstleistung einige s) - (Dauerleistung: Gehen mit 5 km/h) ca. 000 Megawatt (MW) ca. 0 MW ca. 00 kw ca. 6 kw ca. 00 W ca. 0 W ca. 00 W ca. kw ca. 70 W Akustik (Sprechen) ca. 0 µw Empfindlichkeitsgrenze für Wärmestrahlungsdetektoren ca. pw Hörschwelle des Ohres bei 000 Hz ca. 0, fw R. Girwidz 0 0

11 4.4 Leistung Wirkungsgrad: verrichtete (mech.) Arbeit Wirkungsgrad : zugeführte Energie R. Girwidz 4.4 Leistung Energieumsatz des erwachsenen Menschen (60kg) pro Stunde niedrigster Verbrauch Zimmerruhe, gew. Kost bei mäßiger Arbeit bei starker Arbeit ca. 50 kj ca. 360 kj ca. 40 kj ca. 630 kj Wirkungsgrad des Menschen: verrichtete mech. Arbeit Wirkungsgrad: 0% Stoffwechsel Energieumsatz Vergleich der Energieumsätze beim Gehen in der Ebene und beim Heben des Körpers (Bergsteigen) über gleiche Zeiträume. R. Girwidz

12 4.5 Weg unabhängige Arbeit, konservative Kräfte Eine Kraft heißt konservativ, wenn die gesamte Arbeit entlang eines beliebigen, geschlossenen Weges gleich null ist. F ds 0 R. Girwidz Weg unabhängige Arbeit, konservative Kräfte Die Arbeit, die eine konservative Kraft an einem Massenpunkt verrichtet, ist unabhängig davon, auf welchem Weg sich der Massenpunkt von einem Ort zu einem anderen bewegt. E pot B F A ds F F :Kraft im System : von außen aufzubringende Kraft Nur für konservative Kraftfelder ist eine pot. Energie definierbar R. Girwidz 4

13 4.5 Weg unabhängige Arbeit, konservative Kräfte Potentielle Energie und Gleichgewicht (in einer Dimension) E pot F F ds x F x dx de dx pot Versuch: Stehaufmännchen Ann.: E kin Wo E E pot pot 0 ( x)min stabiles Gleichgewicht ( x)max labiles Gleichgewicht R. Girwidz 5 Descartes: m*v = konst. "quantitas motus" R. Girwidz 6 3

14 Lavoisier: Wärme: "eine Art Bewegung" R. Girwidz 7 Rumford: Äquivalenz von Wärme und mech. Arbeit R. Girwidz 8 4

15 Oerstedt: Mechanik und Elektrik R. Girwidz 9 Carnot: Wärmekraftmaschinen R. Girwidz 30 5

16 Robert Mayer: Arzt -> Energiesatz R. Girwidz 3 Joule: Physiker und Industrieller; Joulesches Gesetz 840, Strom und Wärme; 850: Mechanisches Wärmeäquivalent R. Girwidz 3 6

17 Helmholtz: 847 umfassende Darstellung des Energiesatzes R. Girwidz 33 R. Girwidz 34 7

18 Energiesatz der Mechanik In einem abgeschlossenen System (unter der Voraussetzung, dass nur konservative Kräfte wirken) bleibt die Summe aus kin. und pot. Energie konstant, d. h. die mechanische Gesamtenergie bleibt unverändert. E 0 E Ges kin E pot Die von einer nichtkonservativen Kraft verrichtete Arbeit entspricht der Änderung der mechanischen Gesamtenergie des Systems R. Girwidz 35 Beispiel Überschlagbahn: Wie groß muss man h mindestens wählen R. Girwidz 36 8

19 9 R. Girwidz 37 Beispiel Überschlagbahn: Wie groß muss man h mindestens wählen r g v g m r v m Energiebilanz: Bedingung für Pos. : R. Girwidz 38 Beispiel Überschlagbahn: Wie groß muss man h mindestens wählen r g v g m r v m r h m r g m r g h g m r g m v m h g m,5 Energiebilanz: Bedingung für Pos. :

20 Lineares Kraftgesetz parabelförmiges Pot. de F i dx pot F dx R. Girwidz 39 E pot i Atwoodsche Fallmaschine Fallbeschleunigung g über Kraftansatz R. Girwidz 40 0

21 Atwoodsche Fallmaschine Fallbeschleunigung g über Kraftansatz F m a; m g m g m m a m m g m m a R. Girwidz 4 Atwoodsche Fallmaschine Fallbeschleunigung g über Energieansatz R. Girwidz 4

22 Atwoodsche Fallmaschine Fallbeschleunigung g über Energieansatz 0 mgh mgh mv mv ; g h ( m m) m ah m g ( m m ) ( m m ) a; ah; m m g m m a R. Girwidz 43 Kinderrutsche Mit welcher Geschw. kommt das Kind unten an? R. Girwidz 44

23 Kinderrutsche Mit welcher Geschw. kommt das Kind unten an? F W R R µ G m g cos30 F s µ R G m g cos30 s R. Girwidz 45 Kinderrutsche Mit welcher Geschw. kommt das Kind unten an? W E E F R R Pot Kin µ G F s µ R m g h E m g cos30 Pot G W m g cos30 s R R. Girwidz 46 3

24 Kinderrutsche Mit welcher Geschw. kommt das Kind unten an? E E F W m v v R R Pot Kin µ F G R E m g cos30 s µ m g h Pot W m g h µ G g h µ m g cos30 s v,8 ms 0 km/h h m g cos30 sin 30 cos30 4 R. Girwidz 47 R G G R. Girwidz 48 4

25 R. Girwidz 49 R. Girwidz 50 5

26 R. Girwidz 5 R. Girwidz 5 6

27 R. Girwidz 53 R. Girwidz 54 7

28 R. Girwidz 55 R. Girwidz 56 8

29 4.7 Einfache Maschinen Prinzip bei mechanischen Maschinen: Durch Vergrößerung des Weges genügt bei gleicher Arbeit eine geringere Kraft. W F s konst R. Girwidz Einfache Maschinen. Beispiel: Schiefe Ebene R. Girwidz 58 9

30 4.7 Einfache Maschinen. Beispiel: Schiefe Ebene a) Über Schräge Über Weg s wird Höhe h = s * sin φ erreicht. Zugkraft: F Z G sin G m g R. Girwidz Einfache Maschinen. Beispiel: Schiefe Ebene a) Über Schräge Über Weg s wird Höhe h = s * sin φ erreicht. Zugkraft: Arbeit: F Z W G sin G m g h Fz s G sin G h sin R. Girwidz 60 30

31 4.7 Einfache Maschinen b) direkt Hubarbeit W =m*g*h W = W Gleiche Arbeit, aber bei der schiefen Ebene geringere Kraft nötig! R. Girwidz Einfache Maschinen. Beispiel: Hebel Weg: Arbeit: R. Girwidz 6 3

32 4.7 Einfache Maschinen. Beispiel: Hebel Weg: Arbeit: s sin( ) ; sin( ) s F s F l s l l sin( ) F l sin( ) F F : F l : l R. Girwidz Einfache Maschinen 3. Beispiel: Flaschenzug R. Girwidz 64 3

33 4.7 Einfache Maschinen 3. Beispiel: Flaschenzug Gewichtskraft F verteilt sich auf 3 Seilstücke. Daher ist F = /3 F Um die Last den Weg s zu heben, müssen 3 Seilstücke um s verkürzt werden. s 3 F s s F s R. Girwidz Einfache Maschinen Goldene Regel der Mechanik: Für Maschinen gilt: Was an Kraft gewonnen wird, geht an Weg verloren R. Girwidz 66 33

Physik für Mediziner und Zahmediziner

Physik für Mediziner und Zahmediziner Physik für Mediziner und Zahmediziner Vorlesung 03 Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 1 Arbeit: vorläufige Definition Definition der Arbeit (vorläufig): Wird auf

Mehr

It is important to realize that in physik today, we have no knowledge of what energie is.

It is important to realize that in physik today, we have no knowledge of what energie is. 9. Energie It is important to realize that in physik today, we have no knowledge of what energie is. Richard Feynmann, amerikanischer Physiker und Nobelpreisträger 1965. Energieformen: Mechanische Energie:

Mehr

Arbeit, Energie, Leistung. 8 Arbeit, Energie, Leistung 2009 1

Arbeit, Energie, Leistung. 8 Arbeit, Energie, Leistung 2009 1 Arbeit, Energie, Leistung 8 Arbeit, Energie, Leistung 2009 1 Begriffe Arbeit, Energie, Leistung von Joule, Mayer und Lord Kelvin erst im 19. Jahrhundert eingeführt! (100 Jahre nach Newton s Bewegungsgesetzen)

Mehr

Physik A VL8 (25.10.2012)

Physik A VL8 (25.10.2012) Physik A VL8 (5.10.01) Arbeit, nergie und Leistung Arbeit und nergie nergiebilanzen Leistung Reibung Arbeit und nergie umgangssprachlich: man muss arbeiten, um etwas hochzuheben: physikalisch im alle der

Mehr

2. Arbeit und Energie

2. Arbeit und Energie 2. Arbeit und Energie Die Ermittlung der Bewegungsgrößen aus der Bewegungsgleichung erfordert die Berechnung von mehr oder weniger komplizierten Integralen. Für viele Fälle kann ein Teil der Integrationen

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 30. Okt. Kraftfelder und Potential Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html Die vier fundamentalen Kräfte Relative Stärke Reichweite

Mehr

Energie, mechanische Arbeit und Leistung

Energie, mechanische Arbeit und Leistung Grundwissen Physik Klasse 8 erstellt am Finsterwalder-Gymnasium Rosenheim auf Basis eines Grundwissenskatalogs des Klenze-Gymnasiums München Energie, mechanische Arbeit und Leistung Mit Energie können

Mehr

2. Arbeit und Energie

2. Arbeit und Energie 2. Arbeit und Energie Zur Ermittlung der Bewegungsgrößen aus der Bewegungsgleichung müssen mehr oder weniger komplizierte Integrale berechnet werden. Bei einer Reihe von wichtigen Anwendungen treten die

Mehr

Arbeit und Energie. Brückenkurs, 4. Tag

Arbeit und Energie. Brückenkurs, 4. Tag Arbeit und Energie Brückenkurs, 4. Tag Worum geht s? Tricks für einfachere Problemlösung Arbeit Skalarprodukt von Vektoren Leistung Kinetische Energie Potentielle Energie 24.09.2014 Brückenkurs Physik:

Mehr

5. Arbeit und Energie

5. Arbeit und Energie Inhalt 5.1 Arbeit 5.2 Konservative Kräfte 5.3 Potentielle Energie 5.4 Kinetische Energie 5.1 Arbeit 5.1 Arbeit Konzept der Arbeit führt zur Energieerhaltung. 5.1 Arbeit Wird Masse m mit einer Kraft F von

Mehr

Musso: Physik I. Dubbel. Teil 6 Arbeit und Energie

Musso: Physik I. Dubbel. Teil 6 Arbeit und Energie Tipler-Mosca 6. Arbeit und Energie 6.1 Arbeit und kinetische Energie (Work and kinetic energy) 6. Das Skalarprodukt (The dot product) 6.3 Arbeit und Energie in drei Dimensionen (Work and energy in three

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

300 Arbeit, Energie und Potential 310 Arbeit und Leistung 320 Felder und Potentiale

300 Arbeit, Energie und Potential 310 Arbeit und Leistung 320 Felder und Potentiale 300 Arbeit, Energie und Potential 30 Arbeit und Leistung 30 Felder und Potentiale um was geht es? Arten on (mechanischer) Energie Potentialbegriff Beschreibung on Systemen mittels Energie 3 potentielle

Mehr

1 Arbeit und Energie. ~ F d~r: (1) W 1!2 = ~ F ~s = Beispiel für die Berechnung eines Wegintegrals:

1 Arbeit und Energie. ~ F d~r: (1) W 1!2 = ~ F ~s = Beispiel für die Berechnung eines Wegintegrals: 1 Arbeit und Energie Von Arbeit sprechen wir, wenn eine Kraft ~ F auf einen Körper entlang eines Weges ~s einwirkt und dadurch der "Energieinhalt" des Körpers verändert wird. Die Arbeit ist de niert als

Mehr

Arbeit Leistung Energie

Arbeit Leistung Energie Arbeit Leistung Energie manuell geistig Was ist Arbeit Wie misst man Arbeit? Ist geistige Arbeit messbar? Wann wird physikalische Arbeit verrichtet? Es wird physikalische Arbeit verrichtet, wenn eine Kraft

Mehr

In der Physik definiert man Arbeit durch das Produkt aus Kraft und Weg:

In der Physik definiert man Arbeit durch das Produkt aus Kraft und Weg: Werkstatt: Arbeit = Kraft Weg Viel Kraft für nichts? In der Physik definiert man Arbeit durch das Produkt aus Kraft und Weg: W = * = F * s FII bezeichnet dabei die Kraftkomponente in Wegrichtung s. Die

Mehr

Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW)

Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW) Physik 1 VNT Aufgabenblatt 8 5. Übung (5. KW) 5. Übung (5. KW) Aufgabe 1 (Achterbahn) Start v h 1 25 m h 2 2 m Ziel v 2? v 1 Welche Geschwindigkeit erreicht die Achterbahn in der Abbildung, wenn deren

Mehr

Physik. Grundlagen der Mechanik. Physik. Graz, 2012. Sonja Draxler

Physik. Grundlagen der Mechanik. Physik. Graz, 2012. Sonja Draxler Mechanik: befasst sich mit der Bewegung von Körpern und der Einwirkung von Kräften. Wir unterscheiden: Kinematik: beschreibt die Bewegung von Körpern, Dynamik: befasst sich mit Kräften und deren Wirkung

Mehr

Arbeit und Leistung. 2mgs/2 = mgs. m g. m g. mgs = const. m g. 2m g. .. nmgs/n = mgs

Arbeit und Leistung. 2mgs/2 = mgs. m g. m g. mgs = const. m g. 2m g. .. nmgs/n = mgs Arbeit und Leistung s s m g m g mgs = mgs s/2 mgs = const. s 2m g m g 2mgs/2 = mgs.. nmgs/n = mgs Arbeit und Leistung Arbeit ist Kraft mal Weg Gotthardstraße Treppe und Lift Feder Bergsteiger/Wanderer

Mehr

Unterrichtsprotokoll E-Phase Physik, Charlotte-Wolff-Kolleg. Mensch und Energie

Unterrichtsprotokoll E-Phase Physik, Charlotte-Wolff-Kolleg. Mensch und Energie Unterrichtsprotokoll E-Phase Physik, Charlotte-Wolff-Kolleg Mensch und Energie Kurs: CWK/ A 41/ E-Phase /PH 2 Datum: 19.03.2012 im 2.Block Dozent: Herr Winkowski Protokollantin: Saviana Theiss Themen der

Mehr

Biodynamische Merkmal: Arbeit, Energie, Leistung und Effizienz

Biodynamische Merkmal: Arbeit, Energie, Leistung und Effizienz Biodynamische Merkmal: Arbeit, Energie, Leistung und Effizienz Dieser Vortrag, von kleinen Änderungen abgesehen, wurde im SS 05 von Jessica Rinninger zusammengestellt. Inhalt: Arbeit: Was ist Arbeit? Wozu

Mehr

1 Grundwissen Energie. 2 Grundwissen mechanische Energie

1 Grundwissen Energie. 2 Grundwissen mechanische Energie 1 Grundwissen Energie Die physikalische Größe Energie E ist so festgelegt, dass Energieerhaltung gilt. Energie kann weder erzeugt noch vernichtet werden. Sie kann nur von einer Form in andere Formen umgewandelt

Mehr

Grundwissen Physik 8. Klasse Schuljahr 2011/12

Grundwissen Physik 8. Klasse Schuljahr 2011/12 1. Was du aus der 7. Klasse Natur und Technik unbedingt noch wissen solltest a) Vorsilben (Präfixe) und Zehnerpotenzen Bezeichnung Buchstabe Wert Beispiel Kilo k 1.000=10 3 1 kg=1000 g=10 3 g Mega M 1.000.000=10

Mehr

2.3 Arbeit und Energie

2.3 Arbeit und Energie - 43-2.3 Arbeit und Energie 2.3.1 Motivation und Definition Prinzipiell kann man mit den Newton'schen Axiomen die Bewegung von Massenpunkten wie auch Systemen von Massenpunkten beschreiben. In vielen Fällen

Mehr

Theorie und Politik der Energiewirtschaft

Theorie und Politik der Energiewirtschaft Theorie und Politik der Energiewirtschaft Vorlesung im Wintersemester 2008/2009 Universität Trier Prof. Dr. Ludwig von Auer Dipl.-Ing. Kurt Rommel 1 Was lesen wir alle tagtäglich in der Zeitung? Quelle:

Mehr

2.6 Zweiter Hauptsatz der Thermodynamik

2.6 Zweiter Hauptsatz der Thermodynamik 2.6 Zweiter Hauptsatz der Thermodynamik Der zweite Hauptsatz der Thermodynamik ist ein Satz über die Eigenschaften von Maschinen die Wärmeenergie Q in mechanische Energie E verwandeln. Diese Maschinen

Mehr

Mechanik. Entwicklung der Mechanik

Mechanik. Entwicklung der Mechanik Mechanik Entwicklung der Mechanik ältester Zweig der Physik Kinematik Bewegung Dynamik Kraft Statik Gleichgewicht Antike: Mechanik = Kunst die Natur zu überlisten mit Newton Beginn Entwicklung Mechanik

Mehr

Wichtige Begriffe dieser Vorlesung:

Wichtige Begriffe dieser Vorlesung: Wichtige Begiffe diese Volesung: Impuls Abeit, Enegie, kinetische Enegie Ehaltungssätze: - Impulsehaltung - Enegieehaltung Die Newtonschen Gundgesetze 1. Newtonsches Axiom (Tägheitspinzip) Ein Köpe, de

Mehr

Energie und Arbeit sind also zueinander äquivalent und lassen sich ineinander transferieren. Die Energieänderung ist gleich die Arbeit.

Energie und Arbeit sind also zueinander äquivalent und lassen sich ineinander transferieren. Die Energieänderung ist gleich die Arbeit. ENERGIE Definition (Physik): Energie ist die Fähigkeit eines Körpers, Arbeit zu verrichten. Entsprechend dieser Definition kann Energie weder erzeugt noch verbraucht oder zerstört werden. Ein Körper kann

Mehr

Physikalische Formelsammlung

Physikalische Formelsammlung Physikalische Formelsammlung Gleichförmige Bahnbewegung und Kreisbewegung Bewegungsgleichung für die gleichförmige lineare Bewegung: Winkelgeschwindigkeit bei der gleichmäßigen Kreisbewegung: Zusammenhang

Mehr

Kapitel III Arbeit, Leistung und Energie

Kapitel III Arbeit, Leistung und Energie Kapitel III Arbeit, Leistung und Energie 3.1 Arbeit Betrachtet man die Momentaufnahme eines Gewichtsstück, welches an einem Kran hängt, so kann man an den Kräften zunächst nicht unterscheiden, ob die Last

Mehr

5. Lernzielkontrolle / Stegreifaufgabe

5. Lernzielkontrolle / Stegreifaufgabe Reibung 1. Ein Schlittschuhläufer der Gewichtskraft 0,80 kn muss mit einer Kraft von 12 N gezogen werden damit er seine Geschwindigkeit unverändert beibehält. a) Wie groß ist in diesem Fall die Reibungszahl

Mehr

11.1 Kinetische Energie

11.1 Kinetische Energie 75 Energiemethoden Energiemethoden beinhalten keine neuen Prinzipe, sondern sind ereinfachende Gesamtbetrachtungen an abgeschlossenen Systemen, die aus den bereits bekannten Axiomen folgen. Durch Projektion

Mehr

Einführung in die Physik I. Wärme 2 Kinetische Gastheorie

Einführung in die Physik I. Wärme 2 Kinetische Gastheorie Einführung in die Physik I Wärme Kinetische Gastheorie O. von der Lühe und U. Landgraf Kinetische Gastheorie - Gasdruck Der Druck in einem mit einem Gas gefüllten Behälter entsteht durch Impulsübertragung

Mehr

1. Energie im Alltag. BMS Physik Theorie Arbeit, Leistung und Energie. Quelle:. www.statistik.admin.ch/

1. Energie im Alltag. BMS Physik Theorie Arbeit, Leistung und Energie. Quelle:. www.statistik.admin.ch/ 1. Energie im Alltag Unser Alltag ist ohne Energieeinsatz nicht zu bewältigen. Viele Prozesse laufen nur dank Energieeinsatz. Ein Blick auf die Energiebilanz der Schweiz zeigt das folgende Bild: Endverbrauch

Mehr

Die Leistung und ihre Messung

Die Leistung und ihre Messung Die Leistung und ihre Messung Bei der Definition der Arbeit spielt die Zeit, in der die Arbeit verrichtet wird, keine Rolle. In vielen Fällen ist es aber wichtig, anzugeben, in welcher Zeit eine bestimmte

Mehr

Kinetik des Massenpunktes

Kinetik des Massenpunktes Technische Mechanik II Kinetik des Massenpunktes Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes 2.

Mehr

A. ENERGIE = GESPEICHERTE ARBEIT

A. ENERGIE = GESPEICHERTE ARBEIT 1. Steine, die arbeiten! Die Frage, ob Steine Arbeit verrichten können, ist wohl merkwürdig. Betrachten wir aber das untenstehende Bild, bekommt diese Frage doch einen Sinn. Steine können - wenn auch unerwünschte

Mehr

Tutorium Physik 1. Arbeit, Energie, Leistung

Tutorium Physik 1. Arbeit, Energie, Leistung 1 Tutorium Physik 1. Arbeit, Energie, Leistung WS 15/16 1.Semester BSc. Oec. und BSc. CH 3 3. ARBEIT, ENERGIE, LEISTUNG 3.1 Energie: Aufgabe (*) 4 a. Was ist Energie? b. Worin liegt der Unterschied zwischen

Mehr

Chemische Verbrennung

Chemische Verbrennung Christopher Rank Sommerakademie Salem 2008 Gliederung Die chemische Definition Voraussetzungen sgeschwindigkeit Exotherme Reaktion Reaktionsenthalpie Heizwert Redoxreaktionen Bohrsches Atommodell s Elektrochemie:

Mehr

Arbeitsblatt Arbeit und Energie

Arbeitsblatt Arbeit und Energie Arbeitsblatt Arbeit und Energie Arbeit: Wird unter der Wirkung einer Kraft ein Körper verschoben, so leistet die Kraft die Arbeit verrichtete Arbeit Kraft Komponente der Kraft in Wegrichtung; tangentiale

Mehr

Eine Erhaltungsgröße ist eine physikalische Größe, die.. s...

Eine Erhaltungsgröße ist eine physikalische Größe, die.. s... Eine Erhaltungsgröße ist eine physikalische Größe, die.... Die drei mechanischen Erhaltungsgrößen sind:.. Ein abgeschlossenes System ist ein Bereich, in dem.. Ein Beispiel für ein abgeschlossenes System

Mehr

1 J=1 Nm (Newtonmeter) 1 J=1 Ws (Wattsekunde) Da eine Stunde 60 Minuten und eine Minute 60 Sekunden hat folgt daraus direkt dass wohl

1 J=1 Nm (Newtonmeter) 1 J=1 Ws (Wattsekunde) Da eine Stunde 60 Minuten und eine Minute 60 Sekunden hat folgt daraus direkt dass wohl Zu beginn dieses Kapitels möchte ich ihnen einiges über Chips erzählen. Meine Erfahrung zeigt mir das dies ein wesendlich beliebteres Themen ist als Physikalische Grundlagen. Ich gehe nun davon aus, dass

Mehr

Physik Klasse 7. Projekt. Energie, Umwelt, Mensch 8h. Kraft und ihre Wirkungen. 22h. Elektrische Leitungsvorgänge. Naturgewalten Blitz und Donner 3h

Physik Klasse 7. Projekt. Energie, Umwelt, Mensch 8h. Kraft und ihre Wirkungen. 22h. Elektrische Leitungsvorgänge. Naturgewalten Blitz und Donner 3h 1. Kraft und ihre Wirkungen KA 22h Energie, Umwelt, Mensch 8h 2. Projekt Physik Klasse 7 3. Elektrische Leitungsvorgänge KA 20h 4. Naturgewalten Blitz und Donner 3h Kraft und ihre Wirkungen Lies LB. S.

Mehr

Grundwissen Physik (8. Klasse)

Grundwissen Physik (8. Klasse) Grundwissen Physik (8. Klasse) 1 Energie 1.1 Energieerhaltungssatz 1.2 Goldene egel der Mechanik Energieerhaltungssatz: n einem abgeschlossenen System ist die Gesamtenergie konstant. Goldene egel der Mechanik:

Mehr

Energieerhaltung für rollende Kugel. W ges = W pot + W kin + W rot. Kapitel 3: Klassische Mechanik Energieerhaltung.

Energieerhaltung für rollende Kugel. W ges = W pot + W kin + W rot. Kapitel 3: Klassische Mechanik Energieerhaltung. Energieerhaltung Energieerhaltung für rollende Kugel W ges = W pot + W kin + W rot h Trägheitsmoment: θ = r 2 dd θ Ist abhängig von Form des Körpers 75 Kräfte Gesamtkraft F : Vektorsumme der Einzelkräfte

Mehr

Grundlagen der Kinematik und Dynamik

Grundlagen der Kinematik und Dynamik INSTITUT FÜR UNFALLCHIRURGISCHE FORSCHUNG UND BIOMECHANIK Grundlagen der Biomechanik des Bewegungsapparates Grundlagen der Kinematik und Dynamik Dr.-Ing. Ulrich Simon Ulmer Zentrum für Wissenschaftliches

Mehr

FOS: Lösungen Aufgaben zu Arbeit, Energie, Leistung und dem Wirkungsgrad

FOS: Lösungen Aufgaben zu Arbeit, Energie, Leistung und dem Wirkungsgrad R. Brinkann http://brinkann-du.de Seite 5..03 FOS: Löungen Aufgaben zu Arbeit, Energie, Leitung und de Wirkunggrad. Welche Größen betien die Arbeit in der Phyik? Wie wird die Arbeit berechnet und in welchen

Mehr

Vektorrechnung in der Physik und Drehbewegungen

Vektorrechnung in der Physik und Drehbewegungen Vektorrechnung in der Physik und Drehbewegungen 26. November 2008 Vektoren Vektoren sind bestimmt durch a) Betrag und b) Richtung Beispiel Darstellung in 3 Dimensionen: x k = y z Vektor in kartesischen

Mehr

Energie und Energieerhaltung. Mechanische Energieformen. Arbeit. Die goldene Regel der Mechanik. Leistung

Energie und Energieerhaltung. Mechanische Energieformen. Arbeit. Die goldene Regel der Mechanik. Leistung - Formelzeichen: E - Einheit: [ E ] = 1 J (Joule) = 1 Nm = 1 Energie und Energieerhaltung Die verschiedenen Energieformen (mechanische Energie, innere Energie, elektrische Energie und Lichtenergie) lassen

Mehr

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Stoßgesetze

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Stoßgesetze Anfänger-Praktikum I WS 11/12 Michael Seidling Timo Raab Praktikumsbericht: Stoßgesetze 1 Inhaltsverzeichnis Inhaltsverzeichnis I. Einführung 4 II. Grundlagen 4 1. Die Zykloide 4 2. Das Trägheitsmoment

Mehr

Nachhaltigkeit in der gewerblichen Wäscherei

Nachhaltigkeit in der gewerblichen Wäscherei Leonardo da vinci Projekt Nachhaltigkeit in der gewerblichen Wäscherei Modul 5 Energie in Wäschereien Kapitel 1 Energieträger ein Beitrag von Kapitel 1 Energieträger 1 Inhalt Übersicht Energieträger Energieträgerarten

Mehr

8.1 Arbeit 8.2 Verschiedene Arten mechanischer Arbeit 8.3 Leistung 8.4 Energie 8.5 Felder 8.6 Satz von der Erhaltung der Energie

8.1 Arbeit 8.2 Verschiedene Arten mechanischer Arbeit 8.3 Leistung 8.4 Energie 8.5 Felder 8.6 Satz von der Erhaltung der Energie Inhalt 8 Arbeit, Energie - Leistung 8. Arbeit 8. Verschiedene Arten echanischer Arbeit 8.3 Leistung 8.4 Energie 8.5 Felder 8.6 Satz von der Erhaltung der Energie 8.6. Energieuwandlung 8.7 Stoßprozesse

Mehr

EXPERIMENTALPHYSIK I - 4. Übungsblatt

EXPERIMENTALPHYSIK I - 4. Übungsblatt Musterlösung des Übungsblattes 5 der Vorlesung ExpPhys I (ET http://wwwet92unibw-muenchende/uebungen/ep1et-verm/uebun EXPERIMENTALPHYSIK I - 4 Übungsblatt VII Die mechanischen Energieformen potentielle

Mehr

Aufnahme und Abgabe von Energie Kernumwandlungen (grundlegende Betrachtungen zur Energiebilanz) Ph 10.2 Die Mechanik Newtons

Aufnahme und Abgabe von Energie Kernumwandlungen (grundlegende Betrachtungen zur Energiebilanz) Ph 10.2 Die Mechanik Newtons Staatsinstitut für Schulqualität und Bildungsforschung Referat Naturwissenschaften / Physik Die Energie als Erhaltungsgröße ein Unterrichtskonzept Ausgangspunkt für die nachfolgend beschriebene Vorgehensweise

Mehr

4.1.1 Die Energie als fundamentale physikalische Grösse

4.1.1 Die Energie als fundamentale physikalische Grösse Kapitel 4 Energie Im Prinzip kann man die Newtonschen Gesetze, die die Kraft und die Beschleunigung verbinden, verwenden, um ein beliebiges Bewegungsproblem, zu lösen. Die Gesetze können allgemein und

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 1 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 1: Übersicht 3 Energiebilanz 3.1 Energie 3.1.1 Formen der Energie 3.1.2 Innere Energie U 3.1.3 Energietransfer

Mehr

Energieerhaltung. 8.1 Konservative und nichtkonservative Kräfte... 211 8.2 Potenzielle Energie... 213

Energieerhaltung. 8.1 Konservative und nichtkonservative Kräfte... 211 8.2 Potenzielle Energie... 213 Energieerhaltung 8. Konservative und nichtkonservative Kräfte... 2 8.2 Potenzielle Energie... 23 8 8.3 Mechanische Energie und ihre Erhaltung... 28 8.4 Anwendungen des Energieerhaltungssatzes der Mechanik...

Mehr

KWK kann s besser. Was ist Kraft-Wärme-Kopplung? Folie 1

KWK kann s besser. Was ist Kraft-Wärme-Kopplung? Folie 1 Was ist Kraft-Wärme-Kopplung? Folie 1 Grundprinzip Effizienz Wirkungsgrad Getrennte Energieerzeugung Strom und Wärme werden unabhängig voneinander in getrennten Prozessen erzeugt (Kraftwerk oder Heizkessel)

Mehr

Unsere Energieversorgung. Fakten von heute, Perspektiven für morgen

Unsere Energieversorgung. Fakten von heute, Perspektiven für morgen Bayreuther Forum Kirche und Universität Unsere Energieversorgung Fakten von heute, Perspektiven für morgen Prof. Dr.-Ing. D. Brüggemann Dr.-Ing. A. Obermeier 15. November 2003 Energiebedarf Beispiele aus

Mehr

Physik 1 Hydrologen/VNT, WS 2014/15 Lösungen Aufgabenblatt 8. Feder )

Physik 1 Hydrologen/VNT, WS 2014/15 Lösungen Aufgabenblatt 8. Feder ) Aufgabenblatt 8 Aufgabe 1 (M 4. Feder ) Ein Körper der Masse m wird in der Höhe z 1 losgelassen und trifft bei z = 0 auf das Ende einer senkrecht stehenden Feder mit der Federkonstanten k, die den Fall

Mehr

Was ist Energie und woher kommt sie?

Was ist Energie und woher kommt sie? 1. Einheit 1. Unterrichtseinheit 1 Was ist Energie und woher kommt sie? Im Mittelpunkt dieser Unterrichtseinheit stehen folgende Themen: die Klärung der Frage, was Energie überhaupt ist die zur Verfügung

Mehr

Grundwissen Physik 8. Klasse II

Grundwissen Physik 8. Klasse II Grundwissen Physik 8. Klasse II Größen in der Physik Physikalische Größen sind alle messbare Eigenschaften eines Körpers. Dabei gibt es Grundgrößen, deren Einheit der Mensch willkürlich, also beliebig

Mehr

Grundwissen. Physik. Jahrgangsstufe 8

Grundwissen. Physik. Jahrgangsstufe 8 Grundwissen Physik Jahrgangsstufe 8 Grundwissen Physik Jahrgangsstufe 8 Seite 1 1. Energie; E [E] = 1Nm = 1J (Joule) 1.1 Energieerhaltungssatz Formulierung I: Energie kann nicht erzeugt oder vernichtet

Mehr

MULTIPL CHOICE "Energie aus der Tiefe"

MULTIPL CHOICE Energie aus der Tiefe Multiple Choice Fragen zum Thema Energie und Deep Heat Mining (jeweils eine Antwort richtig!) 1. Wofür steht die Bezeichnung CO2? a) Kohlenwasserstoff b) Kohlenmonoxid c) Kohlendioxid 2. Welcher der folgenden

Mehr

Energie und Energieerhaltung

Energie und Energieerhaltung Arbeit und Energie Energie und Energieerhaltung Es gibt keine Evidenz irgendwelcher Art dafür, dass Energieerhaltung in irgendeinem System nicht erfüllt ist. Energie im Austausch In mechanischen und biologischen

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 3: Dynamik und Kräfte Dr. Daniel Bick 09. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 09. November 2016 1 / 25 Übersicht 1 Wiederholung

Mehr

Energiearten, Energieumwandlung

Energiearten, Energieumwandlung Energie Aus dem täglichen Leben ist sicher folgende Aussage bekannt: Ich bin voller Energie Wenn Du aber voller Energie bist, dann hast du ein grosses Bedürfnis etwas zu tun, eine bestimmte Arbeit zu verrichten.

Mehr

Zur Vorbereitung auf die Aufnahmeprüfung für die WO im Fach Physik

Zur Vorbereitung auf die Aufnahmeprüfung für die WO im Fach Physik Zur Vorbereitung auf die Aufnahmeprüfung für die WO im Fach Physik Fachlehrer: Schmidt Folgende Themen sind vorgesehen: Mechanik - Geradlinig gleichförmige Bewegung, Geschwindigkeit - Masse, Volumen, Dichte

Mehr

Kapitel 4. Arbeit und Energie. 4.1 Ein Ausflug in die Vektoranalysis. 4.1.1 Linienelement

Kapitel 4. Arbeit und Energie. 4.1 Ein Ausflug in die Vektoranalysis. 4.1.1 Linienelement Kapitel 4 Arbeit und Energie 4.1 Ein Ausflug in die Vektoranalysis 4.1.1 Linienelement Das Linienelement dr längs einer Kurve im Raum lautet (Siehe Abb. 4.1): ds dr = d dy dz (4.1) y dr d dy dz z Abbildung

Mehr

Die Höhenenergie. Nach diesen Überlegungen wird die Höhenenergie wie folgt festgelegt: Die Bewegungsenergie

Die Höhenenergie. Nach diesen Überlegungen wird die Höhenenergie wie folgt festgelegt: Die Bewegungsenergie Die Höhenenergie Fallbeispiel: Fall 1: Ein Kran hebt einen Eisenträger ( G = 50.000 N ) in den 1. Stock eines Hauses. Dabei verbraucht er eine bestimmte Menge Treibstoff. Fall 2: Hebt der Kran die Last

Mehr

TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG PHYSIK

TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG PHYSIK TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG TEST IM FACH PHYSIK FÜR STUDIENBEWERBER MIT BERUFSQUALIFIKATION NAME : VORNAME : Bearbeitungszeit : 180 Minuten Teil I : Keine Hilfsmittel, erreichbare Punktzahl

Mehr

Eine Reise durch die Energie

Eine Reise durch die Energie Eine Reise durch die Energie Uwe Dankert (Dipl.Phys., M.Sc.) Tel.: +49 89 55 29 68 57 Mobil: +49 175 217 0008 email: uwe.dankert@udeee.de www.udeee-consulting.de Copyright udeee Consulting GmbH 2013. All

Mehr

1. Rotation um eine feste Achse

1. Rotation um eine feste Achse 1. Rotation um eine feste Achse Betrachtet wird ein starrer Körper, der sich um eine raumfeste Achse dreht. z ω Das Koordinatensystem wird so gewählt, dass die Drehachse mit der z-achse zusammenfällt.

Mehr

Probeklausur zur Vorlesung Physik I für Chemiker, Pharmazeuten, Geoökologen, Lebensmittelchemiker

Probeklausur zur Vorlesung Physik I für Chemiker, Pharmazeuten, Geoökologen, Lebensmittelchemiker Technische Universität Braunschweig Institut für Geophysik und extraterrestrische Physik Prof. A. Hördt Probeklausur zur Vorlesung Physik I für Chemiker, Pharmazeuten, Geoökologen, Lebensmittelchemiker

Mehr

Mathematische Hilfsmittel

Mathematische Hilfsmittel Mathematische Hilfsmittel Koordinatensystem kartesisch Kugelkoordinaten Zylinderkoordinaten Koordinaten (x, y, z) (r, ϑ, ϕ) (r, ϕ, z) Volumenelement dv dxdydz r sin ϑdrdϑdϕ r dr dzdϕ Additionstheoreme:

Mehr

Verwendet man ein Seil, dann kann der Angriffspunkt A der Kraft verschoben werden,

Verwendet man ein Seil, dann kann der Angriffspunkt A der Kraft verschoben werden, Kraftwandler Ein Kraftwandler ist eine Vorrichtung, die den Angriffspunkt, die Richtung oder die Größe einer aufzuwendenden Kraft verändern kann. Beispiele : a) b) Verwendet man ein Seil, dann kann der

Mehr

Arbeit, Energie, Leistung

Arbeit, Energie, Leistung Arbeit, Energie, Leistung Arbeit und Energie Wiederholung Die Energie eines Systems ist ein Maß für die an ihm zu- bzw. abgeführten Arbeit Äquivalente Begriffe des täglichen Lebens : Energie verhält sich

Mehr

Allgemeine Bewegungsgleichung

Allgemeine Bewegungsgleichung Freier Fall Allgemeine Bewegungsgleichung (gleichmäßig beschleunigte Bewegung) s 0, v 0 Ableitung nach t 15 Freier Fall Sprung vom 5-Meter Turm s 0 = 0; v 0 = 0 (Aufprallgeschwindigkeit: v = -10m/s) Weg-Zeit

Mehr

Aufgabe 1: Klausur Physik für Maschinenbauer (SS 2009) Lösungen 1. (10 Punkte)

Aufgabe 1: Klausur Physik für Maschinenbauer (SS 2009) Lösungen 1. (10 Punkte) Klausur Physik für Maschinenbauer (SS 2009) Lösungen 1 Aufgabe 1: Schiefe Ebene Auf einer reibungsfreien, schiefen Ebene mit dem Winkel 30 befindet sich eine Kiste der Masse m = 100 kg zunächst in Ruhe.

Mehr

Jahrgangsstufe 8 Grundfertigkeiten Physik

Jahrgangsstufe 8 Grundfertigkeiten Physik Fachschaft Physik 2012 Serie A 1 Jahrgangsstufe 8 Grundfertigkeiten Physik Serie A Hilfen: Änderung der inneren Energie:, spez. Schmelzwärme: Widerstände: Serienschaltung:, Parallelschaltung: Formelgleichungen

Mehr

Temperatur Wärme Thermodynamik

Temperatur Wärme Thermodynamik Temperatur Wärme Thermodynamik Stoffwiederholung und Übungsaufgaben... 2 Lösungen... 33 Thermodynamik / 1 Einführung: Temperatur und Wärme Alle Körper haben eine innere Energie, denn sie sind aus komplizierten

Mehr

Klassische Theoretische Physik I WS 2013/2014

Klassische Theoretische Physik I WS 2013/2014 Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 23/24 Prof. Dr. J. Schmalian Blatt 5 Dr. P. P. Orth Abgabe und Besprechung 29..23. Messung der Gravitationsbeschleunigung

Mehr

- potentiell E pot. Gesamtenergie: E = U + E kin + E pot. 3 Energiebilanz. 3.1 Energie. 3.1.1 Formen der Energie

- potentiell E pot. Gesamtenergie: E = U + E kin + E pot. 3 Energiebilanz. 3.1 Energie. 3.1.1 Formen der Energie 3 Energiebilanz 3.1 Energie 3.1.1 Formen der Energie Innere Energie: U - thermisch - latent Äußere Energien: E a - kinetisch E kin - potentiell E pot Gesamtenergie: E = U + E kin + E pot 3.1-1 3.1.2 Die

Mehr

Effiziente (fossile) thermische Kraftwerke

Effiziente (fossile) thermische Kraftwerke Effiziente Fossile Energie Basis-themeninformationen für Lehrer Effiziente (fossile) thermische Kraftwerke Kraft-Wärme-Kopplung ermöglicht eine effizientere Nutzung fossiler Energieträger Bis eine lückenlose

Mehr

5) Impuls und Energie

5) Impuls und Energie 5) Impuls und Energie 5.) Arbeit und Energie 5.) Energieerhaltung 5.3) Impuls und Impulserhaltung 5.4) Stöße 5.) Arbeit und Energie 5..) Arbeit 5..) Arbeit bei konseratien Kräften 5..3) Zusammenhang Potential

Mehr

DOWNLOAD VORSCHAU. Physik kompetenzorientiert: Mechanik 7. 7. / 8. Klasse. zur Vollversion

DOWNLOAD VORSCHAU. Physik kompetenzorientiert: Mechanik 7. 7. / 8. Klasse. zur Vollversion DOWNLOAD Anke Ganzer Physik kompetenzorientiert: Mechanik 7 7. / 8. Klasse Bergedorfer Unterrichtsideen Anke Ganzer Downloadauszug aus dem Originaltitel: Physik II kompetenzorientierte Aufgaben Optik,

Mehr

2. Vorlesung Wintersemester

2. Vorlesung Wintersemester 2. Vorlesung Wintersemester 1 Mechanik von Punktteilchen Ein Punktteilchen ist eine Abstraktion. In der Natur gibt es zwar Elementarteilchen (Elektronen, Neutrinos, usw.), von denen bisher keine Ausdehnung

Mehr

c) In Wirklichkeit hat der Wagen in C wieder die Geschwindigkeit Null. Berechne die mittlere Reibungskraft, die auf den Wagen wirkt.

c) In Wirklichkeit hat der Wagen in C wieder die Geschwindigkeit Null. Berechne die mittlere Reibungskraft, die auf den Wagen wirkt. Aufgaben Physik 8. Jahrgangsstufe Gymnasium Eckental I. Mechanik 1. Mechanische Energieformen : - Welche Arten mechanischer Energie gibt es und wie lauten die entsprechenden Formeln? - Wie lautet der Energieerhaltungssatz?

Mehr

Energie und Implus(energía, la; impulso (el)

Energie und Implus(energía, la; impulso (el) 4 4.1 Energie und Implus(energía, la; impulso (el) 1 o ímpetu, el ) Arbeit (trabajo, el ) Abb.1: Eine Zugmaschine übt auf den Anhänger eine Kraft F längs eines Weges s aus. Dabei wird Arbeit verrichtet.

Mehr

Labor zur Vorlesung Physik. Versuch 2: Energie- und Impulserhaltung

Labor zur Vorlesung Physik. Versuch 2: Energie- und Impulserhaltung Labor zur Vorlesung Physik Versuch : Energie- und Impulserhaltung Abb : Luftkissen-Fahrbahn. Zur Vorbereitung Die folgenden Begriffe müssen Sie kennen und erklären können: Impuls, Energie, kinetische und

Mehr

Erklärungen, Formeln und gelöste Übungsaufgaben der Mechanik aus Klasse 11. von Matthias Kolodziej aol.com

Erklärungen, Formeln und gelöste Übungsaufgaben der Mechanik aus Klasse 11. von Matthias Kolodziej aol.com GRUNDLAGEN DER MECHANIK Erklärungen, Formeln und gelöste Übungsaufgaben der Mechanik aus Klasse 11 von Matthias Kolodziej shorebreak13 @ aol.com Hagen, Westfalen September 2002 Inhalt: I. Kinematik 1.

Mehr

Energie und chemische Reaktion. Was ist Energie? Welche Einheit hat Energie?

Energie und chemische Reaktion. Was ist Energie? Welche Einheit hat Energie? Was ist Energie? Welche Einheit hat Energie? Was ist Energie? Es gibt verschiedene Formen von Energie, die ineinander überführt werden können. Energie kann jedoch nicht vernichtet oder erzeugt. Es gibt

Mehr

Grundlagen der Mechanik

Grundlagen der Mechanik Ausgabe 2007-09 Grundlagen der Mechanik (Formeln und Gesetze) Die Mechanik ist das Teilgebiet der Physik, in welchem physikalische Eigenschaften der Körper, Bewegungszustände der Körper und Kräfte beschrieben

Mehr

Administratives BSL PB

Administratives BSL PB Administratives Die folgenden Seiten sind ausschliesslich als Ergänzung zum Unterricht für die Schüler der BSL gedacht (intern) und dürfen weder teilweise noch vollständig kopiert oder verbreitet werden.

Mehr

Formelsammlung Physik

Formelsammlung Physik Formelsammlung Physik http://www.fersch.de Klemens Fersch 20. August 2015 Inhaltsverzeichnis 1 Mechanik 3 1.1 Grundlagen Mechanik.............................. 3 1.1.1 Gewichtskraft...............................

Mehr

Versuch 2. Physik für (Zahn-)Mediziner. c Claus Pegel 13. November 2007

Versuch 2. Physik für (Zahn-)Mediziner. c Claus Pegel 13. November 2007 Versuch 2 Physik für (Zahn-)Mediziner c Claus Pegel 13. November 2007 1 Wärmemenge 1 Wärme oder Wärmemenge ist eine makroskopische Größe zur Beschreibung der ungeordneten Bewegung von Molekülen ( Schwingungen,

Mehr

Prüfungsklausur - Lösung

Prüfungsklausur - Lösung Prof. G. Dissertori Physik I ETH Zürich, D-PHYS Durchführung: 08. Februar 2012 Bearbeitungszeit: 180min Prüfungsklausur - Lösung Aufgabe 1: Triff den Apfel! (8 Punkte) Wir wählen den Ursprung des Koordinatensystems

Mehr

Bestimmung von Federkonstanten

Bestimmung von Federkonstanten D. Samm 2014 1 Bestimmung von Federkonstanten 1 Der Versuch im Überblick Ohne Zweifel! Stürzt man sich - festgezurrt wie bei einem Bungee-Sprung - in die Tiefe (Abb. 1), sind Kenntnisse über die Längenänderung

Mehr

Münze auf Wasser: Resultierende F gegen Münze: Wegrdrängen der. der Moleküle aus Oberfl. analog zu Gummihaut.

Münze auf Wasser: Resultierende F gegen Münze: Wegrdrängen der. der Moleküle aus Oberfl. analog zu Gummihaut. 5.3 Oberflächenspannung mewae/aktscr/kap5_3_oberflsp/kap5_3_s4.tex 20031214 Anziehende Molekularkräfte (ànm) zwischen Molekülen des gleichen Stoffes: Kohäsionskräfte,...verschiedene Stoffe: Adhäsionskräfte

Mehr