Lineare Differenzengleichungen und Polynome. Franz Pauer

Größe: px
Ab Seite anzeigen:

Download "Lineare Differenzengleichungen und Polynome. Franz Pauer"

Transkript

1 Lineare Differenzengleichungen und Polynome Franz Pauer Institut für Mathematik, Universität Innsbruck, Technikerstr. 13/7, A-600 Innsbruck, Österreich. Vortrag beim ÖMG-LehrerInnenfortbildungstag 009 in Wien 17. April 009 1

2 Einleitung Lehrplan 8. Klasse AHS: Beschreiben von Systemen mit Hilfe von... Differenzengleichungen oder Differentialgleichungen Lehrplan der Höheren Lehranstalt für Elektrotechnik, III. Jahrgang: Differenzengleichungen, Zahlenfolgen,... Ziele dieses Vortrags: einfache Darstellung der Theorie der linearen Differenzengleichungen (in einer Variablen, mit konstanten Koeffizienten) Lösungsverfahren mit Hilfe der Division mit Rest von Polynomen Aus Zeitgründen leider nicht: Modellierung von interessanten Problemen aus Wirtschaft, Technik und Naturwissenschaften

3 Inhalt: Folgen und ihre Darstellung, Rechnen mit Folgen Lineare Differenzengleichungen: Definition, Beschreibung der Lösungsmenge, Existenz von Lösungen Beschreibung von Differenzengleichungen mit Hilfe von Polynomen Lösen von Differenzengleichungen mit Hilfe der Division mit Rest von Polynomen Bemerkung: R könnte im weiteren immer durch C oder Q ersetzt werden. 3

4 Folgen Eine Folge in R ist eine Funktion von N nach R. Darstellung von Folgen: - f : N R, j f(j) ODER - (f 0, f 1, f, f 3,...) = (f j ) j N = (f(j)) j N ODER

5 (Genaue) Beschreibung von Folgen (durch endlich viele Daten) Durch Angabe eines Verfahrens, wie für jede Zahl j N das j-te Folgenglied f(j) berechnet werden kann. Zum Beispiel: Für alle j N sei f(j) := j 3j +. Oder: Für alle j N sei f(j) := 1 j! j. Durch Angabe von Bedingungen, die von genau einer Folge f erfüllt werden. Zum Beispiel: f(0) = 0, f(1) = 1, und für alle j N: f(j +) = f(j +1)+f(j). 5

6 Lineare Differenzengleichungen Eine lineare Differenzengleichung (der Ordnung n) ist die folgende Aufgabe: Gegeben sind reelle Zahlen c 0, c 1,..., c n mit c n 0 und eine Folge h in R. Gesucht ist eine gute Beschreibung der Menge L(c 0,..., c n ; h) aller Folgen f in R mit der Eigenschaft: für alle j N ist c 0 f(j)+c 1 f(j+1)+...+c n f(j+n) = h(j). Diese Folgen f heißen Lösungen der Differenzengleichung. Wenn h = 0 ist, heißt die Differenzengleichung homogen. 6

7 Interpretation als System von linearen Gleichungen mit unendlich vielen Unbekannten und unendlich vielen Gleichungen : c 0 f(0)+ c 1 f(1)+ c f()+ c 3 f(3)+... = h(0) c 0 f(1)+ c 1 f()+ c f(3)+... = h(1) c 0 f()+ c 1 f(3)+... = h() c 0 f(3)+... = h()... =... In jeder Zeile nur endlich viele Summanden 0! Unbekannte : f(0), f(1), f(),.... 7

8 Einschub 1: Rechnen mit Folgen Sei F die Menge aller Folgen in R. Für f = (f 0, f 1, f,...) F, g = (g 0, g 1, g,...) F und b R ist und f + g := (f 0 + g 0, f 1 + g 1, f + g,...) b f := (bf 0, bf 1, bf,...). Für + und in F gelten die Rechenregeln eines Vektorraums, also: Folgen sind Vektoren. 8

9 Wichtige Beobachtungen Gegeben seien reelle Zahlen c 0, c 1,..., c n mit c n 0. Wir betrachten die dadurch gegebene homogene lineare Differenzengleichung. Wenn f und g Lösungen dieser Differenzengleichungen sind, dann auch f + g. Wenn f eine Lösung ist und b eine reelle Zahl, dann ist auch b f eine Lösung. Also: L(c 0,..., c n ; 0) ist ein Untervektorraum von F! Er kann also durch Angabe (irgend)einer Basis gut beschrieben werden. 9

10 Gegeben seien reelle Zahlen c 0, c 1,..., c n mit c n 0 und eine Folge h. Wir betrachten die dadurch gegebene lineare Differenzengleichung. Wenn f und g Lösungen dieser Differenzengleichung sind, dann ist f g eine Lösung der entsprechenden homogenen Differenzengleichung. Wenn f (irgend)eine Lösung dieser linearen Differenzengleichung ist, dann erhält man alle Lösungen, indem man beliebige Lösungen der entsprechenden homogenen linearen Differenzengleichung zu f addiert. Also: L(c 0,..., c n ; h) kann durch Angabe (irgend)einer Lösung f und (irgend)einer Basis g 1,..., g k von L(c 0,..., c n ; 0) beschrieben werden. Dann ist L(c 0,..., c n ; h) = {f + k i=1 b i g i b 1,..., b k R }. 10

11 Existenz von Lösungen Es seien a 0,..., a n 1 reelle Zahlen ( Anfangsbedingungen ). Dann gibt es genau eine Folge f so, dass f(i) = a i, 0 i n 1, und c 0 f(j)+c 1 f(j +1) c n f(j +n) = h(j), j N, ist. Insbesondere: L(c 0,..., c n 1 ; h) ist nicht leer und L(c 0,..., c n ; 0) ist ein n-dimensionaler Vektorraum. Also: Der Lösungsraum einer linearen Differenzengleichung der Ordnung n ist n-dimensional. Zu vorgegebenen n Anfangsbedingungen gibt es genau eine Lösung einer linearen Differenzengleichungen. 11

12 Berechne f induktiv: f(0) = a 0,..., f(n 1) = a n 1, f(n) = c 1 n (h(0) c 0 f(0) c 1 f(1)... c n 1 f(n 1)) f(n + 1) = c 1 n (h(1) c 0f(1) c 1 f()... c n 1 f(n)) f(n + ) = c 1 n (h() c 0 f() c 1 f(3)... c n 1 f(n + 1)) f(n + 3) =... 1

13 Beispiel: a 0 = 0, a 1 = 1, f(j + ) f(j + 1) f(j) = 0, j N. f(0) = 0, f(1) = 1 f() = f(1) + f(0) = 1 f(3) = f() + f(1) = f(4) = f(3) + f() = 3 f(5) = f(4) + f(3) = 5... Diese Folge heißt Folge der Fibonacci-Zahlen. 13

14 Shifts Sei f eine Folge in R. Für l N sei s l f die Folge in R mit für alle j N ist (s l f)(j) := f(j + l) Beispiel: f = (1,, 1, 1,,,...) s f = (, 1, 1,,,...) s f = ( 1, 1,,,...) s 3 f = (1,,,...) 14

15 Beispiel: f s f s f

16 Einschub : Polynomfunktionen, Polynome Seien n N und c 0, c 1,..., c n R. Dann ist die Funktion p : R R, z c 0 + c 1 z + c z + + c n z n = eine Polynomfunktion von R nach R. n i=0 c i z i, Die Zahlen c 0,..., c n sind die Koeffizienten von p. Wenn c n 0 ist: grad(p) := n ist der Grad von f und lk(p) := c n der Leitkoeffizient von p. Wir schreiben für p im weiteren c 0 + c 1 s + c s c n s n oder n i=0 c i s i und sprechen dann von einem Polynom in der Variablen s mit Koeffizienten in R. Für die Menge dieser Polynome schreiben wir dann R[s]. 16

17 Für die Addition n i=0 c i s i + n i=0 und die Multiplikation d i s i := n i=0 (c i + d i )s i ( n c i s i ) ( n i=0 i=0 d i s i ) := n ( i i=0 j=0 c j d i j )s i gelten die gleichen Rechenregeln wie für die Addition und Multiplikation von ganzen Zahlen. 17

18 Beschreibung von Differenzengleichungen durch Polynome Für p := n i=0 c i s i und f F sei p f := Also: für alle j N ist n i=0 c i (s i f) F. (p f)(j) = n i=0 c i f(j + i). Sprechweise: die durch p und h gegebene lineare Differenzengleichung bedeutet die durch c 0, c 1,..., c n und h gegebene lineare Differenzengleichung. Statt L(c 0, c 1,..., c n ; h) schreiben wir dann einfach L(p; h). Es ist L(p; h) = {f F p f = h }. Beispiel: Die durch s s 1 gegebene Differenzengleichung ist die homogene Differenzengleichung, die durch, 1, 1 gegeben ist. 18

19 Noch einmal: Wichtige Beobachtungen Für Polynome p, q R[s], eine reelle Zahl b und eine Folge f ist und (bp + q) f = b(p f) + q f (pq) f = p (q f) = q (p f). Seien p, q R[s] und f F. Wenn p f = 0 ist, dann ist auch p (q f) = 0. L(p; 0) ist nicht nur ein R-Vektorraum, sondern sogar ein R[s]-Modul. 19

20 Einschub 3: Division mit Rest von Polynomen Satz: Zu je zwei Polynomen q und p mit p 0 gibt es eindeutig bestimmte Polynome m und r mit den Eigenschaften q = m p+r und [r = 0 oder grad(r) < grad(p)]. m... polynomialer Quotient von q und p r... Rest von q nach Division durch p Divisionsalgorithmus (Berechnung von m und r): Setze m := 0 und r := q. Solange r 0 und grad(r) grad(p) ist, ersetze r durch r t p und m durch m + t, wobei t := lk(r) lk(p) 1 s grad(r) grad(p) ist. 0

21 Beispiel: Seien q := s 4 +s 3 s +s 1 und p := s. Wir berechnen mit dem oben angegebenen Verfahren Polynome m und r mit q = m p + r und (r = 0 oder grad(r) < grad(b) = ). Dabei beginnen wir mit r := q und schreiben die Zwischenrechnungen platzsparend untereinander. s 4 +s 3 s +s 1 = (s + s)p + r s 4 +s +s 3 +s 1 s 3 +4s +5s 1 =: r Also ist m = s + s und r = 5s 1. 1

22 Lösen von Differenzengleichungen mit Hilfe der Division mit Rest Seien p = n i=0 c i s i R[s], c n 0, h F und a 0,..., a n 1 R. Sei f L(p; h) die Lösung mit Anfangswerten f(j) = a j, 0 j n 1. Für l n kann f(l) wie folgt berechnet werden: Dividiere s l mit Rest durch p : s l = m l p + r l und (r l = 0 oder grad(r l ) < n). Sei r lj der Koeffizient von r l bei s j, also r l = n 1 j=0 r lj s j. Dann ist f(l) = (m l h)(0) + n 1 j=0 r lj a j.

23 Denn: f(l) = (s l f)(0) = = ((m l p + r l ) f)(0) = = (m l (p f))(0) + (r l f)(0) = = (m l h)(0) + n 1 j=0 r lj a j. Beispiel: Sei f die Fibonacci-Folge. Der Rest von s 100 nach Division durch s s 1 ist (Berechnung in Maple mit rem(s 100, s s 1, s)) s , wegen f(0) = 0 und f(1) = 1 ist f(100) =

24 Beispiel: Lineare Differenzengleichungen 1. Ordnung Seien a, c R reelle Zahlen und h F. Berechne die Folge f mit (s c) f = h und f(0) = a! Anders formuliert: Für alle l N sei f(l + 1) c f(l) = h(l) und f(0) = a. Division mit Rest von s l durch s c ergibt s l = m l (s c) + r und r R. Daraus folgt und c l = 0 + r m l = sl c l l 1 s c = also ist für alle l N f(l) = l 1 j=0 j=0 c j s l 1 j, c j h(l 1 j) + c l a. 4

25 Beispiel: Homogene lineare Differenzengleichungen. Ordnung Sei p := s + c 1 s + c 0 R[s], c 0 0 und seien x 1, x die Nullstellen von p. Dann ist (x l i ) l N die Lösung der durch s x i gegebenen homogenen linearen Differenzengleichung mit Anfangswert 1. Wegen p f = ((s x 1 )(s x )) f = = (s x 1 ) ((s x )) f) = (s x ) ((s x )) f) sind (x l i ) l N Lösungen der durch p gegebenen homogenen Differenzengleichung, also auch alle Linearkombinationen davon. Fall 1: x 1 x. Dann sind (x l 1 ) l N und (xl ) l N linear unabhängig, bilden also eine Basis von L(p; 0). Fall : x 1 = x. Dann bilden (x l 1 ) l N und (lxl 1 ) l N eine Basis von L(p; 0). 5

26 Beispiel: Die Formel von Binet Die Fibonacci-Folge f ist die Lösung der durch p := s s 1 und f(0) = 0, f(1) = 1 gegebenen Differenzengleichung. Die Nullstellen von p sind also ist x 1 := 1+ 5 und x := 1 5, f = u (x l 1 ) l N + v (xl ) l N, mit u, v R so, dass 0 = f(0) = u + v und 1 = f(1) = u x 1 + v x ist. Man berechnet leicht: u = 1 und v = Das l-te Glied f(l) der Fibonacci-Folge ist somit ( ) l ( ) l

Lineare Differenzengleichungen. Franz Pauer. Vortrag beim LehrerInnenfortbildungstag West 2010 in Innsbruck

Lineare Differenzengleichungen. Franz Pauer. Vortrag beim LehrerInnenfortbildungstag West 2010 in Innsbruck Lineare Differenzengleichungen Franz Pauer Institut für Mathematik, Universität Innsbruck, Technikerstr. 13/7, A-6020 Innsbruck, Österreich. Franz.Pauer@uibk.ac.at Vortrag beim LehrerInnenfortbildungstag

Mehr

Differenzengleichungen. und Polynome

Differenzengleichungen. und Polynome Lineare Differenzengleichungen und Polynome Franz Pauer Institut für Mathematik, Universität Innsbruck Technikerstr. 13/7, A-600 Innsbruck, Österreich franz.pauer@uibk.ac.at 1 Einleitung Mit linearen Differenzengleichungen

Mehr

Division mit Rest - der heimliche Hauptsatz der Algebra

Division mit Rest - der heimliche Hauptsatz der Algebra Division mit Rest - der heimliche Hauptsatz der Algebra Franz Pauer Institut für Mathematik, Universität Innsbruck, Technikerstr. 13, A-6020 Innsbruck, Österreich. Franz.Pauer@uibk.ac.at Lehrer/innen/fortbildungstag

Mehr

Wurzel aus 2 und Wurzel aus 1: was ist das und wie rechnet man damit?

Wurzel aus 2 und Wurzel aus 1: was ist das und wie rechnet man damit? Wurzel aus 2 und Wurzel aus : was ist das und wie rechnet man damit? Franz Pauer Institut für Mathematik, Universität Innsbruck, Technikerstr. 3/7, A-6020 Innsbruck, Österreich. Franz.Pauer@uibk.ac.at

Mehr

Division mit Rest - der heimliche Hauptsatz der Algebra

Division mit Rest - der heimliche Hauptsatz der Algebra Division mit Rest - der heimliche Hauptsatz der Algebra Franz Pauer Institut für Mathematik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Österreich. Franz.Pauer@uibk.ac.at 3. Juni 2004 Einleitung

Mehr

Division mit Rest - der heimliche Hauptsatz der Algebra

Division mit Rest - der heimliche Hauptsatz der Algebra Division mit Rest - der heimliche Hauptsatz der Algebra Franz Pauer Institut für Mathematik, Universität Innsbruck, Technikerstr. 3, A-6020 Innsbruck, Österreich. Franz.Pauer@uibk.ac.at Lehrer/innen/fortbildungstag

Mehr

Differentialrechnung algebraisch betrachtet

Differentialrechnung algebraisch betrachtet Differentialrechnung algebraisch betrachtet Franz Pauer Florian Stampfer Institut für Mathematik Universität Innsbruck Technikerstr. 13/7, A-6020 Innsbruck, Österreich franz.pauer@uibk.ac.at 1 Einleitung

Mehr

Primzahlen im Schulunterricht wozu?

Primzahlen im Schulunterricht wozu? Primzahlen im Schulunterricht wozu? Franz Pauer Institut für Fachdidaktik und Institut für Mathematik Universität Innsbruck Lehrer/innen/fortbildungstag Wien 2013 5. April 2013 Einleitung Eine (positive)

Mehr

Diskret oder kontinuierlich modellieren?

Diskret oder kontinuierlich modellieren? Diskret oder kontinuierlich modellieren? Franz Pauer, Florian Stampfer Institut für Fachdidaktik und Institut für Mathematik Universität Innsbruck Lehrer/innen/fortbildungstag Wien 2017 21. April 2017

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 21. Januar 2016 Definition 8.1 Eine Menge R zusammen mit zwei binären Operationen

Mehr

Rationale Zahlen und rationale Funktionen: Was ist ihnen gemeinsam? Wie werden sie dargestellt?

Rationale Zahlen und rationale Funktionen: Was ist ihnen gemeinsam? Wie werden sie dargestellt? Rationale Zahlen und rationale Funktionen: Was ist ihnen gemeinsam? Wie werden sie dargestellt? Franz Pauer, Florian Stampfer Institut für Fachdidaktik und Institut für Mathematik Universität Innsbruck

Mehr

Lineare Differenzengleichungen

Lineare Differenzengleichungen Lineare Differenzengleichungen Die Fibonacci-Zahlen F n sind definiert durch F 0 = 0 F 1 = 1 F n = F n 1 +F n 2 für n >= 2 Die letzte Zeile ist ein Beispiel für eine homogene lineare Differenzengleichung

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Eigenwerte und Eigenvektoren Siehe Analysis (von der Hude, Folie 20: Definition 2.3. Ein Vektor x R n heißt Eigenvektor der quadratischen n n-matrix A zum Eigenwert λ R, wenn gilt Ax = λx Die Eigenwerte

Mehr

Mathematik macht Freu(n)de im Wintersemester 2018/19

Mathematik macht Freu(n)de im Wintersemester 2018/19 Mathematik macht Freu(n)de im Wintersemester 08/9 Markus Fulmek 08 06 9 Im folgenden wird zunächst ein kombinatorischer Gedankengang entwickelt, der mit wenigen einfachen Definitionen (samt erläuternden

Mehr

Schaltalgebra. Franz Pauer, Florian Stampfer. Institut für Fachdidaktik und Institut für Mathematik. Universität Innsbruck

Schaltalgebra. Franz Pauer, Florian Stampfer. Institut für Fachdidaktik und Institut für Mathematik. Universität Innsbruck Schaltalgebra Franz Pauer, Florian Stampfer Institut für Fachdidaktik und Institut für Mathematik Universität Innsbruck Lehrer/innen/fortbildungstag Wien 2019 26. April 2019 Eine Lampe mit drei Schaltern

Mehr

Prüfungsfragen zur Vorlesung Algebra und Diskrete Mathematik. Sommersemester 2018

Prüfungsfragen zur Vorlesung Algebra und Diskrete Mathematik. Sommersemester 2018 Prüfungsfragen zur Vorlesung Algebra und Diskrete Mathematik Sommersemester 2018 Erläutern Sie die Sätze über die Division mit Rest für ganze Zahlen und für Polynome (mit Koeffizienten in einem Körper).

Mehr

Lineare (Un-)Gleichungen und lineare Optimierung

Lineare (Un-)Gleichungen und lineare Optimierung Lineare (Un-)Gleichungen und lineare Optimierung Franz Pauer Institut für Mathematik Universität Innsbruck Lehrer/innen/fortbildungstag Wien 2010 9. April 2010 Eine Maximumsaufgabe Eine Firma stellt aus

Mehr

Prüfung EM1 28. Jänner 2008 A :=

Prüfung EM1 28. Jänner 2008 A := 1. Die Menge der Eigenwerte der Matrix ist Prüfung EM1 28. Jänner 2008 A := ( 0 1 ) 0 1 A. {1, 0} B. { 1} C. {0} D. {0, 1, 1} E. {0, 1} 2. Es seien V ein n-dimensionaler reeller Vektorraum, ein Skalarprodukt

Mehr

Lineare (Un-)Gleichungen und lineare Optimierung

Lineare (Un-)Gleichungen und lineare Optimierung Lineare (Un-)Gleichungen und lineare Optimierung Franz Pauer Institut für Mathematik, Universität Innsbruck Technikerstr. 13/7, A-6020 Innsbruck, Österreich franz.pauer@uibk.ac.at 1 Einleitung In der linearen

Mehr

Definition 131 Sei R ein (kommutativer) Ring. Ein Polynom über R in der Variablen x ist eine Funktion p der Form

Definition 131 Sei R ein (kommutativer) Ring. Ein Polynom über R in der Variablen x ist eine Funktion p der Form 3. Polynome 3.1 Definition und Grundlagen Definition 131 Sei R ein (kommutativer) Ring. Ein Polynom über R in der Variablen x ist eine Funktion p der Form p(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0,

Mehr

Interpolation, lineare Gleichungen (mit und ohne Lösungen) und lineare Regression

Interpolation, lineare Gleichungen (mit und ohne Lösungen) und lineare Regression Interpolation, lineare Gleichungen (mit und ohne Lösungen) und lineare Regression Franz Pauer Institut für Mathematik, Universität Innsbruck Technikerstr. 13/7, A-6020 Innsbruck, Österreich franz.pauer@uibk.ac.at

Mehr

Wurzel aus 2 und Wurzel aus 1 Was ist das und wie rechnet man damit?

Wurzel aus 2 und Wurzel aus 1 Was ist das und wie rechnet man damit? Wurzel aus 2 und Wurzel aus Was ist das und wie rechnet man damit? Franz Pauer Institut für Mathematik, Universität Innsbruck, Technikerstr. 3, A-6020 Innsbruck, Österreich. Franz.Pauer@uibk.ac.at Einleitung

Mehr

Differentialrechnung - algebraisch betrachtet

Differentialrechnung - algebraisch betrachtet Differentialrechnung - algebraisch betrachtet Franz Pauer Institut für Fachdidaktik und Institut für Mathematik Universität Innsbruck LehrerInnentag Innsbruck 2013 27. September 2013 Einleitung Ein großer

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 4 Injektive und surjektive Abbildungen Definition 4.1. Es seien L und M Mengen und es sei eine Abbildung. Dann heißt F F

Mehr

Mathematik für Informatik 3

Mathematik für Informatik 3 Mathematik für Informatik 3 - ANALYSIS - Folgen, Reihen und Funktionen - Funktionen mehrerer Veränderlicher - Extremwertaufgaben - Normen und Approximationen - STATISTIK - WAHRSCHEINLICHKEITSRECHNUNG Literaturempfehlungen:

Mehr

Primzahlen im Schulunterricht wozu?

Primzahlen im Schulunterricht wozu? Primzahlen im Schulunterricht wozu? Franz Pauer Institut für Fachdidaktik und Institut für Mathematik Universität Innsbruck Tag der Mathematik Graz 6. Februar 2014 Einleitung Eine (positive) Primzahl ist

Mehr

Polynomiale Gleichungen

Polynomiale Gleichungen Vorlesung 5 Polynomiale Gleichungen Definition 5.0.3. Ein polynomiale Funktion p(x) in der Variablen x R ist eine endliche Summe von Potenzen von x, die Exponenten sind hierbei natürliche Zahlen. Wir haben

Mehr

Prüfung Lineare Algebra , B := ( ), C := 1 1 0

Prüfung Lineare Algebra , B := ( ), C := 1 1 0 1. Es seien 1 0 2 0 0 1 3 0 A :=, B := ( 1 2 3 4 ), C := 1 1 0 0 1 0. 0 0 0 1 0 0 1 0 0 0 0 Welche der folgenden Aussagen ist richtig? A. A und C haben Stufenform, B nicht. B. A und B haben Stufenform,

Mehr

Partikuläre Lösung inhomogener DGLen 2. Ordnung mit konstanten Koeffizienten

Partikuläre Lösung inhomogener DGLen 2. Ordnung mit konstanten Koeffizienten Partikuläre Lösung inhomogener DGLen 2. Ordnung konstanten Koeffizienten Seite 1 von 5 Partikuläre Lösung inhomogener DGLen 2. Ordnung konstanten Koeffizienten Tabelle: Lösungsansatz für eine partikuläre

Mehr

Systemtheorie. Vorlesung 6: Lösung linearer Differentialgleichungen. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Systemtheorie. Vorlesung 6: Lösung linearer Differentialgleichungen. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Systemtheorie Vorlesung 6: Lösung linearer Differentialgleichungen Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Einführung Viele technischen Anwendungen lassen sich zumindest näherungsweise

Mehr

Schlussrechnung, Modellbildung und Interpolation

Schlussrechnung, Modellbildung und Interpolation Schlussrechnung, Modellbildung und Interpolation Franz Pauer Institut für Mathematik, Universität Innsbruck, Technikerstr. 13/7, A-6020 Innsbruck, Österreich. Franz.Pauer@uibk.ac.at Vortrag beim Lehrerfortbildungstag

Mehr

Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen

Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen Algebra und Diskrete Mathematik, PS3 Sommersemester 2016 Prüfungsfragen Erläutern Sie die Sätze über die Division mit Rest für ganze Zahlen und für Polynome (mit Koeffizienten in einem Körper). Wodurch

Mehr

KANN DER VEKTORRAUM R 3 EIN KÖRPER WERDEN? 1. Der Körper Centsprichtdem Vektorraum R 2

KANN DER VEKTORRAUM R 3 EIN KÖRPER WERDEN? 1. Der Körper Centsprichtdem Vektorraum R 2 KANN DER VEKTORRAUM R 3 EIN KÖRPER WERDEN? MARKUS FULMEK 1. Der Körper Centsprichtdem Vektorraum R 2 Die Menge R 2 = { (x, y) : x, y R } bildet mit der komponentenweisen Addition + R 2 R 2 R 2, (x, y)+(a,

Mehr

13 Polynome. p(x) = p i x i,

13 Polynome. p(x) = p i x i, 13 Polynome Polynome und Polynomfunktionen In Beispiel 1.5.29 sowie Beispiel 5.4 haben wir bereits Polynome eingeführt. In diesem Kapitel wollen wir diese wichtige algebraische Struktur genauer untersuchen.

Mehr

Kapitel 15 Lineare Gleichungssysteme

Kapitel 15 Lineare Gleichungssysteme Kapitel 15 Lineare Gleichungssysteme Kapitel 15 Lineare Gleichungssysteme Mathematischer Vorkurs TU Dortmund Seite 1 / 27 Kapitel 15 Lineare Gleichungssysteme Definition 15.1 (Lineares Gleichungssystem

Mehr

Folgen und Reihen. Folgen. Inhalt. Mathematik für Chemiker Teil 1: Analysis. Folgen und Reihen. Reelle Funktionen. Vorlesung im Wintersemester 2014

Folgen und Reihen. Folgen. Inhalt. Mathematik für Chemiker Teil 1: Analysis. Folgen und Reihen. Reelle Funktionen. Vorlesung im Wintersemester 2014 Inhalt Mathematik für Chemiker Teil 1: Analysis Vorlesung im Wintersemester 2014 Kurt Frischmuth Institut für Mathematik, Universität Rostock Rostock, Oktober 2014... Folgen und Reihen Reelle Funktionen

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Mathematik I für Biologen, Geowissenschaftler und Geoökologen 5. Dezember 2007 Definition : Tomographie (Fortsetzung) : Tomographie Definition: Ein lineares Gleichungssystem (LGS) ist ein System von n

Mehr

Gröbnerbasen - das wesentliche Hilfsmittel zum Rechnen mit Polynomen in mehreren Variablen

Gröbnerbasen - das wesentliche Hilfsmittel zum Rechnen mit Polynomen in mehreren Variablen Gröbnerbasen - das wesentliche Hilfsmittel zum Rechnen mit Polynomen in mehreren Variablen Franz Pauer Institut für Mathematik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Österreich. Franz.Pauer@uibk.ac.at

Mehr

Kapitel III Ringe und Körper

Kapitel III Ringe und Körper Kapitel III Ringe und Körper 1. Definitionen und Beispiele Definition 117 Eine Algebra A = S,,, 0, 1 mit zwei zweistelligen Operatoren und heißt ein Ring, falls R1. S,, 0 eine abelsche Gruppe mit neutralem

Mehr

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1. Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x

Mehr

Was sind Vektoren? Wozu braucht man sie?

Was sind Vektoren? Wozu braucht man sie? Was sind Vektoren? Wozu braucht man sie? Franz Pauer Institut für Mathematik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Österreich. Franz.Pauer@uibk.ac.at 30. März 2005 1 Einleitung Dieser

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 26 1. Folgen R. Steuding (HS-RM)

Mehr

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit 3 Lineare Algebra (Teil : Lineare Unabhängigkeit 3. Der Vektorraum R n Die Menge R n aller n-dimensionalen Spalten a reeller Zahlen a,..., a n R bildet bezüglich der Addition a b a + b a + b. +. :=. (53

Mehr

Gleichungen - Aufgabenstellung und Lösungsstrategien

Gleichungen - Aufgabenstellung und Lösungsstrategien Gleichungen - Aufgabenstellung und Lösungsstrategien Franz Pauer Institut für Fachdidaktik und Institut für Mathematik Universität Innsbruck Lange Nacht der Mathematik 2013 18. Oktober 2013 Was ist eine

Mehr

2.1 Vektorräume. 1. für alle x, y U ist x + y U und. 2. für alle x U und alle λ R ist λx U. O V (= O U) U, und dass ( 1) x U, also x U.

2.1 Vektorräume. 1. für alle x, y U ist x + y U und. 2. für alle x U und alle λ R ist λx U. O V (= O U) U, und dass ( 1) x U, also x U. Vektorräume Definition Eine nicht leere Menge V, für die eine Addition (dh eine Rechenvorschrift + derart, dass a + b V für alle a, b V ist und eine skalare Multiplikation (dh λa V für alle λ R (λ ist

Mehr

Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.2/29

Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.2/29 Dynamische Systeme und Zeitreihenanalyse Komplexe Zahlen Kapitel 3 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.0/29 Motivation Für die

Mehr

Demo für LINEARE ALGEBRA. Vektoren und Vektorraum. Teil 3. Untervektorräume INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Datei Nr.

Demo für   LINEARE ALGEBRA. Vektoren und Vektorraum. Teil 3. Untervektorräume INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Datei Nr. Teil 3 Untervektorräume Stand 1. Juli 011 Datei Nr. 61110 LINEARE ALGEBRA Vektoren und Vektorraum INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Demo für 61110 Vektorrechnung Teil 3 Untervektorräume 51 Inhalt

Mehr

Lineare Gleichungen Exkurs: Binomische Formeln Quadratische Gleichungen Exkurs: Polynomdivision Polynomgleichungen

Lineare Gleichungen Exkurs: Binomische Formeln Quadratische Gleichungen Exkurs: Polynomdivision Polynomgleichungen Gleichungen Lineare Gleichungen Exkurs: Binomische Formeln Quadratische Gleichungen Exkurs: Polynomdivision Polynomgleichungen Lineare Gleichungen Lineare Gleichungen ax + b = 0 Lineare Gleichungen ax

Mehr

Polynome und Polynomgleichungen

Polynome und Polynomgleichungen Polynome und Polynomgleichungen Gymnasium Immensee Vertiefungskurs Mathematik Bettina Bieri 24. Juli 2011 Inhaltsverzeichnis 1 Polynomgleichungen 1 1.1 Polynomfunktionen........................ 1 1.1.1

Mehr

9. Polynom- und Potenzreihenringe

9. Polynom- und Potenzreihenringe 64 Andreas Gathmann 9. Polynom- und Potenzreihenringe Bevor wir mit der allgemeinen Untersuchung von Ringen fortfahren, wollen wir in diesem Kapitel kurz zwei sehr wichtige weitere Beispiele von Ringen

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Kapitel 6 Lineare Gleichungssysteme 6. Gaußalgorithmus Aufgabe 6. : Untersuchen Sie die folgenden linearen Gleichungssysteme mit dem Gaußalgorithmus auf Lösbarkeit und bestimmen Sie jeweils die Lösungsmenge.

Mehr

Legendre Polynome. 1 2 n n! d n (( P n (x) P m (x)dx = 0 für m n.

Legendre Polynome. 1 2 n n! d n (( P n (x) P m (x)dx = 0 für m n. Legendre Polynome Sei R[X] der Raum der Polynomfunktionen. Die Legendre Polynome P n R[X] sind definiert durch P n (x) = 1 d n (( x 2 1 ) n). dx n (a) P n hat genau n paarweise verschiedene Nullstellen

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Zahlen und elementares Rechnen

Zahlen und elementares Rechnen und elementares Rechnen Christian Serpé Universität Münster 7. September 2011 Christian Serpé (Universität Münster) und elementares Rechnen 7. September 2011 1 / 51 Gliederung 1 2 Elementares Rechnen 3

Mehr

Gegeben sei eine Menge V sowie die Verknüpfung der Addition und die skalare Multiplikation der Elemente von V mit reellen Zahlen.

Gegeben sei eine Menge V sowie die Verknüpfung der Addition und die skalare Multiplikation der Elemente von V mit reellen Zahlen. 1. Der Vektorraumbegriff...1 2. Unterräume...2. Lineare Abhängigkeit/ Unabhängigkeit... 4. Erzeugendensystem... 5. Dimension...4 6. Austauschlemma...5 7. Linearität von Abbildungen...6 8. Kern und Bild

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 22 Algebraische Körpererweiterung Satz 1. Sei K L eine Körpererweiterung und sei f L ein Element. Dann sind folgende Aussagen

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 20 Kultur ist Reichtum an Problemen. Egon Friedell Der Interpolationssatz Satz 20.1. Es sei K ein Körper

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

4.1. Vektorräume und lineare Abbildungen

4.1. Vektorräume und lineare Abbildungen 4.1. Vektorräume und lineare Abbildungen Mengen von Abbildungen Für beliebige Mengen X und Y bezeichnet Y X die Menge aller Abbildungen von X nach Y (Reihenfolge beachten!) Die Bezeichnungsweise erklärt

Mehr

Kapitel II. Vektoren und Matrizen

Kapitel II. Vektoren und Matrizen Kapitel II. Vektoren und Matrizen Vektorräume A Körper Auf der Menge R der reellen Zahlen hat man zwei Verknüpfungen: Addition: R R R(a, b) a + b Multiplikation: R R R(a, b) a b (Der Malpunkt wird oft

Mehr

Kapitel 14 Lineare Gleichungssysteme

Kapitel 14 Lineare Gleichungssysteme Kapitel 4 Lineare Gleichungssysteme Kapitel 4 Lineare Gleichungssysteme Mathematischer Vorkurs TU Dortmund Seite 83 / 246 Kapitel 4 Lineare Gleichungssysteme Definition 4. (Lineares Gleichungssystem LGS)

Mehr

1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente:

1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente: Lösung 1. Übung Elemente der Algebra WS017/18 1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente: (e) {(x,y) IR 3x+4y 1}.

Mehr

2.5 Lineare Differentialgleichungen n-ter Ordnung

2.5 Lineare Differentialgleichungen n-ter Ordnung 2.5 Lineare Differentialgleichungen n-ter Ordnung Eine Dgl der Gestalt a n (x)y (n) +a n 1 (x)y (n 1) +...+a 2 (x)y +a 1 (x)y +a 0 (x)y = b(x) heißt lineare Dgl n-ter Ordnung. ( ) Dabei sind a 0, a 1,...,

Mehr

2 Lineare Gleichungssysteme

2 Lineare Gleichungssysteme 2 Lineare Gleichungssysteme Betrachte ein beliebiges System von m linearen Gleichungen in den n Unbekannten x,,x n : a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x n = b 2 () a m x + a m2 x

Mehr

ist (oder besser Abspalten von Linearfaktoren beschäftigen. Zu einem beliebigen Körper K betrachten wir die Menge (j,k) N N j+k=n

ist (oder besser Abspalten von Linearfaktoren beschäftigen. Zu einem beliebigen Körper K betrachten wir die Menge (j,k) N N j+k=n 8. Polynomringe Das Umgehen mit Polynomen, d.h. mit Ausdrücken der Form a 0 + a 1 x + a 2 x 2 +... + a n x n ist aus der Schule vertraut, falls die Koeffizienten a 0,..., a n ganze oder rationale oder

Mehr

Übungen zum Ferienkurs Lineare Algebra 2015/2016: Lösungen

Übungen zum Ferienkurs Lineare Algebra 2015/2016: Lösungen 1 Lineare Abhängigkeit 1.1 Für welche t sind die folgenden Vektoren aus 3 linear abhängig? (1, 3, 4), (3, t, 11), ( 1, 4, 0). Das zur Aufgabe gehörige LGS führt auf die Matrix 1 3 4 3 t 11. 1 4 0 Diese

Mehr

11.4. Lineare Differentialgleichungen höherer Ordnung

11.4. Lineare Differentialgleichungen höherer Ordnung 4 Lineare Differentialgleichungen höherer Ordnung Bei vielen geometrischen, physikalischen und technischen Problemen hat man nicht nur eine Funktion (in einer Variablen) und ihre Ableitung zueinander in

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2008/09 4 Einführung Vektoren und Translationen

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Arbeitsblatt 19 Die Pausenaufgabe Aufgabe 19.1. Sei K ein Körper und sei K[X] der Polynomring über K. Wie lautet

Mehr

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $ Mathematik für Ingenieure I, WS 8/9 Freitag 9. $Id: linabb.tex,v.3 9//9 3:7:34 hk Exp hk $ II. Lineare Algebra 9 Lineare Abbildungen 9. Lineare Abbildungen Der folgende Satz gibt uns eine einfachere Möglichkeit

Mehr

Mit Funktionen rechnen - ein wichtiges Thema der Sekundarstufe 2

Mit Funktionen rechnen - ein wichtiges Thema der Sekundarstufe 2 Mit Funktionen rechnen - ein wichtiges Thema der Sekundarstufe 2 Franz Pauer Institut für Fachdidaktik und Institut für Mathematik Universität Innsbruck Lehrer/innen/fortbildungstag Wien 2014 25. April

Mehr

a i x i, (1) Ein Teil der folgenden Betrachtungen gilt auch, wenn man den Körper durch einen Ring ersetzt.

a i x i, (1) Ein Teil der folgenden Betrachtungen gilt auch, wenn man den Körper durch einen Ring ersetzt. Polynome Definition 1. Ein Polynom f über einem Körper K mit der Unbestimmten x ist eine formale Summe f(x) = i 0 a i x i, (1) wobei nur endlich viele der Koeffizienten a i K von Null verschieden sind.

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

Ganzrationale Funktionen

Ganzrationale Funktionen Eine Dokumentation von Sandro Antoniol Klasse 3f Mai 2003 Inhaltsverzeichnis: 1. Einleitung...3 2. Grundlagen...4 2.1. Symmetrieeigenschaften von Kurven...4 2.1.1. gerade Exponenten...4 2.1.2. ungerade

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 7 Die Lösungsmenge eines homogenen linearen Gleichungssystems in n Variablen über einem Körper K ist ein Untervektorraum

Mehr

1 Körper. Wir definieren nun, was wir unter einem Körper verstehen, und sehen dann, dass es noch andere, ganz kleine Körper gibt:

1 Körper. Wir definieren nun, was wir unter einem Körper verstehen, und sehen dann, dass es noch andere, ganz kleine Körper gibt: 1 Körper Sie kennen bereits 2 Beispiele von Zahlkörpern: (Q, +, ) (R, +, ) die rationalen Zahlen mit ihrer Addition und Multiplikation die reellen Zahlen mit ihrer Addition und Multiplikation Vielleicht

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 1 Einführung Lineare Gleichungen Definition

Mehr

Kapitel 3. Kapitel 3 Gleichungen

Kapitel 3. Kapitel 3 Gleichungen Gleichungen Inhalt 3.1 3.1 Terme, Gleichungen, Lösungen x 2 2 + y 2 2 3.2 3.2 Verfahren zur zur Lösung von von Gleichungen 3x 3x + 5 = 14 14 3.3 3.3 Gleichungssysteme Seite 2 3.1 Terme, Gleichungen, Lösungen

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Mathematik I für Biologen, Geowissenschaftler und Geoökologen 28. November 2011 Definition Beispiel: Wassermengen und Konzentrationen in einem Fluss Beispiel Zeilenstufenform Beispiel (Fortsetzung) Anhang

Mehr

Univ.-Prof. Dr. Goulnara ARZHANTSEVA

Univ.-Prof. Dr. Goulnara ARZHANTSEVA Diskrete Mathematik Univ.-Prof. Dr. Goulnara ARZHANTSEVA SS 2018 c Univ.-Prof. Dr. Goulnara Arzhantseva Kapitel 06: Rekursionen 1 / 30 Rekursionen Definition: Rekursion Sei c n eine Zahlenfolge. Eine Rekursion

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Poelchau-Oberschule Berlin A. Mentzendorff September 2007 Lineare Gleichungssysteme Inhaltsverzeichnis 1 Grundlagen 2 2 Das Lösungsverfahren von Gauß 4 3 Kurzschreibweise und Zeilensummenkontrolle 6 4

Mehr

Vorkurs Mathematik B

Vorkurs Mathematik B Vorkurs Mathematik B Dr. Thorsten Camps Fakultät für Mathematik TU Dortmund 20. September 2011 Definition (R n ) Wir definieren: 1 Der R 2 sei die Menge aller Punkte in der Ebene. Jeder Punkt wird in ein

Mehr

Serie 3: Ringe, Körper, Vektorräume

Serie 3: Ringe, Körper, Vektorräume D-MATH Lineare Algebra I HS 2016 Dr. Meike Akveld Serie 3: Ringe, Körper, Vektorräume 1. Im Folgenden sei n N und Z n bezeichne die Menge der Äquivalenzklassen von Z bezüglich der Relation: k n l n k l

Mehr

2. Spezielle anwendungsrelevante Funktionen

2. Spezielle anwendungsrelevante Funktionen 2. Spezielle anwendungsrelevante Funktionen (1) Affin-lineare Funktionen Eine Funktion f : R R heißt konstant, wenn ein c R mit f (x) = c für alle x R existiert linear, wenn es ein a R mit f (x) = ax für

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 2: Vektoren Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 19. Oktober 2011) Vektoren in R n Definition 2.1

Mehr

Folgen und Reihen Folgen

Folgen und Reihen Folgen Folgen und Reihen 30307 Folgen Einstieg: Wir beginnen mit einigen Beispielen für reelle Folgen: (i),, 4, 8, 6, (ii) 4,, 6, 3, 7, (iii) 0,,,, 3,, (iv), 3, 7,,, Aufgabe : Setzt die Zahlenfolgen logisch fort

Mehr

Lineare Differentialgleichungen höherer Ordnung

Lineare Differentialgleichungen höherer Ordnung Lineare Differentialgleichungen höherer Ordnung I. Grundlegendes Eine homogene lineare Differentialgleichung n-ter Ordnung besitzt die Form y (n) + a n 1 (x)y (n 1) +... + a 1 (x)y + a 0 (x)y = 0 Eine

Mehr

2015, MNZ. Jürgen Schmidt. 2.Tag. Vorkurs. Mathematik WS 2015/16

2015, MNZ. Jürgen Schmidt. 2.Tag. Vorkurs. Mathematik WS 2015/16 Vorkurs Mathematik WS 2015/16 2.Tag Arten von Gleichungen Lineare Gleichungen (und Funktionen) 0 = ax + b (oft als Funktion: y = mx + n) a,b R Parameter m Anstieg, n Achsenabschnitt Quadratische Gleichungen

Mehr

2 Grundstrukturen. 2.1 Gruppen. Prof. Dr. Peter Schneider. Vorlesung WS Lineare Algebra 1 2 GRUNDSTRUKTUREN

2 Grundstrukturen. 2.1 Gruppen. Prof. Dr. Peter Schneider. Vorlesung WS Lineare Algebra 1 2 GRUNDSTRUKTUREN Vorlesung WS 08 09 Lineare Algebra 1 Prof. Dr. Peter Schneider 2 Grundstrukturen Notation: Sind M und N zwei Mengen, so heißt die Menge M N := {(m, n) : m M, n N} das cartesische Produkt oder auch die

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr)

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr) WS 2011/12 Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2011ws/ds/uebung/ 18. Januar 2012 ZÜ DS ZÜ XII

Mehr

Lineare Differentialgleichungen

Lineare Differentialgleichungen Technische Universität München Thomas Reifenberger Vorlesung, Kapitel 4 Repetitorium Analysis I für Physiker Analysis I Lineare Differentialgleichungen 1 Das Matrixexponential Definition 1.1 Sei A C n

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 1

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 1 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Lineare Algebra und analytische Geometrie. (Herbst 2005, Thema, Aufgabe ) Bestimmen Sie alle reellen Lösungen des folgenden linearen Gleichungssystems:.2

Mehr

Übungsblatt 10 Musterlösung

Übungsblatt 10 Musterlösung Übungsblatt 0 Musterlösung Numerik gewöhnlicher Differentialgleichungen MA2304 - SS6 Aufgabe 45 Fehlerkonstante von MSV Betrachten Sie ein allgemeines lineares q Schrittverfahren α q j y i+ j = h β q j

Mehr

8. Musterlösung zu Mathematik für Informatiker II, SS 2004

8. Musterlösung zu Mathematik für Informatiker II, SS 2004 8. Musterlösung zu Mathematik für Informatiker II, SS 2004 MARTIN LOTZ &MICHAEL NÜSKEN Aufgabe 8.1 (Polynomdivision). (8 Punkte) Dividiere a mit Rest durch b für (i) a = x 7 5x 6 +3x 2 +1, b = x 2 +1in

Mehr