W11. Energieumwandlung ( )

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "W11. Energieumwandlung ( )"

Transkript

1 W11 Energieumandlung Ziel dieses Versuches ist der experimentelle Nacheis der Äquivalenz von mechanischer und elektrischer Energie. Dazu erden beide Energieformen in die gleiche Wärmeenergie umgeandelt. 1. Theoretische Grundlagen 1.1 Vorbemerkung Historisch ar die Einheit der Wärmemenge eine Energieeinheit -, die Kilokalorie, dadurch festgelegt orden, dass man die spezifische Wärmekapazität des Wassers im Temperaturbereich ϑ = 14,5 C...15,5 C, also einem Temperaturintervall ϑ = T = 1K, gleich c = 1kcal kg -1 K -1 gesetzt hatte ([ϑ] = C, [T ] = K). Daraus entstand die Notendigkeit eines Vergleichs anderer Energieeinheiten, eta der historischen Energieeinheit Meterkilopond oder der elektrischen Energieeinheit Wattsekunde mit der Einheit Kilokalorie. Als Ergebnis resultierten die sogenannten Wärmeäquivalente, das mechanische und das elektrische. Diese Äquivalente aren vom Stand der Messkunst abhängige Größen. Mit fortschreitender Messgenauigkeit änderten sich die Äquivalenterte. Diese mit der jeeiligen Messunsicherheit belastete Verknüpfung zeier Einheitensysteme, des mechanischelektrischen und des kalorischen, veranlasste die Festlegung der Verknüpfung 1 kcal = 4, J. Damit ird zar der Äquivalentert der beiden Einheiten ein für allemal ein Festert, die Messunsicherheit tritt dafür am Zahlenert der spezifischen Wärmekapazität c des Wassers auf, die sich mit dem Fortschritt der Messkunst ändern kann. 1.2 Umandlung von mechanischer in Wärmeenergie Im Experiment ird die mechanische Energie durch Reibung in Wärmeenergie umgeandelt. Die Reibungskraft ird durch ein Band erzeugt, das um einen zylindrischen Kalorimeterkörper geickelt und durch zei Federkraftmesser gespannt ist (Bild 1). Wird der Kalorimeterkörper gegen die Reibungskraft gedreht, ergibt sich die verrichtete Reibungsarbeit aus dem Produkt der Reibungskraft Bild 1: Prinzipskizze F, hier durch die auftretende Kraftdifferenz F = F 1 F 2 der beiden Federkraftmesser, und dem zurückgelegten Weg s. S ergibt sich aus dem Umfang des Kalorimeterkörpers (Durchmesser d) und der Anzahl der Umdrehungen k zu s = k π d. Damit lautet die mechanische Reibungsarbeit: mech ( ) W = F F k π d (1) 1 2 Die am Kalorimeterkörper verrichtete mechanische Arbeit führt zu einer Temperaturerhöhung um ϑ. 2014

2 W11 Energieumandlung 1.3 Umandlung von elektrischer in Wärmeenergie Bei diesem Experiment ird dem Kalorimeterkörper über ein eingebautes Heizelement elektrische Energie zugeführt. Die zugeführte Leistung ird dabei direkt gemessen. Wel = P t P: zugeführte Leistung t: Zeitdauer des Stromflusses 1.4 Vergleich der Wärmeenergien Das Experiment ird mit zei kompakten Metallkalorimetern (Kupfer, Aluminium) durchgeführt. Zum Vergleich der zugeführten Energien ist diese jeeils auf die Energiemenge zurückzurechnen, die zur Temperaturerhöhung von 1K benötigt ird. Die dazu benötigten Temperaturdifferenzen sind über ein Temperatur Zeit Diagramm entsprechend Abschnitt 3 zu ermitteln. Die Ergebnisse sind entsprechend der Aufgabenstellung einschließlich der bestimmten Messunsicherheit zu vergleichen und zu diskutieren. 1.5 Bestimmung der spezifischen Wärmekapazität von Wasser aus der Umandlung mechanischer in Wärmeenergie Bei diesem Experiment ird ein Wasserkalorimeter (Hohlkalorimeter mit Wasserfüllung) verendet und entsprechend Abschnitt 1.2 verfahren. Die dem Wasser und Kalorimetergefäß zugeführte mechanische Energie ist durch Gleichung (1) gegeben. Die Zufuhr an Wärmeenergie beträgt: Q = ( K + c m ) ( ϑ ) (3) Daraus ergibt sich 2 ϑ 1 ( K + c m ) ( ϑ ) = ( F F ) k π d ϑ K: Wärmekapazität des Kalorimeters [K] = J K -1 c : spezifische Wärmekapazität des Wassers m : Masse des Wassers ϑ 2, ϑ 1 : End- bz. Anfangstemperatur (2) c ( 1 2) ( ϑ ϑ ) F F k π d K = m m 2 1 (4) 2. Versuch 2.1 Vorbetrachtung Aufgabe: Ein Kupferzylinder mit einer Masse von m = 430 g und einer Höhe von h = 4 cm soll mechanisch um 10 K erärmt erden. Dazu ird er in Rotation versetzt. Dabei sorgt ein Riemen, der um ihn gelegt ist, für die nötige Reibungskraft von F = 40 N. Um den gleichen Zylinder elektrisch um 10 K zu erärmen, ird eine Arbeit von 3 kj benötigt. Wie viele Umdrehungen muss dieser Zylinder vollziehen, enn er die gleiche Arbeit verrichten soll, die durch das elektrische Heizen verrichtet urde? - 2 -

3 W11 Energieumandlung 2.2 Versuchsdurchführung Verendete Geräte Kompaktversuchsaufbau: Reibungsapparat mit Umdrehungszähler und 2 Kraftmessern, Thermometer, Netzgerät, Leistungsmessgerät, Stoppuhr, 2 Kalorimeterkörper (Cu, Al im Kühlschrank), Cu- Kleinkalorimeter (70 ml) Versuchshineise Vorbereitung für Aufgabe 4: Ermitteln Sie die Masse m leer des leeren Kupfer-Kalorimeters (hohl) mittels der Oberschalenaage (e = ± 0,1 g). Füllen Sie dann das Kalorimeter bis zur Verjüngung mit Wasser und bestimmen Sie die Gesamtmasse m leer + m. Danach stellen Sie es in den Kühlschrank. Aufgabe 1: Mit einem Reibungsapparat ird nacheinander an zei Kalorimeterkörpern (Kupfer, Aluminium) Energie durch Reibung zugeführt. Die dabei auftretende Temperaturerhöhung ist zu messen und die zugeführte Energie zu bestimmen. Nehmen Sie einen der beiden Kalorimeterkörper aus dem Kühlschrank (Anfangstemperatur muss unter der Raumtemperatur liegen). Bringen Sie diesen auf dem Reibungsapparat an und füllen Sie die Öffnung für das Thermometer mit Wasser auf. Spannen Sie den Reibungsriemen zischen den Kraftmessern und dem Kalorimeterkörper (Laborpersonal). Die Vorspannung an den beiden Kraftmessern beträgt ca. 20 N. Notieren Sie den Umdrehungszählerstand. Führen Sie den Temperaturfühler so in die Kalorimeteröffnung ein, dass dieser nicht vom Kalorimeter gerieben erden kann. Beginnen Sie mit der Temperaturmessung und notieren Sie die Temperatur zum Zeitpunkt t = 0. Starten Sie die Stoppuhr und lesen Sie die Temperatur jede folgende Minute ab. Schalten Sie den Motor nach 5 Minuten ein (Temperatur eiter jede Minute ablesen). Kräfte F 1 und F 2 ebenfalls jede Minute ablesen. Schalten Sie den Motor nach einer Laufzeit von 5 Minuten ab. Lesen Sie die Temperatur noch eitere 5 Minuten im Minutenabstand ab. Notieren Sie erneut den Umdrehungszählerstand. Wechseln Sie den Kalorimeterkörper und iederholen Sie den Versuch. Stellen Sie das nicht gebrauchte Kalorimeter ieder in den Kühlschrank zurück. Überprüfen Sie, ob für die Berechnung der mechanischen Arbeit nach Gleichung (1) alle relevanten Größen erfasst urden. Aufgabe 2: Den beiden Kalorimeterkörpern aus Aufgabe 1 ird jetzt elektrische Energie zugeführt. Die dabei auftretende Temperaturerhöhung ist zu messen und die zugeführte Energie zu bestimmen. Schließen Sie vom Stromversorgungsgerät über einen Leistungsmesser die Kalorimeterkörper mittels 3mm-Stecker an die Energieversorgung an. Führen Sie die Temperaturmessung analog zur Aufgabe 1 durch. Füllen Sie erneut Wasser in die Öffnung für das Thermometer und führen Sie den Temperaturfühler in die Kalorimeteröffnung ein

4 W11 Energieumandlung Beginnen Sie mit der Temperaturmessung und notieren Sie die Temperatur zum Zeitpunkt t = 0. Starten Sie die Stoppuhr und lesen Sie die Temperatur jede folgende Minute ab. Schalten Sie nach 5 Minuten die elektrischen Leistung zu und lesen Sie diese am Leistungsmesser ab. Ermitteln Sie die Temperatur eiterhin jede Minute. Schalten Sie die Energiezufuhr nach 5 Minuten ab. Lesen Sie die Temperatur noch eitere 5 Minuten im Minutenabstand ab. Wechseln Sie den Kalorimeterkörper und iederholen Sie den Versuch. Stellen Sie das nicht gebrauchte Kalorimeter ieder in den Kühlschrank zurück. Aufgabe 3: Da die Einhaltung einer gleichen Temperaturdifferenz bei den Aufgaben 1 und 2 sehr schierig ist, sind zum Vergleich die erhaltenen mechanischen und elektrischen Energien zurückzurechnen auf den jeeiligen Wert, der für eine Temperaturerhöhung um 1K notendig ist. Aufgabe 4: Bestimmung der spezifischen Wärmekapazität von Wasser aus der Umandlung von mechanischer in Wärmeenergie Nehmen Sie das bereits mit Wasser gefüllte Kalorimeter aus dem Kühlschrank (Anfangstemperatur unter Raumtemperatur) und befestigen Sie es auf dem Reibungsapparat. Führen Sie den Versuchsablauf analog zur Aufgabe 1 durch. 2.3 Versuchsausertung Aufgabe 1: Wärmeenergie durch Reibung Berechnen Sie die Wärmeenergie aus der zugeführten mechanischen Arbeit entsprechend der Gleichung (1). Verenden Sie dazu den Mittelert der Kraftdifferenz. Bestimmen Sie die Temperaturdifferenz aus den Messerten mit Hilfe der Temperatur-Zeit- Diagramme (ϑ = f(t)) für beide Kalorimeter (siehe Abschnitt 3). Aufgabe 2: Wärmeenergie durch elektrische Leistung Berechnen Sie die Wärmeenergie aus der zugeführten elektrischen Arbeit entsprechend der Gleichung (2). Bestimmen Sie die Temperaturdifferenz aus den Messerten mit Hilfe der Temperatur-Zeit- Diagramme (ϑ = f(t)) für beide Kalorimeter (siehe Abschnitt 3). Aufgabe 3: Normierung auf 1K Vergleichen und diskutieren Sie die erhaltenen Werte aus den Aufgaben 1 und 2 einschließlich der zu bestimmenden maximalen Messunsicherheit. Aufgabe 4: Bestimmung der spezifischen Wärmekapazität von Wasser Gegeben ist die Wärmekapazität des Kalorimeters K = 40 J K -1. Berechnen Sie die spezifische Wärmekapazität c von Wasser aus der Umandlung mechanischer in Wärmeenergie nach der Gleichung (4) und bestimmen Sie die maximale Messunsicherheit

5 W11 Energieumandlung 3. Ergänzung Da die Messungen über einen längeren Zeitraum erfolgen, muss der Einfluss des Temperaturausgleichs zur Umgebungstemperatur beachtet erden. Ebenfalls berücksichtigt erden muss die Transportzeit der Wärme zum Thermometer. Beide Einflüsse erden berücksichtigt durch die Bestimmung der Temperaturdifferenz ϑ mit Hilfe eines Temperatur-Zeit-Diagrammes. Die in diesem Diagramm verendete Hilfslinie g ird so geählt, das die beiden Flächen I und II augenscheinlich gleich sind. Diagramm 1: Temperaturverlauf über eine Messung - 5 -

W11. Energieumwandlung ( )

W11. Energieumwandlung ( ) W11 Energieumandlung Ziel dieses Versuches ist der experimentelle Nacheis der Äquivalenz von mechanischer und elektrischer Energie. Dazu erden beide Energieformen in die gleiche Wärmeenergie umgeandelt.

Mehr

Technische Thermodynamik

Technische Thermodynamik Kalorimetrie 1 Technische Thermodynamik 2. Semester Versuch 1 Kalorimetrische Messverfahren zur Charakterisierung fester Stoffe Namen : Datum : Abgabe : Fachhochschule Trier Studiengang Lebensmitteltechnik

Mehr

Stationsunterricht im Physikunterricht der Klasse 10

Stationsunterricht im Physikunterricht der Klasse 10 Oranke-Oberschule Berlin (Gymnasium) Konrad-Wolf-Straße 11 13055 Berlin Frau Dr. D. Meyerhöfer Stationsunterricht im Physikunterricht der Klasse 10 Experimente zur spezifischen Wärmekapazität von Körpern

Mehr

Fachhochschule Flensburg. Äquivalenz von Wärme und Arbeit

Fachhochschule Flensburg. Äquivalenz von Wärme und Arbeit Name : Fachhochschule Flensburg Fachbereich Technik Institut für Physik und erkstoffe Name: Versuch-Nr: 1 Äquivalenz von ärme und Arbeit Gliederung: Seite 1. Einleitung 1 2. Äquivalenz von mechanischer

Mehr

E-Labor im WS / SS. Versuch HS Homogenes Strömungsfeld / Passive Zweipole

E-Labor im WS / SS. Versuch HS Homogenes Strömungsfeld / Passive Zweipole Abteilung Maschinenbau im S / SS Versuch / Gruppe: Verfasser Name Vorname Matr.-Nr. Semester Teilnehmer Teilnehmer BTTE ANKREUZEN Messprotokoll Versuchsbericht Professor(in) / Lehrbeauftragte(r): Datum

Mehr

Praktikum Physik. Protokoll zum Versuch 5: Spezifische Wärme. Durchgeführt am Gruppe X

Praktikum Physik. Protokoll zum Versuch 5: Spezifische Wärme. Durchgeführt am Gruppe X Praktikum Physik Protokoll zum Versuch 5: Spezifische Wärme Durchgeführt am 10.11.2011 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuer: Wir bestätigen hiermit, dass wir das

Mehr

Thermische Ausdehnung. heißt Volumenausdehnungskoeffizient. Betrachtet man nur eine Dimension, erhält man den Längenausdehnungskoeffizienten

Thermische Ausdehnung. heißt Volumenausdehnungskoeffizient. Betrachtet man nur eine Dimension, erhält man den Längenausdehnungskoeffizienten W1 Thermische Ausdehnung ie Volumenausdehnung von Flüssigkeiten und die Längenänderung von festen Körpern in Abhängigkeit von der Temperatur sollen nachgewiesen. 1. Theoretische Grundlagen 1.1 Allgemeines

Mehr

Versuch VM 3 (Veterinärmedizin) Wärmekapazität und Wärmeübergang

Versuch VM 3 (Veterinärmedizin) Wärmekapazität und Wärmeübergang Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum Versuch VM 3 (Veterinärmedizin) Wärmekapazität und Wärmeübergang Aufgaben 1. Berechnen Sie die Wärmekapazität des Kalorimetergefäßes.

Mehr

Elektrische Energie, Arbeit und Leistung

Elektrische Energie, Arbeit und Leistung Elektrische Energie, Arbeit und Leistung Wenn in einem Draht ein elektrischer Strom fließt, so erwärmt er sich. Diese Wärme kann so groß sein, dass der Draht sogar schmilzt. Aus der Thermodynamik wissen

Mehr

Physikalisches Praktikum Wirtschaftsingenieurwesen Physikalische Technik und Orthopädietechnik Prof. Dr. Chlebek, MSc. M. Gilbert

Physikalisches Praktikum Wirtschaftsingenieurwesen Physikalische Technik und Orthopädietechnik Prof. Dr. Chlebek, MSc. M. Gilbert Physikalisches Praktikum Wirtschaftsingenieurwesen Physikalische Technik und Orthopädietechnik Prof. Dr. Chlebek, MSc. M. Gilbert TH 01 Wärmekapazität und Wirkungsgrad (Pr_PhI_TH01_Wärmekapazität_6, 30.8.009)

Mehr

Protokoll des Versuches 7: Umwandlung von elektrischer Energie in Wärmeenergie

Protokoll des Versuches 7: Umwandlung von elektrischer Energie in Wärmeenergie Name: Matrikelnummer: Bachelor Biowissenschaften E-Mail: Physikalisches Anfängerpraktikum II Dozenten: Assistenten: Protokoll des Versuches 7: Umwandlung von elektrischer Energie in ärmeenergie Verantwortlicher

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #10 30/10/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Thermisches Gleichgewicht Soll die Temperatur geändert werden, so muss dem System Wärme (kinetische

Mehr

Temperatur. Gebräuchliche Thermometer

Temperatur. Gebräuchliche Thermometer Temperatur Wärme ist Form von mechanischer Energie Umwandlung Wärme mechanische Energie ist möglich! Thermometer Messung der absoluten Temperatur ist aufwendig Menschliche Sinnesorgane sind schlechte "Thermometer"!

Mehr

It is important to realize that in physik today, we have no knowledge of what energie is.

It is important to realize that in physik today, we have no knowledge of what energie is. 9. Energie It is important to realize that in physik today, we have no knowledge of what energie is. Richard Feynmann, amerikanischer Physiker und Nobelpreisträger 1965. Energieformen: Mechanische Energie:

Mehr

Versuchsanleitungen zum Praktikum Physikalische Chemie für Anfänger 1

Versuchsanleitungen zum Praktikum Physikalische Chemie für Anfänger 1 Versuchsanleitungen zum Praktikum Physikalische Chemie für Anfänger 1 A 6 Kalorimetrie Aufgabe: Mittels eines Flüssigkeitskalorimeters ist a) die Neutralisationsenthalpie von säure b) die ösungsenthalpie

Mehr

Spezifische Wärmekapazität

Spezifische Wärmekapazität Versuch: KA Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: L. Jahn B. Wehner J. Pöthig J. Stelzer am 01. 06. 1997 Bearbeitet: M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher am

Mehr

Neutralisationsenthalpie

Neutralisationsenthalpie Universität Potsdam Professur für Physikalische Chemie Grundpraktikum Physikalische Chemie Dr. B. Kallies, 21.02.2001 Neutralisationsenthalpie Zur Messung von Wärmeeffekten bei Vorgängen in Lösungen (Lösungs-,

Mehr

Thermische Ausdehnung

Thermische Ausdehnung Versuch: TA Fachrichtung Physik Physikalisches Grundpraktikum Aktualisiert: am 16. 09. 2009 Bearbeitet: M. Kreller J. Kelling F. Lemke S. Majewsky i.a. Dr. Escher Thermische Ausdehnung Inhaltsverzeichnis

Mehr

Experimentelle Übungen I E5 Kleine Widerstände / Thermoelement Protokoll

Experimentelle Übungen I E5 Kleine Widerstände / Thermoelement Protokoll Experimentelle Übungen I E5 Kleine Widerstände / Thermoelement Protokoll Jan-Gerd Tenberge 1 Tobias Südkamp 2 6. Januar 2009 1 Matrikel-Nr. 349658 2 Matrikel-Nr. 350069 Experimentelle Übungen I E5 Tenberge,

Mehr

Versuch W1 für Nebenfächler Mechanisches Wärmeäquivalent

Versuch W1 für Nebenfächler Mechanisches Wärmeäquivalent Versuch W1 für Nebenfächler Mechanisches Wärmeäquivalent I. Physikalisches Institut, Raum 105 Stand: 15. Oktober 2013 generelle Bemerkungen bitte verwendeten Versuchsaufbau angeben bitte Versuchspartner

Mehr

Physikalisches Anfängerpraktikum, Fakultät für Physik und Geowissenschaften, Universität Leipzig

Physikalisches Anfängerpraktikum, Fakultät für Physik und Geowissenschaften, Universität Leipzig Physikalisches Anfängerpraktikum, Fakultät für Physik und Geowissenschaften, Universität Leipzig W 10 Wärmepumpe Aufgaben 1 Nehmen Sie die Temperatur- und Druckverläufe einer Wasser-Wasser-Wärmepumpe auf!

Mehr

Versuch W8 - Wärmeleitung von Metallen. Gruppennummer: lfd. Nummer: Datum:

Versuch W8 - Wärmeleitung von Metallen. Gruppennummer: lfd. Nummer: Datum: Ernst-Moritz-Arndt Universität Greifswald Institut für Physik Versuch W8 - Wärmeleitung von Metallen Name: Mitarbeiter: Gruppennummer: lfd. Nummer: Datum: 1. Aufgabenstellung 1.1. Versuchsziel Bestimmen

Mehr

Versuch C5: Kalorimetrie

Versuch C5: Kalorimetrie Physikalisches Praktikum für Pharmazeuten Gruppennummer Name Vortestat Endtestat Name Versuch A. Vorbereitungsteil (VOR der Versuchsdurchführung lesen! 1. Kurzbeschreibung In diesem Versuch wird der Unterschied

Mehr

Physikalisches Grundpraktikum

Physikalisches Grundpraktikum Ernst-Moritz-Arndt-Universität Greifswald / Institut für Physik Physikalisches Grundpraktikum Praktikum für Mediziner M1 Viskose Strömung durch Kapillaren Name: Versuchsgruppe: Datum: Mitarbeiter der Versuchsgruppe:

Mehr

Die Heizungsanlage eines Hauses wird auf Ölfeuerung umgestellt. Gleichzeitig wird mit dieser Anlage Warmwasser aufbereitet.

Die Heizungsanlage eines Hauses wird auf Ölfeuerung umgestellt. Gleichzeitig wird mit dieser Anlage Warmwasser aufbereitet. Übungsaufgaben zur Wärmelehre mit Lösungen 1) Die Heizungsanlage eines Hauses wird auf Ölfeuerung umgestellt. Gleichzeitig wird mit dieser Anlage Warmwasser aufbereitet. Berechnen Sie die Wärme, die erforderlich

Mehr

Protokoll zu Versuch E5: Messung kleiner Widerstände / Thermoelement

Protokoll zu Versuch E5: Messung kleiner Widerstände / Thermoelement Protokoll zu Versuch E5: Messung kleiner Widerstände / Thermoelement 1. Einleitung Die Wheatstonesche Brücke ist eine Brückenschaltung zur Bestimmung von Widerständen. Dabei wird der zu messende Widerstand

Mehr

Spezifische Wärmekapazität P2-33

Spezifische Wärmekapazität P2-33 Karlsruher Institut für Technologie (KIT) SS 2012 Physikalisches Anfängerpraktikum - P2 Spezifische Wärmekapazität P2-33 Auswertung von Tobias Renz und Raphael Schmager Gruppe: Do-28 Durchgeführt am 28.

Mehr

Wärmemenge, spezifische Wärmekapazität, molare Wärmekapazität, Kalorimetrie, Dulong-Petitsches Gesetz.

Wärmemenge, spezifische Wärmekapazität, molare Wärmekapazität, Kalorimetrie, Dulong-Petitsches Gesetz. W1 Spezifische Wärmekapazität von festen Stoffen Stoffgebiet: Wärmemenge, spezifische Wärmekapazität, molare Wärmekapazität, Kalorimetrie, Dulong-Petitsches Gesetz. Versuchsziel: Bestimmung der spezifischen

Mehr

Leseprobe. Hilmar Heinemann, Heinz Krämer, Peter Müller, Hellmut Zimmer. PHYSIK in Aufgaben und Lösungen. ISBN (Buch): 978-3-446-43235-2

Leseprobe. Hilmar Heinemann, Heinz Krämer, Peter Müller, Hellmut Zimmer. PHYSIK in Aufgaben und Lösungen. ISBN (Buch): 978-3-446-43235-2 Leseprobe Hilmar Heinemann, Heinz Krämer, Peter Müller, Hellmut Zimmer PHYSIK in Aufgaben und Lösungen ISBN Buch: 978-3-446-4335- Weitere Informationen oder Bestellungen unter http://www.hanser-fachbuch.de/978-3-446-4335-

Mehr

Aufgaben zur Vorlesung - Agrarwirtschaft / Gartenbau

Aufgaben zur Vorlesung - Agrarwirtschaft / Gartenbau Aufgaben zur Vorlesung - Agrarwirtschaft / Gartenbau. Formen Sie die Größengleichung P = in eine Zahlenwertgleichung t /kj P /= α um und bestimmen Sie die Zahl α! t /h. Drücken Sie die Einheit V durch

Mehr

Festkörper - System steht unter Atmosphärendruck gemessenen Wärmen erhalten Index p : - isoliert

Festkörper - System steht unter Atmosphärendruck gemessenen Wärmen erhalten Index p : - isoliert Kalorimetrie Mit Hilfe der Kalorimetrie können die spezifischen Wärmekapazitäten für Festkörper, Flüssigkeiten und Gase bestimmt werden. Kalorische Grundgleichung: ΔQ = c m ΔT Festkörper - System steht

Mehr

2.6 Zweiter Hauptsatz der Thermodynamik

2.6 Zweiter Hauptsatz der Thermodynamik 2.6 Zweiter Hauptsatz der Thermodynamik Der zweite Hauptsatz der Thermodynamik ist ein Satz über die Eigenschaften von Maschinen die Wärmeenergie Q in mechanische Energie E verwandeln. Diese Maschinen

Mehr

Physikalisches Grundpraktikum. Wärmeleitung

Physikalisches Grundpraktikum. Wärmeleitung Fachrichtungen der Physik UNIVERSITÄT DES SAARLANDES Physikalisches Grundpraktikum WWW-Adresse Grundpraktikum Physik: http://grundpraktikum.physik.uni-saarland.de/ Kontaktadressen der Praktikumsleiter:

Mehr

Versuch M9 Temperaturmessung

Versuch M9 Temperaturmessung Fakultät Ingenieurwissenschaften und Informatik Fachhochschule Osnabrück Versuch M9 Temperaturmessung 1 Literatur Cerbe G., Hoffmann H.-J.: Einführung in die Thermodynamik. Carl Hanser Verlag. DIN 43732:

Mehr

Versuch W6 für Nebenfächler Wärmeleitung

Versuch W6 für Nebenfächler Wärmeleitung Versuch W6 für Nebenfächler Wärmeleitung I. Physikalisches Institut, Raum 104 Stand: 4. November 2013 generelle Bemerkungen bitte Versuchspartner angeben bitte Versuchsbetreuer angeben bitte nur handschriftliche

Mehr

Die Wärmepumpe. Abb. 1: Energiefluss-Diagramme für Ofen, Wärmekraftmaschine und Wärmepumpe

Die Wärmepumpe. Abb. 1: Energiefluss-Diagramme für Ofen, Wärmekraftmaschine und Wärmepumpe Die Stichworte: Thermische Maschinen; 1. und. Hauptsatz; Wirkungsgrad und Leistungsziffer 1 Einführung und Themenstellung Mit einer wird - entgegen der natürlichen Richtung eines Wärmestroms - Wärme von

Mehr

Vers. 3: Elektrizität 1 (Strom, Spannung, Leistung, Widerstände)

Vers. 3: Elektrizität 1 (Strom, Spannung, Leistung, Widerstände) Praktikum Technische Grundlagen ersuch 3 ers. 3: Elektrizität (Strom, Spannung, Leistung, Widerstände) orbereitung Literatur zu den Stichworten Ohmsches Gesetz, Strom, Spannung, Leistung, Widerstandsschaltungen,

Mehr

W5 Latente Wärmemengen - spezifische Wärmekapazitäten

W5 Latente Wärmemengen - spezifische Wärmekapazitäten W5 Latente Wärmemengen - spezifische Wärmekapazitäten 28. Oktober 2010 Marcel Lauhoff - Informatik BA Matnr: xxxxxxx xxx@xxxx.xx 1 Einleitung 1 2 Theoretische Grundlagen 2 2.1 Wärme und thermische Energie................................

Mehr

Energie, mechanische Arbeit und Leistung

Energie, mechanische Arbeit und Leistung Grundwissen Physik Klasse 8 erstellt am Finsterwalder-Gymnasium Rosenheim auf Basis eines Grundwissenskatalogs des Klenze-Gymnasiums München Energie, mechanische Arbeit und Leistung Mit Energie können

Mehr

Maßeinheiten der Wärmelehre

Maßeinheiten der Wärmelehre Maßeinheiten der Wärmelehre Temperatur (thermodynamisch) Benennung der Einheit: Einheitenzeichen: T für Temp.-punkte, ΔT für Temp.-differenzen Kelvin K 1 K ist der 273,16te Teil der (thermodynamischen)

Mehr

Wärmeleitung und thermoelektrische Effekte Versuch P2-32

Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Vorbereitung Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Iris Conradi und Melanie Hauck Gruppe Mo-02 3. Juni 2011 Inhaltsverzeichnis Inhaltsverzeichnis 1 Wärmeleitfähigkeit 3 2 Peltier-Kühlblock

Mehr

www.leipzig-medizin.de

www.leipzig-medizin.de Die mittlere kinetische Energie der Teilchen eines Körpers ist ein Maß für (A) die absolute Temperatur des Körpers (B) die Dichte des Körpers (C) die spezifische Wärmekapazität (D) das spezifische Wärmeleitvermögen

Mehr

Versuch: Spezifische Wärmekapazität fester Körper

Versuch: Spezifische Wärmekapazität fester Körper ersuch T1 SPEZIFISHE WÄRMEKAPAZITÄT FESTER KÖRPER Seite 1 von 5 ersuch: Spezifische Wärmekapazität fester Körper Anleitung für folgende Studiengänge: Physik, L3 Physik, Biophysik, Meteorologie, hemie,

Mehr

Thermodynamische Berechnung des Modells eines Stirling-Motors Typ b

Thermodynamische Berechnung des Modells eines Stirling-Motors Typ b ösung : Projekt Stirling-Motor nach dem Kartonmodell Seite von 7 hermodynamische Berechnung des Modells eines Stirling-Motors y b Zu.) Übertragen Sie das gegebene --Diagramm in ein entsrechendes -s-diagramm

Mehr

Physik1. Physik der Wärme. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH

Physik1. Physik der Wärme. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH 3 Physik1. Physik der Wärme. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH Physik Wärme 5 Themen Begriffsklärung Anwendungen Temperaturskalen Modellvorstellung Wärmeausdehnung Thermische Ausdehnung Phasenübergänge

Mehr

Elektrischer Widerstand als Funktion der Temperatur

Elektrischer Widerstand als Funktion der Temperatur V10 Elektrischer Widerstand als Funktion der Temperatur 1. Aufgabenstellung 1.1 Messung Sie den elektrischen Widerstand vorgegebener Materialien als Funktion der Temperatur bei tiefen Temperaturen. 1.2

Mehr

Temperaturmessung. 1) Lies an der Wetterstation ab, wie viel C die Außentemperatur beträgt. 9,45 C 22,2 C 12.4 C 39 C

Temperaturmessung. 1) Lies an der Wetterstation ab, wie viel C die Außentemperatur beträgt. 9,45 C 22,2 C 12.4 C 39 C Temperaturmessung Stefans Familie hat sich eine digitale Wetterstation gekauft. Daran kann man neben der und der Wettervorhersage auch die Innen- und Außentemperatur ablesen. 1) Lies an der Wetterstation

Mehr

Spezifische Wärmekapazität fester Körper

Spezifische Wärmekapazität fester Körper Version: 14. Oktober 2005 Spezifische Wärmekapazität fester Körper Stichworte Wärmemenge, spezifische Wärme, Schmelzwärme, Wärmekapazität, Wasserwert, Siedepunkt, innere Energie, Energiesatz, Hauptsätze

Mehr

1. Bernoulli - Gleichung für ideale Flüssigkeiten (reibungsfrei) und ohne Energiezu- und -abfuhr

1. Bernoulli - Gleichung für ideale Flüssigkeiten (reibungsfrei) und ohne Energiezu- und -abfuhr Bernoulli - Gleichung. Bernoulli - Gleichung für ideale Flüssigkeiten (reibungsfrei) und ohne Energiezu- und -abfuhr Sie sagt aus, dass jedes Teilchen in einer Stromröhre denselben Wert der spezifischen

Mehr

Grundlagen der Wärmelehre

Grundlagen der Wärmelehre Ausgabe 2007-09 Grundlagen der Wärmelehre (Erläuterungen) Die Wärmelehre ist das Teilgebiet der Physik, in dem Zustandsänderungen von Körpern infolge Zufuhr oder Abgabe von Wärmeenergie und in dem Energieumwandlungen,

Mehr

Formel X Leistungskurs Physik 2005/2006

Formel X Leistungskurs Physik 2005/2006 System: Wir betrachten ein Fluid (Bild, Gas oder Flüssigkeit), das sich in einem Zylinder befindet, der durch einen Kolben verschlossen ist. In der Thermodynamik bezeichnet man den Gegenstand der Betrachtung

Mehr

F01. Hall-Effekt. Der Hall-Effekt ist nachzuweisen und die Abhängigkeit der Hall-Spannung vom anliegenden Magnetfeld darzustellen.

F01. Hall-Effekt. Der Hall-Effekt ist nachzuweisen und die Abhängigkeit der Hall-Spannung vom anliegenden Magnetfeld darzustellen. F01 all-effekt Der all-effekt ist nachzuweisen und die Abhängigkeit der all-spannung vom anliegenden Magnetfeld darzustellen. 1. Theoretische Grundlagen 1.1 Beschreibung des all-effektes (Edwin erbert

Mehr

Physik für Mediziner und Zahmediziner

Physik für Mediziner und Zahmediziner Physik für Mediziner und Zahmediziner Vorlesung 03 Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 1 Arbeit: vorläufige Definition Definition der Arbeit (vorläufig): Wird auf

Mehr

Einbau einer Sitzheizung in die Golding GL1800 Vorort: So eit mir bekannt ist, hat Honda in die GL1800 ab Baujahr 2006 eine Sitzheizung serienmäßig eingebaut. In den vorherigen Baujahren ist die Sitzheizung

Mehr

Physikalische Chemie in der Schule

Physikalische Chemie in der Schule Universität Kassel, Grundpraktikum Physikalische Chemie Studiengang Lehramt Chemie Physikalische Chemie in der Schule I. Anfangsunterricht: Die Merkmale der chemischen Reaktion (Lit. Elemente chemie I

Mehr

Tauchsieder, elektrische Energie

Tauchsieder, elektrische Energie Tauchsieder, elektrische Energie Aufgabe Aus einem Konstantandraht werden zwei Spulen unterschiedlicher Länge im Verhältnis 1:3 gewickelt. Mit den parallel geschalteten Spulen erhitzt man zwei gleiche

Mehr

t ). Wird diese Verteilung experimentell ermittelt, so ist entsprechend Gl.(1) eine Bestimmung der Wärmeleitfähigkeit

t ). Wird diese Verteilung experimentell ermittelt, so ist entsprechend Gl.(1) eine Bestimmung der Wärmeleitfähigkeit W 4 Wärmeleitfähigkeit. Aufgabenstellung. Bestimmen Sie aus der zeitlichen Änderung der Wassertemperatur des Kalorimeters den Wärmeaustausch mit der Umgebung.. Stellen Sie die durch Wärmeleitung hervorgerufene

Mehr

Wärmedämmungsexperiment 1

Wärmedämmungsexperiment 1 Wärmedämmungsexperiment 1 Ziel dieses Experiments ist die Messung der Wärmeleitfähigkeit verschiedener Materialien durch Umwandlung der übertragenen Wärmeenergie in Bewegung. Die Menge der Wärmeenergie

Mehr

Hochschule Bremerhaven Fotokopie 06

Hochschule Bremerhaven Fotokopie 06 Bild 1 Wird von einem Körper abgegeben, so verringert sich seine thermische Energie. Die thermische Energie des Körpers, auf den die übertragen wird, vergrößert sich dementsprechend (Bild 1). Die ist somit

Mehr

TEMPERATUR UND WÄRMEKAPAZITÄT... 2 KALORIMETRIE I... 3 KALORIMETRIE II... 5 PHASENUMWANDLUNGEN... 6

TEMPERATUR UND WÄRMEKAPAZITÄT... 2 KALORIMETRIE I... 3 KALORIMETRIE II... 5 PHASENUMWANDLUNGEN... 6 E-Mail: Homepage: info@schroeder-doms.de schroeder-doms.de München den 11. Mai 2009 W1 Kalorimetrie (Skript zur Vorbereitung) TEMPERATUR UND WÄRMEKAPAZITÄT... 2 Wärme und Temperatur, Kelvin-Skala:... 2

Mehr

Physik 2 (B.Sc. EIT) 2. Übungsblatt

Physik 2 (B.Sc. EIT) 2. Übungsblatt Institut für Physik Werner-Heisenberg-Weg 9 Fakultät für Elektrotechnik 85577 München / Neubiberg Universität der Bundeswehr München / Neubiberg Prof Dr H Baumgärtner Übungen: Dr-Ing Tanja Stimpel-Lindner,

Mehr

IIW4. Modul Wärmelehre. Wärme als Energieform

IIW4. Modul Wärmelehre. Wärme als Energieform IIW4 Modul Wärmelehre Wärme als Energieform Das Ziel des vorliegenden Versuches ist die Bestimmung der spezifischen Wärme von Kupfer, Aluminium und Blei in einem ersten Teil, sowie die Umwandlung von mechanischer

Mehr

Wiedemann-Franz-Lorenzsches Gesetz (Wiede)

Wiedemann-Franz-Lorenzsches Gesetz (Wiede) TU Ilmenau Ausgabe: September 2015 Fakultät für Elektrotechnik und Informationstechnik Dr. Kups Institut für Werkstofftechnik 1 Versuchsziel Wiedemann-Franz-Lorenzsches Gesetz (Wiede) Ziel des Versuches

Mehr

10.3.1 Druckverlust in Rohrleitungen bei laminarer Strömung (Re < 2320)

10.3.1 Druckverlust in Rohrleitungen bei laminarer Strömung (Re < 2320) 0.3-0.3 Rohrströmung 0.3. Druckverlust in Rohrleitungen bei laminarer Strömung (Re < 30) Bei laminarer Rohrströmung läßt sich der Reibungsverlust theoretisch berechnen, as bei der turbulenten Strömung

Mehr

Versuch 2. Physik für (Zahn-)Mediziner. c Claus Pegel 13. November 2007

Versuch 2. Physik für (Zahn-)Mediziner. c Claus Pegel 13. November 2007 Versuch 2 Physik für (Zahn-)Mediziner c Claus Pegel 13. November 2007 1 Wärmemenge 1 Wärme oder Wärmemenge ist eine makroskopische Größe zur Beschreibung der ungeordneten Bewegung von Molekülen ( Schwingungen,

Mehr

Versuch 302. 1.2 Bestimmen Sie die charakteristischen Merkmale (Empfindlichkeit, Temperaturkoeffizient u.ä.) für alle drei Meßfühler!

Versuch 302. 1.2 Bestimmen Sie die charakteristischen Merkmale (Empfindlichkeit, Temperaturkoeffizient u.ä.) für alle drei Meßfühler! 1 Elektrische Thermometer 1. Aufgaben: Versuch 302 1.1 Nehmen Sie die Kennlinien (U-T bzw. R-T) von Thermoelement, Thermistor und Widerstandsthermometer im Temperaturbereich 25...80 C auf und stellen Sie

Mehr

Chemie (in) der Extra_Klasse: Erneuerbare Energien Mein ipod läuft mit Kuhmist!

Chemie (in) der Extra_Klasse: Erneuerbare Energien Mein ipod läuft mit Kuhmist! Unterrichts- und Lernmaterialien geprüft vom PARSEL-Konsortium im Rahmen des EC FP6 geförderten Projekts: SAS6-CT-2006-042922-PARSEL Kooperierende Institutionen und Universitäten des PARSEL-Projekts: Anregungen

Mehr

Schriftliche Abschlussprüfung Physik

Schriftliche Abschlussprüfung Physik Sächsisches Staatsministerium für Kultus Schuljahr 2002/2003 Geltungsbereich: für Klassen 10 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlussprüfung Physik Realschulabschluss

Mehr

3.2. Aufgaben zu Gleichstromkreisen

3.2. Aufgaben zu Gleichstromkreisen .. Aufgaben zu Gleichstromkreisen Aufgabe : Ladungstransport a) Warum leiten Metalle den elektrischen Strom? b) Wie wirkt sich eine Temperaturzunahme auf die kleinsten Teilchen aus? c) Begründe, warum

Mehr

W10. Wärmeleitung. Es werden die Wärme- und die elektrische Leitfähigkeit zweier Metalle bestimmt und die Proportionalität

W10. Wärmeleitung. Es werden die Wärme- und die elektrische Leitfähigkeit zweier Metalle bestimmt und die Proportionalität W10 Wärmeleitung Es werden die Wärme- und die elektrische Leitfähigkeit zweier Metalle bestimmt und die Proportionalität dieser Größen nachgewiesen. 1. Theoretische Grundlagen 1.1 Wärmeleitung Mikroskopisch

Mehr

Laborversuche zur Physik 1 I - 3. Bestimmung spezifischer Wärmen durch Kalorimetrie

Laborversuche zur Physik 1 I - 3. Bestimmung spezifischer Wärmen durch Kalorimetrie FB Physik Laborversuche zur Physik 1 I - 3 Kalorimetrie Reyher Bestimmung spezifischer Wärmen durch Kalorimetrie Ziele Messung der Schmelzwärme von Eis Messung der Verdampfungswärme von Wasser Messung

Mehr

Physikalische Chemie Praktikum. Thermodynamik: Verbrennungsenthalpie einer organischen Substanz

Physikalische Chemie Praktikum. Thermodynamik: Verbrennungsenthalpie einer organischen Substanz Hochschule Emden/Leer Physikalische Chemie Praktikum Vers. Nr. 18 Nov. 2016 Thermodynamik: Verbrennungsenthalpie einer organischen Substanz Allgemeine Grundlagen 1. Hauptsatz der Thermodynamik, Enthalpie,

Mehr

Aufbau der Materie: Oberflächenspannung von Flüssigkeiten EÖTVÖSsche Regel

Aufbau der Materie: Oberflächenspannung von Flüssigkeiten EÖTVÖSsche Regel Hochschule Physikalische Chemie Vers.Nr. 11 Emden / Leer Praktikum Sept. 2005 Aufbau der Materie: Oberflächenspannung von Flüssigkeiten EÖTVÖSsche Regel In diesem Versuch soll die Oberflächenspannung einer

Mehr

2.2 Spezifische und latente Wärmen

2.2 Spezifische und latente Wärmen 1 Einleitung Physikalisches Praktikum für Anfänger - Teil 1 Gruppe 2 Wärmelehre 2.2 Spezifische und latente Wärmen Die spezifische Wärme von Wasser gibt an, wieviel Energie man zu 1 kg Wasser zuführen

Mehr

Ausdehnung und Temperatur

Ausdehnung und Temperatur Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Mathematik und Naturwissenschaften Arbeitsblatt Physik 4 (Wärmelehre) Dozent: - Brückenkurs Mathematik / Physik 2016 Modul: Physik

Mehr

T3 Wärmekapazität. Christian Müller Jan Philipp Dietrich

T3 Wärmekapazität. Christian Müller Jan Philipp Dietrich Christian Müller Jan Philipp Dietrich T3 Wärmekapazität Versuch 1: a) Versuchserläuterung b) Werte und Grafiken, Bestimmung der Mischtemperatur c) Diskusion über die Materialien der Versuchskörper d) Berechnung

Mehr

Staatsexamen Physikdidaktik Unterrichtsfach (nicht vertieft) Frühjahr 2010, Aufgabe 1: Spezifische Wärmekapazität

Staatsexamen Physikdidaktik Unterrichtsfach (nicht vertieft) Frühjahr 2010, Aufgabe 1: Spezifische Wärmekapazität Staatsexamen Physikdidaktik Unterrichtsfach (nicht vertieft) Frühjahr 2010, Aufgabe 1: Spezifische Wärmekapazität 1. Erläutern Sie die Begriffe innere Energie, Wärme, Wärmeleitung und spezifische Wärme

Mehr

Bedienungsanleitung Viskosimeter PCE-RVI1

Bedienungsanleitung Viskosimeter PCE-RVI1 PCE Deutschland GmbH Im Langel 4 D-59872 Meschede Deutschland Tel: 02903 976 99 0 Fax: 02903 976 99 29 info@pce-instruments.com www.pce-instruments.com/deutsch Bedienungsanleitung Viskosimeter PCE-RVI1

Mehr

5.1. Kinetische Gastheorie. Ziel: Der Gasdruck: Kolben ohne Reibung, Gasatome im Volumen V Wie groß ist F auf den Kolben?

5.1. Kinetische Gastheorie. Ziel: Der Gasdruck: Kolben ohne Reibung, Gasatome im Volumen V Wie groß ist F auf den Kolben? 5.1. Kinetische Gastheorie z.b: He-Gas : 3 10 Atome/cm diese wechselwirken über die elektrische Kraft: Materie besteht aus sehr vielen Atomen: gehorchen den Gesetzen der Mechanik Ziel: Verständnis der

Mehr

Übung 5 : G = Wärmeflussdichte [Watt/m 2 ] c = spezifische Wärmekapazität k = Wärmeleitfähigkeit = *p*c = Wärmediffusität

Übung 5 : G = Wärmeflussdichte [Watt/m 2 ] c = spezifische Wärmekapazität k = Wärmeleitfähigkeit = *p*c = Wärmediffusität Übung 5 : Theorie : In einem Boden finden immer Temperaturausgleichsprozesse statt. Der Wärmestrom läßt sich in eine vertikale und horizontale Komponente einteilen. Wir betrachten hier den Wärmestrom in

Mehr

Wärmebox Typ TMJT FB Projektmanagement Ergebnispräsentation Gruppe 1

Wärmebox Typ TMJT FB Projektmanagement Ergebnispräsentation Gruppe 1 Wärmebox Typ TMJT 2012 FB Projektmanagement 26.9. 2012 Ergebnispräsentation Gruppe 1 Ziele 1) Prototyp zur vergleichenden Messung der Wärmeleitfähigkeit von Feststoffen 2) Unter 25 Euro und mit Werkzeugen

Mehr

Versuchsprotokoll T12 Bestimmung der Standardbildungsenthalpie aus Verbrennungsenergien

Versuchsprotokoll T12 Bestimmung der Standardbildungsenthalpie aus Verbrennungsenergien Dieses Werk steht unter der Creative-Commons-Lizenz CC BY-NC 3.0 1 Physikalische Chemie I Versuchsprotokoll T12 Bestimmung der Standardbildungsenthalpie aus Verbrennungsenergien Inhaltsverzeichnis 1 Ziel

Mehr

Berechnungsgrundlagen

Berechnungsgrundlagen Inhalt: 1. Grundlage zur Berechnung von elektrischen Heizelementen 2. Physikalische Grundlagen 3. Eigenschaften verschiedener Medien 4. Entscheidung für das Heizelement 5. Lebensdauer von verdichteten

Mehr

Überlegungen zur Leistung und zum Wirkungsgrad von Solarkochern

Überlegungen zur Leistung und zum Wirkungsgrad von Solarkochern Überlegungen zur Leistung und zum Wirkungsgrad von Solarkochern (Dr. Hartmut Ehmler) Einführung Die folgenden Überlegungen gelten ganz allgemein für Solarkocher, unabhängig ob es sich um einen Parabolkocher,

Mehr

Temperatur Wärme Thermodynamik

Temperatur Wärme Thermodynamik Temperatur Wärme Thermodynamik Stoffwiederholung und Übungsaufgaben... 2 Lösungen... 33 Thermodynamik / 1 Einführung: Temperatur und Wärme Alle Körper haben eine innere Energie, denn sie sind aus komplizierten

Mehr

3. Berechnung der molaren Verbrennungsenthalpie. 4. Berechnung der Standardreaktionsenthalpie für die Hydrierung von Phthalsäureanhydrid

3. Berechnung der molaren Verbrennungsenthalpie. 4. Berechnung der Standardreaktionsenthalpie für die Hydrierung von Phthalsäureanhydrid Verbrennungswärme Aufgaben: 1. Ermittlung der Wärmekapazität des Kalorimeters durch Verbrennen einer Eichsubstanz. 2. Bestimmung der spezifischen Verbrennungswärmen von Phthalsäureanhydrid und Tetrahydrophthalsäureanhydrid.

Mehr

Motorkennlinie messen

Motorkennlinie messen Aktoren kennlinie messen von Roland Steffen 3387259 2004 Aktoren, kennlinie messen Roland Steffen Seite 1/5 Aufgabenstellung: Von einer Elektromotor-Getriebe-Einheit ist eine vollständige kennlinienschar

Mehr

STATIONÄRE WÄRMELEITUNG

STATIONÄRE WÄRMELEITUNG Wärmeübertragung und Stofftransport VUB4 STATIONÄRE WÄRMELEITUNG Bestimmung der Wärmeleitfähigkeit λ eines Metallzylinders durch Messungen der stationären Wärmeverteilung Gruppe 1 Christian Mayr 23.03.2006

Mehr

Übungen zur Vorlesung. Energiesysteme

Übungen zur Vorlesung. Energiesysteme Übungen zur Vorlesung Energiesysteme 1. Wärme als Form der Energieübertragung 1.1 Eine Halle mit 500 m 2 Grundfläche soll mit einer Fußbodenheizung ausgestattet werden, die mit einer mittleren Temperatur

Mehr

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X Praktikum Physik Protokoll zum Versuch 1: Viskosität Durchgeführt am 26.01.2012 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das Protokoll

Mehr

EHW Seite. Bei einem Spritzeinsatz zur Schädlingsbekämpfung fliegt ein Flugzeug bei Windstille in 20 s über ein 500 m langes Feld.

EHW Seite. Bei einem Spritzeinsatz zur Schädlingsbekämpfung fliegt ein Flugzeug bei Windstille in 20 s über ein 500 m langes Feld. EHW Seite Bei einem Spritzeinsatz zur Schädlingsbekämpfung fliegt ein Flugzeug bei Windstille in 20 s über ein 500 m langes Feld. Welche Geschwindigkeit besitzt das Flugzeug? Wie lange benötigt es, wenn

Mehr

IIW6. Modul Wärmelehre. Peltier-Wärmepumpe

IIW6. Modul Wärmelehre. Peltier-Wärmepumpe IIW6 Modul Wärmelehre Peltier-Wärmepumpe In dem vorliegenden Versuch wird die Thermoelektrizität anhand einer Peltier-Wärmepumpe untersucht. Unter Thermoelektrizität versteht man die umkehrbaren Wechselwirkungen

Mehr

Mechanik. Entwicklung der Mechanik

Mechanik. Entwicklung der Mechanik Mechanik Entwicklung der Mechanik ältester Zweig der Physik Kinematik Bewegung Dynamik Kraft Statik Gleichgewicht Antike: Mechanik = Kunst die Natur zu überlisten mit Newton Beginn Entwicklung Mechanik

Mehr

Versuch 3 ( Kalorimeter C 4000 ) Messung des Brenn- und Heizwertes ( DIN )

Versuch 3 ( Kalorimeter C 4000 ) Messung des Brenn- und Heizwertes ( DIN ) Versuch 3 ( Kalorimeter C 4000 ) Messung des Brenn- und Heizwertes ( DIN 51900 ) Versuch 3 Messung des Brenn- und Heizwertes ( DIN 51900-1 ) ( Kalorimeter C 4000 ) 3.1 Einführung Brennwert und Heizwert

Mehr

Bestimmung der spezifischen Wärmekapazität fester Körper

Bestimmung der spezifischen Wärmekapazität fester Körper - B02.1 - Versuch B2: Bestimmung der spezifischen Wärmekapazität fester Körper 1. Literatur: Demtröder, Experimentalphysik, Bd. I Bergmann-Schaefer, Lehrbuch der Physik, Bd.I Walcher, Praktikum der Physik

Mehr

D = 10 mm δ = 5 mm a = 0, 1 m L = 1, 5 m λ i = 0, 4 W/mK ϑ 0 = 130 C ϑ L = 30 C α W = 20 W/m 2 K ɛ 0 = 0, 8 ɛ W = 0, 2

D = 10 mm δ = 5 mm a = 0, 1 m L = 1, 5 m λ i = 0, 4 W/mK ϑ 0 = 130 C ϑ L = 30 C α W = 20 W/m 2 K ɛ 0 = 0, 8 ɛ W = 0, 2 Seminargruppe WuSt Aufgabe.: Kabelkanal (ehemalige Vordiplom-Aufgabe) In einem horizontalen hohlen Kabelkanal der Länge L mit einem quadratischen Querschnitt der Seitenlänge a verläuft in Längsrichtung

Mehr

Peltier-Element kurz erklärt

Peltier-Element kurz erklärt Peltier-Element kurz erklärt Inhaltsverzeichnis 1 Peltier-Kühltechnk...3 2 Anwendungen...3 3 Was ist ein Peltier-Element...3 4 Peltier-Effekt...3 5 Prinzipieller Aufbau...4 6 Wärmeflüsse...4 6.1 Wärmebilanz...4

Mehr

1. Ablesen eines Universalmessgerätes und Fehlerberechnung

1. Ablesen eines Universalmessgerätes und Fehlerberechnung Laborübung 1 1-1 1. Ablesen eines Universalmessgerätes und Fehlerberechnung Wie groß ist die angezeigte elektrische Größe in den Bildern 1 bis 6? Mit welchem relativen Messfehler muss in den sechs Ableseübungen

Mehr

M20. Oberflächenspannung

M20. Oberflächenspannung M0 Oberflächenspannung Untersucht werden Kräfte an Ober- bzw. Grenzflächen von Flüssigkeiten und ihre Abhängigkeit von der Temperatur. 1. Theoretische Grundlagen 1.1 Oberflächenspannung, Grenzflächenspannung

Mehr

W2: Die Wärmepumpe, Lehramtspraktikum Physik WS09/10

W2: Die Wärmepumpe, Lehramtspraktikum Physik WS09/10 W2: Die Wärmepumpe, Lehramtspraktikum Physik WS09/10 1. Messaufbau Wärmepumpe mit zwei isolierten Edelstahlbhältern Elektronisches Thermometer Elektrorührer mit Netzgerät Saugpumpe Für spezielle Anwendungen:

Mehr